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Abstract

A graph in which every connected induced subgraph has a disconnected com-
plement is called a cograph. Such graphs are precisely the graphs that do not have
the 4-vertex path as an induced subgraph. We define a 2-cograph to be a graph in
which the complement of every 2-connected induced subgraph is not 2-connected.
We show that, like cographs, 2-cographs can be recursively defined and are closed
under induced minors. We characterize the class of non-2-cographs for which every
proper induced minor is a 2-cograph. We further find the finitely many members of
this class whose complements are also induced-minor-minimal non-2-cographs.

Mathematics Subject Classifications: 05C40, 05C83

1 Introduction

In this paper, we only consider simple graphs. Except where indicated otherwise, our
notation and terminology will follow [6]. An induced minor of a graph G is any graph
H that can be obtained from G by a sequence of operations each consisting of a vertex
deletion or an edge contraction. If H ̸= G, then H is a proper induced minor of G.
Let e be an edge of G. Since we consider only simple graphs, we let G/e denote the simple
graph obtained from the multigraph that results from contracting the edge e by deleting
all but one edge from each class of parallel edges.

A cograph is a graph in which every connected induced subgraph has a disconnected
complement. By convention, the graph K1 is taken to be a cograph. Replacing con-
nectedness by 2-connectedness, we define a graph G to be a 2-cograph if G has no
induced subgraph H such that both H and its complement, H, are 2-connected. Note
that K1 is a 2-cograph. Cographs have been extensively studied over the last fifty years
(see, for example, [7, 14, 5]). They are also called P4-free graphs due to the following
characterization [4].
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Theorem 1. A graph G is a cograph if and only if G does not contain the path P4 on
four vertices as an induced subgraph.

In Section 2, we show that 2-cographs can be recursively defined, that every induced
minor of a 2-cograph is also a 2-cograph, and that the complement of every 2-cograph is
also a 2-cograph. In addition, we correct a result of Akiyama and Harary [1] that claims
to characterize when the complement of a 2-connected graph is 2-connected.

Because the class of 2-cographs is closed under induced minors, our initial goal was to
find all non-2-cographs with the property that every proper induced minor is a 2-cograph.
But, as we show in Section 3, in contrast to Theorem 1, there are infinitely many such
non-2-cographs. However, we were able to determine all infinite families of such graphs.
For all m ⩾ 1, let Mm and Nm be the graphs shown in Figures 3 and 4, respectively. Let
M ′

m and N ′
m be obtained from Mm and Nm by adding the edge st. Further, let N ′′

m be the
graph obtained from N ′

m by adding the edge uz; let Lm be the graph shown in Figure 2;
and, for all j ⩾ 0, let Fj be the graph shown in Figure 1. The next two theorems are the
main results of the paper.

Theorem 2. Let G be a graph that is not a 2-cograph such that every proper induced
minor of G is a 2-cograph. Then

(i) |V (G)| ⩽ 16; or

(ii) G is the complement of a cycle of length at least five; or

(iii) for some positive integer m, the complement of G is isomorphic to Fm−1, Lm,Mm,
M ′

m, Nm, N
′
m, or N ′′

m.

As we were unable to improve this bound of 16 vertices and the task of finding induced-
minor-minimal non-2-cographs with at most 16 vertices seemed computationally infeasi-
ble, we were prompted to try to determine those graphs G for which both G and G
are induced-minor-minimal non-2-cographs. The following theorem proves that, up to
isomorphism, there are finitely many such graphs G. Its proof occupies most of Section 4.

Theorem 3. Let G be a graph. Suppose that G is not a 2-cograph but that every proper
induced minor of each of G and G is a 2-cograph. Then 5 ⩽ |V (G)| ⩽ 10.

The unique 5-vertex graph satisfying the hypotheses of the last theorem is C5, the 5-
vertex cycle. In the appendix, we list all of the other graphs that satisfy these hypotheses.

2 Preliminaries

Let G be a graph. A vertex u of G is a neighbour of a vertex v of G if uv is an edge of
G. The neighbourhood NG(v) of v in G is the set of all neighbours of v in G. Viewing
G as a subgraph of Kn where n = |V (G)|, we colour the edges of G green while assigning
the colour red to the non-edges of G. In this paper, we use the terms green graph and
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Figure 1: The complements of the induced-minor-minimal non-2-cographs that are criti-
cally 2-connected.
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Figure 2: For each m ⩾ 1, the complement of the above graph Lm is an induced-minor-
minimal non-2-cograph.
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Figure 3: Mm, a graph whose complement is an induced-minor-minimal non-2-cograph.
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Figure 4: Nm, a graph whose complement is an induced-minor-minimal non-2-cograph.
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red graph for G and its complementary graph G, respectively. An edge of G is called a
green edge, while a red edge refers to an edge of G. The green degree of a vertex v
of G is the number of green neighbours of v, while the red degree of v is its number
of red neighbours.

Let G1 and G2 be graphs. If their vertex sets are disjoint, their 0-sum, G1 ⊕0 G2, is
their disjoint union. Now suppose that V (G1) ∩ V (G2) = T , that G1[T ] = G2[T ], and
that |T | = t. Then the union of G1 and G2, which has vertex set V (G1)∪V (G2) and edge
set E(G1) ∪ E(G2), is a t-sum, G1 ⊕t G2, of G1 and G2.

For k ⩾ 1, a graph G is a k-cograph if, for every induced subgraph H of G, at least
one of H and H is not k-connected. Thus a 1-cograph is just a cograph. Clearly, every
k-cograph is also a (k + 1)-cograph.

We omit the straightforward proofs of the next three results.

Lemma 4. Let G be a k-cograph. Then

(i) every induced subgraph of G is a k-cograph, and

(ii) G is a k-cograph.

Lemma 5. For 0 ⩽ t < k, a t-sum of two k-cographs is a k-cograph.

Lemma 6. Let G be a graph and let uv be an edge e of G. Then G/e is the graph obtained
by adding a vertex w with neighbourhood NG(u) ∩NG(v) to the graph G− {u, v}.

Cographs are also called complement-reducible graphs due to the following recursive-
generation result [4]. The operation of taking the complement of a graph is called com-
plementation.

Proposition 7. A graph G is a cograph if and only if G can be generated from K1 using
complementation and 0-sum.

Next, we show that, for k ⩾ 2, the class of k-cographs can be generated similarly.

Proposition 8. For all positive integers k, a graph G is a k-cograph if and only if G
can be generated from K1 using complementation and the operation of t-sum for all t with
0 ⩽ t < k.

Proof. Let G be a k-cograph. If |V (G)| ⩽ 2, the result holds. We proceed via induction
on the number of vertices of G. Assume that the result holds for all k-cographs of order
less than |V (G)|. Since G is a k-cograph, G or G is not k-connected. Without loss of
generality, we may assume that G is not k-connected. Therefore, for some t < k, we can
write G as a t-sum of two induced subgraphs G1 and G2 of G. By Lemma 4, G1 and G2

are k-cographs and the result follows by induction.
Conversely, let G be a graph that can be generated from K1 using complementation

and t-sums. Since K1 is a k-cograph, the result follows by Lemmas 4 and 5.
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The following recursive-generation result for cographs is due to Royle [12]. It uses
the concept of join of two disjoint graphs G and H, which is the graph G▽ H that is
obtained from the union of G and H by joining every vertex of G to every vertex of H.

Proposition 9. Let C be the class of graphs defined as follows:

(i) K1 is in C;

(ii) if G and H are in C, then so is G⊕0 H; and

(iii) if G and H are in C, then so is G▽H.

Then C is the class of cographs.

For graphs G and H such that V (G) ∩ V (H) = T and G[T ] = H[T ], suppose that
|T | = t. We generalize the join operation letting G▽t H be the graph that is obtained
from the union of G and H by joining every vertex of V (G) − V (H) to every vertex of

V (H)− V (G). Note that G▽t H is the graph G⊕t H.
The next result generalizes Proposition 9 to k-cographs.

Proposition 10. For k ⩾ 1, let C be the class of graphs defined as follows:

(i) K1 is in C;

(ii) if G and H are in C, then so is G⊕t H for all t with 0 ⩽ t < k; and

(iii) if G and H are in C, then so is G▽t H for all t with 0 ⩽ t < k.

Then C is the class of k-cographs.

Proof. Since G▽tH can be written in terms of t-sum and complementation, every graph
in C is a k-cograph. Conversely, let G be a k-cograph. If |V (G)| = 1, then G ∈ C. We
proceed by induction on |V (G)|. Let |V (G)| = n ⩾ 2 and assume that H ∈ C when
H is a k-cograph with |H| < n. By Proposition 8, G or G is a t-sum of two smaller
k-cographs. If G is the graph that can be decomposed as a t-sum, then the result follows
by induction. Therefore we may assume that G is G1 ⊕t G2 for two smaller k-cographs
G1 and G2. Observe that G = G1▽t G2. By Lemma 4, G1 and G2 are k-cographs and so
are in C by induction. Therefore G is in C.

Next we show that the class of 2-cographs is closed under contractions.

Proposition 11. Let G be a 2-cograph and e be an edge of G. Then G/e is a 2-cograph.

