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Abstract. Tutte’s Wheels-and-Whirls Theorem is a basic inductive tool for
dealing with 3-connected matroids. This paper proves a generalization of that

theorem for the class of 2-polymatroids. Such structures include matroids, and

they model both sets of points and lines in a projective space and sets of edges
in a graph. The main result proves that, in a 3-connected 2-polymatroid that is

not a whirl or the cycle matroid of a wheel, one can obtain another 3-connected

2-polymatroid by deleting or contracting some element, or by performing a new
operation that generalizes series contraction in a graph. Moreover, we show

that, unless one uses some reduction operation in addition to deletion and

contraction, the set of minimal 2-polymatroids that are not representable over
a fixed field F is infinite, irrespective of whether F is finite or infinite.

1. Introduction

Tutte [14] proved that a 3-connected matroid M has an element whose deletion or
contraction is 3-connected unless M is a whirl or the cycle matroid of a wheel. This
theorem has been a powerful inductive tool for working with 3-connected matroids.
The purpose of this paper is to prove a corresponding result for 2-polymatroids.

We begin with an informal presentation of background and motivation for the
result. Recall that a 2-polymatroid M is a pair (E, r) consisting of a finite set E,
called the ground set, and a function r, called the rank function, from the power
set of E into the integers satisfying the following conditions.

(i) r(∅) = 0;
(ii) if X ⊆ Y ⊆ E, then r(X) ≤ r(Y );

(iii) if X and Y are subsets of E, then r(X) + r(Y ) ≥ r(X ∪Y ) + r(X ∩Y ); and
(iv) r({e}) ≤ 2 for all e ∈ E.

Just as a fundamental example of a matroid is a set of points in a projective space,
a basic example of a 2-polymatroid is a set of points and lines in a projective space.
Whereas each element of a matroid has rank zero or one, an individual element
in a 2-polymatroid can also have rank two. A matroid is just a 2-polymatroid all
of whose elements have rank at most one. It is noteworthy that 2-polymatroids
generalize graphs in two distinct ways. For a graph G, in addition to its cycle
matroid, which is a 1-polymatroid and so is 2-polymatroid, we have another 2-
polymatroid on E(G), which we denote by M2(G). The latter is defined by letting
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the rank of a set A of edges be the number of vertices incident with edges in A.
Observe that non-loop edges of G are lines in M2(G).

The fact that 2-polymatroids capture graphs in distinct ways is interesting, and
we will highlight the contrast throughout this overview. For example, consider
connectivity. Matroid connectivity generalizes naturally to 2-polymatroids. In par-
ticular, 3-connectivity for matroids extends routinely to a notion of 3-connectivity
for 2-polymatroids. A simple 3-connected graph G has a 3-connected cycle ma-
troid. On the other hand, M2(G) is 3-connected whenever G is a 2-connected
loopless graph.

A somewhat subtle problem is to decide on what the optimal notion of substruc-
ture is for 2-polymatroids. Most research in matroids has been conducted using
minor as the basic notion of substructure, and this is certainly well motivated.
Graph theory is more divided. Minor, subgraph, topological minor, and induced
subgraph all compete for attention as interesting notions of substructure. Both
deletion and contraction for matroids extend easily to 2-polymatroids. This gives
a notion of minor for 2-polymatroids that extends that of minor for matroids, and,
via cycle matroids, that of minor for graphs. But what happens when we consider
the 2-polymatroid M2(G)? If e is an edge of G, then deletion in M2(G) corresponds
to deletion in G, but it is not the same with contraction. Contraction in M2(G)
corresponds to a rather brutal operation on G.

There is, however, an operation on M2(G) that corresponds to contraction in G,
and this brings us to the notion of compression. If e is a non-loop element of the
2-polymatroid M , then the compression of e from M , denoted M ↓ e, is obtained by
placing a rank-1 element x freely on e and then contracting x and deleting e from
the resulting 2-polymatroid. Compression is a natural and seductive operation.
Moreover, M2(G) ↓ e = M2(G/e) for an edge e of the graph G, so we have an
operation that generalizes contraction in graphs in a different way. Unfortunately,
compression has a major disadvantage which we now consider.

Representability of matroids extends easily to representability of polymatroids
over fields. Moreover, the class of 2-polymatroids representable over a field F is
closed under deletion and contraction. But, if F is finite, this is not the case for
compression. It is easy to construct an example of an F-representable 2-polymatroid
with an element e such that M ↓ e is not F-representable.

If we are going to use compression, and we care about preserving representability
over finite fields, then we need to restrict its use. We define a certain type of 3-
separator, which we call a ‘prickly’ 3-separator. A series pair of a graph G is a
2-element prickly 3-separator of M2(G). Larger prickly 3-separators do not arise
from graphs, but do arise in more general settings. Compressing elements from
prickly 3-separators is safe in that representability over a field is preserved under
this operation. Moreover, we give examples to show that, if we wish to generalize
Tutte’s Wheels-and-Whirls Theorem to 2-polymatroids, it is necessary to allow
compression of elements from prickly 3-separators. The purpose of this paper is to
prove the next theorem. A 2-polymatroid is empty if its ground set is empty.
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Theorem 1.1. Let M be a 3-connected non-empty 2-polymatroid. If M is not a
whirl or the cycle matroid of a wheel, then there is an element e such that either

(i) M\e or M/e is 3-connected; or
(ii) e belongs to a prickly 3-separator, and M ↓ e is 3-connected.

In fact, our main result, Theorem 1.4, is somewhat stronger than Theorem 1.1.
As matroids have no prickly 3-separators, the Wheels-and-Whirls Theorem is a
special case of Theorem 1.1.

The process of conducting the research for this paper drove us to the idea of
compression of elements from prickly 3-separators and we believe that, via this, we
have arrived at a genuinely interesting notion of substructure for 2-polymatroids.
Let N and M be 2-polymatroids. We define N to be a p-minor of M if N can
be obtained from M by a sequence of deletions, contractions, and compression of
elements from prickly 3-separators. For matroids, the p-minor order is the usual
minor order. Thus, via their cycle matroids, the p-minor order captures, in essence,
the usual minor order for 3-connected graphs. On the other hand, we prove that,
if H and G are loopless graphs without isolated vertices, then H is a topological
minor of G if and only if M2(H) is a p-minor of M2(G). It follows that the p-minor
order on 2-polymatroids also captures, in essence, the topological-minor order on
graphs.

As a straightforward corollary of Theorem 1.1, we obtain that if G is a 2-
connected graph with at least four edges, then G has an edge e such that either
G\e is 2-connected, or e meets a degree-2 vertex, in which case, G/e is 2-connected;
a well-known result of Whitney [15]. While this is not a particularly deep fact for
graphs, it is interesting that we capture two quite different results for graphs as
special cases of the one theorem for 2-polymatroids.

In this paper, we also consider problems related to well-quasi-ordering and ex-
cluded minors. We give an example that proves that, with respect to the usual
notion of minor for 2-polymatroids, there are an infinite number of 2-polymatroids
that are minor-minimal with respect to not being F-representable for any field F.
We make the brave, perhaps foolhardy, conjecture that, whenever F is finite, there
are only a finitely many 2-polymatroids that are minimal in the p-minor order with
the property of not being F-representable.

It is well known that graphs are not well-quasi-ordered under the topological-
minor order. An example is given that shows that this extends to the p-minor order
on the 2-polymatroids that are representable over any fixed field. An interesting
problem for future research is whether or not one can recover well-quasi-ordering if
one allows compression to be used in more general situations as long as each such
use preserves representability over finite fields.

We now proceed with a more precise exposition. The formal statement of the
main theorem appears at the end of this section following some preliminaries. The
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matroid terminology used here will follow Oxley [10]. There is an interesting dis-
cussion of 2-polymatroids and some of their properties in Lovász and Plummer [7,
Chapter 11].

Formally, a polymatroid M is a pair (E, r) consisting of a finite set E, called the
ground set, and a function r, called the rank function, from the power set of E into
the integers satisfying the following conditions.

(i) r(∅) = 0;
(ii) if X ⊆ Y ⊆ E, then r(X) ≤ r(Y ); and
(iii) if X and Y are subsets of E, then r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ).

Sometimes, we shall write E(M) and rM for E and r, respectively.

Let k be a positive integer. A polymatroid (E, r) is a k-polymatroid if r({x}) ≤ k
for all x in E. In particular, a 1-polymatroid is just a matroid. This paper will focus
on 2-polymatroids. In a 2-polymatroid (E, r), an element x will be called a line, a
point, or a loop when its rank is 2, 1, or 0, respectively. We call a 2-polymatroid
pure if every element is a line.

Let M be a polymatroid (E, r). For a subset X of E, the deletion
M\X and the contraction M/X of X from M are the pairs (E − X, r1) and
(E − X, r2) where, for all subsets Y of E − X, we have r1(Y ) = r(Y ) and
r2(Y ) = r(Y ∪ X) − r(X). We shall also write M |(E − X) for M\X. A mi-
nor of the polymatroid M is any polymatroid that can be obtained from M by
a sequence of deletions or contractions. It is straightforward to check that every
minor of a k-polymatroid is also a k-polymatroid. The closure cl(X) of a set X
in M is, as for matroids, the set {x ∈ E : r(X ∪ x) = r(X)}. Two polymatroids
(E1, r1) and (E2, r2) are isomorphic if there is a bijection φ from E1 onto E2 such
that r1(X) = r2(φ(X)) for all subsets X of E1.

One natural way to obtain a polymatroid is from a collection of flats of a matroid
M . Indeed, every polymatroid arises in this way [3, 6, 8]. More precisely, we have
the following.

Theorem 1.2. Let s be a function defined on the power set of a finite set E. Then
(E, s) is a polymatroid if and only if, for some matroid M , there is a function ψ
from E into the set of flats of M such that s(X) = rM (∪x∈Xψ(x)) for all subsets
X of E.

The key idea in proving this theorem is that of freely adding a point to an element
of a polymatroid. Let (E, r) be a polymatroid, let x be an element of E, and let
x′ be an element that is not in E. We can extend the domain of definition of r to
include all subsets of E ∪ x′ by letting

r(X ∪ x′) =

{
r(X), if r(X ∪ x) = r(X);

r(X) + 1, if r(X ∪ x) > r(X).

Then it is not difficult to check that (E∪x′, r) is a polymatroid. We say that it has
been obtained from (E, r) by freely adding x′ to x. If we repeat this construction
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by freely adding a new element y′ to some element y of E, we can show that the
order in which these two operations is performed is irrelevant.

Using this idea, we can associate a matroid with every 2-polymatroid M as
follows. Let L be the set of lines of M . For each ` in L, freely add two points s`
and t` to `. Let M+ be the 2-polymatroid obtained after performing all of these
2|L| operations. Let M ′ be M+\L. We call M ′ the natural matroid derived from
M .

Given a graph G with edge set E, as noted earlier, one can define a 2-polymatroid
M2(G) on E by, for each subset X of E, letting r(X) be |V (X)| where V (X) is the
set of vertices of G that have at least one endpoint in X. A polymatroid (E′, r′) is
Boolean if is isomorphic to the 2-polymatroid that is obtained in this way from some
graph. One attractive feature of M2(G) is that, except for the possible presence of
isolated vertices, it uniquely determines G. More precisely, if G1 and G2 are graphs
neither of which has any isolated vertices and if M2(G1) = M2(G2), then there is a
labelling of the vertices of G2 such that G1 = G2. This contrasts with the situation
for matroids where quite different graphs can have the same cycle matroids.

Duality plays a fundamental role in matroid theory and will also be important
in our work with 2-polymatroids. Whereas there is a standard notion of what
constitutes the dual of a matroid, for 2-polymatroids, there is more than one choice.
Let M be a k-polymatroid (E, r). The k-dual of M is the pair (E, r∗k) defined by
r∗k(Y ) = k|Y | + r(E − Y ) − r(M). This notion of duality was used, for example,
in Oxley and Whittle’s treatment [12] of Tutte invariants for 2-polymatroids. An
involution on the class Mk of k-polymatroids is a function ζ from Mk into Mk

such that ζ(ζ(M)) = M for all M in Mk. Whittle [16] showed that the k-dual is
the only involution on Mk under which deletion and contraction are interchanged
in the familiar way. However, a disadvantage of this duality operation is that, for
a matroid M , we can view M as a k-polymatroid for all k ≥ 1. Hence M has a
1-dual, which is its usual matroid dual. But it also has a 2-dual, a 3-dual, and so
on. We shall define a new duality operation below on the class of all polymatroids
that, when applied to a k-polymatroid, produces another k-polymatroid and that,
when applied to a matroid produces its usual matroid dual.

