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Abstract. In an earlier paper with Whittle, we showed that there is a tree
that displays, up to a natural equivalence, all non-trivial 3-separations of a 3-

connected matroid M . The purpose of this paper is to give a polynomial-time

algorithm for constructing such a tree for M .

1. Introduction

Let M be a matroid with ground set E and rank function r. The connectivity
function λM of M is defined for all subsets X of E by λM (X) = r(X)+r(E−X)−
r(M). For a positive integer k, a subset X or a partition (X,E − X) of E is k-
separating if λM (X) ≤ k−1. A k-separating partition (X,E−X) is a k-separation
if |X|, |E −X| ≥ k. A k-separating set X, or a k-separating partition (X,E −X),
or a k-separation (X,E −X) is exact if λM (X) = k − 1.

We shall denote the set {1, 2, . . . , n} by [n]. Let X be an exactly 3-separating
set of a matroid M . If there is an ordering (x1, x2, . . . , xn) of X such that, for all i
in [n], the set {x1, x2, . . . , xi} is 3-separating, then X is sequential and the ordering
(x1, x2, . . . , xn) is called a sequential ordering of X. An exactly 3-separating parti-
tion (X,Y ) of M is sequential if either X or Y is a sequential 3-separating set. For
a set X of M , we say that X is fully closed if it is closed in both M and M∗, that
is, cl(X) = X and cl∗(X) = X. The full closure of X, denoted fcl(X), is the inter-
section of all fully closed sets that contain X. The full closure operator enables one
to define a natural equivalence on exactly 3-separating partitions as follows. Two
exactly 3-separating partitions (A1, B1) and (A2, B2) of M are equivalent, written
(A1, B1) ∼= (A2, B2), if fcl(A1) = fcl(A2) and fcl(B1) = fcl(B2).

The main theorem of [6], Theorem 9.1, shows that every 3-connected matroid M
with at least nine elements has a tree decomposition that displays, up to equiva-
lence, all non-sequential 3-separations. While the proof of that theorem does yield
an algorithm for finding such a tree decomposition, that algorithm does not appear
to be polynomial in |E(M)|. In this paper, we will describe such a polynomial
algorithm. The proof that this algorithm works gives an alternative proof of [6,
Theorem 9.1]. This paper will make repeated reference to the results of [6].
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2. Main Result

In this section, we state the main theorem of the paper together with the main
result of [6]. The section begins by introducing the concepts and terminology needed
to make these statements meaningful. Our terminology will follow Oxley [5]. We
write x ∈ cl(∗)(Y ) to mean that x ∈ cl(Y ) or x ∈ cl∗(Y ).

Let (P1, P2, . . . , Pn) be a flower Φ in a 3-connected matroid M , that is,
(P1, P2, . . . , Pn) is an ordered partition of E(M) such that λM (Pi) = 2 = λM (Pi ∪
Pi+1) for all i in [n], where all subscripts are interpreted modulo n. The sets
P1, P2, . . . , Pn are the petals of Φ. Each must have at least two elements. It is
shown in [6, Theorem 4.1] that every flower in a 3-connected matroid is either an
anemone or a daisy. In the first case, all unions of petals are 3-separating; in the
second, a union of petals is 3-separating if and only if the petals are consecutive in
the cyclic ordering (P1, P2, . . . , Pn). A 3-separation (X,Y ) is displayed by a flower
if X is a union of petals of the flower.

Let Φ1 and Φ2 be flowers in a matroid M . A natural quasi ordering on the set
of flowers of M is obtained by setting Φ1 � Φ2 if every non-sequential 3-separation
displayed by Φ1 is equivalent to one displayed by Φ2. If Φ1 � Φ2 and Φ2 � Φ1,
then Φ1 and Φ2 are equivalent flowers. Such flowers display, up to equivalence of 3-
separations, exactly the same non-sequential 3-separations of M . Let Φ be a flower
of M . The order of Φ is the minimum number of petals in a flower equivalent to Φ.
An element e of M is loose in Φ if e ∈ fcl(Pi)−Pi for some petal Pi of Φ; otherwise
e is tight. A petal Pi is loose if all its elements are loose; and Pi is tight otherwise.
A flower of order at least 3 is tight if all of its petals are tight. A flower of order 2
or 1 is tight if it has two petals or one petal, respectively. A flower Φ is maximal if
Φ is equivalent to Φ′ for every flower Φ′ such that Φ � Φ′.

The classes of anemones and daisies can be further refined using a useful com-
panion function to the connectivity function. The local connectivity, u(X,Y ), is
defined for all sets X and Y in a matroid M by

u(X,Y ) = r(X) + r(Y )− r(X ∪ Y ).

Let (P1, P2, . . . , Pn) be a flower Φ with n ≥ 3. If Φ is an anemone, then u(Pi, Pj)
takes a fixed value k in {0, 1, 2} for all distinct i, j in [n]. We call Φ a paddle if
k = 2, a copaddle if k = 0, and a spike-like flower if k = 1 and n ≥ 4. Similarly, if
Φ is a daisy, then u(Pi, Pj) = 1 for all consecutive i and j. We say Φ is swirl-like
if n ≥ 4 and u(Pi, Pj) = 0 for all non-consecutive i and j; and Φ is Vámos-like if
n = 4 and {u(P1, P3),u(P2, P4)} = {0, 1}.

If (P1, P2, P3) is a flower Φ and u(Pi, Pj) = 1 for all distinct i and j, we call Φ
ambiguous if it has no loose elements, spike-like if there is an element in cl(P1) ∩
cl(P2)∩ cl(P3) or cl∗(P1)∩ cl∗(P2)∩ cl∗(P3), and swirl-like otherwise. Every flower
with at least three petals is of one of these six types: a paddle, a copaddle, spike-like,
swirl-like, Vámos-like, or ambiguous [6].
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Figure 1. A representation of a rank-7 paddle.
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Figure 2. A representation of a rank-8 swirl-like flower.

To visualize a flower geometrically, it is helpful to think of a collection of lines
in projective space along which the petals of the flower are attached. For example,
we can obtain a paddle by gluing the petals along a single common line. Fig. 1
represents a 5-petal paddle in which each petal is a plane with enough structure
to make the matroid 3-connected. This matroid has rank 7. Furthermore, Fig. 2
represents a 4-petal swirl-like flower. Again each petal is a plane. In that figure, the
lines of attachment are the lines spanned by {b1, b2}, {b2, b3}, {b3, b4}, and {b4, b1},
where {b1, b2, b3, b4} is an independent set and each of the elements in this set may
or may not be in the matroid. The rank of this matroid is 8.

Flowers provide a way of representing 3-separations in a 3-connected matroid
M . It was shown in [6] that, by using a certain type of tree, one can simultaneously
display a representative of each equivalence class of non-sequential 3-separations of
M . We now describe the type of tree that is used. Let π be a partition of a finite
set E. Let T be a tree such that every member of π labels a vertex of T ; some
vertices may be unlabelled but no vertex is multiply labelled. We say that T is a
π-labelled tree; labelled vertices are called bag vertices and members of π are called
bags. If B is a bag vertex of T , then π(B) denotes the subset of E that labels it.
If the degree of B is at most one, then B is a terminal bag vertex; otherwise B is
non-terminal.
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Let G be a subgraph of T with components G1, G2, . . . , Gm. Let Xi be the
union of those bags that label vertices of Gi. Then the subsets of E displayed by
G are X1, X2, . . . , Xm. In particular, if V (G) = V (T ), then {X1, X2, . . . , Xm} is
the partition of E displayed by G. Let e be an edge of T . The partition of E
displayed by e is the partition displayed by T\e. If e = v1v2 for vertices v1 and
v2, then (Y1, Y2) is the (ordered) partition of E(M) displayed by v1v2 if Y1 is the
union of the bags in the component of T\v1v2 containing v1. Let v be a vertex
of T that is not a bag vertex. The partition of E displayed by v is the partition
displayed by T − v. The edges incident with v correspond to the components of
T −v, and hence to the members of the partition displayed by v. In what follows, if
a cyclic ordering (e1, e2, . . . , en) is imposed on the edges incident with v, this cyclic
ordering is taken to represent the corresponding cyclic ordering on the members of
the partition displayed by v.

Let M be a 3-connected matroid with ground set E. Let T be a π-labelled tree
for M , where π is a partition of E such that:

(I) For each edge e of T , the partition (X,Y ) of E displayed by e is 3-separating,
and, if e is incident with two bag vertices, then (X,Y ) is a non-sequential
3-separation.

(II) Every non-bag vertex v is labelled either D or A; if v is labelled D, then
there is a cyclic ordering on the edges incident with v.

(III) If a vertex v is labelled A, then the partition of E displayed by v is an
anemone of order at least 3.

(IV) If a vertex v is labelled D, then the partition of E displayed by v, with the
cyclic order induced by the cyclic ordering on the edges incident with v, is
a daisy of order at least 3.

By conditions (III) and (IV), a vertex v labelled D or A corresponds to a flower
of M . The 3-separations displayed by this flower are the 3-separations displayed
by v. A vertex of T is referred to as a daisy vertex or an anemone vertex if it is
labelled D or A, respectively. A vertex labelled either D or A is a flower vertex. A
3-separation is displayed by T if it is displayed by some edge or some flower vertex
of T . A 3-separation (R,G) of M conforms with T if either (R,G) is equivalent
to a 3-separation that is displayed by a flower vertex or an edge of T , or (R,G)
is equivalent to a 3-separation (R′, G′) with the property that either R′ or G′ is
contained in a bag of T .

A π-labelled tree T for M satisfying (I)–(IV) is a conforming tree for M if every
non-sequential 3-separation of M conforms with T . A conforming tree T is a partial
3-tree if, for every flower vertex v of T , the partition of E displayed by v is a tight
maximal flower of M .

We now define a quasi order on the set of partial 3-trees for M clarifying the
corresponding definition in [6, 7]. Let T1 and T2 be partial 3-trees for M . Define
T1 � T2 if every non-sequential 3-separation displayed by T1 is equivalent to one
displayed by T2. If T1 � T2 and T2 � T1, then T1 and T2 are equivalent partial
3-trees. A partial 3-tree is maximal if it is maximal with respect to this quasi order.
We shall call a maximal partial 3-tree a 3-tree. Note that this terminology differs
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Figure 3. The 3-tree T .

from that used in [7] where we use the term ‘3-tree’ for a particular type of maximal
3-tree defined in that paper.

As an example, for n ≥ 3 and k ≥ 2, the free (n, k)-swirl is the matroid that
is obtained by beginning with a basis {1, 2, . . . , n}, adding k points freely on each
of the n lines spanned by {1, 2}, {2, 3}, . . . , {n, 1}, and then deleting {1, 2, . . . , n}.
The usual free n-swirl coincides with the free (n, 2)-swirl. We observe that, when
n + k ≥ 5, the free (n, k)-swirl can be viewed as a swirl-like flower whose n petals
consist of the sets of k points that were freely placed on the n lines above. The
spine of a paddle (P1, P2, . . . , Pn) is the set cl(P1) ∩ cl(P2) ∩ · · · ∩ cl(Pn), which
coincides with each of the sets cl(Pi) ∩ cl(Pj) with 1 ≤ i < j ≤ n.

Now, beginning with a free (5, 4)-swirl S = (V1, V2, V3, V4, L), where each of V1,
V2, V3, V4, and L is a line of S, use L as the spine of a paddle to which we attach
three (4, 4)-swirls (X1, X2, X3, L), (Y1, Y2, Y3, L), and (Z1, Z2, Z3, L). A possible 3-
tree T for this matroid M is shown in Fig. 3, where large open circles represent bag
vertices. At the end of Section 5, we will use this example, which is taken from [7],
to illustrate our polynomial-time algorithm for finding a 3-tree. The 3-tree for M
is not unique. Indeed, we can move the bag vertex labelled by L so that it occurs
on one of the other edges incident with the anemone vertex of T to obtain another
3-tree for M .

The following theorem is the main result of [6, Theorem 9.1].

Theorem 2.1. Let M be a 3-connected matroid with |E(M)| ≥ 9. Then M has
a 3-tree T . Moreover, every non-sequential 3-separation of M is equivalent to a
3-separation displayed by T .

Throughout, we shall assume that each matroid M that we deal with is specified
by a rank oracle, that is, a subroutine that, in unit time, gives the rank of any
specified subset X of E(M). The following is the main result of this paper.
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Theorem 2.2. Let M be a 3-connected matroid specified by a rank oracle and
suppose that |E(M)| ≥ 9. Then there is a polynomial-time algorithm for finding a
3-tree for M .

The next section contains a number of preliminaries that we use to prove the last
theorem. In Section 4, we use a result of Cunningham and Edmonds to show that,
for a 3-connected matroid M with n elements, there is a polynomial p(n) such that
by making at most p(n) calls to a rank oracle, we can either find a non-sequential
3-separation in M or show that no such 3-separation exists. Section 5 presents our
algorithm for finding a 3-tree for M . In Section 6, we prove the correctness of the
algorithm and thereby prove Theorem 2.2. Finally, Section 7 discusses why the
proof of Theorem 2.1 in [6] does not appear to yield the desired polynomial-time
algorithm for finding a 3-tree.

3. Preliminaries

In this section, we prove a number of lemmas needed to establish the main result.
The first lemma is routine and often freely used.

Lemma 3.1. Let (X,Y ) be an exactly 3-separating partition of a matroid M .

(i) For e ∈ E(M), the partition (X ∪ e, Y − e) is 3-separating if and only if
e ∈ cl(∗)(X).