Proof. Assume to the contrary that G/e is not a 2-cograph. Then there is an induced
subgraph H of G/e such that both H and H are 2-connected. Let e = uv and let w
denote the vertex in G/e obtained by identifying u and v. We may assume that w is a
vertex of H, otherwise H is an induced subgraph of G, a contradiction. We assert that
the subgraph H ′ of G induced on the vertex set (V (H)∪ {u, v})−{w} is 2-connected, as
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is its complement H ′. To see this, note that, since H is 2-connected, H ′ is 2-connected
unless one of u and v, say u, is a leaf of H ′. In the exceptional case, we have H ′−u ∼= H,
so G has an induced subgraph for which both it and its complement are 2-connected, a
contradiction. We deduce that H ′ is 2-connected.

By Lemma 6, the neighbours of w in H are the common neighbours of u and v in H ′.
Thus the degrees of u and v in H ′ each equal at least the degree of w in H. Moreover,
H ′ − u has a spanning subgraph isomorphic to H and is therefore 2-connected. Since u
has degree at least two in H ′, it follows that H ′ is 2-connected, a contradiction.

We show next that, for all k ⩾ 3, a contraction of a k-cograph need not be a k-cograph.
We use the following construction for the proof. Start with a graph G with vertex set
{v1, v2, . . . , vn} and a copy G′ of G with vertex set {v′1, v′2, . . . , v′n}. Take the disjoint union
of G and G′, and add all the edges joining vi to v′i. The resulting graph, G□K2, is the
Cartesian product of G and K2.

Proposition 12. For k ⩾ 3, the class of k-cographs is not closed under contraction.

Proof. Let G2 = C5. For all m ⩾ 3, let Gm = Gm−1□K2. One can easily check that Gm

is an m-connected, m-regular graph whose complement is also m-connected.
Let G′

m be a graph having an edge e = v1v2 such that G′
m/e = Gm, both v1 and v2 have

degree less than m, and v1 and v2 have no common neighbours. Note that every proper
induced subgraph of G′

m has a vertex of degree less than m and so G′
m is a k-cograph.

However, G′
m/e is not a k-cograph as it equals Gm.

By Lemma 4 and Proposition 11, the class of 2-cographs is closed under taking induced
minors. In the rest of the paper, we will focus our attention on 2-cographs. The next
lemma is straightforward.

Lemma 13. All graphs having at most four vertices are 2-cographs.

Note that a graph G is a 2-cograph if and only if G or G can be decomposed as a
0-sum or a 1-sum of two smaller 2-cographs. For an input graph G and, for t in {0, 1},
the recognition algorithm in Figure 5 attempts to decompose G as a t-sum of graphs
having at most four vertices using complementation. Since such graphs are 2-cographs
by Lemma 13 and we can compute the blocks of a graph in polynomial time [15, 4.1.23],
the algorithm recognizes 2-cographs in polynomial time. Since 2-cographs do not have
induced subgraphs isomorphic to odd cycles of length at least five or their complements, it
follows by the Strong Perfect Graph Theorem [3] that all 2-cographs are perfect. However,
this inclusion is proper. For example, the well-known domino graph obtained from a 6-
cycle by adding a chord to create two 4-cycles is a perfect graph that is not a 2-cograph.
We let C+

6 denote the domino.
Akiyama and Harary [1, Corollary 1a] claimed that a 2-connected graph G has a 2-

connected complement if and only if the red and green degrees of every vertex of G are
at least two and G has no spanning complete bipartite subgraph. However, this result is
not true. The graphs in Figure 6 are complements of each other. The first graph in the
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Require: Input a simple graph G
Set H ← G, BlocksList ← [G]
if |V (H)| ⩽ 4 then

remove H from BlocksList
if BlocksList is empty then

return G is a 2-cograph and exit the algorithm
else

update H to be an element of BlocksList
if some K in {H,H} can be decomposed into 2-connected blocks then

remove H from BlocksList
add all the blocks of K to BlocksList
update H to be an element of BlocksList

else
return G is not a 2-cograph and exit the algorithm

Figure 5: Algorithm for recognizing a 2-cograph.

figure satisfies the hypotheses of [1, Corollary 1a] but its complement, C4 ⊕1 C4, is not
2-connected.

We can repair Akiyama and Harary’s result as follows.

Proposition 14. If G is a 2-connected graph, then G is a 2-connected graph if and only
if G has no complete bipartite subgraph using at least |V (G)| − 1 vertices.

Proof. Note that if G is not 2-connected, then G has a spanning complete bipartite
subgraph or a complete bipartite subgraph on |V (G)|− 1 vertices. The converse is imme-
diate.

Figure 6: A counterexample to a result of Akiyama and Harary.

3 Induced-minor-minimal non-2-cographs

We noted in Section 2 that 2-cographs are closed under induced minors. In this section, we
consider those non-2-cographs for which every proper induced minor is a 2-cograph. We
call these graphs induced-minor-minimal non-2-cographs. The goal of this section is
to characterize such graphs. We begin by showing that there are infinitely many of them.

the electronic journal of combinatorics 29 (2022), #P00 8



Theorem 2, whose proof appears at the end of this section, specifies all of the infinite
families of such graphs.

Because the proof of Theorem 2 is long, we now outline its key steps. A 2-connected
graph H is critically 2-connected if H − v is not 2-connected for all vertices v of
H. In Lemma 24, we show that if G is a non-2-cograph for which every single-vertex
deletion is a 2-cograph, then either G or G is critically 2-connected, or both G and
G have vertex connectivity two. Propositions 26 and 28 identify the induced-minor-
minimal non-2-cographs G for which, respectively, G is critically 2-connected, or G is
critically 2-connected. We are then able to focus on 2-cuts in an induced-minor-minimal
non-2-cograph G. Lemmas 29-36 are a sequence of incremental results whose aim is to
determine the structure of G. Corollary 37 summarizes the information determined about
this structure to that point. Outcome (iii) of that corollary is that G has connectivity
two, and, for every 2-cut {g1, g2} of G, there are exactly two components in G− {g1, g2}
and one of these has a single vertex. The rest of the proof of Theorem 2 deals with this
case. Much of the focus there and indeed throughout the section is on the sets Vg and Vr

of green-degree-two vertices and red-degree-two vertices in G.

Lemma 15. Let G be the complement of a cycle C of length exceeding four. Then G is
an induced-minor-minimal non-2-cograph.

Proof. Certainly G is not a 2-cograph since both G and its complement are 2-connected.
Moreover, by Lemma 4, G − v is a 2-cograph for all vertices v of G because G − v is a
path and is therefore a 2-cograph. It remains to show that G/e is a 2-cograph for all
edges e of G. By Lemma 6, the complement of G/e is either a 0-sum of two paths and an
isolated vertex, or a 0-sum of a path and K2. This implies that the complement of G/e
is a 2-cograph and, by Lemma 4, the result follows.

Note that the complements of cycles of length at least five are not the only induced-
minor-minimal non-2-cographs. It can be checked that both C+

6 and its complement are
induced-minor-minimal non-2-cographs.

The following lemma is obtained by applying [11, Lemma 2.3] (see also [10, Lemma
4.3.10]) to the bond matroid of a 2-connected graph.

Lemma 16. Let G be a 2-connected graph other than K3 and let v be an arbitrary vertex
of G. Then G has at least two edges incident with v each of whose contraction yields a
2-connected graph.

An edge e of a 2-connected graph G is contractible if G/e is 2-connected. The
following observation is immediate.

Lemma 17. Let G be an induced-minor-minimal non-2-cograph. Then both G and G are
2-connected.

In the rest of the section, we use the next two theorems of Chan about contractible
edges in 2-connected graphs [2, Theorems 3.1, 3.3, and 3.5]. A component of a graph is
trivial if it has just one vertex. In a 2-connected graph, a 2-cut is a 2-element vertex
cut.
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Theorem 18. Let G be a 2-connected graph that is not isomorphic to K3. Suppose all
the contractible edges of G meet a 3-element subset S of V (G). Then either G−S has no
edges, or G − S has exactly one non-trivial component and this component has at most
three vertices.

Theorem 19. Let G be a 2-connected graph that is not isomorphic to K3. Suppose all
the contractible edges of G meet a subset S of V (G) such that |S| ⩾ 4. Then G−S has at
most |S| − 2 non-trivial components and, between them, these components have at most
2|S| − 4 vertices.

We will also frequently use the following straightforward result.

Lemma 20. Let G be a 2-connected graph. If G has a 2-cut {g1, g2} such that each of g1
and g2 has red degree at least two and the components of G−{g1, g2} can be partitioned into
two sets each of which contains at least two vertices, then the red graph G is 2-connected.

Lemma 21. Let G be an induced-minor-minimal non-2-cograph such that |V (G)| ⩾ 6
and let wxyz be a path P of G such that both x and y have degree two in G. Then w and
z are adjacent.

Proof. Assume that w and z are not adjacent. By Lemma 17, G is 2-connected, so there
is a path P ′ joining w and z such that P and P ′ are internally disjoint. This implies that
G has C5 as a proper induced minor. As C5 is not a 2-cograph, this is a contradiction.

Lemma 22. Let G be an induced-minor-minimal non-2-cograph. If G has two adjacent
vertices of degree two, then |V (G)| ⩽ 10.

Proof. Assume |V (G)| ⩾ 11. Let a and b be two vertices of G of degree two such that
ab is a green edge. Let c be the green neighbour of a distinct from b, and let d be
the green neighbour of b distinct from a. Then c ̸= d, otherwise G is not 2-connected,
contradicting Lemma 17. By Lemma 21, cd is a green edge. Observe that every vertex
of V (G) − {a, b, c, d} has red edges joining it to each of a and b. Thus G − {c, d} is
2-connected.