McDiarmid [8] defined a family of potential duals for a polymatroid (E, r) based
on assigning a weight w(e) to each element e of E where w(e) ≥ r({e}) for all e in
E. We shall follow this model here, defining

w(e) = max{r({e}), 1}.
For a set X, we shall write ||X|| for the sum

∑
e∈X w(e). We define the dual of a

polymatroid (E, r) to be the pair (E, r∗) where, for all subsets Y of E,

r∗(Y ) = ||Y ||+ r(E − Y )− r(E) =
∑
e∈Y

max{r({e}), 1}+ r(E − Y )− r(E).

It is straightforward to check that, when (E, r) is a k-polymatroid, so too is (E, r∗).
When M = (E, r), we shall write M∗ for (E, r∗). We observe that, in the case that
the polymatroid M is a matroid, its dual as just defined coincides with its usual
matroid dual. Moreover, when M is a 2-polymatroid, its dual and its 2-dual are
equal if and only if M is pure. The duality we use here is a slight variant of one
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introduced by Susan Jowett [5]. These two versions of duality share a number of
important properties, the proofs of which are very similar.

Let M be a polymatroid (E, r). The connectivity function, λM or λ, of M is
defined, for all subsets X of E, by λM (X) = r(X) + r(E − X) − r(M). Observe
that λM (E−X) = λM (X) and λM (X) = λM∗(X). It is routine to check, using the
submodularity of the rank function, that the connectivity function is submodular,
that is, for all subsets Y and Z of E,

λM (Y ) + λM (Z) ≥ λM (Y ∪ Z) + λM (Y ∩ Z).

Let M be a polymatroid. For a positive integer k, a subset X of E(M) is k-
separating if λM (X) ≤ k−1. We say that M is 2-connected if it has no proper non-
empty 1-separating subset. We call M 3-connected if M is 2-connected and M has
no 2-separation, that is, M has no partition (X,Y ) with max{|X|, r(X)} > 1 and
max{|Y |, r(Y )} > 1 but λ(X) ≤ 1. When M is a 3-connected, pure 2-polymatroid
(E, r), a 3-separation of M is a partition (X,Y ) of E such that λ(X) = 2 and both
r(X) and r(Y ) exceed 2.

One place where the behaviour of 2-polymatroids differs quite significantly from
what one sees for matroids is in the consideration of contraction. In particular,
consider the 2-polymatroid M2(G) obtained from a graph G where G has vertex
set V and edge set E. Let e be an edge of G. Deleting e from G has an unsurprising
effect; specifically, M2(G)\e = M2(G\e). But, to find M2(G)/e, we cannot simply
look at M2(G/e). In particular, what do we do with elements whose rank is reduced
to zero in the contraction? To deal with this situation, it is standard to extend
the definition of a graph to allow the presence of free loops, that is, edges with
no endpoints. This terminology is due to Zaslavsky [17]. For a graph G with
free loops, the associated 2-polymatroid M2(G) is defined, as before, to have rank
function r(X) = |V (X)|. The deletion of a free loop f from a graph just removes f
from the graph. We define the contraction of f to be the same as its deletion. For
an edge e that is not a free loop, to obtain a graph H so that M2(G)/e = M2(H),
we let H have edge set E−e and vertex set V −V ({e}). An edge x of H is incident
with the vertices in V ({x})− V ({e}).

Given this difference between M2(G)/e and M2(G/e), it is natural to seek an
operation for 2-polymatroids that will mimic the effect of the usual operation of
contraction of an edge from the graph.

Let (E, r) be a 2-polymatroid M , and let x be an element of E. We have
described already what it means to add an element x′ freely to x. Our new operation
M ↓ x is obtained from M by freely adding x′ to x in M , then contracting x′

from the resulting extension, and finally deleting x. Because each of the steps
in this process results in a 2-polymatroid, we have a well-defined operation on 2-
polymatroids. When x has rank at most one in M , one easily checks that M ↓ x =
M/x. When x is a line in M , we see that M ↓ x and M/x are different as their
ranks are r(M) − 1 and r(M) − 2, respectively. Combining the different parts of
the definition, we see that M ↓ x is the 2-polymatroid with ground set E−{x} and
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rank function given, for all subsets X of E − {x}, by

rM↓x(X) =

{
r(X), if r(x) = 0, or r(X ∪ x) > r(X); and

r(X)− 1, otherwise.
(1)

We shall say that M ↓ x has been obtained from M by compressing x, and M ↓ x
will be called the compression of x. Songbao Mo [9] calls this operation the elision
of x and he establishes a number of properties of a generalization of this operation
that he defines for connectivity functions.

The next result establishes that a compression in M2(G) corresponds precisely
to a contraction in G. We omit its straightforward proof.

Proposition 1.3. Let e be an edge of a graph G. Then

M2(G) ↓ e = M2(G/e).

In graphs, we often restrict attention to topological minors in which the only
allowed contractions involve edges that meet vertices of degree two. When e and
f are the only edges in a 2-connected graph G meeting a vertex v, and G has at
least four vertices, {e, f} is a 3-separating set in M2(G). Indeed, this 3-separating
set is an example of a special type of 3-separating set which we now define. In a
2-polymatroid M , a 3-separating set Z is prickly if it obeys the following conditions.

(i) Each element of Z is a line;
(ii) |Z| ≥ 2 and λ(Z) = 2;

(iii) r((E − Z) ∪ Z ′) = r(E − Z) + |Z ′| for all proper subsets Z ′ of Z; and
(iv) if Z ′ is a non-empty subset of Z, then

r(Z ′) =


2 if |Z ′| = 1;

|Z ′|+ 2 if 1 < |Z ′| < |Z|; and

|Z|+ 1 if |Z ′| = |Z|.

A prickly 3-separating set of M will also be called a prickly 3-separator of M .
Observe that, when Z is a prickly 3-separating set, for all distinct z and z′ in
Z, the 2-polymatroid M\z has ({z′}, E − {z, z′}) as a 2-separation. As we shall
show in Theorem 2.4, the only time a prickly 3-separating set arises in a Boolean
2-polymatroid is when the set has size two and consists of the two edges meeting
a degree-two vertex. Thus we can view compressing an element from a prickly 3-
separating set as a generalization of the operation of series contraction in a graph.

We are now able to state the main result of the paper. Recall that a 2-
polymatroid is pure if every individual element has rank 2.

Theorem 1.4. Let M be a 3-connected non-empty 2-polymatroid. Then one of the
following holds.

(i) M has an element e such that M\e or M/e is 3-connected;
(ii) M has rank at least three and is a whirl or the cycle matroid of a wheel; or
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(iii) M is a pure 2-polymatroid having a prickly 3-separating set. Indeed, every
minimal 3-separating set Z with at least two elements is prickly, and M ↓ z
is 3-connected and pure for all z in Z.

To see the need for the third part of the theorem, we now present some examples,
the first coming from graphs. Let Cn be an n-edge cycle for some n ≥ 4. Consider
M2(Cn). This 2-polymatroid is 3-connected and pure, and it has no element whose
deletion or contraction is 3-connected. However, for each element x of Cn, we see
that M2(Cn) ↓ x ∼= M2(Cn−1). Note that every two consecutive edges of Cn form
a prickly 3-separating set in M2(Cn).

An immediate consequence of the next lemma, whose straightforward proof is
omitted, is that if every element of a 3-connected 2-polymatroid M is in a prickly
3-separator of size at least three, then no single-element deletion or contraction of
M is 3-connected.

Lemma 1.5. Let Z be a prickly 3-separator in a 3-connected 2-polymatroid M .
Suppose |Z| ≥ 3. Then, for all distinct elements z and z′ of Z, the partitions
({z′}, E−{z, z′}) and (Z−{z}, E−Z) are 2-separations of M\z and M/z, respec-
tively. Hence neither M\z nor M/z is 3-connected.

Our next example is constructed from a matroid as follows. Start with three
lines {a1, a2, a3}, {b1, b2, b3}, and {c1, c2, c3} in the rank-6 binary projective space
PG(5, 2) such that the union of these lines spans the space. For each i in {1, 2, 3},
let `i be the line containing ai and bi, and let mi and be the line containing bi
and ci. Let M be the 2-polymatroid with ground set {`1, `2, `3,m1,m2,m3}. Then
it is easily checked that M is a 3-connected, pure 2-polymatroid having each of
{`1, `2, `3} and {m1,m2,m3} as a prickly 3-separator.

Finally, we describe a whole family of 3-connected, pure 2-polymatroids in which
no single-element deletion or contraction is 3-connected. The reader should have
no difficulty filling in the details that are omitted from our description.

Let M be a 3-connected, pure 2-polymatroid having at least four elements. For
some n ≥ 3, take an element `0 of M and freely add n points p1, p2, . . . , pn. Via
the natural generalization of parallel connection for matroids, attach a line `i at pi
for all i in {1, 2, . . . , n−1}. Then attach a line `n at pn as freely as possible so that
it is in the closure of {`0, `1, . . . , `n−1}. Finally, delete `0 and all of p1, p2, . . . , pn.
In the resulting 2-polymatroid, {`1, `2, . . . , `n} is a prickly 3-separator.

Now repeat the process performed on `0 on every element of the original 2-
polymatroid M . The result is a 3-connected, pure 2-polymatroid in which every
element is in a prickly 3-separator of size at least three, so no single-element deletion
or contraction is 3-connected.

One might hope that in a 3-connected, pure 2-polymatroid in which no single-
element deletion or contraction is 3-connected, every element is in a prickly 3-
separator. But if we take the 2-polymatroid M1 constructed above from M and
apply the same process used on `0 to replace some, but not all, of the lines of M1,
we get an example showing that this hope cannot be realized.
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The paper is structured as follows. In the next section, we define representability
of polymatroids and show that, for all k ≥ 2 and all fields F, there are infinitely
many non-isomorphic k-polymatroids M such that M is not F-representable but
each of M\x and M/x is F-representable for all elements x. This means that, for
k-polymatroids, we shall need another reduction operation in addition to deletion
and contraction if the analogue of Rota’s Conjecture is to hold. Section 3 proves
a number of properties of connectivity, local connectivity, and duality for polyma-
troids. In Section 4, we begin the proof of the main theorem by treating the case
when M has at least one point. Section 5 proves a number of properties of pure
2-polymatroids that will be used in the proof of the main theorem. Finally, this
proof is given in Section 6.

2. Polymatroid representation

In this section, which is independent of the rest of the paper, we prove that, for all
fields F, the set of excluded minors for the class of F-representable 2-polymatroids
is infinite. In addition, we raise the question as to whether the corresponding result
holds when we add compression to deletion and contraction as allowable reduction
operations.

Let F be a field and V (n,F) be the n-dimensional vector space for some non-
negative integer n. Let E be a finite set and suppose that each member of E labels
a subspace of V (n,F) where a subspace may receive more than one label. For each
subset T of V (n,F), let r(T ) be the dimension of the subspace spanned by T . Now,
for each subset A of E, let r(A) = r(∪a∈Aa). It is easily checked that (E, r) is a
polymatroid. We say that a polymatroid that is isomorphic to such a polymatroid is
representable over the field F. This definition is consistent with the usual definition
of representability for matroids.

As is well known, one way to characterize the matroids that are representable
over some fixed field F is by finding the list of excluded minors. Geelen and Whittle
showed (in [10, Theorem 6.5.17]) that, when F is infinite, this list is always infinite.
By contrast, Geelen, Gerards, and Whittle [2] have announced that, when F is
finite, this list is always finite. This theorem resolves a longstanding conjecture of
Rota [13].

In this section, we show that, for all finite fields F, the set of excluded minors
for the class of 2-polymatroids that are representable over F is infinite. It should
be noted that Stefan van Zwam (in [4]) has given a construction, based on U2,4,
that shows that the set of excluded minors for the class of polymatroids that are
representable over GF (2) is infinite. But, in that example, the ranks of elements
in the class of polymatroids constructed grow without bound.

Let V be the Vámos matroid, that is, the rank-4 paving ma-
troid with ground set {a1, a2, b1, b2, c1, c2, d1, d2} whose non-spanning circuits
are {a1, a2, b1, b2}, {b1, b2, c1, c2}, {c1, c2, d1, d2}, {d1, d2, a1, a2}, and {a1, a2, c1, c2}.
Extend V to V ′ by freely adding a point d3 on the line {d1, d2}. Let P0 be the
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2-polymatroid induced on the set of lines {a1, a2}, {b1, b2}, {c1, c2}, and {d1, d2, d3}
of V ′, where we relabel these lines as a, b, c, and d.

For an integer r exceeding two, let Φr be the binary spike with tip t and
legs {t, xi, yi} for 1 ≤ i ≤ r. We now describe a matroid and an associated 2-
polymatroid. In V ′, relabel (d1, d2, d3) as (t, x1, y1), and let M be the generalized
parallel connection of V ′ and Φr across the triangle {t, x1, y1}. Let Pr be the 2-
polymatroid induced on the following set of lines of M : {a1, a2}, {b1, b2}, {c1, c2},
and {t, xi, yi} for 2 ≤ i ≤ r. Relabel these lines as a, b, c, and `i for 2 ≤ i ≤ r.