(ii) For e ∈ Y , the partition (X ∪ e, Y − e) is exactly 3-separating if and only
if e is in exactly one of cl(X) ∩ cl(Y − e) and cl∗(X) ∩ cl∗(Y − e).

(iii) The elements of fcl(X) − X can be ordered (x1, x2, . . . , xn) so that X ∪
{x1, x2, . . . , xi} is 3-separating for all i in [n].

The connectivity function λM of a matroid M has many attractive properties.
Clearly λM (X) = λM (E −X). Moreover, one easily checks that λM (X) = r(X) +
r∗(X) − |X| for all subsets X of E(M). Hence λM (X) = λM∗(X). We often
abbreviate λM as λ. This function is submodular, that is, λ(X) + λ(Y ) ≥ λ(X ∩
Y ) +λ(X ∪Y ) for all X,Y ⊆ E(M). The next lemma is a consequence of this. We
make frequent use of it here and write by uncrossing to mean “by an application of
Lemma 3.2.”

Lemma 3.2. Let M be a 3-connected matroid, and let X and Y be 3-separating
subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M)− (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

The next two lemmas were established in [8, Lemma 2.7] and [6, Lemma 5.9].

Lemma 3.3. Let (X,Y ) be a 3-separation in a 3-connected matroid M and let Y ′

be a non-sequential 3-separating set in M . If Y ′ ⊆ Y , then Y is non-sequential.

Lemma 3.4. Let Φ = (P1, P2, . . . , Pn) be a tight flower of order at least 3.
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(i) If 1 ≤ j ≤ n− 2, then

fcl(P1 ∪ P2 ∪ · · · ∪ Pj)− (P1 ∪ P2 ∪ · · · ∪ Pj) ⊆ (fcl(P1)− P1) ∪ (fcl(Pj)− Pj)

and every element of (fcl(P1)− P1) ∪ (fcl(Pj)− Pj) is loose.
(ii) If 2 ≤ j ≤ n−1, then P1∪P2∪· · ·∪Pj is a non-sequential 3-separating set.

If, in addition, j ≤ n− 2, then (P1 ∪ P2 ∪ · · · ∪ Pj , Pj+1 ∪ Pj+2 ∪ · · · ∪ Pn)
is a non-sequential 3-separation.

The next result is a consequence of the last lemma.

Corollary 3.5. Let Φ be a tight flower in a 3-connected matroid and (U, V ) be a
non-sequential 3-separation such that U is a union of petals of Φ. Then no petal of
Φ is in the full closure of both U and V .

Proof. Let P be a petal of Φ such that P ⊆ U and P ⊆ fcl(V ). Then P is a
proper subset of U as (U, V ) is non-sequential. Hence Φ has at least three petals.
Therefore, by [6, Corollary 5.10], Φ has order at least three. Thus, by Lemma 3.4(i),
P is loose; a contradiction. �

The next lemma was proved in [8, Lemma 3.1].

Lemma 3.6. Let (P1, P2, . . . , Pk) be a flower in a 3-connected matroid. If P2 is
loose and P1 is tight, then P2 ⊆ fcl(P1).

An ordered partition (Z1, Z2, . . . , Zk) of the elements of a 3-connected matroid
is a 3-sequence if, for all i in [k− 1], the set ∪i

j=1Zj is 3-separating. When a set Zi

consists of a single element zi, we shall write zi rather than {zi} in the 3-sequence.

Lemma 3.7. Let U and Y be disjoint subsets of the ground set E of a 3-connected
matroid M . Suppose that U and U ∪ Y are 3-separating and Y ⊆ fcl(U). If
fcl(U) 6= E, then there is an ordering (y1, y2, . . . , yk) of the elements of Y such that
(U, y1, y2, . . . , yk, E − (U ∪ Y )) is a 3-sequence.

Proof. Let (u1, u2, . . . , ul) be an ordering of fcl(U)−U such that U∪{u1, u2, . . . , ui}
is 3-separating for all i in [l]. Let (y′1, y

′
2, . . . , y

′
k) be the ordering of the elements of

Y induced by this ordering of fcl(U)−U . As fcl(U) 6= E, we have |E − fcl(U)| ≥ 4
so, by uncrossing, U ∪ {y′1, y′2, . . . , y′j} is 3-separating for all j in [k]. In particular,
(U, y′1, y

′
2, . . . , y

′
k, E − (U ∪ Y )) is a 3-sequence in M . �

In [6], our approach to finding a 3-tree for a 3-connected matroid M relied on
first constructing a maximal flower in M . As we shall see in Section 7, it is not clear
how this approach can be used to produce a 3-tree for M in polynomial time. The
basis of the algorithm that we shall introduce here will be to first find, if possible,
a non-sequential 3-separation (X,Y ) in M . Next we determine whether X has a
partition (X ′, X ′′) so that (X ′, X ′′∪Y ) is a non-sequential 3-separation that is not
equivalent to (X,Y ). To facilitate our discussion of this process, we next introduce
the notion of a 3-path. After formally defining this concept, we devote the rest of
this section to proving various properties of 3-paths that we shall need.



8 JAMES OXLEY AND CHARLES SEMPLE

Let M be a 3-connected matroid with ground set E. A 3-path in M is an ordered
partition (X1, X2, . . . , Xm) of E into non-empty sets, called parts, such that

(i) (∪i
j=1Xj ,∪m

j=i+1Xj) is a non-sequential 3-separation of M for all i in [m−1];
and

(ii) for all i in {2, 3, . . . ,m − 1}, the set Xi is not in the full closure of either
∪i−1

j=1Xj or of ∪m
j=i+1Xj .

Condition (ii) is equivalent to the assertion that the non-sequential 3-separations
(∪i

j=1Xj ,∪m
j=i+1Xj) and (∪i+1

j=1Xj ,∪m
j=i+2Xj) are inequivalent for all i in [m −

2]. For a subset X0 of E, an X0-rooted 3-path is a 3-path of the form (X0 ∪
X1, X2, . . . , Xm) where X0 ∩X1 = ∅. Thus a 3-path is just a ∅-rooted 3-path. An
X0-rooted 3-path is maximal if

(i) none of the sets Xi with i ≥ 2 can be partitioned into
sets Xi,1, Xi,2, . . . , Xi,k for some k ≥ 2 such that (X0 ∪
X1, X2, . . . , Xi−1, Xi,1, Xi,2, . . . , Xi,k, Xi+1, . . . , Xm) is a 3-path; and

(ii) X1 cannot be partitioned into sets X1,1, X1,2, . . . , X1,k for some k ≥ 2 such
that (X0 ∪X1,1, X1,2, . . . , X1,k, X2, . . . , Xm) is a 3-path.

Observe that, in (ii), the set X1,1 may be empty when X0 is non-empty although
all of X1,2, X1,3, . . . , X1,k must be non-empty.

An X0-rooted 3-path is left-justified if, for all i in {2, 3, . . . ,m}, no element of Xi

is in the full closure of ∪i−1
j=0Xj . In a 3-path (X1, X2, . . . , Xm), for each i in [m], we

denote the sets ∪i−1
j=1Xj and ∪m

j=i+1Xj by X−i and X+
i , respectively. In particular,

X−1 = ∅ = X+
m. Observe that, in a 3-path (X1, X2, . . . , Xm), each of X1 and Xm

has at least four elements as neither set is sequential, and each of X2, X3, . . . , Xm−1

has at least two elements by (ii).

In what follows, we shall frequently be referring to a 3-separation (R,G) of a
3-connected matroid M . In general, we shall view (R,G) as a colouring of the
elements of E(M), the elements in R and G being red and green, respectively. A
non-empty subset X of E is bichromatic if it meets both R and G; otherwise it
is monochromatic. We shall view the empty set as being monochromatic. In the
lemmas that follow, we shall make repeated use of the fact [6, Lemma 3.3] that if
(R,G) is non-sequential and (R′, G′) is a partition of E(M) such that fcl(R′) =
fcl(R) or fcl(G′) = fcl(G), then (R′, G′) is a non-sequential 3-separation of M .

Lemma 3.8. Let (X0 ∪ X1, X2, . . . , Xm) be a left-justified maximal X0-rooted 3-
path in a 3-connected matroid M . Let (R,G) be a non-sequential 3-separation in
M . If, for some i in {2, 3, . . . ,m − 1}, both X−i and X+

i contain at least two red
and at least two green elements, then Xi is monochromatic.

Proof. Assume that Xi is bichromatic. Now |X+
i ∩G| ≥ 2. Thus, by uncrossing, as

R and X−i ∪Xi are both 3-separating, so is their intersection, (X−i ∪Xi)∩R. Again,
by uncrossing, the union of the last set with X−i , which equals X−i ∪ (Xi ∩R), is 3-
separating. By maximality, (X0 ∪X1, X2, . . . , Xi−1, Xi ∩R,Xi ∩G,Xi+1, . . . , Xm)
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is not a 3-path. But the original 3-path is left-justified, so Xi ∩ G ⊆ fcl(X+
i ).

By symmetry, X−i ∪ (Xi ∩ G), is 3-separating, yet (X0 ∪ X1, X2, . . . , Xi−1, Xi ∩
G,Xi ∩ R,Xi+1, . . . , Xm) is not a 3-path, so Xi ∩ R ⊆ fcl(X+

i ). We conclude that
Xi ⊆ fcl(X+

i ); a contradiction. �

Lemma 3.9. Let (X1, X2, . . . , Xm) be a 3-path in a 3-connected matroid M . Let X0

be a subset of X1, and (R,G) be a non-sequential 3-separation in M for which X0 is
monochromatic and no equivalent 3-separation in which X0 is monochromatic has
fewer bichromatic parts. Suppose that, for some i in [m], the set Xi is bichromatic.
If, for some Z in {X−i , X

+
i }, there is at least one red element in Z, then there are

at least two red elements in Z.

Proof. Suppose first that |X+
i ∩ R| = 1. As (E − X+

i , X
+
i ) and (R,G) are non-

sequential, |X+
i | ≥ 4 and |R ∩ (E − X+

i )| ≥ 3. Thus, by uncrossing, G ∩ X+
i is

3-separating. Since X+
i is also 3-separating, the one red element in X+

i can be re-
coloured green producing a 3-separation equivalent to (R,G) with fewer bichromatic
parts; a contradiction. Hence |X+

i ∩ R| ≥ 2. A symmetric argument establishes
that if |X−i ∩ R| ≥ 1, then |X−i ∩ R| ≥ 2. We note here that if |X−i ∩ R| = 1 and
the unique element of this set is in X0, then |X0| = 1 as X0 is monochromatic.
Thus X0 stays monochromatic when the element of X−i ∩ R is recoloured and, as
X0 ⊆ X1, we produce a 3-separation equivalent to (R,G) with fewer bichromatic
parts. �

Lemma 3.10. Let (X0 ∪ X1, X2, . . . , Xm) be a left-justified maximal X0-rooted
3-path in a 3-connected matroid M . Let (R,G) be a non-sequential 3-separation
in M for which X0 is monochromatic and no equivalent 3-separation in which X0

is monochromatic has fewer bichromatic parts. If, for some i in {2, 3, . . . ,m −
1}, the set Xi is bichromatic, then either Xi is not 3-separating, or X−i ∪ X

+
i is

monochromatic.

Proof. Assume that Xi is 3-separating and that X−i ∪X
+
i is not monochromatic.

By Lemmas 3.8 and 3.9, X−i or X+
i is monochromatic and is green, say. Then,

by Lemma 3.9, X+
i or X−i , respectively, contains at least two red elements. If Xi

contains a single red element x, then x is the unique red element of some Y in
{X−i ∪ Xi, X

+
i ∪ Xi}. By uncrossing Y and G, we see that x can be recoloured

green to produce a 3-separation equivalent to (R,G) with fewer bichromatic parts.
If Xi contains a single green element, g, but more than one red element, then, by
uncrossing, Xi− g is 3-separating, so g ∈ cl(∗)(Xi− g) and we can recolour g red to
reduce the number of bichromatic parts. We conclude that both Xi∩R and Xi∩G
contain at least two elements. Now either X−i or X+

i is green. In the first case, by
uncrossing, X−i ∪ (Xi ∩G) is 3-separating. As (X0 ∪X1, X2, . . . , Xi−1, Xi ∩G,Xi ∩
R,Xi+1, . . . , Xm) is not a 3-path, but the original 3-path is left-justified, it follows
that Xi ∩ R ⊆ fcl(X+

i ). It is straightforward to check that if X+
i is green, then

Xi ∩G ⊆ fcl(X+
i ). Thus some Z in {Xi ∩R,Xi ∩G} is a subset of fcl(X−i ∪X

+
i ).

Suppose that Xi 6⊆ fcl(X−i ∪ X
+
i ). Then, by Lemma 3.7, there is an ordering

(z1, z2, . . . , zk) of the elements of Z such that (X−i ∪X
+
i , z1, z2, . . . , zk, Xi − Z) is

a 3-sequence. Therefore Z ⊆ fcl(Xi − Z), so we can change the colour of all the
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elements of Z to give a 3-separation that is equivalent to (R,G) but has fewer
bichromatic parts; a contradiction. We may now assume that Xi ⊆ fcl(X−i ∪X

+
i ).

Then there is an ordering (z1, z2, . . . , zk) of the elements of Xi such that (X−i ∪
X+

i , z1, z2, . . . , zk) is a 3-sequence. We can reorder the last three elements of this
3-sequence if necessary to obtain a 3-sequence whose last two elements are the
same colour. Then we can recolour all of the elements of Xi this colour to get a
3-separation that is equivalent to (R,G) but has fewer bichromatic parts, again
getting a contradiction. �

Lemma 3.11. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-rooted 3-
path in a 3-connected matroid M . Let (R,G) be a non-sequential 3-separation in
M for which X0 is monochromatic and no equivalent 3-separation in which X0 is
monochromatic has fewer bichromatic parts. If, for some i in {2, 3, . . . ,m− 1}, the
set X−i is monochromatic but Xi is bichromatic, then X−i ∪X

+
i is monochromatic.