Suppose that both c and d have red degree at least three. Let w be a red neighbour
of d such that w ̸= a. It follows by Lemma 16 that w has a contractible green edge
incident to it, say e, such that the other endpoint of e is not c. Then G/e is 2-connected,
a contradiction.

Next suppose that both c and d have red degree two. First, we assume that c and d
have the same red neighbour, say v, in G−{a, b}. Since v has green degree at least two, we
have two green neighbours of v, say x and y. Note that x and y are in V (G)−{a, b, c, d}.
Since x and y are adjacent to both c and d in the green graph, both the red and the
green graphs induced on {a, b, c, d, v, x, y} are 2-connected. This implies |V (G)| ⩽ 7, a
contradiction. We may now assume that c and d have distinct red neighbours in G−{a, b};
call them v and w, respectively. Note that vdcw is a green vw-path.

22.1. G− {a, b} has no vw-path P internally disjoint from the path vdcw.
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Assume that G − {a, b} has such a path. Observe that the red graph and the green
graph induced on the vertex set V (P )∪{a, b, c, d} are 2-connected and therefore, V (G) =
V (P ) ∪ {a, b, c, d}. Now |V (P )| ⩾ 7 since |V (G)| ⩾ 11. Let e be an edge in the path
P such that neither of the endpoints of e is in {v, w}. Note that G/e and G/e are both
2-connected, a contradiction. Thus 22.1 holds.

Let P1 and P2 be shortest vw-paths in G − {a, b, d} and G − {a, b, c}, respectively.
By 22.1, P1 contains the vertex c and P2 contains d. Note that V (G) = V (P1) ∪ V (P2) ∪
{a, b}. As |V (G)| ⩾ 11, we may assume that P1 − w has length at least three. Let e be
an edge in P1 −w such that the endpoints of e are not in {c, v}. Note that G/e and G/e
are both 2-connected, a contradiction.

Finally, without loss of generality, we may assume that c has red degree two and d
has red degree at least three. Let v be the red neighbour of c distinct from b. Suppose
that dv is red. Let x and y be two green neighbours of v, and let P be a shortest path
from d to {v, x, y} in G− {a, b, c}. Then, for V ′ = {a, b, c, d, v, x, y} ∪ V (P ), the red and
green graphs induced by V ′ are 2-connected, so V ′ = V (G). As |V (G)| ⩾ 11, we may
assume that P has length at least three. Let e be an edge in P such that the endpoints
of e are not in {d, v, x, y}. Note that G/e and G/e are both 2-connected, a contradiction.
Therefore, dv is green. Let w be a red neighbour of d in G − {a, b}. Let u be a green
neighbour of v distinct from d. Observe that u ̸= w, otherwise |V (G)| ⩽ 6 since both
G[{a, b, c, d, v, w}] and G[{a, b, c, d, v, w}] are 2-connected. Let P be a shortest path from
w to {d, u, v} in G−{a, b, c}. Then V (G) = {a, b, c, d, u, v, w}∪V (P ), so we may assume
that P has length at least three. Then, for an edge e of P having neither endpoint in
{d, u, v, w}, both G/e and G/e are 2-connected, a contradiction.

The next lemma shows that if a path of an induced-minor-minimal non-2-cograph G
has three consecutive vertices of degree two, then G ∼= C5.

Lemma 23. Let G be an induced-minor-minimal non-2-cograph such that G has a path
P of length exceeding three and all the internal vertices of P are of degree two. Then
G ∼= C5.

Proof. Let u and v be vertices of P such that the subpath Puv of P joining u and v
has length four. Since G is 2-connected, there is a uv-path P ′ such that Puv and P ′ are
internally disjoint. Assume that P ′ is a shortest such path. Then contracting all but one
edge in P ′ and deleting all the vertices not in V (Puv), we obtain C5. Since G cannot have
C5 as a proper induced minor, G ∼= C5.

Lemma 24. If G is a non-2-cograph such that G− v is a 2-cograph for all vertices v of
G, then G or G is critically 2-connected, or both G and G have vertex connectivity two.

Proof. Certainly, G and G are 2-connected and, for all vertices v of G, either G − v or
G− v is not 2-connected. Observe that if neither G nor G is critically 2-connected, then
G has vertices v and vc such that G−v and G−vc are 2-connected. It follows that G−vc
and G− v are not 2-connected, so both G and G have vertex connectivity two.
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Next we find those induced-minor-minimal non-2-cographs G such that G or G is
critically 2-connected. We will use the following result of Nebesky [9].

Lemma 25. Let G be a critically 2-connected graph such that |V (G)| ⩾ 6. Then G has
at least two distinct paths of length exceeding two such that the internal vertices of these
paths have degree two in G.

Proposition 26. Let G be an induced-minor-minimal non-2-cograph such that G is crit-
ically 2-connected. Then G is isomorphic to C5 or C+

6 .

Proof. By Lemmas 13 and 15, it follows that C5 is the unique induced-minor-minimal
non-2-cograph with at most five vertices, so we may assume that |V (G)| ⩾ 6. Thus, by
Lemma 25, G has two distinct paths P1 and P2 of length exceeding two such that their
internal vertices have degree two. Since G is not isomorphic to C5, by Lemma 23, we may
assume that both P1 and P2 have length three. Lemma 21 implies that, for each i, the
endpoints of Pi are adjacent. We deduce that G has C+

6 as an induced minor. As C+
6 is

an induced-minor-minimal non-2-cograph, we deduce that G ∼= C+
6 .

Lemma 27. A graph G is an induced-minor-minimal non-2-cograph for which the graph
G[Vr] induced on Vr has at least two disjoint red edges if and only if G is a cycle with at
least five vertices, or G is isomorphic to H1, H2, or Fm for some m ⩾ 0 where H1, H2,
and Fm are shown in Figure 1.

Proof. First we observe that if G is a cycle with |V (G)| ⩾ 5 or if G is isomorphic to
H1, H2, or Fm, then G[Vr] has at least two disjoint red edges. Moreover, by Lemma 15, if
G is a cycle with |V (G)| ⩾ 5, then G is an induced-minor-minimal non-2-cograph. It is
straightforward to check that if G is isomorphic to H1 or H2, then G is an induced-minor-
minimal non-2-cograph. Finally, we show that, for all m ⩾ 0, the complement of Fm is an
induced-minor-minimal non-2-cograph. Since F0

∼= C+
6 and the complement of the latter

is an induced-minor-minimal non-2-cograph, we may assume that m > 0. As both Fm

and Fm are 2-connected, the graph Fm is not a 2-cograph. We show that every proper
induced minor H of Fm is a 2-cograph. First assume that H is an induced subgraph of
Fm. Deleting the vertex x from Fm leaves a path, which is a 2-cograph. Thus we may
assume that x is a vertex of H. Once a vertex distinct from x is deleted from Fm, if
we were to find a non-2-cograph, it must be contained in one of the blocks of the vertex
deletion. Each block B of a vertex deletion of Fm that has at least three vertices must
have x as a vertex. Moreover, B has x adjacent to all but at most one other vertex, so its
complement is not 2-connected. It is now straightforward to see that H is a 2-cograph.
For an edge uv of Fm, it follows by Lemma 6 that the complement of Fm/uv is either an
induced subgraph of Fm or a 1-sum of an induced subgraph of Fm with K2 or K3. Thus
Fm/uv is a 2-cograph and so Fm is an induced-minor-minimal non-2-cograph.

Conversely, assume that G is an induced-minor-minimal non-2-cograph for which G[Vr]
has u1u2 and v1v2 as two disjoint red edges. Since C5 is the unique induced-minor-minimal
non-2-cograph with five vertices, we may assume that |V (G)| ⩾ 6, that G is not a cycle,
and that no Fm for m ⩾ 0 is isomorphic to G. Next we show the following.
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27.1. In G, no ui is adjacent to any vj.

Note that if we have a red edge connecting {u1, u2} to {v1, v2}, then G has a path P
of length three such that all the vertices of P have red degree two. Let Q be a shortest
path in G\E(P ) joining the endpoints of P . Then G has as an induced subgraph a cycle
with edge set E(P )∪E(Q). This cycle has at least five edges, a contradiction. Thus 27.1
holds.

In G, let x and y be the neighbours of u1 and u2, respectively, other than u2 and
u1; and let w and z be the neighbours of v1 and v2, respectively, other than v2 and v1.
Because G is 2-connected, it has a cycle C containing u1u2 and v1v2. We show next
that C is Hamiltonian. Assume it is not. Certainly G[V (C)] is 2-connected. Consider
G[V (C)]. In it, u1 and u2 are adjacent to every vertex not in {x, u1, u2, y}, and v1 and v2
are adjacent to every vertex not in {w, v1, v2, z}. In addition, u1 and v1 are adjacent to
y and it follows by symmetry that G[V (C)] is 2-connected. The minimality of G implies
that V (G) = V (C). Thus C is indeed Hamiltonian.

Assume that C consists of the path xu1u2y, a path Pyz from y to z, the path zv2v1w,
and a path Pwx from w to x. Now x and y must be distinct. Likewise, w and z are distinct.
If x = w and y = z, then G is either C6 or C

+
6 . As C

+
6 = F0, this is a contradiction. Thus

x ̸= w or y ̸= z.
The graph G− {u1, u2} is connected. Take a shortest path P in this graph from x to

y. This path P must be a single edge otherwise G has an induced cycle of length at least
five consisting of the union of P and the path xu1u2y. By Lemma 15, the complement of
this induced cycle is an induced-minor-minimal non-2-cograph, so G is this complement,
a contradiction.

