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Abstract. In 1963, Halin and Jung proved that every simple graph
with minimum degree at least four has K5 or K2,2,2 as a minor. Mills
and Turner proved an analog of this theorem by showing that every
3-connected binary matroid in which every cocircuit has size at least
four has F7,M

∗(K3,3),M(K5), or M(K2,2,2) as a minor. Generalizing
these results, this paper proves that every simple matroid in which all
cocircuits have at least four elements has as a minor one of nine matroids,
seven of which are well known. All nine of these special matroids have
rank at most five and have at most twelve elements.

1. Introduction

The purpose of this paper is to prove a matroid analog of the following
result of Halin and Jung [6].

Theorem 1.1. Every simple graph with minimum degree at least four has
K5 or K2,2,2 as a minor.

We have followed Bollobás [3, p.373] and Maharry [10, p.96] in attributing
Theorem 1.1 to Halin and Jung. Fijavž and Wood [4, Corollary A.4] give a
short proof of that theorem and briefly discuss its origins.

When G is a 2-connected loopless graph, the set of edges that meet a
fixed vertex of G is a bond of G and a cocircuit of its cycle matroid M(G).
Because of this, it is common in matroid theory to take minimum cocircuit
size as a matroid analog of minimum vertex degree in a graph. Moreover,
the minimum cocircuit size M(G) is precisely the edge connectivity of G.

The next theorem is the main result of the paper. Most of the matroids
appearing in it are familiar. Geometric representations of the rank-3 ma-
troids P7 and O7 are shown in Figure 1. We define H12 to be the 12-element
rank-5 matroid O7 ⊕2 O7 where the basepoint of the 2-sum in each copy of
O7 is the point p denoted in Figure 1. We recall that M∗(K3,3), the bond
matroid of K3,3, is the rank-4 matroid that can be obtained from a twisted
3×3 grid (see [14, p.652]). The matroid Q9, for which a geometric represen-
tation is shown in Figure 2, is a 9-element rank-4 matroid that is obtained
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(a) P7

p

(b) O7

Figure 1. The matroids P7 and O7.

from a twisted 3 × 4 grid by removing the three boxed elements as shown.
It is straightforward to check that this matroid is representable over a field
F if and only if |F| ≥ 3. The matroid Q9 is represented by [I4|A] for the
ternary matrix A in Figure 2. One can also show that this matroid is affine
over GF (3).

Theorem 1.2. Every simple matroid in which every cocircuit has at least
four elements has U2,5, F7, F

−
7 , P7,M

∗(K3,3), Q9,M(K5),M(K2,2,2), or H12

as a minor.

It is straightforward to check that each of the nine matroids listed in this
theorem is a minor-minimal simple matroid in which every cocircuit has size
at least four. As consequences of this theorem, we have the next two results.
The first of these was proved by Mills and Turner [12]. The second is the key
step in the proof of Theorem 1.2 and its proof occupies most of the paper.

Theorem 1.3. Let M be a simple binary matroid in which every cocircuit
has at least four elements. Then M has F7,M

∗(K3,3),M(K5), or M(K2,2,2)
as a minor.

Theorem 1.4. Let M be a simple ternary matroid in which every cocir-
cuit has at least four elements. Then M has F−

7 , P7,M
∗(K3,3), Q9,M(K5),

M(K2,2,2), or H12 as a minor.

A =


1 1 0 1 1
1 0 1 1 1
0 1 0 −1 1
0 0 1 1 −1



Figure 2. The rank-4 ternary affine matroid Q9 and the
matrix A, where [I4|A] is a ternary representation of Q9.
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Recall that K2,2,2 is the octahedron, so its planar dual is the cube. Using
this, we see that the next result is the dual of Theorem 1.2.

Corollary 1.5. Every matroid in which all cocircuits have at least three el-
ements and all circuits have at least four elements has, as a minor, U3,5, F

∗
7 ,

(F−
7 )∗, P ∗

7 , Q
∗
9,M

∗(K5), H
∗
12, or the cycle matroid of the cube or K3,3.

Applying this result to graphs, we immediately obtain the following well-
known result.

Corollary 1.6. Every 3-edge-connected graph with girth at least four has
the cube or K3,3 as a minor.