Proof. Assume that X−i is green but X−i ∪X
+
i is bichromatic. Then, by Lemma 3.9,

X+
i contains at least two red elements. Thus, by uncrossing, X−i ∪ (Xi ∩ G) is 3-

separating. As the 3-path (X0 ∪ X1, X2, . . . , Xm) is maximal and left-justified, it
follows that Xi∩R ⊆ fcl(X−i ∪(Xi∩G)), so Xi∩R ⊆ fcl(G). Hence we can recolour
all the elements in Xi ∩R green thereby reducing the number of bichromatic parts;
a contradiction. �

Lemma 3.12. Let (Z0, Z1, Z2, . . . , Zm) be a 3-path in a 3-connected matroid M
where m ≥ 2. Let (R,G) be a non-sequential 3-separation of M such that

(i) each of Z1, Z2, . . . , Zm is monochromatic;
(ii) Zm−1 ∪ Zm is bichromatic;
(iii) either

(a) Z0 is monochromatic but Z0 ∪ Z1 is not; or
(b) Z0 is bichromatic and min{|Z0 ∩R|, |Z0 ∩G|} ≥ 2.

Then M has a flower (Z0, Zi,1, Zi,2, . . . , Zi,s, Zm, Zj,t, Zj,t−1, . . . , Zj,1) where
each of Zi,1 ∪ Zi,2 ∪ · · · ∪ Zi,s and Zj,t ∪ Zj,t−1 ∪ · · · ∪ Zj,1 is monochro-
matic; each of (Zi,1, Zi,2, . . . , Zi,s) and (Zj,1, Zj,2, . . . , Zj,t) is a subsequence
of (Z1, Z2, . . . , Zm−1); and {Z1, Z2, . . . , Zm−1} = {Zi,1, Zi,2, . . . , Zi,s} ∪
{Zj,1, Zj,2, . . . , Zj,t}. Moreover, when Z0 is bichromatic, this flower can be re-
fined so that (Z ′0, Z

′′
0 , Zi,1, Zi,2, . . . , Zi,s, Zm, Zj,t, Zj,t−1, . . . , Zj,1) is a flower where

{Z ′0, Z ′′0 } = {Z0 ∩R,Z0 ∩G} and Z ′′0 ∪ Zi,1 and Z ′0 ∪ Zj,1 are monochromatic.

Proof. Without loss of generality, we may assume that Zm ⊆ G and Zm−1 ⊆ R.
By assumption, Z0 ∪ Z1 is bichromatic containing at least two red elements and
at least two green elements. Let the subsequence of (Z2, Z3, . . . , Zm) consisting of
red sets be (Zp1 , Zp2 , . . . , Zpk

). Then pk = m − 1. By repeated applications of
uncrossing, we get that Zpa ∪ Zpa+1 ∪ · · · ∪ Zpk

is 3-separating for all a in [k]. As
Z0 ∪ Z1 ∪ · · · ∪ Zb is 3-separating for all b in [m − 1], we deduce, by uncrossing,
that each of Zp1 , Zp2 , . . . , Zpk

, Zp1 ∪Zp2 , Zp2 ∪Zp3 , . . . , Zpk−1 ∪Zpk
is 3-separating.

Moreover, Zpk
∪ Zm = Zm−1 ∪ Zm, so it is 3-separating.
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Now let the subsequence of (Z2, Z3, . . . , Zm) consisting of green sets be
(Zq1 , Zq2 , . . . , Zql

). Then ql = m, so Zql
is 3-separating and, by uncrossing again,

we deduce that each of Zq1 , Zq2 , . . . , Zql−1 , Zq1 ∪ Zq2 , Zq2 ∪ Zq3 , . . . , Zql−1 ∪ Zql
is

3-separating.

As each of Zp1∪Zp2 , Zp2∪Zp3 , . . . , Zpk−1∪Zpk
, Zpk

∪Zql
, Zql
∪Zql−1 , . . . , Zq2∪Zq1

is 3-separating, the union of all but the last of these sets is 3-separating and hence so
is its complement, Z0∪Z1∪Zq1 . Similarly, Z0∪Z1∪Zp1 is 3-separating. We deduce
that (Z0∪Z1, Zp1 , Zp2 , . . . , Zpk

, Zm, Zql−1 , . . . , Zq1) is a flower. If Z1 is red, then, by
uncrossing, Z1∪Zp1∪· · ·∪Zpk

is 3-separating, as are Z0∪Z1 and Z0∪Z1∪Zp1 , so Z1

and Z1∪Zp1 are 3-separating. Also, E−(Z1∪Zp1∪· · ·∪Zpk
) is 3-separating and, by

uncrossing, so too is Z0 ∪Zq1 . Hence (Z0, Z1, Zp1 , Zp2 , . . . , Zpk
, Zm, Zql−1 , . . . , Zq1)

is a flower. If Z1 is green, then, as Zm−1 is red, a similar ar-
gument gives that (Z0, Zp1 , Zp2 , . . . , Zpk

, Zm, Zql−1 , . . . , Zq1 , Z1) is a flower.
We conclude, using the notation in statement of the lemma, that
(Z0, Zi,1, Zi,2, . . . , Zi,s, Zm, Zj,t, Zj,t−1, . . . , Zj,1) is a flower.

Finally, assume that Z0 is bichromatic.. Then, by uncrossing, Z0∩R and Z0∩G
are both 3-separating and the argument at the end of the last paragraph implies
that (Z0 ∩G,Z0 ∩R,Zi,1, Zi,2, . . . , Zi,s, Zm, Zj,t, Zj,t−1, . . . , Zj,1) is a flower. �

In our algorithm, we shall construct maximal flowers from 3-paths. The next
lemma is designed to cope with the fact that, whereas each 3-separation displayed
by a 3-path is non-sequential, a maximal flower may have sequential petals.

Lemma 3.13. Let M be a 3-connected matroid with at least nine elements and
X be a non-sequential 3-separating set in M . Let (R,G) be a non-sequential 3-
separation such that both R ∩ X and G ∩ X are sequential 3-separating sets. Let
(U, V ) be a non-sequential 3-separation with min{|U −X|, |V −X|} ≥ 2 such that
U ∩ X 6⊆ fcl(U − X) and V ∩ X 6⊆ fcl(V − X). Then some of the elements of X
can be recoloured to give a 3-separation (R′, G′) equivalent to (R,G) such that both
U ∩X and V ∩X are monochromatic.

Proof. Since X is non-sequential, |X| ≥ 4. As U ∩X 6⊆ fcl(U −X) and V ∩X 6⊆
fcl(V −X), it follows that neither U ∩X nor V ∩X is empty. If |U ∩X| = 1, then
|V ∩X| ≥ 2 so, by uncrossing, U −X is 3-separating and then U ∩X ⊆ fcl(U −X);
a contradiction. Hence |U ∩X| ≥ 2 and, by symmetry, |V ∩X| ≥ 2.

Let (r1, r2, . . . , rk) and (g1, g2, . . . , gl) be sequential orderings of R∩X and G∩X,
respectively. Observe that the lemma trivially holds if either k = 0 or l = 0. Thus
we may assume that k, l ≥ 1. If k = 1, then, as G∩X is 3-separating, it follows by
Lemma 3.1 that r1 ∈ cl(∗)(G ∩X). Thus the lemma holds by recolouring r1 green.
Similarly, the lemma holds if l = 1, so we may assume that k, l ≥ 2.

Suppose that |R ∩X| ≥ 3. Then we may assume that |{r1, r2, r3} ∩ U | ≥ 2. As
|U −X| ≥ 2, it follows by uncrossing that X ∩ V is 3-separating. Since |R ∩ (E −
(X ∩ V ))| ≥ 2, it follows by another application of uncrossing that G ∩ (X ∩ V ) is
3-separating. As |{r1, r2, r3} ∩U | ≥ 2, it follows that R∩ (X ∩ V ) ⊆ fcl(U) and so,
by Lemma 3.7, there is an ordering (r′1, r

′
2, . . . , r

′
k′) of the elements in R ∩ (X ∩ V )
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such that
(U ∪ (V −X), r′1, r

′
2, . . . , r

′
k′ , G ∩ (X ∩ V ))

is a 3-sequence in M . Hence R∩ (X ∩V ) ⊆ fcl(G∩ (X ∩V )) so we can recolour the
elements of R∩(X∩V ) green to obtain an equivalent 3-separation (R′, G′) in which
X∩V is green, that is, X∩V ⊆ G′. If X∩U ⊆ R′, then the required result holds, so
we may assume that X ∩U ∩G′ 6= ∅. Thus |X ∩G′| ≥ 3. Since G∩X is sequential,
G′ ∩ X is sequential. Take a sequential ordering (g′1, g

′
2, . . . , g

′
l′) of G′ ∩ X. If at

least two of g′1, g
′
2, and g′3 are in U , then there is a 3-sequence in M of the form

(U, e1, e2, . . . , et, V −X) where {e1, e2, . . . , et} = V ∩X. Hence V ∩X ⊆ fcl(V −X);
a contradiction. We deduce that at least two of g′1, g

′
2, and g′3 are in V . Then there

is a sequential ordering of G′ ∩ X that first uses all of the elements of V ∩ X.
Let this ordering be (v1, v2, . . . , va, u1, u2, . . . , ub) where {v1, v2, . . . , va} ⊆ V and
{u1, u2, . . . , ub} ⊆ U . Then, by uncrossing, (X ∩ U ∩ R′) ∪ {ub, ub−1, . . . , ui} is
3-separating for all i in [b]. Thus we can recolour the elements of {ub, ub−1, . . . , u1}
red to get that U ∩X is red and V ∩X is green as required.

We may now assume that |R ∩ X| = 2 and, by symmetry, that |G ∩ X| = 2.
The required result follows unless U ∩ X = {r1, g1} and V ∩ X = {r2, g2} where
{r1, r2} = R ∩X and {g1, g2} = G ∩X.

Since |R|, |G| ≥ 4 and |E(M)| ≥ 9, we may assume that |R − X| ≥ 3. Then,
without loss of generality, we may suppose that U − X contains at least two red
elements. Assume that V − X contains at least one green element. Then, by
uncrossing, U ∩R is 3-separating and so (U −X)∪r1 is 3-separating. As (U −X)∪
r1 ∪ g1 is 3-separating, it follows that U ∩ X ⊆ fcl(U − X); a contradiction. We
deduce that (V −X)∩G = ∅, so |(V −X)∩R| ≥ 2. Then, by arguing as above, we
get that (U −X) ∩G = ∅. Hence E(M)−X ⊆ R, so |G| = 2; a contradiction. �

Lemma 3.14. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-rooted 3-
path in a 3-connected matroid M . Let (R,G) be a non-sequential 3-separation in
M for which X0 is monochromatic and no equivalent 3-separation in which X0 is
monochromatic has fewer bichromatic parts. Suppose that m ≥ 2 and that Xm and
X−m are bichromatic. Then both R ∩ Xm and G ∩ Xm are sequential 3-separating
sets.

Proof. By Lemma 3.9, |R ∩ X−m|, |G ∩ X−m| ≥ 2. Therefore, as R and Xm are 3-
separating and |E(M)− (R∪Xm)| ≥ 2, we have R∩Xm is 3-separating. Similarly,
G ∩ Xm is 3-separating. If (E(M) − (R ∩ Xm), R ∩ Xm) is non-sequential, then,
as (X0 ∪X1, X2, . . . , Xm) is left-justified and maximal, fcl(R ∩Xm) = fcl(Xm). In
particular, by Lemma 3.7, we can recolour all the elements in G ∩Xm red to give
a 3-separation equivalent to (R,G) with fewer bichromatic parts; a contradiction.
Thus (E(M)−(R∩Xm), R∩Xm) is sequential, in particular, by Lemma 3.3, R∩Xm

is sequential. Similarly, G ∩Xm is sequential. �

Lemma 3.15. Let (X0 ∪X1, X2, . . . , Xm) be a left-justified maximal X0-rooted 3-
path in a 3-connected matroid M . Let (R,G) be a non-sequential 3-separation in
M for which X0 is monochromatic and no equivalent 3-separation in which X0 is
monochromatic has fewer bichromatic parts. Suppose that {2, 3, . . . ,m−1} contains
an element j such that Xj and X−j are bichromatic, but X+

j is red. Then R∩Xj ⊆
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fcl(X+
j ). Furthermore, there is a 3-separation (R′, G′) equivalent to (R,G) such

that R′ ∩Xj = Xj ∩ fcl(X+
j ) while R′ ∩Xi = R ∩Xi and G′ ∩Xi = G ∩Xi for all

i 6= j.

Proof. By Lemma 3.9, |G ∩ X−j | ≥ 2 as G ∩ X−j is non-empty. Therefore, as R
and Xj ∪ X+

j are both 3-separating and avoid G ∩ X−j , it follows by uncrossing
that (X−j ∪ (G ∩ Xj), R ∩ (Xj ∪ X+

j )) is a 3-separation. By Lemma 3.3, this
3-separation is non-sequential. But (X0 ∪ X1, X2, . . . , Xm) is maximal and left-
justified, so (X−j ∪ (G ∩ Xj), R ∩ (Xj ∪ X+

j )) is equivalent to (X−j ∪ Xj , X
+
j ).