By symmetry, we may assume that G has xy and wz as edges. Assume that x = w
but y ̸= z. Because the only cycles of G containing u1u2 and v1v2 are Hamiltonian, the
path Pyz in C is a shortest path from y to z in G− x. Let Pyz = y0y1 . . . ym where y = y0
and z = ym. For each i in {1, 2, . . . ,m− 1}, the only possible neighbour of yi in G other
than yi−1 and yi+1 is x. We argue by induction on i that yi is adjacent to x. Suppose
y1 is not adjacent to x. If y2 is adjacent to x, then G has C+

6 as an induced subgraph,
a contradiction. Thus y2 is not adjacent to x. As ym is adjacent to x, for some j ⩾ 3,
the vertex yj is adjacent to x, but none of yj−1, yj−2, . . . , y2, y1 is adjacent to x. Then G
has a cycle of length at least five as an induced subgraph, a contradiction. We conclude
that y1 is adjacent to x. Assume that all of y1, y2, . . . , yt are adjacent to x but yt+1 is not.
If yt+2 is not adjacent to x, then G contains an induced cycle of length at least five, a
contradiction. Thus yt+2 is adjacent to x and G has Ft as a proper induced subgraph, a
contradiction. We conclude that yt+1 is adjacent to x. Hence, by induction, yi is adjacent
to x for all i in {1, 2, . . . ,m− 1}. Thus G ∼= Fm, a contradiction.

It remains to consider the case when x ̸= w and y ̸= z. If xz and wy are both green,
then G − {v1, v2} and its complement are both 2-connected, a contradiction. Suppose
both xz and wy are red. Then G has a cycle using u1u2 and v1v2 and having exactly
eight vertices. Thus |V (G)| = 8. If both xw and yz are green, then G − {u1, u2} ∼= C+

6 ,
a contradiction. Thus G is isomorphic to either H1 or H2. Now assume that xz is red
and wy is green. If both xw and yz are red, then |V (G)| = 8 and G is isomorphic to H2.

the electronic journal of combinatorics 29 (2022), #P00 13



If xw is green, then, using the paths Pyz and Pwz in G, we see that G − {v1, v2} and its
complement are both 2-connected. Thus we may assume that xw is red. Likewise, yz
is red otherwise G− {u1, u2} and its complement are both 2-connected, a contradiction.
Hence G is isomorphic to H2.

The following is a straightforward consequence of Lemmas 25 and 27.

Proposition 28. A graph G is an induced-minor-minimal non-2-cograph for which G
is critically 2-connected if and only if G is a cycle with at least five vertices, or G is
isomorphic to H1, H2, or Fm for some m ⩾ 0.

The next three lemmas show that the number of vertices of an induced-minor-minimal
non 2-cograph is bounded above given some conditions on the sizes of components after
the removal of a green 2-cut and on the red degrees of the vertices in that cut.

Lemma 29. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that each of g1 and g2 has red degree exceeding two and the components of G − {g1, g2}
can be partitioned into two subgraphs, A and B, each having at least two vertices. Then
|V (G)| ⩽ 8.

Proof. Assume that |V (G)| > 8. Without loss of generality, let |V (A)| ⩾ 4. Suppose A
contains no red neighbours of g1 or g2. Then all vertices in A are incident to both g1
and g2 via a green edge. Let v be any vertex in A. Note that both G − v and G − v
are 2-connected, a contradiction. Therefore, we may assume that A has a red neighbour,
say a1, of g1. Lemma 16 implies that we can find a contractible green edge, say e, of G
incident to a1 such that the other endpoint of e is in A. By Lemma 20, G/e is 2-connected,
a contradiction.

Lemma 30. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that the red degree of g1 is two and the components of G − {g1, g2} can be partitioned
into subgraphs A and B such that |V (A)| ⩾ |V (B)| ⩾ 2. Suppose that A contains exactly
one red neighbour v of g1, and either g2 has no red neighbours in A − v, or g2 has red
degree greater than two. If all of the contractible edges of G having both endpoints in
V (A) ∪ {g1, g2} are incident to a vertex in {g1, g2, v}, then |V (A)| ⩽ 4.

Proof. Assume that |V (A)| > 4. Let GA be the subgraph of G induced by V (A)∪{g1, g2},
and let Q denote the vertex set {g1, g2, v}. By colouring the edge g1g2 green if necessary,
we may assume that GA is 2-connected. Since the contractible edges of GA must meet Q,
by Theorem 18, either GA − Q has no edges, or GA − Q has one non-trivial component
and this component has at most three vertices. First suppose that GA − Q is edgeless.
Let Γ = V (GA)−Q. Next we show the following.

30.1. There is no vertex γ in Γ such that GA − γ is 2-connected.

If such a vertex exists, then G− γ is 2-connected. Moreover, by Lemma 20, G− γ is
2-connected, a contradiction. Thus 30.1 holds.

30.2. The edge vg2 is red.
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Suppose vg2 is green. Let α be a neighbour of v in Γ. Then g1αvg2g1 is a cycle of
GA. Because GA−Q is edgeless and GA is 2-connected, every vertex in Γ−α is adjacent
to at least two members of {g1, g2, v}. Thus GA − γ is 2-connected for all γ in Γ − α, a
contradiction to 30.1. Thus 30.2 holds.

Observe that v and g2 have a common neighbour β in Γ otherwise, as GA − Q is
edgeless, g1 is a cut vertex of GA. By 30.2, v has a neighbour α in Γ−β. Since g1αvβg2g1
is a cycle and all vertices in Γ− {α, β} are adjacent to at least two vertices in {g1, g2, v},
we deduce that GA − γ is 2-connected for all γ in Γ− {α, β}, a contradiction.

We may now assume that GA − Q has one non-trivial component, say CA, and a set
IA of isolated vertices. Moreover, |V (CA)| ⩽ 3. Then IA is non-empty since |V (A)| > 4.
Let αβ be an edge in CA. Note that αβ is not contractible in GA, so {α, β} is a 2-cut of
GA and, therefore, of G. Since |V (B)| ⩾ 2 and IA is non-empty, each of α and β has red
degree at least three in G. Therefore, by Lemma 29, as |V (G)| = |V (A)|+2+ |V (B)| > 8,
there is a vertex t of G whose only green neighbours are α and β. Since g1 is adjacent
to all vertices in IA ∪ V (CA), it follows that t = v. This implies that all vertices in IA
are adjacent only to g1 and g2. Taking w in IA, we see that GA − w is 2-connected, a
contradiction to 30.1

Lemma 31. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that the components of G − {g1, g2} can be partitioned into subgraphs, A and B, each
having at least two vertices. If the red degree of g1 is two and that of g2 is greater than
two such that one red neighbour of g1 is in A and the other is in B, then |V (G)| ⩽ 10.

Proof. Without loss of generality, assume |V (A)| ⩾ |V (B)|. Let GA be the subgraph of
G induced by V (A) ∪ {g1, g2}. Note that GA is 2-connected since g1g2 is green. Denote
the red neighbour of g1 in A by v and let Q = {g1, g2, v}. Observe that if we have a
contractible edge e of G having both endpoints in V (A) ∪ {g1, g2} such that neither of
the endpoints of e is in Q, then, by Lemma 20, both G/e and G/e are 2-connected, a
contradiction. Therefore, we may assume that all contractible edges of G that have both
endpoints in V (A)∪{g1, g2}meet Q. Thus, by Lemma 30, |V (A)| ⩽ 4, so |V (G)| ⩽ 10.

Lemma 32. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that the components of G−{g1, g2} can be partitioned into two subgraphs, A and B, each
having at least two vertices. Suppose that, for each i in {1, 2}, if gi has red degree two,
then gi has no red neighbour in B. Then |V (B)| = 2.

Proof. Suppose |V (B)| ⩾ 3. If all vertices in B are green neighbours of both g1 and g2,
then G−z is 2-connected for all z in V (B). But, by Lemma 20, G−z is also 2-connected,
a contradiction. Thus B has a red neighbour, say b, of g1. Note that g1 has red degree
greater than two. Now, by Lemma 16, we can find a contractible edge, say e, of G incident
to b such that the other endpoint of e is in V (B). By Lemma 20, G/e is 2-connected, a
contradiction.

Lemma 33. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that the red degree of g1 is two and the components of G−{g1, g2} can be partitioned into
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subgraphs A and B such that |V (A)| ⩾ |V (B)| ⩾ 2. Suppose that one of the following
holds.

(i) A contains both the red neighbours {x, y} of g1, and g2 has no red neighbour in
A− {x, y} if the red degree of g2 is two; or

(ii) g2 has red degree two and A contains exactly one pair {x, y} of distinct vertices such
that x is a red neighbour of g1, and y is a red neighbour of g2.

If all contractible edges of G having both endpoints in V (A) ∪ {g1, g2} are incident to a
vertex in {g1, g2, x, y}, then |V (A)| ⩽ 6.

Proof. Assume that |V (A)| > 6 and so |V (G)| > 10. Let GA be the graph induced on
V (A) ∪ {g1, g2}. Let Q = {g1, g2, x, y}. By colouring the edge g1g2 green if necessary,
we may assume that GA is 2-connected. Note that all the contractible edges of GA must
meet Q, otherwise we have a contractible edge e of G such that G/e is 2-connected, a
contradiction. By Theorem 19, GA − Q has at most two non-trivial components and,
between them, these components have at most four vertices.