It is worth noting that using the binary spike is convenient to ensure that the
matroid M is well-defined since a 3-point line in a simple binary matroid is a
modular flat. But very little of the structure of the binary spike is used. Indeed,
we could have used any rank-r spike in place of Φr and still obtained the same
2-polymatroid Pr.

Theorem 2.1. For all finite fields F and all integers r exceeding two, the
2-polymatroid Pr is not F-representable but all of its proper minors are F-
representable.

Proof. Suppose that Pr is representable over a field F. Since r(Pr) = r+ 2, we can
view the elements of Pr as a set of lines in PG(r+1,F). The subspace 〈`2, `3, . . . , `r〉
spanned by {`2, `3, . . . , `r} has rank r and meets the subspace 〈a, b, c〉 in a line ` of
PG(r+ 1,F). Extend Pr to P ′r by adding the line ` and consider the 2-polymatroid
Q obtained from P ′r by deleting all of the elements except a, b, c and `.

Now suppose x ∈ {a, b, c}. The construction of Pr means that

r({`, x, `2, `3, . . . , `r}) = r({x, `2, `3, . . . , `r}) =

{
r + 1, if x in {a, c}; and

r + 2, if x = b.

Since the intersection of 〈`, `2, `3, . . . , `r〉 and 〈a, b, c, `〉 is `, the intersection of
〈`, `2, `3, . . . , `r〉 and 〈x, `〉 is also `. Hence, by modularity,

r({x, `}) = r(〈x, `〉) = r(〈`, x, `2, `3, . . . , `r〉) + r(`)− r(〈`, `2, `3, . . . , `r〉)
= r({`, x, `2, `3, . . . , `r}) + 2− r.

Thus

r({x, `}) =

{
3, if x in {a, c}; and

4, if x = b.

By construction, the 2-polymatroid Q is F-representable and has rank 4. In
fact, it is isomorphic to the 2-polymatroid P0 constructed above from the Vámos
matroid, although we will not use this explicitly. Since

r({a, b}) = r({a, c}) = r({b, c}) = 3,

there are points pab, pac, and pbc of PG(3,F) on the intersections of these three pairs
of lines. If two of these points are distinct, then these three points span {a, b, c}; a
contradiction as this set has rank 4. We deduce that pab = pac = pbc. By symmetry,
pa` = pac = pc`. Hence pab = pa` so b and ` share a point and hence r({b, `}) ≤ 3;
a contradiction. We conclude that Pr is not F-representable.
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Now to establish that every deletion and contraction of Pr is F-representable,
it suffices, by symmetry, to consider Pr/x and Pr\x for each x in {a, b, `r}. As
noted above, we could replace the spike Φr by any rank-r spike. Since for every
field, there is a spike representable over that field, we simply adjust the spike we
are using to ensure it is representable over the desired field.

To see the effect of contracting a line x, we can add two points freely on x,
contract them out and then delete x. Then Pr/a is the 2-polymatroid that can
be formed as follows. Begin with the 2-polymatroid of a rank-(r − 1) spike whose
elements are the lines through the tip. Then take another line through the tip that
raises the rank to r and has the points b and c on it. The 2-polymatroid has r − 1
lines, `2, `3, . . . , `r, and two points, b and c. Since the addition of the line containing
b and c corresponds to performing a parallel connection of two matroids, it is easy
to see that Pr/a is representable over all fields.

The 2-polymatroid Pr/b can be formed from a rank-r spike by taking r − 1 of
the lines through the tip as elements of the polymatroid and then taking a and c
as the other two elements of the polymatroid, each being a point placed freely on
the last line through the tip of the r-spike. Again this 2-polymatroid Pr/b is easily
seen to be representable over all fields.

The 2-polymatroid Pr/xr can be formed as follows. Take the matroid N of an
(r − 1)-element circuit with elements z, `2, `3, . . . , `r−1. Take the matroid M(K4)
having z as an element, let a and c be 3-point lines through z, and let b be a 3-
point line avoiding z. Take the 2-sum of N and M(K4) across z and then consider
the 2-polymatroid whose elements are the points `2, `3, . . . , `r−1 and the lines a, b,
and c of this matroid. It is this 2-polymatroid that equals Pr/xr and it is clearly
representable over all fields.

To see that all of Pr\a, Pr\b, and Pr\xr are representable over all fields, we
will describe matroids from which these 2-polymatroids can be built. In an r-spike
Sr, take a line ` through the tip and a point p on that line other than the tip.
Let `2, `3, . . . , `r be the other lines through the tip. Take the parallel connection
across p of Sr and two three-point lines, a and c. Now consider the associated 2-
polymatroid on the set of lines `2, `3, . . . , `r, a, c. This is Pr\b and it is representable
over all fields. To get Pr\a, instead of using two three-point lines in the parallel
connection, we use the graph G obtained from K4 by deleting an edge. Specifically,
we let p be an edge of G that is in only one triangle; we let c be the three-point line
containing p, and we let b be the three-point line avoiding p. Now take the parallel
connection of Sr and M(G) across p and consider the associated 2-polymatroid on
the set of lines `2, `3, . . . , `r, b, c. This is Pr\a and it is representable over all fields.

Finally consider Pr\xr. Let N be the parallel connection across a common point
p of three three-point lines a, b, and c. Let T be the parallel connection across a com-
mon point q of r−2 three-point lines `2, `3, . . . , `r−1. Take the direct sum of N and
T and look at the associated 2-polymatroid on the set of lines `2, `3, . . . , `r−1, a, b, c.
This is Pr\xr and it is representable over all fields. We conclude that the theorem
holds. �
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It is natural to ask whether the last result extends to k-polymatroids for all
k ≥ 3. We can make a straightforward modification to Pr to produce an infinite
antichain of excluded minors for the class of F-representable k-polymatroids. We
simply attach a new element a′ of rank k along the line a in Pr raising the rank by
k−2. We then delete a to obtain a k-polymatroid P ′′r . If P ′′r is F-representable, then
the intersection of the subspaces of PG(r+ k− 1,F) spanned by a′ and E(P ′′r )− a′
is a line, which we can relabel as a. If we modify the F-represented k-polymatroid
P ′′r by adding a and deleting a′, then it is easily checked that we have recovered
Pr. It follows by Theorem 2.1 that P ′′r is not F-representable, and it is not difficult
to amend the proof of that theorem to establish that every deletion or contraction
of P ′′r is F-representable.

Using Pr as originally defined, it is straightforward to check that Pr ↓ `r = Pr−1.
Moreover, {`r−1, `r} is a prickly 3-separation of Pr.

Theorem 2.2. Let F be a field and let M be an F-representable 2-polymatroid. Sup-
pose Z is a prickly 3-separating set in M . Then, for each z in Z, the compression
M ↓ z is F-representable.

Proof. Let r(M) = n. Then we can view the elements of M as a multiset of
labelled subspaces of V (n,F). Now choose z in Z. Then z labels a rank-2 subspace
of V (n,F). Since u(E − Z, z) = 1, there is a unique one-dimensional subspace a of
z that is contained in the span of E−Z. When |Z| = 2, say Z = {z, z′}, we define b
to be the one-dimensional subspace that is the intersection of z and z′. We extend
M by a one-dimensional subspace p of z where p differs from a and b. Let Mp be
the 2-polymatroid that is obtained from this extension by deleting z. Certainly Mp

and Mp/p are F-representable. To complete the proof of the theorem, we show that

2.2.1. Mp/p = M ↓ z

Clearly both Mp/p and M ↓ z have ground set E − z. We shall show that
these two 2-polymatroids have the same rank function. Take A ⊆ E − z. If
r(A ∪ z) = r(A), then r(A ∪ p) = r(A) and

rMp/p(A) = rM (A)− 1 = rM↓z(A).

Thus we may assume that r(A ∪ z) > r(A). If r(A ∪ p) > r(A), then

rMp/p(A) = rM (A) = rM↓z(A).

Hence we may assume that r(A ∪ p) = r(A).

Suppose that |Z| = 2. Let Z −{z} = {z′}. As r(A∪ p) = r(A), we must have z′

in A. Now r({z′, p}) = r({z′, z}), so r(A ∪ z) = r(A ∪ p) = r(A); a contradiction.
We may now assume that |Z| > 2. Then r(Z−z) = r(Z). Thus, as r(A∪z) > r(A),
we deduce that A 6⊇ Z − z. Hence A∩Z $ Z − z. As r(A∪ p) = r(A), we see that

r(A ∪ (E − Z) ∪ p) = r(A ∪ (E − Z)) = r(E − Z) + |A ∩ Z|. (2)

But r((E − Z) ∪ p) = r((E − Z) ∪ z), so

r(A ∪ (E − Z) ∪ p) = r(A ∪ (E − Z) ∪ z) = r(E − Z) + |A ∩ Z|+ 1. (3)

Since (2) and (3) are contradictory, (2.2.1) holds and therefore so does the theorem.
�
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Let M be a 2-polymatroid. We shall call the compression of an element in a
prickly 3-separating set a prickly compression. A p-minor of M is any polymatroid
that can be obtained from M by a sequence of operations each of which is a deletion,
a contraction, or a prickly compression. Although we have an infinite antichain of
excluded minors for the class of F-representable 2-polymatroids, we know of no
counterexample to the following.

Conjecture 2.3. Let F be a finite field. Let P be the set of 2-polymatroids M such
that M is not representable over F but every p-minor of M is representable over F.
Then P contains finitely many non-isomorphic members.

We will conclude this section with some more discussion of the operations of dele-
tion, contraction, and prickly compression for 2-polymatroids. In the first section,
we noted the link between series contraction in graphs and prickly compression. A
t-minor of a 2-polymatroid M is any polymatroid that can be obtained from M
by a sequence of operations each of which is a deletion or a prickly compression.
As we show next, the topological-minor relation for graphs is a special case of the
t-minor relation for 2-polymatroids.

Theorem 2.4. Let G1 and G2 be graphs without isolated vertices or free loops.
Then G2 is isomorphic to a topological minor of G1 if and only if M2(G2) is iso-
morphic to a t-minor of M2(G1).

Proof. In this argument, we shall view two graphs G and H as being equal if they
are the same after a possible relabelling of the vertices, but not the edges, of H. Let
e be an edge of G1. Clearly if G1\e = G2, then M2(G1)\e = M2(G2). Conversely,
if M2(G1)\e = M2(G2), then G1\e = G2 unless e is a loop of G1 that meets
a vertex w which is not incident with any other edges. In the exceptional case,
G2 = (G1\e) − w since w is an isolated vertex of G1\e but G2 has no isolated
vertices.

Next suppose v is a degree-2 vertex of G1 that meets distinct edges e and f .
Let Z = {e, f}. Suppose Z and E(G1) − Z have exactly two common vertices.
Then Z is a prickly 3-separating set of M2(G1). By Proposition 1.3, M2(G1/e) =
M2(G1) ↓ e. We may now assume that Z and E(G1) − Z have at most one
common vertex. Then, for some g in {e, f}, one end of g has degree one. Moreover,
M2(G1/e) ∼= M2(G1/f) ∼= M2(G1/g) = M2(G1)\g. We conclude that if G2 is
isomorphic to a topological minor of G1, then M2(G2) is isomorphic to a t-minor
of M2(G1).

Now suppose that M2(G1) has a prickly 3-separating set Z. Then condition
(iv) defining a prickly 3-separator ensures that |Z| = 2 and that r(Z) = 3. Let
Z = {z1, z2}. Then z1 and z2 have exactly one common vertex, say w. Moreover,
r((E − Z) ∪ zi) = r(E − Z) + 1 for each i. Hence each zi has a single vertex in
common with E(G1) − Z. If w meets an edge of E(G1) − Z, then λ(Z) = 1; a
contradiction. We deduce that w does not meet an edge of E(G1) − Z, so w has
degree two in G1. Hence M2(G1) ↓ z1 = M2(G1/z1). �
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It is clear that the p-minor order on 2-polymatroids generalizes the minor order
on matroids since no matroid has a prickly 3-separator. Moreover, if G and H are
graphs and H is a minor of G, then M(H) is a p-minor of M(G). The last theorem
enables us to show that the p-minor order also generalizes the topological-minor
order on graphs.

Corollary 2.5. Let G1 and G2 be graphs without isolated vertices, loops, or free
loops. Then G2 is isomorphic to a topological minor of G1 if and only if M2(G2)
is isomorphic to a p-minor of M2(G1).