Therefore R ∩ Xj ⊆ fcl(X+
j ). Furthermore, by Lemma 3.7, recolouring all the

elements in (G ∩Xj) ∩ fcl(X+
j ) red, we have a 3-separation (R′, G′) equivalent to

(R,G) with the desired properties. �

4. Finding a Non-Sequential 3-Separation

Finding a 3-tree for a 3-connected matroid M depends crucially on being able
to find a non-sequential 3-separation for M or showing that M has no such 3-
separation. We rely heavily on a polynomial-time algorithm of Cunningham and
Edmonds (in Cunningham 1973) that, for any fixed positive integer k, will either
find a k-separation in a matroid or will show that no such k-separation exists.
Underlying this algorithm is the following result of Edmonds [4], which specifies
the size of a largest common independent set of two matroids that share a common
ground set.

Theorem 4.1. Let M1 and M2 be matroids with rank functions r1 and r2 and a
common ground set E. Then

max{|I| : I ∈ I(M1) ∩ I(M2)} = min{r1(T ) + r2(E − T ) : T ⊆ E}.

The next result (see, for example, [5, Proposition 13.4.7]) provides the link be-
tween the existence of a certain k-separation and a common independent set of two
matroids.

Proposition 4.2. Let M be a matroid and k be a positive integer. If X1 and X2 are
disjoint subsets of E(M) each having at least k elements, then M has a k-separation
(Y1, Y2) with X1 ⊆ Y1 and X2 ⊆ Y2 if and only if M/X1\X2 and M/X2\X1 do not
have a common t-element independent set where t = r(M) + k − r(X1)− r(X2).

The matroid intersection algorithm finds, in polynomial time, not only a
maximum-sized common independent set I of two matroids M1 and M2 on the
same set E, but also a subset X of E that minimizes r1(X) + r2(E −X), where ri
is the rank function of Mi. By Theorem 4.1, each of I and X verifies that the other
has the specified property. By applying this algorithm to all pairs M/X1\X2 and
M/X2\X1 for which X1 and X2 are disjoint 3-element subsets of E(M), we get a
polynomial-time algorithm for either finding a 3-separation in M or showing that
no 3-separation exists. The difficulty with this process is that it may produce a
sequential 3-separation and we want a non-sequential 3-separation. We show below
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how a minor modification of the algorithm will find a non-sequential 3-separation if
one exists. First, we note that the basic idea in the matroid intersection algorithm
is similar to that used in the algorithm for finding a maximum-sized matching in
a bipartite graph: construction of an augmenting path. For a detailed description
of the matroid intersection algorithm, the reader is referred to Cook, Cunningham,
Pulleyblank, and Schrijver [1].

In order to find a non-sequential 3-separation in M if one exists, we begin by
finding the set F of all maximal sequential 3-separating sets. To do this, we begin
by finding all triangles and triads of M by determining which 3-element subsets X
of E(M) have r(X) or r∗(X) equal to 2, where r∗(X) = r(E −X)− r(M) + 3. We
then find the full closure of each triangle and each triad by taking the closure of
each such set, the coclosure of the result, the closure of the result, and so on until
two consecutive terms are equal. For a given triangle or triad X in an n-element
matroid, we can find fcl(X) by using O(n2) calls to the rank oracle. Observe that
F consists of the maximal members of {fcl(X) : X is a triangle or triad} and that
the latter set has O(n3) members.

The next result is a straightforward consequence of Lemma 3.3 and we omit the
proof. We use this corollary in the proof of the subsequent lemma.

Corollary 4.3. In a 3-connected matroid M , a 3-separating set X is non-sequential
if and only if no member of F contains X.

The next lemma is key to finding a non-sequential 3-separation of a 3-connected
matroid.

Lemma 4.4. Let (U, V ) be a 3-separation in a 3-connected matroid M and suppose
k ∈ {3, 4}. Then (U, V ) is non-sequential if and only if there are k-element subsets
U ′ and V ′ of U and V , respectively, such that no member of F contains U ′ or V ′.

Proof. Suppose (U, V ) is non-sequential. Then (U − fcl(V ), fcl(V )) is also non-
sequential. Clearly |U − fcl(V )| ≥ 4. Let U1 be a k-element subset of U − fcl(V ).
We take U ′ = U1 unless U1 is contained in some member F of F . Consider the
exceptional case. We have F = fcl(T ) for some triangle or triad T . Clearly |T ∩
fcl(V )| ≤ 1. Take {a, b} ⊆ T−fcl(V ). Clearly fcl({a, b}) = fcl(T ) = F . If F contains
U − fcl(V ), then, by Lemma 3.3, U − fcl(V ) is sequential; a contradiction. Thus
U − fcl(V )−F is non-empty. Suppose this set contains a single element c. Then F
and U−fcl(V ) are 3-separating. By uncrossing, so is their intersection, U−fcl(V )−c.
As U − fcl(V ) − c and U − fcl(V ) are 3-separating, c ∈ cl(∗)(U − fcl(V ) − c), so
c ∈ F ; a contradiction. We deduce that U−fcl(V )−F contains at least two distinct
elements, c and d. If k = 3, let U ′ = {a, b, c}; if k = 4, let U ′ = {a, b, c, d}. If U ′ is
contained in a member F ′ of F , then F ′ contains T and hence contains F . Thus
F ′ = F , but c ∈ F ′ − F ; a contradiction. Hence no member of F contains U ′. We
now know how to construct U ′. We construct V ′ symmetrically from V − fcl(U).

The converse is an immediate consequence of the last corollary. �
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Now to obtain a non-sequential 3-separation of M , we apply the procedure de-
scribed above for finding a 3-separation with the modification that the disjoint sets
X1 and X2 are chosen to be 3-element sets that are not contained in any member
of F . By the last lemma, if (Y1, Y2) is a 3-separation with X1 ⊆ Y1 and X2 ⊆ Y2,
then (Y1, Y2) is non-sequential. Moreover, if, after searching through all such pairs
{X1, X2} of sets, we find no 3-separation (Y1, Y2) with X1 ⊆ Y1 and X2 ⊆ Y2, then
M has no non-sequential 3-separations.

5. The Algorithm

In this section, we present the algorithm 3-Tree for constructing a 3-tree of
a 3-connected matroid. To do this, we shall need some additional terminology.
We shall also provide an informal description of the algorithm and an example to
illustrate it.

Let M be a 3-connected matroid. Let (P1, P2, . . . , Pk) be a tight flower Φ in
M , where k ≥ 3. Consider how Φ might arise in a 3-path where the petals of
Φ are the parts of the 3-path. Let P1 and Pj be the first and last petals of Φ
occurring in the 3-path. Then the definition of a 3-path requires that both P1 and
Pj are non-sequential. Clearly j ∈ {2, 3, . . . , k}. Now (P1, Q

′
1, Q

′
2, . . . , Q

′
k−2, Pj)

is a 3-path provided that {Q′1, Q′2, . . . , Q′k−2} = {P2, P3, . . . , Pk} − {Pj}, and both
(P2, P3, . . . , Pj−1) and (Pk, Pk−1, . . . , Pj+1) are subsequences of (Q′1, Q

′
2, . . . , Q

′
k−2).

If, for example, each petal of Φ is sequential, then there is no 3-path whose parts
coincide with the petals of Φ. But (P1 ∪ P2, P3, P4, . . . , Pk−2, Pk−1 ∪ Pk) is one of
many 3-paths arising from Φ. We now generalize the notion of a 3-path to indicate
the presence of flowers including those with sequential petals.

Let τ be a 3-path (P1,1, P1,2, . . . , P1,s, Q
′
1, Q

′
2, . . . , Q

′
k−2, Pj,1, Pj,2, . . . , Pj,t) in M

such that there is a flower Φ = (P1, P2, . . . , Pk) with P1 = P1,1∪P1,2∪· · ·∪P1,s and
Pj = Pj,1 ∪ Pj,2 ∪ · · · ∪ Pj,t where {Q′1, Q′2, . . . , Q′k−2} = {P2, P3, . . . , Pk} − {Pj}.
We call P1 and Pj the entry and exit petals, respectively, of (P1, P2, . . . , Pk). When
j 6= k, we denote this flower Φ in τ by replacing the subsequence Q′1, Q

′
2, . . . , Q

′
k−2

by [(P2, P3, . . . , Pj−1), (Pk, Pk−1, . . . , Pj+1)]; and we call P2, P3, . . . , Pj−1 and
Pk, Pk−1, . . . , Pj+1 the clockwise and anticlockwise petals, respectively, of Φ. If
j = k, then we replace Q′1, Q

′
2, . . . , Q

′
k−2 by [(P2, P3, . . . , Pk−1)]. In this case, we call

P2, P3, . . . , Pk−1 the clockwise petals of Φ and say that Φ has no anticlockwise petals.
Such modified 3-paths are examples of generalized 3-paths. There are three further
elementary modifications of a 3-path which we shall want our notion of a general-
ized 3-path to encompass. Each of these occurs at the end of a 3-path and will be
called an end move. Suppose (Z1, Z2, . . . , Zm) is a 3-path in M and that there is a
partition (Z ′m, Z

′′
m) of Zm such that (Z1∪Z2∪· · ·∪Zm−2, Zm−1, Z

′
m, Z

′′
m) is a tight

flower Ψ. Then, in (Z1, Z2, . . . , Zm), we replace Zm−1, Zm by [(Zm−1, Z
′
m)], Z ′′m and

call Z1 ∪Z2 ∪ · · · ∪Zm−2 and Z ′′m the entry and exit petals of Ψ, and Zm−1, Z
′
m the

clockwise petals of Ψ. We will also view (Z1, Z2, . . . , Zm−2, [(Zm−1, Z
′
m)], Z ′′m) as a

generalized 3-path. Symmetrically, if there is a partition (Z ′1, Z
′′
1 ) of Z1 such that

(Z ′1, Z
′′
1 , Z2, Z3 ∪ · · · ∪ Zm) is a tight flower, we view (Z ′1, [(Z

′′
1 , Z2)], Z3, . . . , Zm) as

a generalized 3-path. A combination of the last two end moves arises when m = 2
if Z1 and Z2 have partitions (Z ′1, Z

′′
1 ) and (Z ′2, Z

′′
2 ) such that (Z ′1, Z

′′
1 , Z

′
2, Z

′′
2 ) is
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a tight flower. Then (Z ′1, [(Z
′′
1 , Z

′
2)], Z ′′2 ) is a generalized 3-path. In the first and

second type of end move, we refer to Zm and Z1, respectively, as the split part,
while in the third type of end move, we refer to Z1 and Z2 as the split parts.

The moves described in the last paragraph indicate how we modify a 3-path τ
when we detect a single flower arising from it. The algorithm describes a systematic
way in which we repeat the above steps for every flower occurring in τ each time
modifying the current generalized 3-path to produce a new structure which we will
also view as a generalized 3-path. The flowers that arise here are dealt with in
order, starting from the far end of a 3-path. As we shall prove, the procedure we
follow ensures that each flower we construct is tight and maximal.

Let τ be a generalized 3-path in a 3-connected matroid M with ground set
E. Within τ , certain subsets of E are enclosed between the same pair of square
brackets. Let τ ′ be the ordered sequence obtained from τ by, for each pair of
corresponding square brackets, replacing these brackets and all the sets between
them by the union of all the enclosed sets. Say τ ′ = (Y1, Y2, . . . , Yp). Note that
τ ′ is a 3-path unless Y1 or Yp is sequential as may occur if we apply an end move.
Let P denote the π-labelled tree consisting of a path of p bag vertices labelled,
in order, Y1, Y2, . . . , Yp. Now modify P as follows. For each Yj that is the union
of s clockwise petals and t anticlockwise petals of a flower, replace the bag vertex
labelled Yj with a flower vertex v and adjoin s + t new bag vertices to v each via
a new edge so that the cyclic ordering induced by the cyclic ordering on the edges
incident with v preserves the ordering of the flower Φj to which Yj corresponds.
Label the vertex v by D or A depending on whether Φj is a daisy or an anemone
respectively. We refer to the resulting modification of P as a path realization of τ .

To deal with generalized 3-paths, it will be useful to have some more terminology.
Let Z be a term in a generalized 3-path τ and assume that Z is not enclosed between
two square brackets. We can then write τ as (τ(Z−), Z, τ(Z+)) so τ(Z−) and τ(Z+)
denote, respectively, the portions of τ that occur before and after Z. In this case,
as in a 3-path, we shall denote by Z− and Z+ the union of all of the sets in τ that
occur, respectively, before and after Z.

We now give an informal description of our algorithm. An example to illustrate it
is given at the end of the section. From the last section, we can test whether or not a
given matroidM is 3-connected by making polynomially many calls to a rank oracle.
We may now assume that M is 3-connected having ground set E. Starting with a
single unmarked bag vertex labelled E, the algorithm 3-Tree recursively builds a
π-labelled tree by selecting an unmarked bag vertex B and deciding if there is a non-
sequential 3-separation (Y, Z) such that either Y ⊆ π(B) or Z ⊆ π(B). If there is no
such 3-separation, the vertex is marked. If there is such a 3-separation, 3-Tree calls
the first of its two subroutines, ForwardSweep, which constructs a left-justified
maximal (E − π(B))-rooted 3-path. Once such a 3-path, say τ , is constructed,
ForwardSweep ends and 3-Tree calls its second subroutine, BackwardSweep.
This subroutine starts at the non-root end of τ and recursively works its way
towards the root end uncovering flower structure. Eventually, BackwardSweep
outputs a generalized 3-path τ ′. Lastly, 3-Tree takes a path realization of τ ′

and adjoins it to the bag vertex B. The algorithm now repeats this process by
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selecting another unmarked bag vertex. When all bag vertices are marked, 3-
Tree outputs a π-labelled tree. We end with two remarks. Firstly, some flower
subtleties need to be dealt with at the non-root end of τ and also, in the first call to
BackwardSweep, at the root end of τ . These subtleties correspond to applying
end moves. Secondly, the fact that ForwardSweep constructs a left-justified
maximal 3-path is established in Lemma 6.1.