The study of matroids with many small circuits and cocircuits started
with Tutte [19] when in his Wheels-and-Whirls Theorem, he proved that
the only 3-connected matroids in which every element is in a 3-circuit and
a 3-cocircuit are wheels and whirls. Miller [11] found all the matroids with
at least thirteen elements such that every pair of elements is in a 4-circuit
and a 4-cocircuit. Motivated by these results, Pfeil, Oxley, Semple, and
Whittle [15] found the 3-connected matroids with the property that every
pair of elements is in a 4-circuit and every element is in a 3-cocircuit. The
nine matroids listed in Theorem 1.2 have the property that every element is
in a 3-circuit and in a 4-cocircuit.

2. Preliminaries

Throughout this paper, we will follow the notation and terminology of
[14]. We denote by M4 the class of simple matroids in which every cocircuit
has at least four elements. The connectivity function λM of a matroid M is
defined, for all subsets X of E(M), by

λM (X) = r(X) + r∗(X)− |X|.
When it is clear which matroid we are referring to, we will use λ(X) in
place of λM (X). For disjoint subsets X and Y of E(M), let κM (X,Y ) =
min{λM (S) : X ⊆ S ⊆ E(M) − Y }. If S is a set for which this minimum
is attained, then κM (X,Y ) = λM (S) = κM (S,E(M) − S). In many of our
proofs we will use Geelen, Gerards, and Whittle’s extension [5] (see also, for
example, [14, Theorem 8.5.7]) of Tutte’s Linking Theorem [18].

Theorem 2.1. Let X and Y be disjoint subsets of the ground set of a
matroid M . Then M has a minor N with E(N) = X ∪ Y for which
κN (X,Y ) = κM (X,Y ) such that N |X = M |X and N |Y = M |Y .

The following result of D. W. Hall [7] will be used in the proof of Theo-
rem 1.3.

Theorem 2.2. If G is a 3-connected graph, then G has no K3,3-minor if
and only if G is planar or its associated simple graph is K5.

The next theorem for ternary matroids is reminiscent of the last result.
Hall, Mayhew, and van Zwam [8] considered similar such results.
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Figure 3. The labels of F ∗
7 used in Theorem 2.3.

Theorem 2.3. Let M be a 3-connected matroid having rank and corank at
least three. Then M is ternary if and only if M has no U2,5- or F7-minor
and M ̸∼= F ∗

7 .

Proof. If M is ternary, then M has no U2,5- or F7-minor and M ̸∼= F ∗
7 .

Conversely, assume M has no U2,5- or F7-minor and M ̸∼= F ∗
7 . As M is

3-connected having rank and corank at least three, M does not have U3,5

as a minor by [13] (see also [14, Proposition 12.2.5]). Then by [1, 16] (see
also [14, Theorem 6.5.7]), M is ternary unless M has F ∗

7 as a minor. Since
M ̸∼= F ∗

7 , by the Splitter Theorem, M has a 3-connected single-element
extension or coextension of F ∗

7 as a minor. Now, a 3-connected extension N
of F7 by the element e either adds e freely to a line of F7, or adds e freely
to F7 itself. In each case, N/e has a U2,5-minor, so N∗ has a U3,5-minor, a
contradiction.

We now need only consider the 3-connected single-element extensions of
F ∗
7 . A geometric representation of F ∗

7 is shown in Figure 3 where c, s, and
t are not elements of F ∗

7 , but show how F ∗
7 can be obtained from F7 by a

∆Y -exchange. Let N be a 3-connected single-element extension of F ∗
7 by

the element e and let M be the corresponding modular cut. Then M does
not contain any rank-one flats. If M = {E(F ∗

7 )}, then e is freely added to
F ∗
7 , and N/e has U3,5 as a minor, a contradiction. Thus M must contain

some line or some hyperplane of F ∗
7 . Assume that M contains a line of

F ∗
7 . As F

∗
7 has a doubly transitive automorphism group [14, p.643], we may

assume that {a, b} ∈ M. Then {a, b, u, v} and {a, b, f, h} are in M. Assume
{f, h} ∈ M. Then {f, h, u, v} ∈ M. As {a, b, u, v} and {f, h, u, v} form a
modular pair, {u, v} ∈ M. Similarly, if {u, v} ∈ M, then {f, h} ∈ M. We
deduce that if we have {a, b} ∈ M and at least one of {f, h} and {u, v} is
in M, then the point we added corresponding to M is c and the extension
is isomorphic to S8.