Proof. By Theorem 2.4, we may assume that M2(G2) is a p-minor of M2(G1)/e
for some edge e of G1. In Section 1, we noted that M2(G1)/e = M2(H) where H
has edge set E − e and vertex set V − V ({e}), and an edge x of H is incident with
the vertices in V ({x})− V ({e}). Let A be the set of edges of G1 that are adjacent
to e. Each member of A is a loop or a free loop in H depending on whether it
shares one or two endponts with e. Since G2 has no loops or free loops, in going
from M2(G1)/e to M2(G2), all the elements of A must be removed. Thus M2(G2)
is a p-minor of M2(G1)/e\A. But M2(G1)/e\A = M2(G1\(e ∪ A)), and the result
follows. �

It is well known that the class of graphs is not well-quasi-ordered under the
topological-minor relation (see, for example, Ding [1]). For instance, for each posi-
tive integer n, let Gn be the graph that is formed from an n-edge path by replacing
each edge by two parallel edges and then adding two pendant edges at each end of
the path. Then Gn is a topological minor of Gm if and only if n = m. It is straight-
forward to check that each M2(Gn) is representable over all fields F. Using Corol-
lary 2.5, we see that no member of {M2(Gn) : n ≥ 1} is isomorphic to a p-minor
of another member of this set. Thus although we have conjectured that, under the
p-minor ordering, an analogue of Rota’s Conjecture holds for the 2-polymatroids
that are representable over a fixed finite field, under the p-minor ordering there are
infinite antichains within the class of F-representable 2-polymatroids.

3. Some results for connectivity and local connectivity

This section notes a number of properties of the connectivity and local-
connectivity functions that will be used in the proof of the main theorem. First we
show that compression is, in most situations, a self-dual operation.

Proposition 3.1. Let e be a line of a 2-polymatroid M and suppose that M contains
no line parallel to e. Then

M∗ ↓ e = (M ↓ e)∗.

Proof. Let M = (E, r), and let X and Y be disjoint sets whose union is E − e.
Assume first that λ({e}) 6= 0. Then, since r({e}) = 2, it follows immediately from
the definition that

r(X ∪ e)− r(X) + r∗(Y ∪ e)− r∗(Y ) = 2. (4)

Thus we have the following three possibilities.
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(i) r(X ∪ e)− r(X) = 2 and r∗(Y ∪ e) = r∗(Y );
(ii) r(X ∪ e)− r(X) = 1 and r∗(Y ∪ e)− r∗(Y ) = 1; or

(iii) r(X ∪ e) = r(X) and r∗(Y ∪ e)− r∗(Y ) = 2.

Now, by definition,

r(M↓e)∗(Y ) =
∑
y∈Y

max{rM↓e(y), 1}+ rM↓e(X)− r(M ↓ e).

Since r({e}) = 2, we see that rM↓e(y) = rM (y) unless r({y, e}) = r(y). In the
exceptional case, y and e are parallel lines, which the hypothesis forbids. Also,

rM↓e(X) =

{
r(X), if r(X ∪ e) > r(X);

r(X)− 1, otherwise.

In particular, since λ({e}) 6= 0, it follows that r(E) − r(E − e) ≤ 1. Therefore,
r(M ↓ e) = r(M)− 1. Thus

r(M↓e)∗(Y ) =
∑
y∈Y

max{rM (y), 1}+ rM↓e(X)− r(M) + 1

= ||Y ||+ rM↓e(X)− r(M) + 1.

Hence

r(M↓e)∗(Y ) =

{
||Y ||+ r(X)− r(M) + 1, if r(X ∪ e) > r(X);

||Y ||+ r(X)− r(M), otherwise.
(5)

Next we consider rM∗↓e(Y ). As λ({e}) 6= 0, we see that r∗({e}) 6= 0. Thus

rM∗↓e(Y ) =

{
rM∗(Y ), if rM∗(Y ∪ e) > rM∗(Y );

rM∗(Y )− 1, otherwise.
(6)

Now rM∗(Y ) = ||Y ||+ r(X ∪ e)− r(M). Hence

rM∗↓e(Y ) =

{
||Y ||+ r(X ∪ e)− r(M), if rM∗(Y ∪ e) > rM∗(Y );

||Y ||+ r(X ∪ e)− r(M)− 1, otherwise.
(7)

We now consider the three possibilities (i)–(iii) in turn. If (i) holds, then

r(M↓e)∗(Y ) = ||Y ||+ r(X)− r(M) + 1 = ||Y ||+ r(X ∪ e)− r(M)− 1 = rM∗↓e(Y ).

If (ii) holds, then

r(M↓e)∗(Y ) = ||Y ||+ r(X)− r(M) + 1 = ||Y ||+ r(X ∪ e)− r(M) = rM∗↓e(Y ).

If (iii) holds, then

r(M↓e)∗(Y ) = ||Y ||+ r(X)− r(M) = ||Y ||+ r(X ∪ e)− r(M) = rM∗↓e(Y ).

As the set Y was an arbitrarily chosen subset of E − e, the lemma follows in the
case that λ({e}) 6= 0. But, when λ({e}) = 0, the result is easily checked. �

LetM be a polymatroid (E, r). IfX and Y are subsets of E, the local connectivity
u(X,Y ) between X and Y is defined by u(X,Y ) = r(X) + r(Y ) − r(X ∪ Y ).
Sometimes we will write uM for u, and u∗ for uM∗ . It is straightforward to prove
the following.
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Lemma 3.2. Let M be a polymatroid (E, r). For disjoint subsets X and Y of E,

uM∗(X,Y ) = uM/(E−(X∪Y ))(X,Y ).

Numerous properties of the connectivity function of a matroid are proved simply
by applying properties of the rank function; they do not rely on the requirement
that r({e}) ≤ 1 for all elements e. Evidently, such properties also hold for the
connectivity function of a polymatroid. The next few lemmas note some of these
properties.

The first two are proved in [10, Lemmas 8.2.3 and 8.2.4].

Lemma 3.3. Let (E, r) be a polymatroid and let X1, X2, Y1, and Y2 be subsets of
E with Y1 ⊆ X1 and Y2 ⊆ X2. Then

u(Y1, Y2) ≤ u(X1, X2).

Lemma 3.4. Let (E, r) be a polymatroid M and let X,C, and D be disjoint subsets
of E. Then

λM\D/C(X) ≤ λM (X).

Moreover, equality holds if and only if

r(X ∪ C) = r(X) + r(C)

and

r(E −X) + r(E −D) = r(E) + r(E − (X ∪D)).

The following [10, Corollary 8.7.6] is a straightforward consequence of the last
lemma.

Corollary 3.5. Let X and D be disjoint subsets of the ground set E of a polyma-
troid M . Suppose that r(M\D) = r(M). Then

(i) λM\D(X) = λM (X) if and only if D ⊆ clM (E − (X ∪D)); and
(ii) λM\D(X) = λM (X ∪D) if and only if D ⊆ clM (X).

It is well known that, when M is a matroid, for all subsets X of E(M),

λM (X) = rM (X) + rM∗(X)− |X|.
It is easy to check that the following variant on this holds for polymatroids.

Lemma 3.6. In a polymatroid M , for all subsets X of E(M),

λM (X) = rM (X) + rM∗(X)− ||X||.

The next two lemmas are extensions of matroid results that appear in [11].

Lemma 3.7. Let (E, r) be a polymatroid and let X and Y be disjoint subsets of
E. Then

λ(X ∪ Y ) = λ(X) + λ(Y )− u(X,Y )− u∗(X,Y ).

Lemma 3.8. Let P,Q,R, and S be subsets of the ground set of a polymatroid.
Then
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(i) u(P ∪Q,R∪S)+u(P,Q)+u(R,S) = u(P ∪R,Q∪S)+u(P,R)+u(Q,S);
and

(ii) u(P ∪Q,R) + u(P,Q) = u(P ∪R,Q) + u(P,R).

There are exactly three 2-polymatroids on a singleton set {x}, depending on
whether {x} has rank 0, 1, or 2. Trivially, each of these 2-polymatroids is 3-
connected. We omit the routine proof of the next result.

Lemma 3.9. Let M be a 3-connected 2-polymatroid having at least three elements.
Then

(i) r∗({e}) = r({e}) ≥ 1 for all e in M ;
(ii) (M∗)∗ = M ; and
(iii) M∗ is 3-connected.

The fact that points and lines are preserved when we go to the dual is a striking
difference between our new duality and the 2-dual of a 2-polymatoid. In particular,
if we take the cycle matroid of M(K4) and view it as a 2-polymatroid, its dual is
its familiar matroid dual. But its 2-dual has rank 9 and all of the elements of the
2-dual are lines.

For someone familiar with matroid theory, the assertion that (M∗)∗ = M , which
appears in part (ii) of the last lemma, is hardly a surprise. What may be disturbing
is that the hypothesis of the last lemma is needed. As an example, let M be the
2-polymatroid of rank 4 that has three elements, a, b, and c, each of which is a
line and has r({a, b}) = 3 = r({b, c}) and r({a, c}) = 4. Then M∗ has rank 2 and
consists of a line b with a and c as points freely placed on this line. In this case,
(M∗)∗ = M∗, so (M∗)∗ 6= M . Of course, the 2-polymatroid M has ({a}, {b, c}) as
a 2-separation and so it is not 3-connected.

In general, we have the following result for all polymatroids where, for ease of
notation, we have written ((M∗)∗)∗ and (M∗)∗ as M∗∗∗ and M∗∗, respectively.

Proposition 3.10. For all polymatroids M ,

M∗∗∗ = M∗.

Proof. Let Z be an arbitrary subset of E. We shall show that

rM∗∗∗(Z) = rM∗(Z).

We have

rM∗∗∗(Z) =
∑
z∈Z

max{1, rM∗∗(z)}+ rM∗∗(E − Z)− r(M∗∗). (8)
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Now

rM∗∗(E − Z)− r(M∗∗) =
∑

e∈E−Z
max{1, rM∗(e)}+ rM∗(Z)− r(M∗)

−
∑
e∈E

max{1, rM∗(e)}+ r(M∗)

= −
∑
z∈Z

max{1, rM∗(z)}+ rM∗(Z).

Substituting into (8), we get

rM∗∗∗(Z) =
∑
z∈Z

max{1, rM∗∗(z)} −
∑
z∈Z

max{1, rM∗(z)}+ rM∗(Z). (9)

Now, for an element z, we have

rM∗∗(z) = max{1, rM∗(z)}+ rM∗(E − z)− r(M∗). (10)

Moreover,

r(M∗)− rM∗(E − z) = max{1, rM (z)} − rM (z)

=

{
0, if r(z) 6= 0;

1, if r(z) = 0.
(11)

Substituting into (10), we get that, when r(z) 6= 0,

rM∗∗(z) = max{1, rM∗(z)},

so

max{1, rM∗∗(z)} = max{1, rM∗(z)}. (12)

Now suppose r(z) = 0. Then r(E−z) = r(M), so rM∗(z) = 1. Hence rM∗∗(z) =
1 + rM∗(E − z) − r(M∗) = 0, where the last equality follows by (11). We deduce
that (12) also holds when r(z) = 0. Therefore, substituting into (9), we get that

rM∗∗∗(Z) = rM∗(Z),

as required. �

A disadvantage of the new duality we have introduced is that we no longer have
the familiar link between duality, deletion, and contraction. As an example, let M
be the pure 2-polymatroid with ground set {a, b, c, d} where each element is a line;
a, b, and c share a common point but are otherwise freely placed; and d is added
freely in rank 4. Then M∗ consists of four lines with each of a, b, and c sharing a
point with d; these points are distinct, and no three lines have rank three. Then
r(M∗\a) = 4 but r((M/a)∗) = 2. Thus M∗\a 6= (M/a)∗. In spite of this example,
we do have the following result, the routine proof of which is omitted.

Lemma 3.11. Let M be a polymatroid and e be an element of M . Suppose, for all
elements x of E−e of rank exceeding one, that λ({x}) > 0 and that r(E−x) < r(E).
Then

M/e = (M∗\e)∗.
In particular, the last equation holds when M is a matroid, and when r(M\x) =
r(M) for all x in E.
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One reassuring aspect of the behaviour of duality is that connectivity functions
satisfy the following familiar result whose routine proof is omitted.

Lemma 3.12. Let M be a polymatroid and T be a subset of E(M). Then

λM\T = λM∗/T and λM/T = λM∗\T .

The next result is a straightforward consequence of Lemma 3.2.

Lemma 3.13. Let e be an element of a polymatroid M , and let D1 and D2 be
disjoint sets whose union is E − e. Then

u(e, E − e) = u∗(D1, e) + u(D2, e).

The next result shows that compression tends to preserve 3-connectedness.

Lemma 3.14. Let M be a 3-connected 2-polymatroid and ` be a line in M such
that both M\` and M/` are 2-connected. Then M ↓ ` is 3-connected.