Algorithm: 3-Tree(M)
Input: A 3-connected matroid M with ground set E and |E| ≥ 9.
Output: A 3-tree for M .

1. Construct the collection F of maximal sequential 3-separating sets of M .

2. Let T0 denote the π-labelled tree consisting of a single (unmarked) bag vertex
labelled E.

3. Search through pairs ({y1, y2, y3}, {z1, z2, z3}) of disjoint subsets of E neither of
which is contained in a member of F and find a 3-separation (Y,Z) of M such
that Y and Z contain {y1, y2, y3} and {z1, z2, z3}, respectively.

(i) If there is no such 3-separation, mark E, and output T0.

(ii) Otherwise, do the following:

(a) Set X0 = ∅, set X1 = fcl(Y ), and set X2 = Z − fcl(Y ). Call
ForwardSweep(M , (X0 ∪X1, X2), F).

(b) Call BackwardSweep(M , (X0 ∪ Z1, Z2, . . . , Zm)), where (X0 ∪
Z1, Z2, . . . , Zm) is the 3-path ofM outputted by ForwardSweep(M ,
(X0 ∪X1, X2), F).

(c) Set i = 1 and set T1 to be the path realization of the generalized
3-path outputted by BackwardSweep(M , (X0 ∪ Z1, Z2, . . . , Zm))
with each bag vertex unmarked.

4. If there is no unmarked bag vertex, output Ti. Otherwise, choose an unmarked
bag vertex B of Ti.

5. If B is a non-terminal bag vertex, find a 3-separation (Y,Z) such that Y contains
fcl(E−π(B)), and Z contains a subset {z1, z2, z3} of π(B)− fcl(E−π(B)) with
no member of F containing {z1, z2, z3}. If B is a terminal bag vertex, find a
3-separation (Y,Z) such that Y contains fcl(E−π(B)) and an element y of π(B)
with y 6∈ fcl(E − π(B)), and Z contains a subset {z1, z2, z3} of π(B) − fcl(E −
π(B))−{y} with no member of F containing {z1, z2, z3}. Now do the following:

(i) If there is no such 3-separation, mark B and return to Step 4.

(ii) Otherwise, do the following:

(a) Set X0 = E − π(B), set X1 = π(B) ∩ fcl(Y ), and set X2 = π(B) −
fcl(Y ). Call ForwardSweep(M , (X0 ∪X1, X2), F).

(b) Call BackwardSweep(M , (X0 ∪ Z1, Z2, . . . , Zm)), where (X0 ∪
Z1, Z2, . . . , Zm) is the 3-path ofM outputted by ForwardSweep(M ,
(X0 ∪X1, X2), F).
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(c) Increase i by 1 and set Ti to be the π-labelled tree obtained from
Ti−1 and a path realization of the generalized 3-path outputted by
BackwardSweep(M , (X0∪Z1, Z2, . . . , Zm)) by identifying the ver-
tex B of Ti−1 with the vertex of the path realization labelled X0∪Z1,
where the resulting composite vertex is labelled Z1. If Z1 = ∅ and the
composite vertex has degree two, then suppress the composite vertex.
Each bag vertex originating from the path realization, including the
identified vertex, is unmarked.

(d) Return to Step 4.

Algorithm: ForwardSweep(M , (X0 ∪X1, X2), F)
Input: A 3-connected matroid M with ground set E and |E| ≥ 9, a 3-path (X0 ∪
X1, X2) of M , and the collection F of maximal sequential 3-separating sets of M .
Output: A 3-path (X0∪X ′1, X ′2, . . . , X ′m) ofM that is a refinement of (X0∪X1, X2).

1. Let τ0 = (X0 ∪X1, X2), set (i, s,m) = (1, 1, 2), and set (X ′1, X
′
2) = (X1, X2).

2. If s 6= m, do the following:

(i) If X0 = ∅ and s = 1, find a 3-separation (Y,Z) such that Y contains a
subset {y1, y2, y3} of X ′1 with no member of F containing {y1, y2, y3}, and
Z contains X ′2 ∪ · · · ∪X ′m and an element z of X ′1 with z 6∈ fcl(X ′2 ∪ · · · ∪
X ′m) ∪ {y1, y2, y3}.

(a) If there is no such 3-separation, go to Step 4.

(b) Otherwise, increase m by 1 and, for each t > 1, set X ′t to be X ′t+1.
Furthermore, set X ′2 to be X ′1 ∩ (E − fcl(Y )) and then set X ′1 to be
X ′1 ∩ fcl(Y ). Go to Step 5.

(ii) If X0 6= ∅ and s = 1, find a 3-separation (Y, Z) such that Y contains
fcl(X0), and Z contains X ′2 ∪ · · · ∪ X ′m and an element z of X ′1 with
z 6∈ fcl(X ′2 ∪ · · · ∪X ′m).

(a) If there is no such 3-separation, go to Step 4.

(b) Otherwise, increase m by 1 and, for each t > 1, set X ′t to be X ′t+1.
Furthermore, set X ′2 to be X ′1 ∩ (E − fcl(Y )) and then set X ′1 to be
X ′1 ∩ fcl(Y ). Go to Step 5.

(iii) Otherwise, find a 3-separation (Y, Z) such that Y contains X0∪X ′1∪· · ·∪
X ′s−1 and an element y of X ′s− fcl(X0 ∪X ′1 ∪ · · · ∪X ′s−1), and Z contains
X ′s+1∪· · ·∪X ′m and an element z of X ′s with z 6∈ fcl(X ′s+1∪· · ·∪X ′m)∪{y}.

(a) If there is no such 3-separation, go to Step 4.

(b) Otherwise, increase m by 1 and, for each t > s, set X ′t to be X ′t+1.
Furthermore, set X ′s+1 to be X ′s ∩ (E− fcl(Y )) and then set X ′s to be
X ′s ∩ fcl(Y ). Go to Step 5.

3. If s = m, find a 3-separation (Y,Z) such that Y contains X0 ∪X ′1 ∪ · · · ∪X ′s−1

and an element y of X ′s − fcl(X0 ∪ X ′1 ∪ · · · ∪ X ′s−1), and Z contains a subset
{z1, z2, z3} of X ′s − fcl(X0 ∪X ′1 ∪ · · · ∪X ′s−1)− {y} such that no member of F
contains {z1, z2, z3}.
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(i) If there is no such 3-separation, then output τi.

(ii) Otherwise, increase m by 1. Furthermore, set X ′s+1 to be X ′s∩(E−fcl(Y ))
and then set X ′s to be X ′s ∩ fcl(Y ). Go to Step 5.

4. Increase s by 1. Return to Step 2.

5. Increase i by 1 and set τi to be (X0 ∪X ′1, X ′2, . . . , X ′m). Return to Step 2.

Algorithm: BackwardSweep(M , (X0 ∪ Z1, Z2, . . . , Zm))
Input: A matroid M with ground set E and |E| ≥ 9, and a 3-path (X0 ∪
Z1, Z2, . . . , Zm) of M , where m ≥ 2.
Output: A generalized 3-path of M .

1. Let τm = (X0 ∪ Z1, Z2, . . . , Zm).
2. If m = 2 and X0 is empty, find a 3-separation (U, V ) for which U and V

contain subsets U ′ and V ′ such that no member of F contains U ′ or V ′ and
|U ′ ∩ Z1| = |U ′ ∩ Z2| = |V ′ ∩ Z1| = |V ′ ∩ Z2| = 2.

(i) If there is no such 3-separation, output τm.

(ii) Otherwise, output

(V ∩ Z1, [(U ∩ Z1, U ∩ Z2)], V ∩ Z2).

3. If m = 2 and X0 is non-empty, output τm.

4. If m ≥ 3, set i = m− 1.

5. If Zm−1 is 3-separating, find a 3-separation (U, V ) such that U contains Zm−1

and |U ∩ Zm| ≥ 2, and V contains Z−m−1 and |V ∩ Zm| ≥ 2.

(i) If there is such a 3-separation, set

τm−1 =
(
τm(Z−m−1), [(Zm−1, Zm ∩ U)], Zm ∩ V

)
and go to Step 7.

(ii) Otherwise, set

τm−1 =
(
τm(Z−m−1), [(Zm−1)], Zm

)
and go to Step 7.

6. If Zm−1 is not 3-separating, do the following:

(i) If Zm−1 − fcl(Zm) is 3-separating, set

τm−1 =
(
τm(Z−m−1), [(Zm−1 − fcl(Zm))], Zm−1 ∩ fcl(Zm), Zm

)
and go to Step 7.

(ii) Otherwise, set τm−1 to be τm and go to Step 7.

7. (i) If i 6= 2, decrease i by 1 and go to Step 8.

(ii) Otherwise, go to Step 10.

8. If Zi is 3-separating, do the following:

(i) If τi+1 = (X0 ∪ Z1, Z2, . . . , Zi, [(P1, . . . , Pp), (Q1, . . . , Qq)], . . .), where p ≥
1, do the following:
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(a) If Zi ∪ P1 is 3-separating, set

τi =
(
τi+1(Z−i ), [(Zi, P1, . . . , Pp), (Q1, . . . , Qq)], τi+1([(P1, . . . , Pp), (Q1, . . . , Qq)]+)

)
and return to Step 7.

(b) If Zi ∪ P1 is not 3-separating but q ≥ 1 and Zi ∪Q1 is 3-separating,
set

τi =
(
τi+1(Z−i ), [(P1, . . . , Pp), (Zi, Q1, . . . , Qq)], τi+1([(P1, . . . , Pp), (Q1, . . . , Qq)]+)

)
and return to Step 7.

(c) If Zi ∪ P1 is not 3-separating but q = 0 and the union of Zi with
τi+1([(P1, . . . , Pp)]+) is 3-separating, set

τi =
(
τi+1(Z−i ), [(P1, . . . , Pp), (Zi)], τi+1([(P1, . . . , Pp)]+)

)
and return to Step 7.

(d) Otherwise, set

τi =
(
τi+1(Z−i ), [(Zi)], [(P1, . . . , Pp), (Q1, . . . , Qq)], τi+1([(P1, . . . , Pp), (Q1, . . . , Qq)]+)

)
and return to Step 7.

(ii) Otherwise, set

τi =
(
τi+1(Z−i ), [(Zi)], τi+1(Z+

i )
)

and return to Step 7.

9. If Zi is not 3-separating, do the following:

(i) If Zi − fcl(Z+
i ) is 3-separating, set

τi =
(
τi+1(Z−i ), [(Zi − fcl(Z+

i ))], Zi ∩ fcl(Z+
i ), τi+1(Z+

i )
)

and return to Step 7.

(ii) Otherwise, set τi to be τi+1 and return to Step 7.

10. (i) If X0 is empty and τ2 = (Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)], . . .), find a 3-
separation (U, V ) for which U contains P1 and an element u of Z1 such
that u 6∈ fcl(P1), and V contains E− (Z1∪P1) and an element v of Z1−u
such that v 6∈ fcl(E − (Z1 ∪ P1)), and do the following:

(a) If there is such a 3-separation, set τ1 to be(
Z1 ∩ V, [(Z1 ∩ U,P1, . . . , Pp), (Q1, . . . , Qq)], τ2([(P1, . . . , Pp), (Q1, . . . , Qq)]+)

)
and output τ1.

(b) Otherwise, output τ2.

(ii) Otherwise, output τ2.

2

As an example to illustrate the key ideas in 3-Tree, consider the matroid M ,
and the 3-tree for M shown in Fig. 3. Let (X,Y, Z) = (X1∪X2∪X3, Y1∪Y2∪Y3, Z1∪
Z2∪Z3). Suppose that 3-Tree is applied to M . If (V2∪V3∪V4, V1∪L∪X∪Y ∪Z)
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Figure 4. The path realization T1.

is the 3-separation found in Step 3 in 3-Tree, then a possible 3-path outputted by
the first call to ForwardSweep is

(V2 ∪ V3, V4, V1 ∪ L,X,Z, Y1, Y2 ∪ Y3).

Observe that the 3-path is left-justified and maximal. With this 3-path, a pos-
sible generalized 3-path outputted by the immediate subsequent call to Back-
wardSweep is

(V3, [(V2, V1), (V4)], L, [(X,Z)], [(Y1, Y2)], Y3).

Comparing the 3-path and the generalized 3-path, both V2∪V3 and Y2∪Y3 are split
parts. The splitting of Y2 ∪ Y3 and V2 ∪ V3 is the result of end moves performed in
Steps 5 and 10 in BackwardSweep, respectively. The path realization T1 of this
generalized 3-path, produced in Step 3(ii)c in 3-Tree, is shown in Fig. 4, where
we note that X and Z are petals of an anemone. The algorithm now starts to
repeatedly apply Steps 4 and 5 in 3-Tree.

Since all bag vertices in T1 are unmarked, Step 5 in 3-Tree selects a bag vertex
and, depending upon whether it is a non-terminal or terminal bag, attempts to find
a particular type of 3-separation. If there is no such 3-separation, such as when
one of the bag vertices labelled V1, V2, V3, V4, L, Y1, Y2, or Y3 is selected, the
bag vertex is marked at Step 5i in 3-Tree. On the other hand, if there is such
a 3-separation, such as when one of the bag vertices labelled X or Z is selected,
then Step 5ii is invoked and 3-Tree calls ForwardSweep, BackwardSweep,
and then updates the current π-labelled tree. For example, assume the bag vertex
labelled X is selected before the bag vertex labelled Z. When this happens, Step 5
in 3-Tree finds an appropriate 3-separation and then calls ForwardSweep using
this 3-separation. The subroutine BackwardSweep is subsequently called and a
possible generalized 3-path outputted by this call is

(E −X, [(X1, X2)], X3).