Let IA and NA be the sets of isolated and non-isolated vertices of GA−Q, respectively.
We note the following.

33.1. If two vertices i1 and i2 in IA have the same green neighbourhood in G, then {i1, i2}
is a green 2-cut in G.

As G − {g1, g2, i1} is a complete bipartite graph with each part having at least two
vertices, it is 2-connected. Both g1 and g2 have at least two red neighbours in G − {i1}.
Thus G − i1 is 2-connected. Therefore G − i1 is not 2-connected. It follows that i2 is a
cut-vertex of G− i1 and so {i1, i2} is a green 2-cut. Thus 33.1 holds.

First suppose that NA is empty. As |V (A)| ⩾ 7, we see that |IA| ⩾ 5. Suppose that g2
has red degree two. Then all vertices in IA are adjacent to both g1 and g2 in G. Observe
that if a vertex s in IA has green neighbourhood {g1, g2}, then both G − s and G − s
are 2-connected, a contradiction. Since g1 and g2 have no red neighbours in IA, the green
neighbourhood of a vertex in IA is {g1, g2, x}, {g1, g2, y}, or {g1, g2, x, y}. It follows that
there are at least two pairs of vertices in IA such that each vertex in a pair has the same
green neighbourhood. Let {i1, i2} be such a pair. By 33.1, {i1, i2} is a green 2-cut. Since
the red degrees of both i1 and i2 are greater than two, by Lemma 29, it follows that there
is a vertex t of G that has green neighbourhood {i1, i2}. Note that t is either x or y. Since
we have at least two such green 2-cuts, it follows that g2x and g2y are both red, and there
is a red edge connecting {x, y} to IA. Observe that B has no red neighbour of g1 or g2. It
now follows that, for each b in V (B), both G−b and G−b are 2-connected, a contradiction.
Therefore g2 has red degree at least three. By Lemma 32, |V (B)| = 2. Suppose there
is no red edge connecting {x, y} to IA. Then the possible green neighbourhoods of the
vertices in IA are {x, y}, {x, y, g1}, {x, y, g2}, or {x, y, g1, g2}. Thus, by 33.1, IA contains
a green 2-cut {i1, i2} of G. Then we get |V (G)| ⩽ 8 by applying Lemma 29 to the green
2-cut {i1, i2}. Therefore there is a red edge connecting {x, y} to IA. It follows that, for
some b in V (B), both G− b and G− b are 2-connected, a contradiction.
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We may now assume that GA − Q has at least one non-trivial component. Let C
be such a component and let αβ be an edge in C. Since αβ is a non-contractible edge
of GA, we see that {α, β} is a green 2-cut of GA and thus of G. Then GA − Q ̸= C
otherwise, by Theorem 19, |V (A)| ⩽ 6, a contradiction. Thus both α and β have red
degree at least three in G. Therefore, by Lemma 29, G has a unique vertex t that has
green neighbourhood {α, β}. Since all vertices in GA except x and y are adjacent to g1
via a green edge, t is either x or y. As αβ is an arbitrary green edge in GA−Q, it follows
that GA − Q has at most two edges and therefore has either one non-trivial component
with at most three vertices, or has two non-trivial components each with two vertices.

Suppose that GA−Q has only one edge, αβ, and let t be the unique member of {x, y}
that has green neighbourhood {α, β}. Then |IA| ⩾ 3 and the green neighbourhood of
every vertex in IA is contained in {g1, g2, s} where {t, s} = {x, y}. It is clear that if a
vertex w in IA has green neighbourhood {g1, g2}, then G−w and G−w are 2-connected.
It follows that the green neighbourhood of a vertex in IA is either {g1, s} or {g1, g2, s}. As
|IA| ⩾ 3, it contains vertices i1 and i2 that have the same green neighbourhood. By 33.1,
{i1, i2} is a green 2-cut in G. As neither t nor s has {i1, i2} as its green neighbourhood,
Lemma 29 gives the contradiction that |V (G)| ⩽ 8. We now know that GA − Q has
exactly two edges, so 3 ⩽ |NA| ⩽ 4. Observe that IA ̸= ∅ and all vertices in IA have green
neighbourhood equal to {g1, g2} since x and y have their green neighbourhoods contained
in NA. Thus, for w ∈ IA, both G− w and G− w are 2-connected, a contradiction.

Lemma 34. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that g1 and g2 are not adjacent in G and the components of G−{g1, g2} can be partitioned
into two subgraphs, A and B, each having at least two vertices. Then |V (G)| ⩽ 10.

Proof. First suppose that both g1 and g2 have red degree two and that the red neighbour
v of g1 that is distinct from g2 is in A, and the red neighbour u of g2 distinct from g1 is in
B. We may assume that |V (A)| ⩾ |V (B)|. Observe that, if we can find a contractible edge
e of G having both the endpoints in V (A)− v, then, by Lemma 20, G/e is 2-connected, a
contradiction. This implies that all the contractible edges ofG that have both endpoints in
V (A)∪{g1, g2} are incident to {g1, g2, v}. By Lemma 30, |V (A)| ⩽ 4 and so |V (G)| ⩽ 10.
Thus we may assume that both u and v are in A and all contractible edges of G that have
both endpoints in V (A)∪{g1, g2} are incident to {g1, g2, u, v}. Note that u ̸= v, otherwise
G has a cut vertex. We get our result now by Lemmas 32 and 33. We may now assume
that the red degree of g2 exceeds two. By Lemma 29, we may further assume that the
red degree of g1 is two.

Let v be the red neighbour of g1 other than g2. We may assume that v is in A. By
Lemma 32, |V (B)| = 2. Note that all the contractible edges of G that have both endpoints
in V (A) ∪ {g1, g2} are incident to {g1, g2, v}. The result now follows by Lemma 30.

Lemma 29 can be modified as follows.

Lemma 35. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that the components of G−{g1, g2} can be partitioned into two subgraphs, A and B, each
having at least two vertices. If g2 has red degree greater than two, then |V (G)| ⩽ 10.
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Proof. Assume that |V (G)| ⩾ 11. Then, by Lemma 29, the red degree of g1 is two. Let
x and y be the two red neighbours of g1. Note that if x is in A and y is in B, then the
result follows by Lemma 31. By Lemma 34, we may suppose that the edge g1g2 is green
and both x and y are in A.

The graph GA induced on V (A) ∪ {g1, g2} is 2-connected. Let Q = {g1, g2, x, y}.
Then every contractible edge e of GA must meet Q otherwise, by Lemma 20, we obtain
the contradiction that both G/e and G/e are 2-connected. The result now follows by
Lemmas 32 and 33.

We can generalize the above result by removing the condition on the red degrees of
the vertices in the 2-cut at the cost of raising the bound on the number of vertices of G
to 16.

Lemma 36. Let {g1, g2} be a 2-cut of an induced-minor-minimal non-2-cograph G such
that the components of G−{g1, g2} can be partitioned into two subgraphs, A and B, each
having at least two vertices. Then |V (G)| ⩽ 16.

Proof. Assume that |V (G)| ⩾ 17. By Lemmas 34 and 35, we may assume that the
red degrees of both g1 and g2 are two and g1g2 is green. We may further assume that
|V (A)| ⩾ |V (B)|. The graph GA induced on V (A) ∪ {g1, g2} is 2-connected. Let Q be
the union of {g1, g2}, the set of red neighbours of g1 in A, and the set of red neighbours
of g2 in A. Then every contractible edge e of GA must meet Q, otherwise, by Lemma 20,
we obtain a contradiction. Note that if |Q| = 2, then, by Lemma 32, |V (A)| = 2 and so
|V (G)| ⩽ 6, a contradiction. By Theorems 18 and 19, GA−Q has at most four non-trivial
components and between them, these components have at most eight vertices.

Let IA and NA be the sets of isolated and non-isolated vertices of GA−Q, respectively.
We note the following.

36.1. |NA| ⩽ 4.

Assume that |NA| > 4 and so GA −Q has at least three edges. Let αβ be an edge of
GA − Q. Because αβ is not a contractible edge of GA, it follows that {α, β} is a green
2-cut of G. Observe that each of α and β has red degree at least three unless |IA| is empty,
and GA − Q has one non-trivial component, and |V (B)| = 2. The exceptional case does
not arise since it implies, as V (G) = (V (A)−Q)∪Q∪V (B), that |V (G)| ⩽ 8+6+2 = 16,
a contradiction. By Lemma 29, there is a vertex t that has green neighbourhood {α, β}.
Note that the only vertices that could have green neighbourhood {α, β} are the common
red neighbours of g1 and g2. Since there are at most two such vertices and at least
three edges in GA − Q, each of which must have an associated such vertex, we have a
contradiction. Thus 36.1 holds.

Next we show the following.

36.2. |IA| ⩽ 4.

Assume that |IA| ⩾ 5. Note that all vertices in IA are adjacent to both g1 and g2.
Suppose IA contains a vertex i such that all vertices in Q− {g1, g2} have degree at least

the electronic journal of combinatorics 29 (2022), #P00 18



two in G− i. Then both G− i and G–i are 2-connected, a contradiction. It follows that,
for every vertex i of IA, there is a special green edge joining i to a vertex q of Q−{g1, g2}
such that q has green degree two. The set Q′ of such vertices q is contained in Q−{g1, g2}.
If a member q′ of Q′ is a common red neighbour of g1 and g2, then it meets at most two
special green edges from IA. If, instead, q′ has a single red neighbour in {g1, g2}, then
it has a single green neighbour in {g1, g2} and so meets at most one special green edge.
Thus the number of red edges from {g1, g2} to Q′ is an upper bound on the number of
special green edges from IA. Hence |IA| ⩽ 4, a contradiction. Thus 36.2 holds.