Proof. Let (U, V ) be a partition of E(M)− ` such that

rM↓`(U) + rM↓`(V )− r(M ↓ `) = k

for some k in {0, 1}. Then

rM↓`(U) + rM↓`(V )− r(M) ≤ k − 1. (13)

Suppose first that rM↓`(U) = r(U) and rM↓`(V ) = r(V ). Then r(U) + r(V ) −
r(M\`) = 0, so M\` is not 2-connected; a contradiction. Next assume that
rM↓`(U) = r(U) − 1 and rM↓`(V ) = r(V ) − 1. Then r(U ∪ `) = r(U) and
r(V ∪ `) = r(V ). Thus, from (13),

r(U) + r(V )− r(M) ≤ 2. (14)

Moreover,

rM/`(U) + rM/`(V )− r(M/`) = r(U ∪ `) + r(V ∪ `)− r(M)− 2

= r(U) + r(V )− r(M)− 2

≤ 0

where the last step follows by (14). Therefore M/` is not 2-connected; a contradic-
tion.

By symmetry, it remains to consider the case when rM↓`(U) = r(U) − 1 and
rM↓`(V ) = r(V ). Then r(U ∪ `) = r(U). Substituting into (13), we get

r(U ∪ `) + r(V )− r(M) = k.

Hence k = 1, so M ↓ ` is certainly 2-connected. If it is not 3-connected, then we
may assume that (U, V ) is a 2-separation of it. But then (U ∪`, V ) is a 2-separation
of M ; a contradiction. �

We conclude this section with a straightforward consequence of Lemma 3.12.

Corollary 3.15. Let M be a 3-connected 2-polymatroid with at least four elements
and x be an element of M .
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(i) If M\x is 3-connected, then M∗/x is 3-connected; and
(ii) If M∗\x is 3-connected, then M/x is 3-connected.

The converses of each part of the last corollary are false. As an example, let M
be the 2-polymatroid of rank 4 consisting of four copunctual lines every three of
which have rank 4. Call these lines a, b, c, and d. The dual of this 2-polymatroid is
itself. Contracting a line gives the matroid U2,3, which is 3-connected. But deleting
any element gives a 2-separation with one line on one side and the other two lines
on the other side.

4. When there is a point

To prove the main theorem, we begin in this section by considering the case
when the 2-polymatroid M has a point, that is, a rank-one element. Our proof in
that case will rely on the next lemma. Let {a, b, c} be a set of three points in a
2-polymatroid M . As in matroids, we shall call {a, b, c} a triangle if every subset
of {a, b, c} of size at least two has rank two. If, instead, r(E−{a, b, c}) = r(M)− 1
but r(X) = r(M) for all proper supersets X of E−{a, b, c}, then we call {a, b, c} a
triad of M . When M is 3-connected, {a, b, c} is a triad of M if and only if {a, b, c}
is a triangle of M∗. It is straightforward to check that a triangle and a triad of M
cannot have exactly one common element.

Lemma 4.1. Let M be a 3-connected 2-polymatroid having a point p such that
neither M\p nor M/p is 3-connected. Then M has points s and t such that {p, s, t}
is a triangle or a triad of M .

Proof. Assume that the lemma fails. We show first that M\p is 2-connected. As-
sume, instead, that M\p has a partition (X,Y ) with r(X) + r(Y ) − r(M\p) = 0.
Since M is 2-connected, r(M\p) = r(M), while r(X ∪ p) = r(X) + 1 ≥ 2 and
r(Y ∪ p) = r(Y ) + 1 ≥ 2. Assume r(X) ≥ r(Y ). Since (X,Y ∪ p) cannot be a
2-separation of M , we must have r(X) = r(Y ) = 1 and |X| = |Y | = 1. In the
exceptional case, {x, y, p} is a triangle of M where x and y are the points in X
and Y , respectively. We conclude that M\p is 2-connected. Since, by Lemma 3.11,
M/p = (M∗\p)∗, a dual argument establishes that M/p is 2-connected.

Let (D1, D2) and (C1, C2) be 2-separations of M\p and M/p, respectively. Then

r(D1) + r(D2)− r(M) ≤ 1 (15)

and

r(C1 ∪ p) + r(C2 ∪ p)− r(M) ≤ 2. (16)

Adding the last two inequalities and applying submodularity, we deduce that

r(C1 ∪D1 ∪ p) + r(C1 ∩D1) + r(C2 ∪D2 ∪ p) + r(C2 ∩D2)− 2r(M) ≤ 3.

Thus either

r(C1 ∪D1 ∪ p) + r(C2 ∩D2)− r(M) ≤ 1,

or

r(C2 ∪D2 ∪ p) + r(C1 ∩D1)− r(M) ≤ 1.
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Now (C1 ∪ D1 ∪ p, C2 ∩ D2) and (C2 ∪ D2 ∪ p, C1 ∩ D1) are partitions of E into
possibly empty sets. Since M is 3-connected, we must have

r(C2 ∩D2) ≤ 1 or r(C1 ∩D1) ≤ 1.

By symmetry,

r(C2 ∩D1) ≤ 1 or r(C1 ∩D2) ≤ 1.

Combining these, we see, by symmetry, that either

r(C1 ∩D1) ≤ 1 and r(C1 ∩D2) ≤ 1

or

r(C1 ∩D1) ≤ 1 and r(C2 ∩D1) ≤ 1.

Now max{|C1|, r(C1)} ≥ 2 and max{|D1|, r(D1)} ≥ 2. It follows that either C1 or
D1 contains exactly two elements, both of which are points.

Suppose |C1| = 2 and both elements of C1 are points. Then, by (16), r(C1∪p) =
r(C1) since (C1, C2 ∪ p) is not a 2-separation of M . We deduce that C1 ∪ p is a
triangle of M consisting of p and two other matroid points. A similar argument
establishes that when |D1| = 2, we have D1 ∪ p as a triad of M consisting of p and
two other matroid points. �

Lemma 4.2. Let M be a 3-connected 2-polymatroid having at least four elements.

(i) Suppose {e, f, g} is a triangle of M such that neither M\e nor M\f is 3-
connected. Then M has a triad that contains e and exactly one of f and
g.

(ii) Suppose {e, f, g} is a triad of M such that neither M/e nor M/f is 3-
connected. Then M has a triangle that contains e and exactly one of f and
g.

Proof. A proof of the first part of this result for the case when M is a matroid
is given in [10, pp. 334–336]. Most of that proof involves using properties of the
connectivity function that generalize to 2-polymatroids as in, for example, Corol-
lary 3.5. In a few places, the argument needs some minor modification but all such
changes are straightforward, so the details of the proof are omitted.

For (ii), {e, f, g} is a triangle of M∗. By Lemma 3.9 and Corollary 3.15, M∗ is
3-connected but neither M∗\e nor M∗\f is. The lemma now follows from the first
part. �

Tutte’s Triangle Lemma is the key result needed to prove Tutte’s Wheels-and-
Whirls Theorem for 3-connected matroids. It plays a correspondingly fundamental
role in the next result, which deals with the special case of the main theorem when
M contains a point.

Lemma 4.3. Let M be a 3-connected 2-polymatroid such that, for all elements x,
neither M\x nor M/x is 3-connected. If M has at least one point, then all the
elements of M are points, r(M) ≥ 3, and M is a whirl or the cycle matroid of a
wheel.
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Proof. By Lemma 4.1, M has three points that form a triangle or a triad. If M is a
triangle or a triad, then contracting or deleting an element produces a 3-connected
2-polymatroid. Hence we may assume that M has at least four elements. We may
also assume that M has at least one line, say `, otherwise the lemma follows by the
Wheels-and-Whirls Theorem for 3-connected matroids.

As for matroids, we call a sequence x1, x2, . . . , xk of distinct points of M a fan
of length k if k ≥ 3 and the sets {x1, x2, x3}, {x2, x3, x4}, . . . , {xk−2, xk−1, xk} are
alternately triangles or triads beginning with either a triangle or a triad.

Take a fan x1, x2, . . . , xk in M of maximal length. Then, by Lemma 4.2, we
may assume that k ≥ 4. By replacing M by M∗ if necessary, we may assume
that {x1, x2, x3} is a triangle. Then {x2, x3, x4} is a triad. Assume k = 4. By
Lemma 4.2 and symmetry, M has a triangle containing {x4, x3}. The maximality
of k implies that this triangle is either {x4, x3, x2} or {x4, x3, x1}. In both cases,
r({x1, x2, x3, x4}) = 2, so {x2, x3, x4} is a triangle. Hence this set is both a tri-
angle and a triad. Then, by Lemma 3.6, we have λ({x2, x3, x4}) = 1. This is a
contradiction since M is 3-connected, but has ({x2, x3, x4}, E − {x2, x3, x4}) as a
2-separation since E − {x2, x3, x4} contains {x1, `}. We deduce that k > 4.

By hypothesis, neither M\x1 nor M\x2 is 3-connected. Thus, by Lemma 4.2,
M has a triad T ∗ that equals {x0, x1, x2} or {x0, x1, x3}, where x0 6∈ {x1, x2, x3}.
Suppose T ∗ = {x0, x1, x3}. Then, as {x3, x4, x5} is a triangle, we must have that
x0 ∈ {x4, x5}. Then r({x0, x1, x2, x3, x4, x5}) ≤ 3. As {x0, x1, x2, x3, x4, x5}
contains two triads, r∗({x0, x1, x2, x3, x4, x5}) ≤ 3. Hence, by Lemma 3.6,
λ({x0, x1, x2, x3, x4, x5}) ≤ 1, so M has a 2-separation; a contradiction.

We may now assume that T ∗ = {x0, x1, x2}. As k is a maximum, x0 is in
{x4, x5, . . . , xk}. Since T ∗ cannot meet a triangle in a single element, we must have
that k is even and x0 = xk. Now, by Lemma 4.2, xk is in a triangle T that contains
exactly one of xk−1 and xk−2. The dual argument to that given in the previous
paragraph establishes that T = {xk−1, xk, xk+1} for some element xk+1. Again,
the same argument as at the beginning of this paragraph gives that xk+1 = x1. Let
X = {x1, x2, . . . , xk}. Then {x1, x3, . . . , xk−1} spans X in M , while {x2, x4, . . . , xk}
spans X in M∗. Thus, by Lemma 3.6, λ(X) ≤ k

2 + k
2−k = 0. This is a contradiction

as ` 6∈ X. �

5. The pure case

By the results in the last section, we may now focus our attention on 3-connected,
pure 2-polymatroids. Two lines in a 2-polymatroid are parallel if the rank of their
union is 2. We omit the straightforward proof of the next result.

Lemma 5.1. Let M be a 3-connected 2-polymatroid (E, r), and let e and f be
parallel lines in M . Then M\e is 3-connected.

Lemma 5.2. Let M be a 3-connected, pure 2-polymatroid. If ` is in E(M) and
M/` is not 2-connected, then M\` is 3-connected.
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Proof. Let (C1, C2) be a partition of E(M/`) such that rM/`(C1) + rM/`(C2) −
r(M/`) = 0. Then

r(C1 ∪ `) + r(C2 ∪ `)− r(M) = 2. (17)

Now assume thatM\` is not 3-connected. Then there is a partition (D1, D2) of E−`
such that r(D1) + r(D2)− r(M\`) ≤ 1. Since M is 3-connected, r(M\`) = r(M).
Thus

r(D1) + r(D2)− r(M) ≤ 1. (18)

Adding (17) and (18), we get

r(C1 ∪ `) + r(D1) + r(C2 ∪ `) + r(D2)− 2r(M) ≤ 3.

By applying submodularity, we get

r(C1∪ `∪D1)+r(C2∩D2)−r(M)+r(C2∪ `∪D2)+r(C1∩D1)−r(M) ≤ 3. (19)

Now (C1 ∪ ` ∪ D1, C2 ∩ D2) and (C2 ∪ ` ∪ D2, C1 ∩ D1) are partitions of E into
possibly empty sets. If C2 ∩D2 6= ∅, then, as M is pure, r(C2 ∩D2) ≥ 2, so

r(C1 ∪ ` ∪D1) + r(C2 ∩D2)− r(M) ≥ 2.

Likewise, if C1 ∩D1 6= ∅, then

r(C2 ∪ ` ∪D2) + r(C1 ∩D1)− r(M) ≥ 2.

Adding the last two inequalities gives a contradiction to (19). Hence

C2 ∩D2 = ∅ or C1 ∩D1 = ∅.
By symmetry,

C2 ∩D1 = ∅ or C1 ∩D2 = ∅.
It follows that one of C1, C2, D1, or D2 is empty; a contradiction. �

The remaining work needed to prove the main theorem will be partioned into
the three cases identified in the next result.

Lemma 5.3. Let M be a 3-connected, pure 2-polymatroid (E, r). Suppose ` ∈ E
and (D1, D2) is a partition of E − ` such that λM\`(D1) = 1. Then, after possibly
interchanging D1 and D2, one of the following holds.