A path realization of this generalized 3-path is then merged with the current π-
labelled tree, in this case T1, in Step 5(ii)c in 3-Tree to produce the π-labelled
tree T2 shown in Fig. 5. This process continues until all bag vertices are marked.
The 3-tree finally outputted by this application of 3-Tree is shown in Fig. 3.
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Figure 5. The π-labelled tree T2.

6. Correctness of the Algorithm and the Proof of Theorem 2.2

Let M be a 3-connected matroid with ground set E, where |E| ≥ 9, and let T
be the π-labelled tree outputted by 3-Tree when applied to M . In this section,
we prove that T is a 3-tree for M and that this application takes time polynomial
in |E|.

We begin with several lemmas, the first of which specifies the type of ordered
partition outputted by ForwardSweep.

Lemma 6.1. Let (X0∪X1, X2) be a 3-path in M with X0∪X1 fully closed and let F
be the set of maximal sequential 3-separating sets of M . Let (X0∪X ′1, X ′2, . . . , X ′m)
be the output of ForwardSweep when applied to (M, (X0 ∪ X1, X2),F). Then
(X0 ∪X ′1, X ′2, . . . , X ′m) is a left-justified maximal X0-rooted 3-path of M .

Proof. By construction, (X0 ∪X ′1, X ′2, . . . , X ′m) is a left-justified X0-rooted 3-path.
Thus if the lemma fails, then there is a partition (Yj , Zj) of X ′j for some j in [m]
such that (X0 ∪ X ′1 ∪ · · · ∪ X ′j−1 ∪ Yj , Zj ∪ X ′j+1 ∪ · · · ∪ X ′m) is a non-sequential
3-separation of M . We need to show that this 3-separation is equivalent to (X0 ∪
X ′1 ∪ · · · ∪X ′j−1, X

′
j ∪ · · · ∪X ′m) or (X0 ∪X ′1 ∪ · · · ∪X ′j , X ′j+1 ∪ · · · ∪X ′m).

If j = m, then the result follows immediately from Step 3 of ForwardSweep.
Now assume that j < m.

Suppose X0 = ∅ and j = 1. Then, because (X0 ∪ Y1, Z1 ∪ X ′2 ∪ · · · ∪ X ′m) is
a non-sequential 3-separation of M , there is a 3-element subset {y1, y2, y3} of Y1

that is not contained in any member of F , and Z1 ∪X ′2 ∪ · · · ∪X ′m clearly contains
X ′2 ∪ · · · ∪X ′m. Step 2i of ForwardSweep implies that every element of Z1 is in
fcl(X ′2∪· · ·∪X ′m) otherwise Step 2(i)b will further refine the 3-path; a contradiction.
Hence every element of Z1 is in fcl(Y1) and (X0∪Y1, Z1∪X ′2∪· · ·∪X ′m) is equivalent
to (X0 ∪X ′1, X ′2 ∪ · · · ∪X ′m), as required.
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We may now assume that either X0 6= ∅ or j ≥ 2. Then, to prevent
Steps 2(ii)b and 2(iii)b of ForwardSweep from further refining the 3-path, ei-
ther every element of Yj is in fcl(X0 ∪X ′1 ∪ · · · ∪X ′j−1) or every element of Zj is in
fcl(X ′j+1∪· · ·∪X ′m). Hence (X0∪X ′1∪· · ·∪X ′j−1∪Yj , Zj∪X ′j+1∪· · ·∪X ′m) is equiv-
alent to (X0∪X ′1∪· · ·∪X ′j−1, X

′
j∪· · ·∪X ′m) or (X0∪X ′1∪· · ·∪X ′j , X ′j+1∪· · ·∪X ′m),

as required. �

In the rest of this section, we freely use Lemma 6.1.

Lemma 6.2. Let i ≥ 0, and let Ti and Ti+1 be π-labelled trees constructed by 3-
Tree in Steps 3(ii)c and 5(ii)c. Suppose that Ti is a conforming tree for M , and
Ti+1 satisfies (I)-(IV) but is not a conforming tree for M . Let (X0∪X ′1, X ′2, . . . , X ′m)
be the 3-path outputted when ForwardSweep is applied in Step 3(ii)(a) or Step
5(ii)(a) of 3-Tree depending on whether i = 0 or i is positive. Let (R,G) be a
non-sequential 3-separation in M that does not conform with Ti+1 for which X0 is
monochromatic and no equivalent 3-separation in which X0 is monochromatic has
fewer bichromatic parts in (X0∪X ′1, X ′2, . . . , X ′m). Then X0∪X ′1 is monochromatic
unless i = 0. In the exceptional case, either X ′1 is monochromatic, or both R ∩X ′1
and G ∩X ′1 are sequential 3-separating sets with |R ∩X ′1|, |G ∩X ′1| ≥ 2.

Proof. Assume that X0 ∪ X ′1 is bichromatic. First suppose that i ≥ 1. Then
X0 is non-empty. Then, as X0 is monochromatic, we may assume that X0 ⊆ G.
Furthermore, as (R,G) does not conform with Ti+1, we have |R∩(X ′2∪· · ·∪X ′m)| ≥
1. Since X0∪X ′1 is bichromatic, it follows by Lemma 3.9 that |R∩(X ′2∪· · ·∪X ′m)| ≥
2.

Since G and X0 ∪ X ′1 are both 3-separating and |R ∩ (X ′2 ∪ · · · ∪ X ′m)| ≥ 2,
it follows by uncrossing that G ∩ (X0 ∪ X ′1), which equals X0 ∪ (G ∩ X ′1), is 3-
separating. Therefore (X0 ∪ (G ∩X ′1), (R ∩X ′1) ∪X ′2 ∪ · · · ∪X ′m) is a 3-separation
in M . If this 3-separation is non-sequential, then, by Lemma 6.1, it is equivalent
to (X0 ∪X ′1, X ′2 ∪ · · · ∪X ′m) and so R ∩X ′1 ⊆ fcl(G). In this case, we recolour all
the elements in R ∩X ′1 green thereby reducing the number of bichromatic parts; a
contradiction. Therefore either X0∪(G∩X ′1) or (R∩X ′1)∪X ′2 · · ·∪X ′m is sequential.
By Lemma 3.3, the last set is not sequential as X ′2∪X ′3∪· · ·∪X ′m is non-sequential.
Thus X0 ∪ (G ∩X ′1) is sequential. But, as i ≥ 1, the set X0 contains at least one
non-sequential 3-separation, contradicting Lemma 3.3.

Now suppose that i = 0. ThenX0 is empty. IfR∩X ′1 = {z}, then |R∩(E−X ′1)| ≥
2 and so, as G and X ′1 are both 3-separating, by uncrossing, G∩X ′1 is 3-separating.
Therefore, as X ′1 is 3-separating, it follows by Lemma 3.1 that z ∈ cl(∗)(G ∩X ′1).
Thus we can recolour z green thereby reducing the number of bichromatic parts; a
contradiction. Hence |R∩X ′1| ≥ 2 and, by symmetry, |G∩X ′1| ≥ 2. If R∩ (E−X ′1)
is empty, then, as (X0 ∪ X ′1, X ′2, . . . , X ′m) is a maximal X0-rooted 3-path, (R,G)
is equivalent to (X ′1, E −X ′1). Hence G ∩X ′1 ⊆ fcl(R) and so we can recolour the
elements in G∩X ′1 red, reducing the number of bichromatic parts; a contradiction.
Thus |R ∩ (E − X ′1)| ≥ 1 and so, by Lemma 3.9, |R ∩ (E − X ′1)| ≥ 2. Similarly,
|G∩ (E−X ′1)| ≥ 2. It now follows by uncrossing that both G∩X ′1 and R∩X ′2 are
3-separating.
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Consider the 3-separation (G ∩ X ′1, E − (G ∩ X ′1)). If this 3-separation is non-
sequential, then, by Lemma 6.1, it is equivalent to (X ′1, E −X ′1) and so R ∩X ′1 ⊆
fcl(G∩X ′1) ⊆ fcl(G). Thus we can recolour all the elements in R∩X ′1 green thereby
reducing the number of bichromatic parts; a contradiction. Hence either G ∩ X ′1
or E − (G ∩ X ′1) is sequential. As E − (G ∩ X ′1) contains the non-sequential set
X ′2∪X ′3∪· · ·∪X ′m, it follows by Lemma 3.3 that G∩X ′1 is sequential. By symmetry,
R ∩X ′1 is sequential, and the lemma follows. �

Lemma 6.3. The π-labelled tree T outputted by 3-Tree is a conforming tree for
M . Furthermore, if v is a flower vertex of T , then the flower corresponding to v is
tight.

Proof. Let E denote the ground set of M . We prove the lemma by showing that
each of the π-labelled trees Tp constructed in Steps 3(ii)c and 5(ii)c in 3-Tree is
a conforming tree for M in which the flower corresponding to each flower vertex is
tight. Since T0 consists of a single bag vertex labelled E, the result trivially holds
if p = 0. Now suppose that Tp is a conforming tree for M with the property that if
v is a flower vertex of Tp, then the flower corresponding to v is tight. We will show
that Tp+1 is a conforming tree for M with this additional property on its flower
vertices.

It follows by induction, Lemma 6.1, and the construction in BackwardSweep
that Tp+1 satisfies (I) in the definition of a conforming tree. Furthermore, Tp+1

trivially satisfies (II) in this definition. To see that (III) and (IV) holds for Tp+1,
let Φ = (Q1, Q2, . . . , Qk) be a flower in M corresponding to a flower vertex v in the
path realization of the generalized 3-path outputted by BackwardSweep in the
construction of Tp+1 from Tp. By induction, to show that (III) and (IV) holds for
Tp+1, it suffices to show that v satisfies either (III) or (IV) depending upon whether
it is labelled A or D, respectively. Without loss of generality, we may assume that,
relative to this generalized 3-path, Q1 is the entry petal. By construction, each
petal of Φ is 3-separating and, apart from at most one of Q1 ∪ Q2 and Q1 ∪ Qk,
each pair of consecutive petals is 3-separating. Thus, by symmetry, it suffices to
check that Q1∪Q2 is 3-separating. This check is done by induction by showing, for
all i in {3, 4, . . . , k}, that Q3 ∪Q4 ∪ · · · ∪Qi is 3-separating. In particular, this will
show that Q3∪Q4∪· · ·∪Qk is 3-separating, and so Q1∪Q2 is 3-separating. Clearly,
Q3 and Q3 ∪Q4 are 3-separating. Now let i ≥ 5 and assume that the check holds
for i− 1. Then Q3 ∪Q4 ∪ · · · ∪Qi−1 and Qi−1 ∪Qi are 3-separating. Therefore, as
their intersection contains at least two elements, it follows by uncrossing that their
union Q3 ∪Q4 ∪ · · · ∪Qi is 3-separating, and we get the desired result.

To complete the proof that Tp+1 is a conforming tree for M , suppose there is
a non-sequential 3-separation (R′, G′) that does not conform with Tp+1. Because
this 3-separation does conform with Tp, it is equivalent to a 3-separation (R,G)
such that R or G is contained in a bag of Tp. Only one bag of Tp is affected in the
construction of Tp+1, so we may assume that R or G is contained in this bag B. As
X0 = E − π(B), which may be empty, we deduce that, with respect to (R,G), the
set X0 is monochromatic. Thus (R,G) is a non-sequential 3-separation that does
not conform with Tp+1 and has X0 monochromatic. From among the collection of
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choices for (R,G) satisfying these conditions, choose one such that no equivalent 3-
separation in which X0 is monochromatic has fewer bichromatic parts with respect
to the left-justified maximal X0-rooted 3-path (X0 ∪ Z1, Z2, . . . , Zm) outputted by
ForwardSweep during the construction of Tp+1 from Tp. By Lemma 6.2, we may
further assume that if p ≥ 1, then X0∪Z1 is monochromatic and, if p = 0, in which
case X0 is empty, either Z1 is monochromatic, or |R ∩ Z1|, |G ∩ Z1| ≥ 2 and each
of R ∩ Z1 and G ∩ Z1 is a sequential 3-separating set.

First suppose that X0 ∪ Z1 is monochromatic. Without loss of generality, we
may assume that X0 ∪Z1 ⊆ G. Let b be the number of bichromatic parts amongst
Z2, . . . , Zm. Assume b ≥ 2 and let Zi be the bichromatic part with smallest sub-
script. If Z−i ∩R is non-empty, then, by Lemmas 3.8 and 3.9, Zi is monochromatic;
a contradiction. Therefore Z−i ⊆ G. But then, by Lemma 3.11, Z+

i is monochro-
matic; a contradiction as there is a bichromatic part Zj with j > i. Thus b ∈ {0, 1}.

Assume b = 1 and Zi is bichromatic. We first consider i 6= m. If Z+
i is not

monochromatic, then, by Lemma 3.11, Z−i is not monochromatic. Therefore, by
Lemma 3.9, |R∩Z−i |, |G∩Z

−
i |, |R∩Z

+
i |, |G∩Z

+
i | ≥ 2. But then, by Lemma 3.8, Zi is

monochromatic; a contradiction. Thus we may assume that Z+
i is monochromatic.