If e is added freely on {a, b}, then contracting e and g gives U2,5 as a
minor, a contradiction. We may now assume that e is not added to any
2-point line of F ∗

7 . We now know that the smallest flat in M has rank three.
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Figure 4. The matroid N\e/a in Theorem 2.3.

Because the hyperplanes of F ∗
7 are of two types, complements of triangles in

F7 and complements of 4-circuits in F7, by symmetry, we may assume that
e is added on one of the planes spanned by {f, g, h} or {a, b, u, v}.

If e is placed on the plane {a, b, u, v}, then, since it is not on any 2-point
lines, we see thatN |{a, b, u, v, e} ∼= U3,5, a contradiction. We deduce that e is
placed on the plane spanned by {f, g, h} but not on any of the lines spanned
by {f, g}, {f, h}, or {g, h}. We know that {a, b, u, v} ̸∈ M. Moreover, if
M is the principal modular cut generated by {f, g, h}, then N/a/e has U2,5

as a restriction, a contradiction. We deduce that M contains a flat other
than {f, g, h} and E(F ∗

7 ). Now N\e/a is isomorphic to the copy of M(K4)
labeled as in Figure 4. By symmetry, we may assume that {a, b, e, g} is a
circuit of N . We see that {e, f, v} and {e, h, u} are not both circuits of N/a
otherwise N/a ∼= F7. By symmetry, we may assume that {e, h, u} is not a
circuit of N/a. If {e, f, v} is not a circuit of N/a, then contracting e from
N/a gives a matroid with U2,5 as a restriction. Thus we may assume that
{e, f, v} is a circuit of N/a, so {a, e, f, v} is a circuit of N .

We now know that N has {a, b, e, g} and {a, e, f, v} as circuits. The ma-
troid N/h has e on the line spanned by {f, g}. But {a, e, u} is not a triangle
of N/h. If {b, e, v} is not a triangle of N/h, then (N/h)|{a, b, e, u, v} ∼= U3,5.
Thus {b, e, v} is a triangle of N/h. Hence {b, e, h, v} is a circuit of N .

Consider N/v. We know that N/v\e ∼= M(K4). Also N/v has {a, e, f}
and {b, e, h} as triangles. Since N/v is not isomorphic to F7, we deduce that
{e, g, u, v} is not a circuit of N . Now consider N/u. We know that {a, e, h}
and {e, g, v} are not triangles of this matroid. Then N/u/e has U2,5 as a
restriction, a contradiction. □

The next lemma identifies a key property of the minor-minimal members
of M4 that will be used repeatedly throughout the paper.

Lemma 2.4. Let M be a minor-minimal matroid in M4. Let e be an
element of M . Then e is in a triangle and a 4-cocircuit.

Proof. Assume e is not in a triangle. Consider M/e. Then every cocircuit
in M/e has size at least four and is simple. Thus M/e contradicts the
minimality of M . Therefore, e is in a triangle. Now assume that e is not
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in a 4-cocircuit. Since M\e has a cocircuit C∗ of size less than four, we see
that C∗ ∪ e is a cocircuit of M having size four . □

Lemma 2.5. Let M be a minor-minimal matroid in M4. If M is not 3-
connected, then M = M1⊕2M2 where M1 and M2 are 3-connected and each
has rank at least three.

Proof. The minimality of M implies that M is 2-connected. Let T be the
canonical tree decomposition of M (see, for example, [14, Section 8.3]).
Consider a matroid L that labels a leaf of T . If L is a circuit, then M
has a 2-cocircuit, a contradiction. Moreover, since M is simple, L is not
a cocircuit. Thus L is a 3-connected matroid with at least four elements.
Hence if M1 and M2 label distinct leaves of T , then M has M1 ⊕2 M2 as
a minor. Therefore, as every cocircuit of M1 ⊕2 M2 has size at least four,
we deduce that M = M1 ⊕2 M2. If r(Mi) = 2 for some i, then, as every
cocircuit of M has at least four elements, we deduce that |E(Mi)| ≥ 5, so
M has U2,5 as a minor, a contradiction. □

Theorem 1.3 was originally proved by Mills and Turner [12]; we provide
their short proof for the sake of completeness. Note that the proof of Theo-
rem 1.2 does not rely on Theorem 1.3. Instead, Theorem 1.3 can be deduced
as an immediate corollary of Theorem 1.2.