36.3. |V (B)| ⩾ 3.

Suppose that |V (B)| = 2. Then, by 36.1 and 36.2, |V (G)| ⩽ 4 + 4 + 6 + 2 = 16, a
contradiction. Thus 36.3 holds.

By 36.3, since |V (B)| ≠ 2, Lemma 32 implies that B contains at least one red neigh-
bour of {g1, g2}. Assume that B contains exactly one such red neighbour v. Let x and
y be two green neighbours of v in V (B) ∪ {g1, g2}. If V (B) − {v, x, y} contains a ver-
tex t, then G − t and G − t are both 2-connected. It follows that |V (B)| ⩽ 3. Again
by 36.1 and 36.2, we get |V (G)| ⩽ 4 + 4 + 5 + 3 = 16, a contradiction. Note that if A
contains exactly one of the red neighbours of {g1, g2}, then, by Lemma 30, |V (A)| ⩽ 4,
so |V (G)| ⩽ 10, a contradiction. We may now assume that the red neighbourhood of
{g1, g2} has size four, and each of A and B contains exactly two of those vertices. Then,
by Lemma 33, |V (A)| ⩽ 6, so |V (G)| ⩽ 14, a contradiction.

The following corollary summarizes our results about the induced-minor-minimal non-
2-cographs so far.

Corollary 37. Let G be an induced-minor-minimal non-2-cograph. Then

(i) |V (G)| ⩽ 16; or

(ii) G is a cycle of length at least five; or

(iii) G has vertex connectivity two, and, for every 2-cut {g1, g2} of G, the graph G −
{g1, g2} has exactly two components, and one component contains a single vertex.

If an induced-minor-minimal non-2-cograph G satisfies (iii) of the above corollary, we
say that G is an induced-minor-minimal non-2-cograph of type (iii). The next lemma
identifies several infinite families of such graphs.

Lemma 38. Let G be a graph such that G is isomorphic to Lm,Mm,M
′
m, Nm, N

′
m, or N

′′
m

for some m ⩾ 1 where Lm,Mm, and Nm are shown in Figures 2, 3, and 4, respectively,
at the beginning of Section 2. Then G is an induced-minor-minimal non-2-cograph of
type (iii).

Proof. It is clear that G is not a 2-cograph as both G and G are 2-connected. Assume
that H is an induced subgraph of G such that both H and H are 2-connected. It is clear
that v ∈ V (H) otherwise H or H is not 2-connected. Note that V (H) also contains the
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vertices x and y since x and y are the only green neighbours of v. It now follows that V (H)
contains the red neighbours of x and the red neighbours of y. It is now straightforward to
see that H = G. Therefore every proper induced subgraph of G and of G is a 2-cograph.
For an edge αβ of G, it follows by Lemma 6 that the complement of G/αβ is either a
proper induced subgraph of G or a proper induced subgraph of G 1-summed with K2 or
K3. Thus G/αβ is a 2-cograph and so G is an induced minor-minimal non-2-cograph.
Moreover, {x, y} is its unique 2-cut and G is an induced-minor-minimal non-2-cograph of
type (iii).

By a similar argument to that just given, we obtain the following.

Lemma 39. For a non-negative integer j, the graph Fj is an induced-minor-minimal
non-2-cograph of type (iii).

In the rest of the section, we find all the other classes of induced-minor-minimal non-
2-cographs of type (iii) thereby proving Theorem 2. Recall that, for a graph G, its sets of
vertices of green-degree-two and of red-degree-two are denoted by Vg and Vr, respectively.

Lemma 40. Let G be an induced-minor-minimal non-2-cograph of type (iii). Then |Vg| ⩽
3 or G is of type (iii).

Proof. Suppose that G is not of type (iii). By Lemma 24 and Proposition 26, we may
assume that G has vertex connectivity two. Take a red 2-cut {r1, r2} of G such that the
components of G − {r1, r2} can be partitioned into subgraphs A and B, and |V (A)| ⩾
|V (B)| ⩾ 2. If |V (B)| ⩾ 3, then all vertices in V (G)− {r1, r2} have green degree at least
three and so |Vg| ⩽ 2. Now suppose that V (B) = {b1, b2}. Note that there is at most
one vertex a in A that has green neighbourhood {b1, b2} since G is of type (iii). One can
now check that all vertices in V (G)− {r1, r2, a} have green degree at least three, and so
|Vg| ⩽ 3.

Lemma 41. Let G be an induced-minor-minimal non-2-cograph such that |V (G)| > 10.
Suppose that G is not isomorphic to a cycle or to Fm for some m ⩾ 0. Then the graph
induced on the vertex set Vg is a complete red graph and the graph induced on Vr has at
most one red edge.

Proof. By Lemma 22, the graph induced on Vg is a complete red graph. Assume that
the graph induced on Vr has two red edges e = u1u2 and f = v1v2. Note that if e and
f are disjoint, then, by Lemma 27, we obtain a contradiction. Therefore we may assume
that u2 = v1. Let α and β be the respective neighbours of u1 and v2 in G − v1. Note
that α and β are distinct otherwise we have a cut vertex in G, a contradiction. Let P
be a shortest αβ-path distinct from αu1u2v2β. Then P avoids {u1, u2, v2} and the red
graph induced on V (P ) ∪ {u1, u2, v2} is a cycle. It follows by the minimality of G that
V (G) = V (P ) ∪ {u1, u2, v2} and so G is a cycle, a contradiction.

In the following lemma, we note that either |Vg| or |Vr| is bounded.
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Lemma 42. Let G be an induced-minor-minimal non-2-cograph. Then either |Vg| or |Vr|
is at most three, or |Vg| = |Vr| = 4.

Proof. Note that there are at most 2|Vg| green edges and at most 2|Vr| red edges joining
a vertex in Vg to a vertex in Vr. Since there are |Vg||Vr| edges joining vertices in Vg to
vertices in Vr, we have

2|Vg|+ 2|Vr| ⩾ |Vg||Vr|.

This inequality is symmetric with respect to |Vg| and |Vr|, so we may assume that

|Vg| ⩾ |Vr|. Then 2+ 2 |Vr|
Vg

⩾ |Vr|. Thus |Vr| ⩽ 4. Moreover, if |Vr| = 4, then |Vg| = 4.

Next we note the following useful observation.

Lemma 43. Let G be an induced-minor-minimal non-2-cograph such that |V (G)| > 10.
If all vertices of a subset S of V (G) − (Vg ∪ Vr) either have a red neighbour in Vr or a
green neighbour in Vg, then

43.1. |S| ⩽ 2|Vg ∪ Vr| − |Vg||Vr|.
Moreover, when equality holds here, either each vertex in S has exactly one green neighbour
in Vg or has exactly one red neighbour in Vr but not both. In particular, if S = V (G) −
(Vg ∪ Vr), then

11 + |Vg||Vr| ⩽ 3|Vg|+ 3|Vr|.

Proof. There are |Vg||Vr| red or green edges joining a vertex in Vg to a vertex in Vr. There
are at most 2|Vg| green such edges and at most 2|Vr| red such edges. Thus among the
green edges meeting Vg and the red edges meeting Vr at most 2|Vg ∪Vr|− |Vg||Vr| have an
endpoint in V (G) − (Vg ∪ Vr). Therefore, |S| ⩽ 2|Vg ∪ Vr| − |Vg||Vr| and it is clear that,
when equality holds, each vertex in S satisfies the given condition. If S = V (G)−(Vg∪Vr),
then it is clear that 11 + |Vg||Vr| ⩽ 3|Vg|+ 3|Vr| since |V (G)| ⩾ 11.

Lemma 40 can be improved in the following way.

Lemma 44. Let G be an induced-minor-minimal non-2-cograph of type (iii). Then
|V (G)| ⩽ 10 or |Vg| ⩽ 3.

Proof. By Lemma 40, it is enough to show that if G is of type (iii), then |V (G)| ⩽ 10 or
|Vg| ⩽ 3. Suppose that G is of type (iii). Since every vertex of V (G) is either in a red
2-cut or a green 2-cut, and both G and G are of type (iii), we have the following.

44.1. Every vertex in V (G) either has a green neighbour in Vg or a red neighbour in Vr.

Since a vertex in Vg has no green neighbour in Vg by Lemma 22, it follows by 44.1 that
|Vg| ⩽ 2|Vr| since the number of red-degree-two neighbours of vertices in Vg is at least |Vg|
and at most 2|Vr|. The following is an immediate consequence of Lemma 43 and 44.1.

44.2. |V (G)| ⩽ |Vg|+ |Vr|+ 2|Vr ∪ Vg| − |Vg||Vr| = 3|Vg|+ 3|Vr| − |Vg||Vr|.
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Note that if |Vg| = |Vr| = 4, then |V (G)| ⩽ 8 and the result holds. Therefore, by
Lemma 42, we may assume that |Vr| is at most three. As |Vg| ⩽ 2|Vr|, by 44.2, checking
the possibilities for |Vr|, we obtain that |V (G)| ⩽ 10.