We next eliminate a special case. Say Z−i , Z
+
i ⊆ G. Then R ⊆ Zi. The only

steps in BackwardSweep that do not leave Zi intact are Steps 6i (if i = m− 1)
and 9i. As (R,G) does not conform with Tp+1, we may assume that one of these is
invoked. Then both R∩(Zi−fcl(Z+

i )) and R∩(Zi∩fcl(Z+
i )) are non-empty. But, as

R∩ (Zi ∩ fcl(Z+
i )) ⊆ fcl(Z+

i ), it follows that R∩ (Zi ∩ fcl(Z+
i )) ⊆ fcl(G). Therefore

we can recolour all the elements in R ∩ (Zi ∩ fcl(Z+
i )) green thereby obtaining an

equivalent 3-separation in which all the red elements are all in Zi− fcl(Z+
i ), a single

bag of Tp+1. It now follows that if Z+
i ⊆ G, then Z−i ∩R is non-empty.

Consider the case when Z+
i ⊆ R. If Z−i ⊆ G, then, by Lemma 3.11, Z+

i ⊆ G; a
contradiction. Therefore Z−i ∩R 6= ∅ and so, by Lemma 3.9, |Z−i ∩R| ≥ 2. Now, by
Lemma 3.15, R ∩ Zi ⊆ fcl(Z+

i ). Furthermore, by recolouring if necessary, we may
assume that R∩Zi = Zi∩ fcl(Z+

i ). Since Zi∪Z+
i and G are both 3-separating, and

since |Z−i ∩R| ≥ 2, it follows by uncrossing that G∩Zi is 3-separating. Furthermore,
by Lemma 3.10, Zi is not 3-separating. Therefore the generalized 3-path τi at the
end of the iteration of BackwardSweep in which Zi is considered is

τi =
(
X0 ∪ Z1, Z2, . . . , Zi−1, [(Zi − fcl(Z+

i ))], Zi ∩ fcl(Z+
i ), τi+1(Z+

i )
)
.

Now Zi − fcl(Z+
i ) ⊆ G and (Zi ∩ fcl(Z+

i )) ∪ Z+
i ⊆ R. Let h be the smallest index

for which Z−h ⊆ G, but Zh ⊆ R. Since X0 ∪ Z1 ⊆ G and |R ∩ Z−i | ≥ 2, we have
2 ≤ h ≤ i−1. By applying Lemma 3.12 to the 3-path (Z−h , Zh, Zh+1, . . . , Zi−1, Zi−
fcl(Z+

i ), (Zi ∩ fcl(Z+
i ))∪Z+

i ), we deduce that M has a flower in which the parts of
the 3-path are petals of a flower. It now follows by Lemma 3.12 and the construction
in BackwardSweep that Tp+1 displays (R,G), and so (R,G) conforms with Tp+1.
This contradiction implies that we may assume Z+

i ⊆ G.

The case when Z+
i ⊆ G is handled similarly to that when Z+

i ⊆ R. Note that
Z−i ∩R is non-empty as a result of the consideration of the above special case.
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Now suppose that i = m. If Z−m is monochromatic, that is, Z−m ⊆ G, then either
(X0 ∪ Z1, Z2, . . . , Zm) is not left-justified or it is not maximal; a contradiction.
Therefore Z−m is not monochromatic, and so m ≥ 3. Furthermore, as |G ∩ Z−m| ≥ 2
and both Zm and R are 3-separating, uncrossing implies that R∩Zm is 3-separating.
Therefore if |G ∩ Zm| = 1, then Zm ⊆ fcl(R ∩ Zm) by Lemma 3.1, and so we can
recolour the element of G ∩ Zm red to obtain a 3-separation equivalent to (R,G)
with fewer bichromatic parts; a contradiction. Thus |G ∩ Zm| ≥ 2. A similar
argument shows that |R ∩ Zm| ≥ 2.

We show next that Zm−1 is 3-separating. Say Zm−1 ⊆ R. Then, as R and
Zm−1∪Zm are both 3-separating and |G∩Z−m−1| ≥ 2, it follows that R∩(Zm−1∪Zm)
is 3-separating. Therefore, as Z−m is 3-separating and |G ∩ Zm| ≥ 2, it follows
by uncrossing again that Zm−1 is 3-separating. Using the fact that Z−m is not
monochromatic, the same argument shows that if Zm−1 ⊆ G, then Zm−1 is 3-
separating. Thus Step 5 in BackwardSweep is invoked. Furthermore, as Zm−1 ∪
(R ∩ Zm) is a non-sequential 3-separating set if Zm−1 ⊆ R and, similarly, Zm−1 ∪
(G ∩ Zm) is a non-sequential 3-separating set if Zm−1 ⊆ G, it follows that Step 5
finds a 3-separation (U, V ) as described in that step. By Lemma 3.14, R ∩Zm and
G∩Zm are sequential 3-separating sets. Hence, by Lemma 3.13, we may assume, by
recolouring if necessary, that both U ∩ Zm and V ∩ Zm are monochromatic. Let h
denote the smallest index for which Z−h ⊆ G, but Zh ⊆ R. Then, by Lemma 3.12,
M has a flower with petals Z−h , Zh, Zh+1, . . . , Zm−1, U ∩ Zm, V ∩ Zm. Thus, by
Lemma 3.12 and the construction in BackwardSweep, Tp+1 displays (R,G), and
so (R,G) conforms with Tp+1; a contradiction.

Now assume b = 0. Let h denote the smallest index for which Z−h ⊆ G, but
Zh ⊆ R. Say Zh ∪ Z+

h is not monochromatic. Let h′ denote the largest index
for which Zh′ ∪ Z+

h′ is not monochromatic, but Z+
h′ is monochromatic. Note that

h′ ≥ h. Then it follows by Lemma 3.12 that each of the sets Zh, Zh+1, . . . , Zh′ is
3-separating and so, by the construction in BackwardSweep and Lemma 3.12,
Tp+1 displays (R,G) as the petals of a flower; a contradiction. Now say Zh ∪ Z+

h

is monochromatic. It follows from the construction in BackwardSweep that the
only way in which (R,G) does not conform with Tp+1 is when h ≥ 3 and Step 9i of
BackwardSweep is invoked when Zh−1 is considered. But then we can recolour
all the elements in Zh−1∩fcl(Zh∪Z+

h ) red giving a 3-separation equivalent to (R,G),
thereby resulting in Tp+1 displaying (R,G); a contradiction. This completes the
analysis for when X0 ∪ Z1 is monochromatic.

Suppose that p = 0 and Z1 is bichromatic. Recall that X0 is empty and that
|R∩Z1|, |G∩Z1| ≥ 2 and each of R∩Z1 and G∩Z1 is a sequential 3-separating set.
Let b denote the number of bichromatic parts amongst Z1, . . . , Zm. By Lemmas 3.8
and 3.9, b ∈ {1, 2}. First assume that b = 2, and let Zi denote the bichromatic
part with i > 1. Say i 6= m. By Lemmas 3.8 and 3.9, Z+

i is monochromatic.
Without loss of generality, we may assume that Z+

i ⊆ R. By Lemma 3.10, Zi is
not 3-separating. Furthermore, by Lemma 3.15, R ∩ Zi ⊆ fcl(Z+

i ). By recolouring
if necessary and moving to a 3-separation equivalent to (R,G), we may assume
that R ∩ Zi = Zi ∩ fcl(Z+

i ). Since |R ∩ Z−i | ≥ 2 and since both G and Zi ∪ Z+
i

are 3-separating, it follows by uncrossing that G ∩ Zi, which equals Zi − fcl(Z+
i ),
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is 3-separating. Thus, by the construction in BackwardSweep, the generalized
3-path τi at the end of the iteration in which Zi is considered is

τi =
(
Z1, Z2, . . . , Zi−1, [(Zi − fcl(Z+

i ))], Zi ∩ fcl(Z+
i ), τi+1(Z+

i )
)
.

Now Zi − fcl(Z+
i ) ⊆ G and (Zi ∩ fcl(Z+

i )) ∪ Z+
i ⊆ R and so, by Lemma 3.12, M

has a flower with petals Z1, Z2, . . . , Zi−1, Zi− fcl(Z+
i ), (Zi ∩ fcl(Z+

i ))∪Z+
i . By the

construction in BackwardSweep and Lemma 3.12, τ2 is eventually constructed
and is of the form

τ2 = (Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)], (Zi ∩ fcl(Z+
i )) ∪ Z+

i ),

where {P1, . . . , Pp, Q1, . . . , Qq} = {Z2, . . . , Zi−1, Zi − fcl(Z+
i )}. Thus Step 10i is

invoked. As the second petal on the last list is monochromatic, it follows by un-
crossing that Step 10i finds a 3-separation (U, V ) as described in that step. By
Lemma 3.13, we may assume that both U ∩ Z1 and V ∩ Z1 are monochromatic.
Thus, by Lemma 3.12 again, it follows that M has a flower with petals

V ∩ Z1, U ∩ Z1, Z2, . . . , Zi−1, Zi − fcl(Z+
i ), (Zi ∩ fcl(Z+

i )) ∪ Z+
i .

Therefore, by Lemma 3.12 and construction, (R,G) is displayed by Tp+1; a contra-
diction.

Now say i = m. Since |G ∩ Z1| ≥ 2 and both R and Zm are 3-separating, it
follows by uncrossing that R ∩Zm is 3-separating. Therefore if |G∩Zm| = 1, then
Zm ⊆ fcl(R∩Zm) by Lemma 3.1. Thus we can recolour the single green element in
Zm red thereby obtaining an equivalent 3-separation with fewer bichromatic parts;
a contradiction. Hence |G ∩ Zm| ≥ 2 and, by symmetry, |R ∩ Zm| ≥ 2.

There are two cases depending upon whether m = 2 or m ≥ 3. If m ≥ 3, then,
without loss of generality, we may assume that Zm−1 ⊆ R. Since |G ∩ Z1| ≥ 2
and since R and Zm−1 ∪ Zm are both 3-separating, it follows by uncrossing that
R∩(Zm−1∪Zm) is 3-separating. Therefore, as Z−m is 3-separating and |G∩Zm| ≥ 2,
an application of uncrossing implies that Zm−1 is 3-separating. Thus Step 5 of
BackwardSweep is invoked. Since Zm−1 ∪ (R ∩ Zm) is a 3-separating set, it
follows that Step 5 of BackwardSweep finds a 3-separation (U, V ) as described
in that step. By Lemma 3.14, R∩Zm and G∩Zm are sequential 3-separating sets.
Therefore, by Lemma 3.13, we can recolour some elements of Zm if necessary to get
an equivalent 3-separation in which both U ∩Zm and V ∩Zm are monochromatic.
Lemma 3.12 now implies that M has a flower with petals Z1, Z2, . . . , Zm−1, U ∩
Zm, V ∩ Zm. By the construction in BackwardSweep and Lemma 3.12, τ2 is
eventually constructed and is of the form

τ2 = (Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)],W ∩ Zm),

where {P1, . . . , Pp, Q1, . . . , Qq,W ∩ Zm} = {Z2, . . . , Zm−1, U ∩ Zm, V ∩ Zm} and
W ∈ {U, V }. Thus Step 10i is invoked. As Z2 is monochromatic, it follows by
uncrossing that Step 10i finds a 3-separation (U ′, V ′) as described in that step.
By Lemma 3.13, we may assume that U ′ ∩ Z1 and V ′ ∩ Z1 are monochromatic.
Therefore, by Lemma 3.12, it follows that M has a flower with petals

V ′ ∩ Z1, U
′ ∩ Z1, Z2, . . . , Zm−1, U ∩ Zm, V ∩ Zm.
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Thus, by Lemma 3.12 and construction, (R,G) is displayed by Tp+1; a contradiction.
A similar analysis holds when m = 2, where we invoke Step 2 instead of Steps 5
and 10 in BackwardSweep.

Now assume that b = 1. Then Z1 is the only bichromatic part. Since R ∩ Z1

and G ∩ Z1 are sequential 3-separating sets, Z+
1 is not monochromatic. So m ≥ 3.

Let h denote the largest index for which Zh ∪Z+
h is not monochromatic, but Z+

h is
monochromatic. By Lemma 3.12, M has a flower with petals Z1, Z2, . . . , Zh, Z

+
h .

Therefore, by the construction and Lemma 3.12, τ2 is eventually constructed and
is of the form

τ2 = (Z1, [(P1, . . . , Pp), (Q1, . . . , Qq)], Z+
h ),

where {P1, . . . , Pp, Q1, . . . , Qq} = {Z2, . . . , Zh}. Thus Step 10i is invoked. Since
Z2 is monochromatic, it follows by uncrossing that Step 10i finds a 3-separation
(U, V ) as described in that step. By Lemma 3.13, we may assume that U ∩Z1 and
V ∩ Z1 are monochromatic. Thus, by Lemma 3.12, M has a flower with petals
V ∩ Z1, U ∩ Z1, Z2, . . . , Zh, Z

+
h . Thus, by Lemma 3.12 and construction, Tp+1

displays (R,G); a contradiction. We conclude that Tp+1 is a conforming tree for
M .

We next show that if v is a flower vertex of Tp+1, then the flower corresponding
to v is tight. By induction, Tp has this property on its flower vertices. Therefore, by
construction, it suffices to only consider the flower vertices on the path realization,
Pp+1 say, of the generalized 3-path outputted by BackwardSweep in Step 5
of 3-Tree in the construction of Tp+1 from Tp. Let (X0 ∪ X1, X2, . . . , Xm) be
the left-justified maximal X0-rooted 3-path outputted by ForwardSweep in the
construction of Tp+1 from Tp of 3-Tree. Let v be a flower vertex of Pp+1 and
suppose that Φ, the flower corresponding to v, is not tight. By definition, we may
assume that v has degree at least three. For clarity, we will assume that Step 9i
in BackwardSweep is not invoked in the construction of Φ. The straightforward
extension of the proof below to include the case when this step is invoked is omitted.