Proof of Theorem 1.3. Assume thatM has none of F7,M
∗(K3,3),M(K5), or

M(K2,2,2) as a minor. Then, as M does not have an F7-minor, it follows by
[17] (see also [14, Proposition 12.2.3]) that M is regular otherwise M ∼= F ∗

7 ,
which is a contradiction since F ∗

7 has a triad. We show next that

2.5.1. M is not 3-connected.

Assume that M is 3-connected. Then, by a result of Seymour [17] (see
also [14, Theorem 13.1.2]), M is graphic or cographic, or M has a minor
isomorphic to R10 or R12. By Theorem 1.1, M is not graphic. Suppose
M is cographic. Then, as M is not graphic, M is the bond matroid of a
nonplanar graph G. Since M does not have M∗(K3,3) as a minor, it follows,
by Theorem 2.2, that M ∼= M∗(K5). Thus M has a triad, a contradiction.
We conclude that M is not cographic. Finally, if M has R10 or R12 as a
minor, then M has M∗(K3,3) as a minor, a contradiction. Thus 2.5.1 holds.

By Lemma 2.5, M = M1 ⊕2 M2 where M1 and M2 are 3-connected. As
M1 has none of F7,M

∗(K3,3),M(K5), or M(K2,2,2) as a minor, 2.5.1 implies
that M1 is not 3-connected, a contradiction. □

Lemma 2.6. Let M be a 9-element rank-4 matroid that has each of the
3-point lines in Figure 5 as a triangle. Then M is isomorphic to M∗(K3,3).

Proof. We observe that, as r(M) = 4, every set of four points that form
the vertices of a rectangle in Figure 5 is a cocircuit of M . As M has rank
four, it has no other triangles apart from the six shown. Now, for all i in
{x1, x2, . . . , x9}, the matroid M/xi is ternary since it can be obtained from
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x7

x8
x9

x4

x5
x6

x3x2x1

Figure 5. Some 3-point lines in a rank-4 matroid.

x3 x7 x8 x6 x9


x1 1 1 0 0 1
x2 1 0 1 0 1
x4 0 1 0 1 u2
x5 0 0 1 u1 u1u2

Figure 6. The matrix A4 in the proof of Lemma 2.6.

M(K4) by adding parallel elements. Thus M does not have U2,5, U3,5, or
F7 as a minor. Moreover, M does not have F ∗

7 as a minor since we cannot
eliminate all of the triangles of M by deleting two elements. We conclude
that M is ternary [1, 16].

Now M has {x1, x2, x4, x5} as a basis B otherwise r(M) = 3. Let [I4|A4]
be a ternary representation of M with respect to B. Scaling the rows and
columns of A4 so that the first non-zero entry of each is a one, we get that
A4 is as shown in Figure 6 by using the fundamental circuits with respect to
B along with the circuit {x3, x6, x9}, where u1 and u2 are non-zero. Finally,
by using the circuit {x7, x8, x9}, we deduce that u2 = 1 and u1 = 1. Thus
M is represented by the matrix [I4|A4] over GF (3) where A4 is as shown in
Figure 6 with u2 = 1 = u1. AsM∗(K3,3) is a rank-4 ternary matroid that has
the six triangles indicated in the figure, we deduce that M ∼= M∗(K3,3). □

Lemma 2.7. Let M be a 12-element rank-5 simple ternary matroid for
which each of the 3-point lines in Figure 7 is a triangle of M . Then M is
isomorphic to M(K2,2,2).

Proof. Since r(M) = 5, the triangles of M imply that {x1, x2, x4, x5},
{x1, x3, x7, x12}, {x2, x3, x8, x11}, {x4, x6, x7, x10}, {x5, x6, x8, x9}, and
{x9, x10, x11, x12} are cocircuits. Observe that these six sets coincide with
the sets of corners of rectangles in Figure 7. Moreover each such set must
be an independent set in M . We now construct a ternary representation
[I5|A5] for M . Let {x1, x2, x4, x5, x9} be the basis B of M .
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x7

x4

x1 x2 x3

x11

x12

x5 x6

x8 x9

x10

Figure 7. Some 3-point lines in a rank-5 matroid.

x3 x7 x8 x6 x10 x11 x12


x1 1 1 0 0 0 0 1
x2 1 0 1 0 0 1 0
x4 0 1 0 1 1 0 0
x5 0 0 1 u1 u2 u3 u4
x9 0 0 0 0 u5 u6 u7

Figure 8. Building a ternary representation for M .