In the next proof, we adopt the convention that, for a 2-cut {x, y} of a graph H, the
graphs A and B are disjoint subgraphs of H −{x, y} with V (A)∪V (B) = V (H −{x, y})
such that |V (A)| ⩾ |V (B)|, and |V (B)| is maximal.

Lemma 45. Let G be an induced-minor-minimal non-2-cograph such that G is of type (iii).
Then |V (G)| ⩽ 16 or |Vg| ⩽ 1.

Proof. By Lemma 44, we may assume that |Vg| ⩽ 3. The following observation is imme-
diate.

45.1. Let {r1, r2} be a red 2-cut of G. If |V (B)| ⩾ 3, then {r1, r2} ⊆ Vg.

Next we show the following.

45.2. There are at most two vertices outside of Vg that have neither a red neighbour in
Vr nor a green neighbour in Vg.

Every vertex v of V (G) − Vg is in a green 2-cut or a red 2-cut. In the first case,
because G is of type (iii), v has a green neighbour in Vg. In the second case, let {v, r} be
a red 2-cut. By 45.1, we may assume that |V (B)| ⩽ 2. If |V (B)| = 1, then v has a red
neighbour in Vr. Suppose |V (B)| = 2. If w is a vertex with green neighbourhood V (B),
then V (B) is a green 2-cut. As G is of type (iii), w is unique. If |Vg| = 3, it follows that
{v, r} ⊆ Vg, a contradiction, so 45.2 holds.

If |Vg| ⩽ 1, then the lemma holds, so we may assume |Vg| = 2. For the red 2-cut
{v, r}, we know that |V (B)| = 2. Now each vertex u of V (G)− V (B)− {v, r} has V (B)
in its green neighbourhood. Thus {u, r} cannot be a red 2-cut with the same V (B). Thus
{v, r} is the unique red 2-cut with the given V (B). As v /∈ Vg and G is of type (iii), the
set V (B) is the green neighbourhood of exactly one vertex in Vg. Since |Vg| = 2, it follows
that we have at most two red 2-cuts for which |V (B)| = 2. Moreover, each such red 2-cut
contains a member of Vg. Now 45.2 follows immediately.

By 45.2 and Lemma 43, |V (G)| ⩽ 3|Vg| + 3|Vr| − |Vg||Vr| + 2. If |Vg| = 3, then
|V (G)| ⩽ 11. Suppose |Vg| = 2. Then, by Lemma 41, |Vr| ⩽ 2|Vg| + 2 + 2 = 8, so
|V (G)| ⩽ 16.

Proof of Theorem 2. We may assume that G is of type (iii) otherwise we have the result
by Corollary 37. We may also assume that neither G nor G is critically 2-connected,
otherwise the result follows by Proposition 26 or Proposition 28. It is now clear that Vg

is non-empty. Therefore, by Lemma 45, |Vg| = 1 or |V (G)| ⩽ 16. If |V (G)| ⩽ 16, then
we have our result. Therefore we may assume that |Vg| = 1. It now follows that G has a
unique green 2-cut {x, y}. Thus every vertex not in {x, y} is in a red 2-cut. As G is not
critically 2-connected, we may assume that G−{x} is 2-connected. Note that G−{x, y}
has a non-trivial component A and a trivial component, say {v}.
32.1. There is no vertex t in A such that G − {x, v, t} is connected and each of x and y
has at least two neighbours in G− {t} .
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Assume that this fails. Since G−{x, v, t} is connected and v is adjacent to all vertices
of G−{x, t} except y, we conclude that G−{x, t} is 2-connected as G−x is 2-connected
and y has at least two neighbours in G−{x, t}. It now follows that G−{t} is 2-connected
since x has at least two neighbours G − {t}. This is a contradiction since t is in a red
2-cut.

32.2. G[A] is connected.

To show this, assume G[A] is disconnected. Because G−x is 2-connected, G−{x, v} is
connected. Since G[A] = G−{x, v, y}, it follows that y has a neighbour in each component
of G[A]. As G − {x, v} is connected, there is a vertex t in A such that G − {x, v, t} is
connected where, if possible, t is chosen from a component of G[A] with at least two
vertices. By 32.1, t is a red neighbour of some z in {x, y} such that z has degree two in
G. Suppose z = y. Then, as G − {x, v, t} is connected, y is adjacent to t and to each
component of G[A], we deduce that {t} is a component of G[A] and |V (A)| = 2. Thus
|V (G)| = 5 and so, as G is a non-2-cograph, G is a 5-cycle, a contradiction. We deduce
that z = x and x has red degree two. Thus G − {x, v} has exactly two vertices t for
which G− {x, v, t} is connected, and each such vertex is a red neighbour of x. It follows
that G− {x, v} is a path and the leaves of this path are the neighbours of x in G− {v}.
Therefore G− {v} is a cycle, a contradiction.

Similar to 32.1, we have the following.

32.3. There is no vertex t in A such that G − {y, v, t} is connected and each of x and y
has at least two neighbours in G− {t}.

Assume that this fails. If x has at least two neighbours in G− {y, t}, then the proof
follows as in 32.1 by interchanging x and y. Therefore we may assume that x has exactly
one neighbour in G − {y, t}. Thus G[A] − {t} is connected and so G − {x, y, t} is 2-
connected. Since each of x and y has at least two neighbours in G − {t}, we conclude
that G− {t} is 2-connected, a contradiction.

We call a vertex t of G[A] deletable if G[A] − {t} is connected. By combining 32.1
and 32.3, we obtain the following.

32.4. A deletable vertex t of G[A] is a neighbour in G of some z in {x, y} where z has
degree two in G.

32.5. The number of deletable vertices in G[A] is in {2, 3, 4}.
To see this, first observe that, since G[A] is connected having at least two vertices,

it has at least two deletable vertices. Now suppose that G[A] has at least five deletable
vertices. Then there is such a vertex t so that, in G− {t}, each of x and y has degree at
least two. As G−{x, v, t} is connected, we have a contradiction to 32.1. Thus 32.5 holds.

The rest of the proof treats the three possibilities for the number of deletable vertices
of G[A]. First suppose that G[A] has exactly two deletable vertices s and t. Then G[A]
is a path, which we may assume has at least five vertices. Let s′ and t′ be the respective
neighbours of s and t in G[A]. Note that if either x or y has red neighbourhood {s, t},
then we have an induced red cycle of size at least six, which is a contradiction. Thus,
by 32.1 and 32.3, we may assume that both x and y have red degree two, and s is a red
neighbour of x, and t is a red neighbour of y. If xy is red, then G has an induced cycle of
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length at least seven, a contradiction. Thus both the red neighbours of x and y are in A.
We show next that the respective red neighbourhoods of x and y are {s, s′} and {t, t′}.
To see this, let {s, w} be the neighbourhood of x in G and suppose w ̸= s′. If s′ is not
a red neighbour of y, then G− {y, v, s′} is connected and we get a contradiction to 32.1.
Taking z to be a vertex of A not in {s, t, w, s′}, we see that G− {x, v, z} or G− {y, v, z}
is connected and we get a contradiction to 32.1 or 32.3. We conclude that {s, s′} is the
red neighbourhood of x. By symmetry, {t, t′} is the red neighbourhood of y. Thus G is
isomorphic to Lm for some m ⩾ 1.

Next suppose that G[A] has exactly three deletable vertices, s, t, and u. Then G[A]
has a spanning tree T having s, t, and u as its leaves. By 32.4, each vertex in {s, t, u}
is adjacent to a red-degree-2 vertex in {x, y}. Moreover, neither x nor y has red degree
exceeding two, and xy is not red. Now G[A] is connected, so G − {x, y} is 2-connected.
As xy is red, it follows that G − y is 2-connected. Recall that we already know that
G− x is 2-connected. By symmetry, we may assume that the red neighbourhood of x is
{s, t}, and so u is a red neighbour of y. Let u′ be the red neighbour of u in T . Then
the red neighbourhood of y is {u, u′} otherwise G − {x, v, u′} is connected and we get a
contradiction to 32.1. Similarly, the distance between s and t in T is two otherwise we
get a contradiction to 32.3. As G[A] has exactly three deletable vertices, the only possible
edge in G[A] that is not in T is st. Thus G is isomorphic to Mm or M ′

m for some m ⩾ 1.
Finally, suppose that G[A] has four deletable vertices, s, t, u, and z. We may assume

that the respective red neighbourhoods of x and y are {s, t} and {u, z}. Again let T be
a spanning tree of G[A] such that s, t, u, and z are leaves of T . Note that the distance
between s and t, and u and z in T is two. Thus G is isomorphic to Nm, N

′
m, or N

′′
m for

some m ⩾ 1.

We have now finished the proof of our first main result, Theorem 2.

4 Induced-minor-minimal non-2-cographs whose complements
are also induced-minor-minimal non-2-cographs

In this section, we consider G, the class of induced-minor-minimal non-2-cographs G such
that G is also an induced-minor-minimal non-2-cograph. We show that all graphs in G
have at most ten vertices. We give an exhaustive list of all these graphs in the appendix.
We begin the section with the following immediate consequence of Lemma 22.

Corollary 33. Let G be a graph in G such that |V (G)| > 10. Then the graph induced on
the vertex set Vg is a complete red graph and the graph induced on Vr is a complete green
graph.

The next lemma shows that if the number of vertices of a graph G in G exceeds ten,
then V (G)− (Vg ∪ Vr) is non-empty.