It follows from the description of BackwardSweep that if no end moves are
performed, then, for some i and j with 1 ≤ i ≤ j ≤ m, the sets X−i and X+

j are
the entry and exit petals of Φ, respectively, and {Xi, Xi+1, . . . , Xj} is the union of
the sets of clockwise and anticlockwise petals of Φ. If end moves are performed,
then either X−i ∪Xi = X0 ∪X1, or Xj ∪X+

j = Xm. Ignoring the possibility of end
moves for now, if X−i is loose, then X−i ⊆ fcl(Xi ∪X+

i ), and so (X−i , Xi ∪X+
i ) is

sequential; a contradiction. Similarly, we get a contradiction if X+
j is loose. Now

assume that, for some i ≤ s ≤ j, the petal Xs is loose. Without loss of generality,
we may assume that Xs−1 is tight where, if s = i, we take Xs−1 to be X−i . By
Lemma 3.6, Xs ⊆ fcl(Xs−1) and so Xs ⊆ fcl(X−s ). But then (X−s , Xs ∪ X+

s ) is
equivalent to (X−s ∪Xs, X

+
s ), contradicting that (X0∪X1, X2, . . . , Xm) is a 3-path.

Now consider the possibility of end moves. If X−i ∪Xi = X0 ∪X1, then Step 10i
of BackwardSweep is invoked, in which case, X−i and Xi are both sequential.
Say X−i is loose. By concatenating the petals Xi+1, . . . , Xm into a single petal,
Xi+1∪· · ·∪Xm is a tight petal in the resulting flower, whileX−i remains loose. Thus,
by Lemma 3.6, X−i ⊆ fcl(Xi+1 ∪ · · · ∪Xm). Therefore, by Lemma 3.7, there is an
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ordering x1, x2, . . . , xl of the elements of X−i such that (Xi, xl, xl−1, . . . , x1, Xi+1 ∪
· · ·∪Xm) is a 3-sequence in M . But Xi is sequential and it follows that X−i ∪Xi =
X0 ∪ X1 is sequential; a contradiction. Hence X−i is tight and, similarly, Xi is
tight. The case Xj ∪X+

j = Xm is handled analogously. We conclude that if v is a
flower vertex of Tp+1, then the flower corresponding to v is tight. This completes
the proof of the lemma. �

It follows by Lemma 6.3 that T is a conforming tree for M . The following is
a straightforward consequence of the way in which flowers are constructed in the
algorithm.

Lemma 6.4. The conforming tree T for M outputted by 3-Tree has the prop-
erty that every flower corresponding to a flower vertex in T displays at least two
inequivalent non-sequential 3-separations.

Proof. First note that, by construction, all flower vertices in T have degree at least
three. Now, except when we invoke an end move, every flower that is constructed
in the algorithm has an entry petal and an exit petal and these correspond to in-
equivalent non-sequential 3-separations. When an end move is invoked, we already
have one non-sequential 3-separation and it is easily checked that there is a second
inequivalent one (U, V ) with the split part, or parts in the case m = 2, having
non-empty intersection with U and V . �

Lemma 6.5. The conforming tree T for M outputted by 3-Tree has the property
that every flower corresponding to a flower vertex in T is a tight maximal flower.

Proof. Let Φ be a flower corresponding to a flower vertex in T . By Lemma 6.3, Φ is
tight. Assume that Φ is not maximal. Then there is a tight maximal flower Φm that
displays, up to equivalence, all non-sequential 3-separations that are displayed by
Φ as well as at least one non-sequential 3-separation (R,G) that, up to equivalence,
is not displayed by Φ. In particular:

6.5.1. For every union U of petals of Φ such that (U,E − U) is a non-sequential
3-separation in M , there is a union U ′ of petals of Φm such that (U,E − U) ∼=
(U ′, E − U ′).

We may assume that Φm = (Q1, Q2, . . . , Qn) and that R = Q1∪Q2∪· · ·∪Qk for
some k ≤ n−1. As (R,G) is not displayed by Φ, an equivalent 3-separation (R′, G′)
must conform with T . Hence we may assume that R′ is properly contained in some
petal P of Φ. Then, by Lemma 3.3, P is non-sequential. If E − P is sequential,
then it follows by Lemma 3.3 that Φ displays no non-sequential 3-separations; a
contradiction. Hence (P,E−P ) is non-sequential and Φm displays an equivalent 3-
separation (P ′, E−P ′). Thus (P ′, E−P ′) = (∪i∈IQi,∪j∈[n]−IQj) for some subset
I of [n]. Suppose |[n] − I| = 1. By Lemma 6.4, Φ displays a non-sequential 3-
separation (O,E−O) that is not equivalent to (P,E−P ). As P is a petal of Φ, we
must have that fcl(P ) is a proper subset of fcl(O) or fcl(E−O). Some 3-separation
(O′, E − O′) equivalent to (O,E − O) is displayed by Φm. Since Φm has only one
petal outside of P ′, (6.5.1) implies that O′ or E − O′ is contained in P ′. Hence
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fcl(P ′) contains fcl(O′) or fcl(E − O′), so fcl(P ) contains fcl(O) or fcl(E − O); a
contradiction. Thus |[n]− I| ≥ 2.

Since fcl(R) = fcl(Q1 ∪ Q2 ∪ · · · ∪ Qk) = fcl(R′) ⊆ fcl(P ′) = fcl(∪i∈IQi) and
Φm is a tight flower, it follows that [k] ⊆ I. Moreover, I must contain at least
one element not in [k] since no 3-separation equivalent to (R,G) is displayed by Φ.
Thus we may assume that I = {n− s+ 1, . . . , n, 1, 2, . . . , k, k + 1, . . . , k + t} where
s > 0 and k+ t ≤ n− s−2. Now let Q = Q1∪Q2∪ · · ·∪Qk+t+1. This is a union of
consecutive petals of Φm that contains at least two petals and avoids at least two
petals. Hence, by Lemma 3.4(ii) (Q,E −Q) is a non-sequential 3-separation in M .
Thus (Q,E−Q) is equivalent to a 3-separation (Q′, E−Q′) that conforms with T .
Hence either

(i) (Q′, E −Q′) is displayed by Φ; or
(ii) Q′ or E −Q′ is contained in a petal of Φ.

Let Φ = (P1, P2, . . . , Pm). Recall that fcl(P ) = fcl(P ′) = fcl(∪i∈IQi) where
I = {n − s + 1, . . . , n, 1, 2, . . . , k + t}. Suppose first that (i) holds. Then we may
assume that Q′ = ∪i∈KPi for some proper subset K of [m]. Now fcl(E − Q′) =
fcl(Qk+t+2∪· · ·∪Qn) so fcl(E−Q′) does not containQ1; otherwise, by Lemma 3.4(i),
Q1 is loose. But Q1 ⊆ fcl(P ) so P ∈ {Pi : i ∈ K}. Then Qn ⊆ fcl(P ) ⊆
fcl(∪i∈KPi) = fcl(Q′) = fcl(Q1 ∪ Q2 ∪ · · · ∪ Qk+t+1). It follows by Lemma 3.4(i)
that Qn is loose; a contradiction. We deduce that (i) does not hold so (ii) holds.

Assume that Q′ ⊆ P1. Then Qk+t+1 ⊆ fcl(Q′) ⊆ fcl(P1). But Qk+t+1 6⊆ fcl(P ),
otherwise, by Lemma 3.4(i), Qk+t+1 is loose. So P 6= P1. Now, as Q′ ⊆ P1 and
R′ ⊆ P ⊆ E − P1, it follows by Lemma 3.3 that (P1, E − P1) is non-sequential.
Thus, by (6.5.1), there is a union ∪j∈JQj of petals of Φm such that (P1, E −
P1) ∼= (∪j∈JQj ,∪j∈[n]−JQj). Now Q1 ⊆ fcl(Q′) ⊆ fcl(P1) = fcl(∪j∈JQj) and
Q1 ⊆ fcl(P ) ⊆ (E − P1) ⊆ fcl(∪j∈[n]−JQj). Thus we have a contradiction to
Corollary 3.5.

We may now assume that E−Q′ ⊆ P1. Suppose first that P 6= P1. Then P ⊆ Q′,
so Qn ⊆ fcl(P ) ⊆ fcl(Q1∪Q2∪· · ·∪Qk+t+1). Hence, by Lemma 3.4(i), Qn is loose;
a contradiction. We deduce that P = P1. Recall that k + t ≤ n − s − 2. Thus we
have Qk+t+2 ⊆ fcl(E −Q′) ⊆ fcl(P ) = fcl(Qn−s+1 ∪ · · · ∪Qn ∪Q1 ∪ · · ·Qk+t), so,
by Lemma 3.4(i) again, Qk+t+2 is loose; a contradiction. �

Proof of Theorem 2.2. To prove the theorem, we show that 3-Tree is a polynomial-
time algorithm for finding a 3-tree for M . Let T be the tree outputted by an
application of 3-Tree to M . Then every vertex of T is marked. Moreover, by
Lemmas 6.3 and 6.5, T is a partial 3-tree for M . Now T is a 3-tree for M unless
there is a non-sequential 3-separation of M with the property that no equivalent
3-separation is displayed by T . So assume there is such a 3-separation (R,G). Since
T is conforming, we may assume, by taking an equivalent 3-separation if necessary,
that G is contained in a bag B of T . If T consists of the single bag vertex B, then
Step 3 of 3-Tree would have found a non-sequential 3-separation (Y, Z) of M ; a
contradiction. So assume that T consists of at least two vertices. Then Step 5
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of 3-Tree would have found a non-sequential 3-separation (Y,Z) of M with the
property that Z ⊆ π(B), contradicting the fact that B is marked. Hence T is a
3-tree for M .

We next show that 3-Tree runs in polynomial time in the size n of |E(M)|.
We showed in Section 4 that the collection F of maximal sequential 3-separating
sets of M can be constructed in polynomial time in n and that, for fixed dis-
joint subsets Y1 and Z1 of E(M), we can find a 3-separation (Y,Z) with Y1 ⊆ Y
and Z1 ⊆ Z, if one exists, in polynomial time in n. Extending this, we see that
whenever 3-Tree is called upon to find a particular type of 3-separation, it either
finds such a 3-separation or correctly determines that there is no such 3-separation
in time polynomial in n. Therefore, as every 3-path of M has length O(n), it
follows by Lemma 6.1 that each complete call from 3-Tree to ForwardSweep
takes time polynomial in n. Now consider a call from 3-Tree to the subroutine
BackwardSweep. Starting with Zm, each iteration of BackwardSweep con-
siders either a subset Zi of E(M) where i ∈ {2, 3, . . . ,m}, or the subset X0 ∪Z1 of
E(M). In the cases of Zm and X0 ∪Z1, BackwardSweep determines if there is a
3-separation (U, V ) with each of U and V containing certain subsets of E(M). As
above, it follows that the time taken for BackwardSweep to consider each of Zm

and X0∪Z1 is polynomial in n. For each of the subsets Z2, Z3, . . . , Zm−1, it is clear
that their consideration is also polynomial time in n. Note that finding the full
closure of a subset X of E(M) as in Step 9 of BackwardSweep takes time O(n2).
Since m ≤ n, it follows that each complete call from 3-Tree to BackwardSweep
takes time polynomial in n. At the completion of each call to BackwardSweep,
the algorithm 3-Tree extends the current π-labelled tree to a new π-labelled tree
in polynomial time in n. This extension is non-trivial in that at least one new edge
is created. Since the terminal bags of each such constructed π-labelled tree contain
at least two elements of E(M) and there is no empty bag vertex of degree two, the
number of edges of each constructed π-labelled tree is linear in n, and so the total
number of calls to ForwardSweep and BackwardSweep from 3-Tree is O(n).
As marked bags are never reconsidered, we deduce that 3-Tree terminates in time
polynomial in n. This completes the proof of the theorem. �

7. An Alternative Approach

The algorithm implicit in [6] for finding a 3-tree for a 3-connected matroid M
with at least nine elements begins by constructing a tight maximal flower Φ for M
and uses the fact that Φ is a partial 3-tree. This partial 3-tree is then modified to
display more and more of the non-sequential 3-separations of M until eventually a
3-tree is obtained. However, it is not clear how to construct a tight maximal flower
in polynomial time. We can certainly find a non-sequential 3-separation (X,Y )
quickly if one exists. The problem arises with testing in polynomial time whether
(X,Y ) is a tight maximal flower or whether it can be refined. Curiously, once we
have a tight flower with at least three petals, we can modify the techniques used
above to quickly test whether it can be refined and, if so, to find such a refinement.
Furthermore, when (X,Y ) can be refined to a paddle with at least three petals, we
can detect that by finding a 1-separation in one of si(M/X) and si(M/Y ) and this
can be done quickly by using Proposition 4.2. By duality, we can deal with the case
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when (X,Y ) can be refined to a copaddle with at least three petals. What seems
difficult to detect in polynomial time is whether (X,Y ) can be refined to a flower
with at least three petals in which the local connectivity between the petals is one.
Even if this approach could be made to work, it seems more complicated than the
approach we have adopted here although both approaches rely on the same basic
technique for finding 3-separations.

Lastly, Step 3 of 3-Tree locates a non-sequential 3-separation of a 3-connected
matroid M and uses this to begin the construction of a 3-tree for M . If we already
know some 3-separation for M , we can use it as (Y,Z) in this step of the algorithm
and proceed with the rest of the algorithm as stated.
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