We shall scale the matrix A5 so that the first non-zero entry of each
column is a one. We also scale rows 2–5 so that each has its first non-
zero entry equal to one. The fundamental circuits of x3, x7, x8, and x6
with respect to B imply that we may assume the first four columns are as
shown where u1 ̸= 0. The cocircuits {x1, x3, x7, x12}, {x2, x3, x8, x11}, and
{x4, x6, x7, x10} determine the first three rows of x10, x11, and x12. The
remaining two rows of x10, x11, and x12 are unknown. We label their entries
as u2, u3, . . . , u6, and u7 noting that these entries may be zero. The triangle
{x6, x9, x10} implies that u1 = u2. The triangle {x8, x9, x11} implies that
u3 = 1. The triangle {x7, x10, x12} implies that u4 = −u2 and u7 = −u5.
The triangle {x3, x11, x12} implies that u2 = 1 and u6 = u5. Because the
first non-zero entry of row 5 is one, the matrix A5 is as shown in Figure 9.

Let K2,2,2 be labeled as in Figure 10. We see that the eight triangles in
this graph coincide with the eight 3-point lines in Figure 7. Since M(K2,2,2)
is a simple ternary 12-element rank-5 matroid and such a matroid with the
specified eight triangles has the ternary representation [I5|A5] where A5 is as
shown in Figure 9. We deduce that M(K2,2,2) ∼= M [I5|A5], and the lemma
is proved. □
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x3 x7 x8 x6 x10 x11 x12


x1 1 1 0 0 0 0 1
x2 1 0 1 0 0 1 0
x4 0 1 0 1 1 0 0
x5 0 0 1 1 1 1 −1
x9 0 0 0 0 1 1 −1

Figure 9. A ternary representation for M .

x7

x3

x8

x6

x10

x11

x9

x12

x2x1

x5x4

Figure 10. K2,2,2

3. Structural Lemmas for Ternary Matroids

This section contains the core of the proof of Theorem 1.4. Recall that
M4 is the class of simple matroids in which every cocircuit has size at least
four.

Because this section is long, we begin with an outline of the proof of
Theorem 1.4. Let M be a ternary minor-minimal matroid in M4 that
is not isomorphic to F−

7 , P7,M
∗(K3,3), Q9,M(K5),M(K2,2,2), or H12. By

Lemma 2.4, every element of M is in a triangle and a 4-cocircuit. The proof
strategy for Theorem 1.4 involves analyzing how the many triangles and
4-cocircuits of M interact. We begin by considering what happens when
M has five of the six triangles in Figure 5 as circuits. We then show, in
Lemma 3.2, that M must be 3-connected. Lemma 3.3 shows that M has no
4-point lines, and Lemmas 3.4 and 3.5 show that every 4-cocircuit is inde-
pendent. Next we show that M cannot have two 4-cocircuits contained in
the union of two disjoint triangles. Lemmas 3.7 and 3.8 show that no element
of M is in more than two triangles. Lemmas 3.10 and 3.11 show that M
must have an element that is in more than one triangle. Lemmas 3.13–3.15
identify and analyze an infinite family of matroids in M4 the first two mem-
bers of which are M(K5) and M(K2,2,2) and subsequent members of which



10 MATTHEW MIZELL AND JAMES OXLEY

have one of these two matroids as a minor. Lemmas 3.12, 3.16, 3.17, and
3.18 build from a particular 4-cocircuit containing an element that is two
triangles to get one of the forbidden possibilities for M . We now implement
this strategy.

Lemma 3.1. Let M be a rank-4 simple matroid having ground set
{x1, x2, . . . , x9}. Suppose that M has {x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9},
{x1, x4, x7}, and {x3, x6, x9} as triangles. Then M ∼= M∗(K3,3) or M has
U2,5 or P7 as a minor.