(I) u(D1, `) = 1 = u(D2, `);
(II) u(D1, `) = 0 and u(D2, `) = 1; or

(III) u(D1, `) = 0 = u(D2, `).

Proof. We have r(D1) + r(D2) − r(M\`) = 1. Clearly, u(D1, `) ≤ r(`) ≤ 2. If
u(D1, `) = 2, then r(D1∪`) = r(D1), so r(D1∪`)+r(D2)−r(M) = 1; a contradic-
tion. Thus u(D1, `) ≤ 1. The lemma follows immediately by using symmetry. �

Corollary 5.4. Let M be a 3-connected, pure 2-polymatroid (E, r). Suppose ` ∈ E
and (C1, C2) is a partition of E − ` such that λM/`(C1) = 1. Then, after possibly
interchanging C1 and C2, one of the following holds.

(I) u(C1, `) = 1 = u(C2, `);
(II) u(C1, `) = 1 and u(C2, `) = 2; or

(III) u(C1, `) = 2 = u(C2, `).
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Proof. By Lemma 3.12, we have λM/`(C1) = λM∗\`(C1). Then one of (I)–(III) of the
last corollary holds with (D1, D2) and u replaced by (C1, C2) and u∗, respectively.
The corollary follows by applying Lemma 3.13. �

The next lemma extracts some useful information in the case that (II) holds in
each of the last two results.

Lemma 5.5. Let M be a 3-connected, pure 2-polymatroid (E, r). Suppose ` ∈ E,
and let (D1, D2) and (C1, C2) be partitions of E − ` such that λM\`(D1) = 1 =
λM/`(C1). Suppose also that u(D1, `) = 0 and u(D2, `) = 1 and that u(C1, `) = 1
and u(C2, `) = 2. Then each of C1 ∩ D2, C2 ∩ D1, and C2 ∩ D2 is non-empty.
Moreover, if (C1, C2) is a 2-separation of M/`, then |C1| ≥ 2.

Proof. By comparing local connectivities and using Lemma 3.3, we deduce that C2

is not contained in either D1 or D2; and C1 is not contained in D1. Thus all of
C2 ∩D1, C2 ∩D2, and C1 ∩D2 are non-empty.

Now suppose (C1, C2) is a 2-separation of M/` but that |C1| = 1. As u(C1, `) =
1, it follows that rM/`(C1) = 1; a contradiction. Therefore |C1| ≥ 2. �

Lemma 5.6. Let M be a 3-connected, pure 2-polymatroid (E, r). Suppose ` ∈ E
and (C1, C2) is a partition of E − ` such that λM/`(C1) = 1 and u(C1, `) = 2 =
u(C2, `). Let (D1, D2) be a partition of E − ` such that λM\`(D1) = 1. Then, for
all i and j in {1, 2},

λM\`(Ci ∩Dj) = 2 = λM (Ci ∩Dj).

Moreover, one of the following occurs.

(a) u(C1 ∩D1, C1 ∩D2) = 1 = u(C2 ∩D1, C2 ∩D2) and
u(C1 ∩D1, C2 ∩D1) = 2 = u(C1 ∩D2, C2 ∩D2); or

(b) u(C1 ∩D1, C1 ∩D2) = 0 = u(C2 ∩D1, C2 ∩D2) and
u(C1 ∩D1, C2 ∩D1) = 1 = u(C1 ∩D2, C2 ∩D2).

Proof. Since

r(C1 ∪ `) + r(C2 ∪ `)− r(M) = 3,

and u(C1, `) = 2 = u(C2, `), we have

r(C1) + r(C2)− r(M) = 3.

Also r(D1) + r(D2) − r(M) = 1. Adding this equation to its predecessor and
applying submodularity gives

r(C1 ∪D1) + r(C2 ∩D2)− r(M) + r(C2 ∪D2) + r(C1 ∩D1)− r(M) ≤ 4. (20)

But ` ∈ cl(C1) ∩ cl(C2), so

r(C1∪D1∪ `)+r(C2∩D2)−r(M)+r(C2∪D2∪ `)+r(C1∩D1)−r(M) ≤ 4. (21)

Now, by Lemma 5.3, for each i in {1, 2}, we have u(Di, `) ≤ 1. Thus, by Lemma 3.3,
Di contains neither C1 nor C2. We deduce that Di ∩Cj is non-empty for each j in
{1, 2}. Then both (C1∪D1∪ `, C2∩D2) and (C2∪D2∪ `, C1∩D1) partition E. As
M is 3-connected, it follows that equality must hold in both (20) and (21). Thus
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λM\`(C1 ∩D1) = 2 = λM (C1 ∩D1) and λM\`(C2 ∩D2) = 2 = λM (C2 ∩D2). By
interchanging C1 and C2 in (21), we deduce that the first part of the lemma holds.

By Lemma 3.8(i),

u(C1, C2) + u(C1 ∩D1, C1 ∩D2) + u(C2 ∩D1, C2 ∩D2)

= u(D1, D2) + u(C1 ∩D1, C2 ∩D1) + u(C1 ∩D2, C2 ∩D2).

As u(C1, C2) = 3 and u(D1, D2) = 1, we deduce that

u(C1 ∩D1, C1 ∩D2) + u(C2 ∩D1, C2 ∩D2) + 2

= u(C1 ∩D1, C2 ∩D1) + u(C1 ∩D2, C2 ∩D2). (22)

By Lemma 3.8(ii),

u(D1, D2) +u(C1 ∩D1, C2 ∩D1) = u((C1 ∩D1)∪D2, C2 ∩D1) +u(C1 ∩D1, D2).

But u(D1, D2) = 1 and u((C1 ∩D1) ∪D2, C2 ∩D1) = λM\`(C2 ∩D1) = 2. Thus

u(C1 ∩D1, C2 ∩D1) = u(C1 ∩D1, D2) + 1. (23)

But, by Lemma 3.3,

1 = u(D1, D2) ≥ u(C1 ∩D1, D2) ≥ u(C1 ∩D1, C1 ∩D2). (24)

Assume that u(C1 ∩D1, C1 ∩D2) = 1. Then, by (24), u(C1 ∩D1, D2) = 1 so, by
(23), u(C1 ∩D1, C2 ∩D1) = 2. By interchanging D1 and D2 in the argument just
given, we find that u(C1 ∩D2, C2 ∩D2) = 2. Then substituting into (22), we get
that u(C2 ∩D1, C2 ∩D2) = 1. Thus (a) holds.

By symmetry, we may now assume that u(C1 ∩ D1, C1 ∩ D2) = 0 and u(C2 ∩
D1, C2 ∩D2) = 0. Then, by (22),

u(C1 ∩D1, C2 ∩D1) + u(C1 ∩D2, C2 ∩D2) = 2.

By (23) and symmetry, each of u(C1 ∩D1, C2 ∩D1) and u(C1 ∩D2, C2 ∩D2) is at
least one. Hence each is exactly one, and (b) holds. �

Recall that a 3-separation of a 3-connected, pure 2-polymatroid (E, r) is a par-
tition (X,Y ) of E such that λ(X) = 2 and both r(X) and r(Y ) exceed 2.

Lemma 5.7. Let M be a 3-connected, pure 2-polymatroid (E, r) having at least
three elements. Assume that neither M nor M∗ has a pair of parallel lines. Then
a partition (X,Y ) of E is a 3-separation of M if and only if it is a 3-separation of
M∗.

Proof. By Lemma 3.9, (M∗)∗ = M , and M∗ is also a 3-connected, pure 2-
polymatroid. Let (X,Y ) be a 3-separation of M . It suffices to show that (X,Y ) is
a 3-separation of M∗. Now λM∗(X) = λM (X) = 2, that is,

rM∗(X) + rM∗(Y )− r(M∗) = 2 = rM (X) + rM (Y )− r(M).

Hence rM∗(X) and rM∗(Y ) are both at least two. Suppose that rM∗(X) = 2. Then
rM∗(Y ) = r(M∗), so r(X) = ||X||. But r(X) > 2, so |X| ≥ 2. Then rM∗(X) > 2
since M∗ does not contain a pair of parallel lines. It follows that (X,Y ) is a
3-separation of M∗, and the lemma follows. �
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The next lemma will be used repeatedly in the proof of the main theorem.

Lemma 5.8. Let M be a 3-connected, pure 2-polymatroid in which neither M nor
M∗ has a pair of parallel elements. Let (U, V ) be a 3-separation of M in which V
is minimal. Suppose M has a 3-separation (J,K) such that each of J ∩ U , J ∩ V ,
and K ∩ V is non-empty. Then (J,K) crosses (U, V ) and |V | = 2.

Proof. We observe first that K ∩ U 6= ∅ otherwise K is a proper subset of V ,
contradicting the minimality of the latter. Now

2 + 2 = λ(J) + λ(V )

≥ λ(J ∩ V ) + λ(J ∪ V )

= λ(J ∩ V ) + λ(K ∩ U)

≥ 2 + 2.

Thus |J∩V | = 1 otherwise the choice of V is contradicted. By symmetry, |K∩V | =
1. Hence |V | = 2, as required. �

6. The proof of the main theorem

In this section, we prove the main result of the paper. The following lemma
plays a key role in this proof.

Lemma 6.1. Let M be a 3-connected, pure 2-polymatroid (E, r) having no element
` such that M\` or M/` is 3-connected. Suppose that |E| ≥ 4. Then M has a 3-
separation.

Proof. Assume that M has no 3-separations. By Lemma 5.1 and Corollary 3.15,
neither M nor M∗ has any parallel lines. Take ` in E. Then there is a partition
(D1, D2) of E− ` such that λM\`(D1) ≤ 1. By Lemma 5.2, λM\`(D1) 6= 0. Assume
first that (I) of Lemma 5.3 holds. As u(D1, `) = 1 = u(D2, `), it follows that
(D1 ∪ `,D2) or (D1, D2 ∪ `) is a 3-separation of M unless |D1| = 1 = |D2|. In the
exceptional case, |E| = 3; a contradiction. Thus we may assume that (II) or (III)
of Lemma 5.3 holds.

There is a 2-separation (C1, C2) of M/` such that λM/`(C1) = 1. If (I) of
Corollary 5.4 holds, then, by Lemma 3.13, uM∗(C1, `) = 1 = uM∗(C2, `). Thus
(I) of Lemma 5.3 holds in M∗. Hence, by the preceding paragraph, M∗ has a 3-
separation. Thus, by Lemma 5.7, M has a 3-separation. We deduce that we may
assume that (II) or (III) of Corollary 5.4 holds.

We show next that

6.1.1. (III) of Corollary 5.4 holds.

Assume that (II) of Corollary 5.4 holds. Then u(C1, `) = 1 and u(C2, `) = 2.
Now rM/`(C1) + rM/`(C2)− r(M/`) = 1, so

r(C1 ∪ `) + r(C2 ∪ `)− r(M) = 3.
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Since u(C1, `) = 1 and u(C2, `) = 2, we deduce that

r(C1) + r(C2 ∪ `)− r(M) = 2.

By Lemma 5.5, |C1| ≥ 2 so M has (C1, C2 ∪ `) as a 3-separation; a contradiction.
Thus 6.1.1 holds.

By 6.1.1, we deduce that the hypotheses of Lemma 5.6 hold. Hence |Ci∩Dj | = 1
for all i and j in {1, 2} otherwise (Ci ∩Dj , E − (Ci ∩Dj)) is a 3-separation of M .
Hence (b) of Lemma 5.6 holds otherwise the two elements of D2 are parallel lines.

Label the single elements of each of C1 ∩D1, C2 ∩D1, C1 ∩D2 and C2 ∩D2 as
a, b, c, and d, respectively. As u(C1, C2) = 3 and r(C1) = 4 = r(C2), it follows that

r(C1 ∪ C2) = r({a, b, c, d}) = 5. (25)

Assume that u(a, d) = 1 = u(b, c). Then r({a, d}) = 3 = r({b, c}). The condi-
tions in Lemma 5.6(b) imply that r({a, b}) = 3 and r({c, d}) = 3. Thus

r({a, b, d}) ≤ r({a, d}) + r({a, b})− r(a) ≤ 4

so a ∈ cl({b, d}). By symmetry, it follows that c ∈ cl({b, d}). Hence r({a, b, c, d}) =
4 ; a contradiction.

By symmetry, we may now assume that u(a, d) = 0. Now M/a has rank 3 but
is not 3-connected. It also has c and d as lines, b as a point, and ` as a point or a
line. If c and d are parallel in M/a, then r({a, c, d}) = 4, so r({a, c, d, `}) = 4; a
contradiction. Thus rM/a({c, d}) = 3. Now rM/a({b, `}) > 1 otherwise we obtain
the contradiction that ` ∈ cl(D1). We also note that rM/a({b, c}) > 2 otherwise
r({a, b, c}) = 4, so r({a, b, c, `}) = 4; a contradiction. As M/a must have a 2-
separation, we see that rM/a({b, d}) = 2. Then r({a, b, d}) = 4 so r({a, b, d, `}) = 4;
a contradiction. We conclude that M does, indeed, have a 3-separation. �

We are now ready to prove the main theorem.