Lemma 34. Let G be a graph in G such that |V (G)| > 10. Then V (G) ̸= Vg ∪ Vr.
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Proof. Assume that V (G) = Vg ∪ Vr. There are 2|Vg| green edges and 2|Vr| red edges
joining a vertex in Vg to vertex in Vr. Thus

34.1. 2|Vg|+ 2|Vr| = |Vg||Vr|.
We may assume that |Vg| ⩽ |Vr|. If |Vg| = |Vr|, then 4|Vr| = |Vr|2, so |Vr| = 4, a

contradiction. Therefore |Vg| ⩽ |Vr| − 1 so, by 34.1, |Vg||Vr| ⩽ 4|Vr| − 2. Thus |Vg| ⩽ 3.
If |Vg| = 3, then, by 34.1, |Vr| = 6, so |V (G)| = 9, a contradiction. If |Vg| ⩽ 2, then we
contradict 34.1.

Next we note a useful observation about the vertices in V (G)− (Vg ∪ Vr).

Lemma 35. Let G be a graph in G such that |V (G)| > 10. Then every vertex in V (G)−
(Vg ∪ Vr) either has a green neighbour in Vg or a red neighbour in Vr.

Proof. Since every vertex of G is in either a red 2-cut or a green 2-cut, the lemma follows
by Lemma 35.

Lemma 36. Let G be a graph in G such that |V (G)| > 10. Then neither Vg nor Vr is
empty.

Proof. It suffices to show that Vr is non-empty. Assume the contrary. By Lemma 35,
every vertex outside Vg has a green neighbour in Vg. Thus, by Lemma 43, 11 ⩽ 3|Vg|,
so |Vg| ⩾ 4. Let {r1, r2} be a red 2-cut T . Since Vr is empty, applying Lemma 35 to G
gives that T is contained in Vg. Let v be a vertex in Vg − T and let α and β be the two
green neighbours of v. Consider the graph G− T . Note that G− T is disconnected and
v is incident to all the vertices in this graph except α and β. Let X be the component of
G− T containing v. Since the red graph G has no degree-two vertices, G− T has exactly
two components. The second component must have {α, β} as its vertex set.

Let w be a vertex in Vg − T − v. As w is in a different component of G − T from α
and β, both wα and wβ are green edges. Since w has green degree two, it follows that
{α, β} is the green neighbourhood of each vertex in Vg−T . By Lemma 35, each vertex in
V (G)− Vg − {α, β} has a green neighbour in Vg. This neighbour is not in Vg − T , so it is
in T . Thus |V (G)− Vg −{α, β}| ⩽ 4. But |V (G)| > 10, so |Vg − T | ⩾ 3. Therefore G− v
and G− v are both 2-connected, a contradiction. We conclude that Vr is non-empty.

We are now ready to prove the second main result of the paper.

Proof of Theorem 3. Assume that G ∈ G and |V (G)| > 10. Without loss of generality, let
|Vg| ⩽ |Vr|. By Lemma 35, every vertex in V (G)−(Vg∪Vr) either has a green neighbour in
Vg or a red neighbour in Vr. By Lemmas 36 and 42, 1 ⩽ |Vg| ⩽ 4. Suppose |Vg| = 4. Then,
by Lemma 42, |Vr| = 4. Lemma 43 implies that V (G) − (Vg ∪ Vr) is empty. Therefore
|V (G)| = 8, a contradiction.

Next we assume that |Vg| = 3. Then every vertex in Vr is a green neighbour of at least
one vertex in Vg. Thus |Vr| ⩽ 6 as there are exactly six green edges incident to vertices
in Vg. Then, by Lemma 43, as |Vg| = 3, we deduce that 11 ⩽ 3|Vg|, a contradiction.

Now suppose that |Vg| = 2. Then, by Lemma 43, |Vr| ⩾ 5. Let Vg = {u, v}. Since
there are only four green edges meeting Vg, there is a vertex w in Vr whose red neighbours
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are u and v. Thus {u, v} is a red 2-cut. Suppose that Vr − {w} contains at least two
vertices that are joined to both u and v by red edges. Then one can check that both G−w
and G − w are 2-connected, a contradiction. Thus Vr has at most two vertices that are
joined to both u and v by red edges. Therefore |Vr| ⩽ 6 since Vg meets only four green
edges. Assume that |Vr| = 6. Then all the green neighbours of u and v are in Vr and
are distinct. Since |V (G)| ⩾ 11, we see that |V (G) − (Vg ∪ Vr)| ⩾ 3. Let {w, x} be the
vertices in Vr having both u and v as their red neighbours. All the vertices in Vr−{w, x}
have one red neighbour in Vg. Since |V (G)− (Vg ∪ Vr)| ⩾ 3, Lemma 35 implies that each
vertex in V (G) − (Vg ∪ Vr) has at most two red neighbours in Vr − {w, x} and thus has
at least two green neighbours in Vr − {w, x}. Thus G − w and G − w are 2-connected,
a contradiction. We may now assume that |Vr| = 5 and |V (G) − (Vg ∪ Vr)| ⩾ 4. By
Lemma 43, |V (G) − (Vg ∪ Vr)| = 4. Thus, as equality holds in 43.1, every vertex in
V (G) − (Vg ∪ Vr) has at most one red neighbour in Vr − w and so has at least three
green neighbours in Vr − w. Therefore we again have that both G − w and G − w are
2-connected, a contradiction.

Finally, assume that |Vg| = 1. By Lemma 43, |Vr| ⩾ 4. Let Vg = {v} and let α ∈ Vr be
a red neighbour of v. First, we show that Vr does not contain a green 2-cut that contains α.
Assume that {α, β} is a green 2-cut where {α, β} ⊆ Vr. Then G−{α, β} has a component
X that contains Vr−{α, β} and all but at most two vertices of V (G)−{α, β}. Let Y be a
component of G−{α, β} different from X. Then |V (Y )| ⩽ 2. Suppose |V (Y )| = 1. Then
the vertex in Y must be in Vg, so it is v. This is a contradiction since αv is red. Thus
|V (Y )| = 2 and G − {α, β} has exactly two components. Then |V (X)| ⩾ 7. Let x be a
vertex in X such that x is not a red neighbour of α or β, and X − {x} contains at least
two vertices of Vr − {α, β}. Since each vertex of Vr − {α, β} has its two red neighbours
in Y and so is adjacent in G to every vertex of X, it follows that G − x is 2-connected.
Moreover, by Lemma 20, G−x is 2-connected, a contradiction. We conclude that Vr does
not have a green 2-cut containing α.

Next, we show that no green 2-cut contains α. Assume that {α, z} is a green 2-cut.
Then z /∈ Vr. By Lemma 35, G−{α, z} has a single-vertex component Y . Since the vertex
in Y has green degree two, Y = {v}. Thus αv is green, a contradiction. We conclude that
deleting from G any red neighbour of v in Vr leaves a green graph that is still 2-connected.

To complete the proof of the theorem, we show that v has a red neighbour in Vr whose
deletion from G leaves a 2-connected graph, thus arriving at a contradiction. Let β be a
red neighbour of v in Vr − {α}. If α and β have the same red neighbourhood, say {x, v},
then {x, v} is a red 2-cut and we obtain a contradiction by applying Lemma 35 to G.
Thus α and β have distinct red neighbourhoods, {x, v} and {y, v}, respectively. Note
that if xv is red, then G − α is 2-connected. Thus we may assume that both xv and yv
are green. This implies γv is red for each γ in Vr − {α, β} since v has green degree two.
Thus, for some fixed γ in Vr − {α, β}, the other red neighbour, z, of γ is distinct from
x and y. Since vz is red and γ has red degree two, we see that G − γ is 2-connected, a
contradiction.

We have now finished the proof of our second main result, Theorem 3.
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Require: n = 6, 7, 8, 9 or 10.
Set FinalList ← ∅, i← 0, j ← 0
Generate all two connected graphs of order n using nauty geng nauty and store in an
iterator L
for g in L such that vertex connectivity of g and g is 2 do

for v in V (g) do
h = g\v
if h is a 2-cograph then

i← i+ 1
for e in E(g) do

h = g/e
if h is a 2-cograph then

j ← j + 1
if i equals |V (g)| and j equals |E(g)| then

Add g to FinalList
for g in FinalList do

if FinalList does not contain g then
remove g from FinalList

Figure 7: Finding graphs in G of order at most ten.

5 Appendix

We implemented the algorithm in Figure 7 using SageMathsage and provide a list of all
graphs in G up to complementation. The graphs in this section are drawn using SageMath.

Graphs on six vertices. There are two graphs on six vertices in G, namely, the
graph shown in Figure 8 and its complement, which is the domino.

Figure 8: A 6-vertex graph in G.

Graphs on seven vertices. There are sixteen graphs on seven vertices in G, the
graphs in Figure 9 and their complements.

Graphs on eight vertices. There are 87 graphs on eight vertices in G, of which
five are self-complementary. Figure 10 shows these self-complementary graphs. Figure 11
shows 41 non-self-complementary graphs that, together with their complements, are the
remaining 8-vertex graphs in G.

Graphs on nine vertices. There are 86 graphs on nine vertices in G. These are the
43 graphs in Figure 12 and their complements.

Graphs on ten vertices. There are two graphs on ten vertices in G, the graph in
Figure 13 and its complement.
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Figure 9: Graphs on seven vertices in G.

Figure 10: Self-complementary graphs on eight vertices in G.
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Figure 11: Graphs on eight vertices in G.
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Figure 12: Graphs on nine vertices in G.
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Figure 13: A 10-vertex graph in G.
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