Proof. Observe that if {x2, x5, x8} is a triangle of M then, by Lemma 2.6,
M ∼= M∗(K3,3). Thus may assume that each of x2, x5, and x8 is in a unique
triangle of M . Now consider M/x5\x6. This has {x1, x2, x3}, {x7, x8, x9},
{x1, x4, x7}, and {x3, x4, x9} as triangles. We may assume that {x2, x4, x8}
is not a triangle, otherwise this minor is isomorphic to P7. It follows that
M/x2, x5\x3, x6 ∼= U2,5. □

Lemma 3.2. Let M be a minor-minimal ternary matroid in M4. Then M
is 3-connected or M ∼= H12.

Proof. Assume that the result fails. By Lemma 2.5, M = M1 ⊕2 M2, where
M1 and M2 are 3-connected matroids and p is the basepoint of the 2-sum.
We may assume that M1 or M2, say M1, is not isomorphic to O7 having
p in its triad otherwise M ∼= H12. Observe that if M1 has no triads, then
the minimality of M is contradicted. Thus every triad of M1 contains p
otherwise M has a triad. Let {x1, x3, p} be a triad T ∗ of M1. Thus M
has a cocircuit C∗ that meets E(M1) in {x1, x3}. As Lemma 2.4 implies
that every element of M is in a triangle, M has a triangle containing x1.
By orthogonality with C∗, this triangle contains x3 and an element x2 of
E(M1)− T ∗. Observe that {x1, x3} is a cocircuit of M1\p, so co(M1\p) has
a 2-circuit. Thus co(M1\p) is not 3-connected, so, by Bixby’s Lemma [2]
(see also [14, Lemma 8.7.3]), si(M1/p) is 3-connected. If neither x1 nor x3
is in a triangle of M1 other than {x1, x2, x3}, then M1/p is 3-connected and
has no cocircuit of size less than four. This is a contradiction since M1/p
is a minor of M . Therefore, we may assume that M1 has {p, x1, x4} as a
triangle for some element x4. Then, either the only triangle containing p in
M1 is {p, x1, x4}, or M1 has another triangle containing p. By orthogonality,
this triangle must be {p, x3, x5} for some element x5.

We first assume that {p, x3, x5} is a triangle of M1. Since the intersection
of clM1({p, x1, x3}) and E(M)− {p, x1, x3} contains {x2, x4, x5}, this set is
a triangle of M . By Lemma 2.4, M has a 4-cocircuit C∗ containing x2.
By symmetry and orthogonality, x4 ∈ C∗. Furthermore, by orthogonality
with a circuit of M that meets E(M1) in {x1, x4}, we deduce that x1 ∈ C∗.
Now suppose that M1 has a point in clM1({x2, x4}) − {x2, x4, x5}. Then
M1 has an O7-minor M ′

1 having p in the unique triad. Since M ′
1 ⊕2 M2

has no cocircuits of size less than four, we deduce that M1
∼= M ′

1
∼= O7,

a contradiction. We may now assume that C∗ = {x1, x2, x4, x6} where
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x6 ̸∈ clM1({x1, x2, x4}). By Lemma 2.4, x5 is in a 4-cocircuit D∗ in M .
By orthogonality and symmetry with C∗, we deduce that x3 ∈ D∗. If
x2 ̸∈ D∗, then x4 ∈ D∗ and x1 ∈ D∗. Thus D∗ = {x1, x3, x4, x5}. Then,
because {p, x1, x2, . . . , x5} contains the cocircuits D∗ and {p, x1, x3} of M1,
we deduce that λM1({p, x1, x2, x3, x4, x5}) ≤ 3 + (6 − 2) − 6 = 1. This is
a contradiction as it implies that x6 is a coloop of M1. Therefore, we may
assume that x2 ∈ D∗ and neither x1 nor x4 is in D∗. By Lemma 2.4, x6
is in a triangle of M1, so {x4, x6, x7} or {x2, x6, x7} is a triangle of M1 for
some element x7.

3.2.1. When {p, x3, x5} is a triangle, M1 has no triangle containing {x2, x6}.

Assume that {x2, x6, x7} is a triangle. By orthogonality between this
triangle and D∗, we see that D∗ = {x2, x3, x5, x6} or D∗ = {x2, x3, x5, x7}.
Since M1 has D∗, C∗, and {p, x1, x3} as cocircuits,

λM1({p, x1, x2, . . . , x7}) ≤ 4 + (8− 3)− 8 = 1.