Proof of Theorem 1.4. We assume that M has no element e such that M\e or M/e
is 3-connected. If M has a point, then the theorem holds by Lemma 4.3. Thus we
may assume that M is pure. The theorem is easily checked if |E(M)| < 4, so we
may assume that |E(M)| ≥ 4. By Lemma 5.1 and Corollary 3.15(ii), neither M
nor M∗ has any parallel lines. Then, for every element ` of M , we have that M ↓ `
is pure.

By Lemma 6.1, M has a 3-separation. Let (X,Y ) be a 3-separation of M in
which Y is minimal. If |Y | = 2, then Y is prickly and, by Lemma 3.14, M ↓ y is
3-connected and pure for all y in Y . Thus we may assume that |Y | ≥ 3.

Choose ` in Y . Then there are partitions (D1, D2) and (C1, C2) of E − ` such
that λM\`(D1) = 1 and λM/`(C1) = 1. Lemma 5.3 gives us three cases to consider.
We begin by assuming that (I) of that lemma holds for `. We show first that

6.2.1. |D1| ≥ 2 and |D2| ≥ 2.
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By symmetry, it suffices to prove that |D1| ≥ 2. Assume that |D1| = 1. Then
(D1 ∪ `,D2) is a 3-separation of M and |D1 ∪ `| = 2. As Y is minimal and has at
least three elements, D1 ∪ ` 6⊆ Y . Hence D1 ∩X 6= ∅ and D2 ∩ Y 6= ∅. Thus, by
Lemma 5.8, |Y | = 2; a contradiction. We conclude that (6.2.1) holds.

Since both (D1 ∪ `,D2) and (D1, D2 ∪ `) are 3-separations of M , the minimality
of Y means that neither D1 nor D2 is a subset of Y . Thus both D1 and D2 meet
X. We cannot have both D1 and D2 contained in X otherwise |Y | = 1. Hence
we may assume that D1 ∩ Y 6= ∅. Since (D2 ∪ `) ∩ Y contains `, we deduce that
(D1, D2 ∪ `) crosses (X,Y ). Thus, by Lemma 5.8, |Y | = 2; a contradiction. We
conclude that (I) of Lemma 5.3 does not hold and, by duality, (I) of Corollary 5.4
does not hold.

6.2.2. Neither (III) of Lemma 5.3 nor (III) of Corollary 5.4 holds for `.

Assume that 6.2.2 does not hold. We observe that in Lemma 5.3 and Corol-
lary 5.4, we have that λM\`(D1) = 1 and λM/`(C1) = 1. But we not insist that
(D1, D2) is a 2-separation of M\` or that (C1, C2) is a 2-separation of M/`. Thus
we can exploit duality using Lemma 3.12 to assume that (III) of Corollary 5.4 holds
for `. Then r(C1 ∪ `) + r(C2 ∪ `)− r(M) = 3 and ` ∈ cl(C1)∩ cl(C2). Moreover, by
Lemma 5.6, λM (Ci∩Dj) = 2 for each i and j in {1, 2}. First we show the following.

6.2.3. For each i in {1, 2}, at most one of r(Ci ∩D1) and r(Ci ∩D2) exceeds two.

Assume that both r(C1∩D1) and r(C1∩D2) exceed two. By symmetry between
C1 and C2, it suffices to prove that this case leads to a contradiction. The mini-
mality of Y implies that both C1 ∩D1 and C1 ∩D2 meet X. If both C1 ∩D1 and
C1 ∩D2 are contained in X, then ` ∈ cl(X). Thus (X ∪ `, Y − `) is a 3-separation
of M ; a contradiction. Hence we may assume, by symmetry between D1 and D2,
that C1 ∩D1 meets both X and Y . Since (E− (C1 ∩D1))∩Y contains `, it follows
from Lemma 5.8 that |Y | = 2; a contradiction. We conclude that (6.2.3) holds.

By Lemma 5.6, one of the following two cases arises.

(a) u(C1 ∩D1, C1 ∩D2) = 1 = u(C2 ∩D1, C2 ∩D2) and
u(C1 ∩D1, C2 ∩D1) = 2 = u(C1 ∩D2, C2 ∩D2); or

(b) u(C1 ∩D1, C1 ∩D2) = 0 = u(C2 ∩D1, C2 ∩D2) and
u(C1 ∩D1, C2 ∩D1) = 1 = u(C1 ∩D2, C2 ∩D2).

Observe that, in each of these cases, we have symmetry between C1 and C2 and
between D1 and D2.

6.2.4. When (a) holds, for each j in {1, 2}, at least one of r(C1∩Dj) and r(C2∩Dj)
exceeds two.

It suffices to prove this assertion when j = 1. By (a), u(C1 ∩D1, C2 ∩D1) = 2.
Thus each of r(C1 ∩ D1) and r(C2 ∩ D1) is at least 2. Assume that both equal
2. Then each of C1 ∩ D1 and C2 ∩ D1 is a line, and these lines are parallel; a
contradiction. Thus (6.2.4) holds.



ON 3-CONNECTED 2-POLYMATROIDS 29

6.2.5. Case (a) cannot hold.

Assume that (a) holds. Then, by symmetry and (6.2.3), we may assume that
r(C1 ∩ D2) = 2. Then, by (6.2.4), r(C2 ∩ D2) > 2. Then, by (6.2.3) and (6.2.4),
r(C2 ∩D1) = 2 and r(C1 ∩D1) > 2. Now the minimality of Y implies that neither
C1 ∩D1 nor C2 ∩D2 is a subset of Y . If either C1 ∩D1 or C2 ∩D2 meets Y , then
(C1∩D1, E− (C1∩D1)) or (C2∩D2, E− (C2∩D2)) crosses (X,Y ) and Lemma 5.8
gives the contradiction that |Y | = 2.

It follows that we may assume that both C1 ∩D1 and C2 ∩D2 are contained in
X. Then Y is a subset of the set (C2 ∩D1)∪ (C1 ∩D2)∪ `, which contains exactly
three elements, each of which is a line. As |Y | ≥ 3, it follows that |Y | = 3. Let `′

be the unique element of C2 ∩ D1. As u(C1 ∩ D1, C2 ∩ D1) = 2, we deduce that
(X∪`′, Y −`′) is a 3-separation of M that contradicts the choice of Y . We conclude
that (6.2.5) holds.

We may now assume that (b) holds. The rest of the proof of (6.2.2), which is
quite long, will be concerned with this case. We first prove the following.

6.2.6. u(C1 ∩D1, D2) = u(C2 ∩D1, D2) = u(C1 ∩D2, D1) = u(C2 ∩D2, D1) = 0.

By symmetry, it suffices to prove that u(C2 ∩D1, D2) = 0. We have

0 ≤ u(C2 ∩D1, D2) ≤ u(D1, D2) = 1.

Assume that (6.2.6) fails. Then u(C2 ∩D1, D2) = 1, so

r(D2 ∪ (C2 ∩D1)) = r(C2 ∩D1) + r(D2)− 1. (26)

Now, by Lemma 5.6, λM\`(C1 ∩D1) = 2, so

r(M\`) = r(C1 ∩D1) + r(D2 ∪ (C2 ∩D1))− 2.

Substituting from (26) and then using the fact that u(C1 ∩D1, C2 ∩D1) = 1, we
get that

r(M\`) = r(C1 ∩D1) + r(C2 ∩D1) + r(D2)− 3

= r(D1) + 1 + r(D2)− 3

= r(D1) + r(D2)− 2.

This contradiction to the fact that u(D1, D2) = 1 completes the proof of (6.2.6).

The next assertion will require considerable effort to establish. Indeed, its proof
will not be finished until just before (6.2.17).

6.2.7. At least one of r(C1 ∩D1) and r(C2 ∩D1) is at least three.

Assume that C2 ∩ D1 = {`′} and C1 ∩ D1 = {`′′}. Then, by assumption,
u(`′, `′′) = 1, so r({`′, `′′}) = 3. Moreover, by (6.2.6), u(`′, D2) = 0, we deduce
that

(M/`′)|D2 = M |D2. (27)

Observe that, by focusing on M/`′, we have broken the symmetry between C1 and
C2. Once we complete the proof of 6.2.7, which we do following 6.2.16, we regain
this symmetry, albeit temporarily.
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Clearly

6.2.8. M/`′ has `′′ as a point and has every element of E − {`, `′, `′′} as a line.

Still as part of the proof of (6.2.7), we note that, since M/`′ is not 3-connected,
it has a 2-separation (R,G). We may assume that `′′ ∈ G. Now

rM/`′(R) + rM/`′(G)− r(M/`′) = 1. (28)

In (6.2.9)–(6.2.16), we accumulate a collection of properties of R and G, which
together will lead to a proof of (6.2.7).

6.2.9. ` ∈ R, and R− ` is non-empty.

Assume that ` ∈ G. Then R ⊆ D2, so r(R ∪ `′) = r(R) + 2 since u(`′, D2) = 0.
Thus

1 = rM/`′(R) + rM/`′(G)− r(M/`′)

= r(R ∪ `′)− 2 + r(G ∪ `′)− 2− r(M) + 2

= r(R) + r(G ∪ `′)− r(M).

Thus M has a 2-separation; a contradiction. Hence ` ∈ R.

Now suppose that R = {`}. Since (R,G) is a 2-separation of M/`′, we must have
that rM/`′(R) ≥ 2. Thus, by (28), rM/`′(G) ≤ r(M/`′)− 1 so r(E − `) ≤ r(E)− 1;
a contradiction. Thus (6.2.9) holds.

6.2.10. C2 ∩D2 6⊆ G.

Suppose C2 ∩D2 ⊆ G. Then, as ` ∈ cl(C2), it follows that ` ∈ clM/`′(C2 ∩D2).
Thus, using the fact that R− ` is non-empty, we see that

1 = rM/`′(R) + rM/`′(G ∪ `)− r(M/`′)

≥ rM/`′(R− `) + rM/`′(G ∪ `)− r(M/`′)

≥ 1.

Now, by (6.2.9), (R − `,G ∪ `) is not a 2-separation of M/`′. Thus
max{|R − `|, rM/`′(R − `)} ≤ 1. We deduce that R − ` contains a single element,
say `1, and r({`, `′, `1}) = 3. Thus u(`′, `1) = 1. But `1 must be in D2. Hence
u(C2 ∩D1, D2) ≥ 1, a contradiction to (6.2.6). We conclude that (6.2.10) holds.

6.2.11. rM/`′((Ci ∩D2) ∪ `′′) = rM/`′(Ci ∩D2) + 1 for each i in {1, 2}.

Using the fact that u(Ci ∩D2, D1) = 0, we get that

rM/`′((Ci ∩D2) ∪ `′′) = r((Ci ∩D2) ∪ `′′ ∪ `′)− 2

= r((Ci ∩D2) ∪D1)− 2

= r(Ci ∩D2) + 3− 2

= rM/`′(Ci ∩D2) + 1

where the last step follows by (27). We conclude that (6.2.11) holds.

6.2.12. Ci ∩D2 6⊆ R for each i in {1, 2}.
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Suppose Ci∩D2 ⊆ R. Then, by (6.2.11) and (6.2.8), rM/`′(R∪`′′) ≤ rM/`′(R)+1
and rM/`′(G− `′′) ≤ rM/`′(G)− 1. Thus (R ∪ `′′, G− `′′) is a 2-separation of M/`′

in which {`, `′′} ⊆ R ∪ `′′. As (6.2.9) holds for all 2-separations of M/`′, we have a
contradiction. Thus (6.2.12) holds.

6.2.13. C1 ∩D2 6⊆ G.

Suppose C1 ∩ D2 ⊆ G. As ` ∈ clM/`′((C1 ∩ D2) ∪ `′′), it follows using (6.2.8)
and (6.2.9) that (R− `,G∪ `) is a 2-separation of M/`′; a contradiction to (6.2.9).
Thus (6.2.13) holds.

6.2.14. λM/`′(Ci ∩D2 ∩G) ≥ 2 and λM/`′(Ci ∩D2 ∩R) ≥ 2 for each i in {1, 2}.

Assume λM/`′(Ci ∩D2 ∩G) = 1. Then, by (27),

1 = rM/`′(Ci ∩D2 ∩G) + rM/`′(E − `′ − (Ci ∩D2 ∩G))− r(M/`′)

= r(Ci ∩D2 ∩G) + r(E − (Ci ∩D2 ∩G))− r(M).

As M is 3-connected, this is a contradiction, and (6.2.14) follows.