As M is 3-connected, |E(M)−{p, x1, x2, . . . , x7}| ≤ 1, so M1 has a cocircuit
containing {x6, x7} that has size at most three and that does not contain p,
a contradiction. Thus 3.2.1 holds.

3.2.2. When {p, x3, x5} is a triangle, M1 has no triangle containing {x4, x6}.

Assume that {x4, x6, x7} is a triangle of M . Then D∗ = {x2, x3, x5, x8}
for some element x8. By orthogonality, x8 is neither x6 nor x7. Thus
x8 ̸∈ {p, x1, x2, . . . , x7}. Consider M/x6\x7. By 3.2.1 and orthogonality, we
see that {x4, x6, x7} is the only triangle of M containing x6, so M/x6\x7
is simple. Therefore, it has a triad T ∗, and M has T ∗ ∪ x7 as a cocir-
cuit that avoids x6. Then x4 ∈ T ∗ so, by orthogonality, x1 ∈ T ∗. As
{x1, x2, x3} and {x2, x4, x5} are triangles, it follows by orthogonality that
{x1, x2, x4, x7} is a cocircuit. However, as {x1, x2, x4, x6} is a cocircuit,
M∗|{x1, x2, x4, x6, x7} ∼= U3,5, a contradiction. Thus 3.2.2 holds.

By 3.2.1 and 3.2.2, {p, x3, x5} is not a triangle of M1. Thus the only
triangle containing p in M1 is {p, x1, x4}. As x4 is in a triangle of M , it
follows that

3.2.3. M has {x2, x4, x5} as a triangle for some x5 in clM1({x1, x2, x4}), or
M has {x4, x5, x6} as a triangle for some x5 and x6 not in clM1({x1, x2, x4}).

Next we eliminate the first possibility.

3.2.4. {x2, x4, x5} is not a triangle of M .

Assume that {x2, x4, x5} is a triangle. Let C∗ be a 4-cocircuit of M
containing x4. Then, by orthogonality, C∗ contains x2 or x5. Moreover,
as {p, x1, x4} is a circuit of M1, it follows that M has a circuit that meets
E(M1) in {x1, x4}. We deduce, by orthogonality, that x1 ∈ C∗. Thus C∗

contains {x1, x2, x4} or {x1, x4, x5}. Suppose C∗ ⊆ {x1, x2, x3, x4, x5}. Then
λM1({p, x1, x2, . . . , x5}) ≤ 3 + (6− 2)− 6 = 1.
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Since M has no triads, |E(M1)| ≥ 7. Thus, as M1 is 3-connected, it has ex-
actly one element, say e, not in {p, x1, x2, . . . , x5}. Since M1 has a {p, x1, x3}
as a triad, e ∈ clM1({x2, x4}). Thus M1 and hence M has a U2,5-minor, a
contradiction. We deduce that C∗ contains an element x6 that is not in
{p, x1, x2, . . . , x5}. Then C∗ does not contain {x1, x4, x5} by orthogonality
with {x1, x2, x3}, so C∗ = {x1, x2, x4, x6}. Now C∗ ∩ {p, x1, x2, . . . , x5} is
a union of cocircuits and hence is a cocircuit of M1|{p, x1, x2, . . . , x5}. But
{x1, x2, x4} is not a cocircuit of the last matroid otherwise M1 has {p, x3, x5}
as a triangle, a contradiction. Thus 3.2.4 holds.

Following 3.2.3, the rest of the proof of this lemma will be devoted to
proving the following.

3.2.5. M has no triangle of the form {x4, x5, x6} where x5 and x6 are not
in clM1({x1, x2, x4}).

Assume that M does have such a triangle. Then, as x4 is in a 4-cocircuit
of M , we may assume that either {x1, x2, x4, x5} or {x1, x3, x4, x5} is a
cocircuit of M . Thus

λM1\x5
({p, x1, x2, x3, x4}) ≤ 3 + (5− 2)− 5 ≤ 1.

Suppose co(M1\x5) is 3-connected. Then {p, x1, x2, x3, x4} or E(M1\x5)−
{p, x1, x2, x3, x4} is a series class of M1\x5. In each case, since we must
have that |E(M1)| ≥ 9, we get that M1 has a triad avoiding p, a contra-
diction. Thus, by Bixby’s Lemma, si(M/x5) is 3-connected. Observe that
si(M1/x5) is M1/x5\x4 or is M1/x5\x2, x4 where the latter occurs when
M1 has {x2, x5, x7} as a triangle and {x1, x2, x4, x5} as a cocircuit where
x7 ̸∈ {p, x1, x2, . . . , x6}.