Next we note that, since λM (C1 ∩D2) = 2 and u(D2, `
′) = 0, we have

6.2.15. λM/`′(C1 ∩D2) = 2.

6.2.16. λM/`′(G− (C1 ∩D2)) = 1 and λM/`′(R− (C1 ∩D2)) = 1.

To show this, let {H,K} = {R,G} and note that

2 + 1 = λM/`′(C1 ∩D2) + λM/`′(H)

≥ λM/`′(C1 ∩D2 ∩H) + λM/`′((C1 ∩D2) ∪H)

= λM/`′(C1 ∩D2 ∩H) + λM/`′(K − (C1 ∩D2)).

It follows by (6.2.14) that λM/`′(K−(C1∩D2)) ≤ 1. Because each of G−(C1∩D2)
and R− (C1 ∩D2) is non-empty, it follows that (6.2.16) holds.

Now 1 = λM/`′(G− (C1 ∩D2)) = λM/`′((G∩C2 ∩D2)∪ `′′). But `′′ is a point of
M/`′ and, by (6.2.11), `′′ 6∈ clM/`′(C2 ∩D2), so λM/`′(G∩C2 ∩D2) ≤ 1. It follows
by (6.2.12) and (6.2.8) that (G∩C2∩D2, (C1∩D2)∪R∪`′′) is a 2-separation of M/`′

in which ` and `′′ are on the same side. This contradiction to (6.2.9) completes the
proof of (6.2.7).

Note that we have now restored symmetry between C1 and C2. By (6.2.7) and
the symmetry between D1 and D2, we have

6.2.17. r(C1 ∩D2) ≥ 3 or r(C2 ∩D2) ≥ 3.

Recall that (X,Y ) is a 3-separation of M in which Y is minimal, that ` ∈ Y ,
and that |Y | ≥ 3. Next we establish the following.

6.2.18. For each i in {1, 2}, at least one of r(Ci ∩D1) and r(Ci ∩D2) is 2.
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By symmetry, it suffices to prove this when i = 1. Assume that both r(C1 ∩D1)
and r(C1 ∩ D2) exceed 2. Then neither C1 ∩ D1 nor C1 ∩ D2 is a subset of Y
otherwise the minimality of Y is contradicted. Hence both C1 ∩ D1 and C1 ∩ D2

meet X. If X contains both C1∩D1 and C1∩D2, then C1 ⊆ X so ` ∈ cl(X). Thus
(X ∪ `, Y − `) is a 3-separation of M contradicting the choice of Y . Hence C1 ∩D1

or C1 ∩ D2 meets both X and Y . Thus, by Lemma 5.8, we get the contradiction
that |Y | = 2. Hence (6.2.18) holds.

By combining (6.2.7), (6.2.17), and (6.2.18), we may assume that r(C1 ∩D1) ≥
3 and r(C1∩D2) = 2; and that r(C2∩D2) ≥ 3 and r(C2∩D1) = 2. Hence C1∩D2 =
{`12} and C2∩D1 = {`21}, where each of `12 and `21 is a line. We have now broken
the symmetry between C1 and C2 and between D1 and D2.

By the minimality of Y , neither C1 ∩ D1 nor C2 ∩ D2 is a subset of Y . Hence
each of C1 ∩ D1 and C2 ∩ D2 meets X. If, for some i in {1, 2}, the set Ci ∩ Di

meets Y , then, by Lemma 5.8, (Ci ∩Di, E− (Ci ∩Di)) crosses (X,Y ) and |Y | = 2;
a contradiction. Thus both C1 ∩D1 and C2 ∩D2 are contained in X. As |Y | ≥ 3,
it follows that C1 ∩D2 and C2 ∩D1 are both contained in Y , and |Y | = 3.

By Lemma 3.7, since X = (C1 ∩D1) ∪ (C2 ∩D2) and λM (X) = 2, we have

2 ≥ λM\`((C1 ∩D1) ∪ (C2 ∩D2))

= λM\`(C1 ∩D1) + λM\`(C2 ∩D2)− uM\`(C1 ∩D1, C2 ∩D2)

− u∗M\` (C1 ∩D1, C2 ∩D2)

= 2 + 2− uM\`(C1 ∩D1, C2 ∩D2)− u∗M\`(C1 ∩D1, C2 ∩D2)

= 4− u∗M\`(C1 ∩D1, C2 ∩D2)

where the last step follows because, by Lemma 3.3 and (6.2.6),
u(C1 ∩D1, C2 ∩D2) ≤ u(C1 ∩D1, D2) = 0. Hence

u∗M\`(C1 ∩D1, C2 ∩D2) ≥ 2. (29)

Now, by (6.2.6), r(D1∪ `12) = r(D1)+2 and r(D2∪ `21) = r(D2)+2. Moreover,
r({`12, `21}) = 4. Using these observations with (29) and Lemma 3.2, we get

2 ≤ uM\`/(E−`−(C1∩D1)−(C2∩D2))(C1 ∩D1, C2 ∩D2)

= r(E − `− (C1 ∩D1)) + r(E − `− (C2 ∩D2))

−r(E − `− (C1 ∩D1)− (C2 ∩D2))− r(M)

= r((C2 ∩D2) ∪ `12 ∪ `21) + r((C1 ∩D1) ∪ `12 ∪ `21)

−r({`12, `21})− r(M)

= r(D2 ∪ `21) + r(D1 ∪ `12)− r({`12, `21})− r(M)

= r(D2) + 2 + r(D1) + 2− 4− r(M)

= r(D1) + r(D2)− r(M) = 1.

This contradiction completes the proof of (6.2.2).

We may now assume that (II) of Lemma 5.3 and (II) of Corollary 5.4 hold for
every element ` of Y . We may also assume that (D1, D2) is a 2-separation of M\`.
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We show next that

6.2.19. C1 or D1 meets Y .

Suppose that both C1 and D1 are contained in X. As u(C1, `) = 1, we must
have r(X ∪ `) ≤ r(X) + 1. Moreover, since D2 ⊇ Y − ` and u(D2, `) = 1, we
deduce that r(Y − `) ≤ r(Y ) − 1. Hence (X ∪ `, Y − `) is a 3-separation of M ; a
contradiction. We conclude that (6.2.19) holds.

6.2.20. C1 ⊆ X ⊆ D2 and D1 ⊆ Y . Moreover, |D1| = 1.

By Lemma 5.5, each of C1, C2, and D2 has at least two elements. As r(C1∪ `)+
r(C2 ∪ `)− r(M) = 3 and u(C1, `) = 1, it follows that (C1, C2 ∪ `) is a 3-separation
of M . By the choice of Y , we deduce that C1 meets X. If C1 also meets Y , then,
by Lemma 5.8, (C1, C2 ∪ `) crosses (X,Y ), and |Y | = 2; a contradiction. Thus
C1 ⊆ X. Hence, by (6.2.19), D1 meets Y .

Suppose |D1| ≥ 2. Then, as u(D2, `) = 1, it follows that (D1, D2 ∪ `) is a 3-
separation of M . Thus D1 6⊆ Y otherwise the choice of Y is contradicted. Hence
(D1, D2 ∪ `) crosses (X,Y ), and Lemma 5.8 gives the contradiction that |Y | = 2.
We conclude that |D1| = 1. As D1 meets Y , we see that D1 ⊆ Y , so (6.2.20) holds.

Now let D1 = {d1}. By (6.2.20), no 2-separation of M\` has more than one
element on each side. Since u(D2, `) = 1, we have that (`,D2) is a 2-separation
of M\d1. Moreover, as d1 ∈ Y , we can assume that (II) of Lemma 5.3 and (II) of
Corollary 5.4 hold with d1 replacing `.

6.2.21. u(X ′, `) = 1 for all X ′ with X ⊆ X ′ ⊆ E−{`, d1}. In particular, u(X, y) =
1 for all y in Y .

Since C1 ⊆ X ⊆ X ′ ⊆ D2 = E − {`, d1} and u(C1, `) = 1 = u(D2, `), we
immediately obtain the first part. The second part follows because the element `
was arbitrarily chosen in Y .

Now, for some fixed ` in Y , let d1, d2, . . . , dp be the elements y of Y such that
M\` has ({y}, E − {`, y}) as a 2-separation. Then, by (6.2.21) and symmetry,
u(X ′, di) = 1 for all X ′ with X ⊆ X ′ ⊆ E − {`, di} and all i in {1, 2, . . . , p}.

Let M ′ be the natural matroid derived from M ; that is, we form M ′ from M by
freely placing two points, z′ and z′′, on each element z of M and then deleting all
the elements of E(M). Observe that M ′ has {`′, `′′, d′i, d′′i } as a cocircuit for all i
in {1, 2, . . . , p}.

Let X0 = {x′, x′′ : x ∈ X}. Consider M ′/X0. By (6.2.21), uM (X, y) = 1 for
all y in Y . Thus M ′/X0 is a matroid in which {y′, y′′} is a circuit for all y in
Y . In M ′\{`′, `′′}, we have that {d′i, d′′i } is a cocircuit for all i in {1, 2, . . . , p}.
Thus M ′\{`′, `′′}/X0 has {d′i, d′′i } as a component since it is both a circuit and
a cocircuit. For distinct i and j in {1, 2, . . . , p}, the matroid M ′/X0 has both
{`′, `′′, d′i, d′′i } and {`′, `′′, d′j , d′′j } as cocircuits. Thus, by cocircuit elimination and
orthogonality, M ′/X0 has {d′i, d′′i , d′j , d′′j } as a cocircuit. We deduce that the circuits
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of the component of M ′/X0 containing {`′, `′′} include {`′, d′1, d′2, . . . , d′p}, {`′, `′′},
and each {d′i, d′′i } with i in {1, 2, . . . , p}.

We show next that

6.2.22. M ′/X0 is connected and Y = {`, d1, d2, . . . , dp}.

Assume that M ′/X0 is disconnected, letting Y0 be the component containing
{`′, `′′} and Y1 be union of the other components. Then

0 = rM ′/X0
(Y0) + rM ′/X0

(Y1)− r(M ′/X0)

= rM ′(Y0 ∪X0) + rM ′(Y1 ∪X0)− rM ′(X0)− r(M ′)
= [rM ′(Y0 ∪X0)− rM ′(X0)] + rM ′(Y1 ∪X0)− r(M ′)
= [rM ′(Y0)− uM ′(X0, Y0)] + rM ′(Y1 ∪X0)− r(M ′)
= rM ′(Y0) + rM ′(Y1 ∪X0)− r(M)− uM ′(X0, Y0).

But uM ′(X0, Y0) ≤ uM (X,Y ) = 2. It follows that {`, d1, d2, . . . , dp} is a 3-
separating set in M that is properly contained in Y ; a contradiction to the
minimality of Y . We conclude that M ′/X0 is connected. It follows that Y =
{`, d1, d2, . . . , dp}.

It remains to show that

6.2.23. Y is a prickly 3-separation of M .

We have |Y | − 1 = r(M ′/X0) = r(M)− r(X) = r(Y )− 2. Thus r(Y ) = |Y |+ 1.
We still need to check that (iv) in the definition of a prickly 3-separation holds.
Because u(`,D1) = 0, we have r({`, d1}) = 4. As M ′/X0 has a single component,
it follows that, for each distinct i and j in {1, 2, . . . , p}, the 2-polymatroid M\di
has ({dj}, E − {di, dj}) as a 2-separation and so r({di, dj}) = 4. We deduce that
r(Y ′) = 4 for all 2-element subsets Y ′ of Y provided |Y | > 2.

We now show that

6.2.24. r(Y ′) = |Y ′|+ 2 for all subsets Y ′ of Y with 2 ≤ |Y ′| < |Y |.

We do this by induction on |Y ′| noting that it holds for |Y ′| = 2. Assume it
holds for |Y ′| < k and let |Y ′| = k ≥ 3. We have

r(X) + r(Y ′) = r(X ∪ Y ′) + u(X,Y ′)

= r(X) + |Y ′|+ u(X,Y ′)

≤ r(X) + |Y ′|+ u(X,Y )

= r(X) + |Y ′|+ 2.

Thus r(Y ′) ≤ |Y ′| + 2. But, by the induction assumption, r(Y ′ − y) = |Y ′| + 1
for all y in Y ′. But r(Y ′) 6= r(Y ′ − y) since r(X ∪ Y ′) > r(X ∪ (Y ′ − y)). Hence
r(Y ′) = |Y ′| + 2. Thus, by induction, (6.2.24) holds. We conclude that (6.2.23)
holds so the proof of the theorem is complete. �

The next result follows immediately by combining Lemmas 3.14 and 5.2.
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Corollary 6.3. Let M be a 3-connected, pure 2-polymatroid for which no single-
element deletion or contraction is 3-connected. Then every compression of an ele-
ment is 3-connected.
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