Continuing the proof of 3.2.5, we show next that

3.2.6. M1/x5\x4 is not simple.

Assume that M1/x5\x4 is simple. Then M/x5\x4 has a triad T ∗, other-
wise the choice of M is contradicted. Then M has T ∗ ∪ x4 as a 4-cocircuit
that avoids x5. Thus, by orthogonality, x1 ∈ T ∗, x6 ∈ T ∗, and x2 or x3 ∈ T ∗.
Hence {x1, x2, x4, x6} or {x1, x3, x4, x6} is a cocircuit of M . We cannot have
{x1, x2, x4, x6} and {x1, x2, x4, x5} as cocircuits ofM , or both {x1, x3, x4, x5}
and {x1, x3, x4, x6} as cocircuits of M , otherwise M∗ has U3,5 as a restric-
tion, a contradiction. Thus either both {x1, x2, x4, x5} and {x1, x3, x4, x6}
are cocircuits of M , or both {x1, x2, x4, x6} and {x1, x3, x4, x5} are cocir-
cuits of M . Using either of these pairs of 4-cocircuits, we eliminate x4 to
get a cocircuit contained in {x1, x2, x3, x5, x6}. By orthogonality with a cir-
cuit of M containing {x1, x4} and elements of E(M2) − p, we deduce that
{x2, x3, x5, x6} is a cocircuit of M . As M1 also has {p, x1, x3} and either
{x1, x2, x4, x5} or {x1, x3, x4, x5} as a cocircuit,

λM1({p, x1, x2, . . . , x6}) ≤ 4 + (7− 3)− 7 = 1.

This is a contradiction since it implies that M1 has a triad containing
{x5, x6} that avoids p. We conclude that 3.2.6 holds.
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We now know that si(M1/x5) is M1/x5\x2, x4, and M1 has {x2, x5, x7} as
a triangle and {x1, x2, x4, x5} as a cocircuit. Now M1|{p, x1, x2, . . . , x7} has
rank four and has {x1, x2, x4, x5} as a cocircuit. Thus r({p, x3, x6, x7}) = 3,
so

3.2.7. {p, x3, x6, x7} is a cocircuit of M1.

We show next that

3.2.8. M1 has no triangle containing {x6, x7}.

Assume that M1 has a triangle {x6, x7, e}. Since M1 has no triangle con-
taining {p, x3}, we deduce that e ̸∈ clM1({p, x1, x3}). Then the simplification
of (M |{p, x1, x2, . . . , x7, e})/e is O7 and has {p, x1, x3} as a triad. Replacing
M1 by this copy of O7 contradicts the minimality of M . Thus 3.2.8 holds.

We now show that

3.2.9. r(M1) ≥ 5.

Suppose that r(M1) ≤ 4. Then r(M1) = 4. The cocircuits {p, x1, x3} and
{x1, x2, x4, x5} of M1 imply that every element of M1 not in these cocircuits
is in clM1({x6, x7}). As {x2, x3, x7} is not a triad of M1, there is at least
one element in clM1({x6, x7})−{x6, x7}, a contradiction to 3.2.8. Thus 3.2.9
holds.

Now M has a 4-cocircuit C∗
6 containing x6. We next show that

3.2.10. C∗
6 = {x5, x6, x7, x8} for some element x8 ̸∈ {p, x1, x2, . . . , x7}.

By orthogonality, C∗
6 contains {x2, x5, x6}, {x5, x6, x7}, {x1, x2, x4, x6}, or

{x1, x3, x4, x6}. The third possibility is eliminated because {x1, x2, x4, x5}
is a cocircuit. If the fourth possibility holds, then

λM1({p, x1, x2, . . . , x6}) ≤ 4 + (7− 3)− 7 = 1,

so r(M1) = 4, a contradiction to 3.2.9. Suppose C∗
6 ⊇ {x2, x5, x6}. Then,

by orthogonality, C∗
6 = {x2, x3, x5, x6}. Using the last lambda calcula-

tion, we again obtain the contradiction that r(M1) = 4. We conclude that
C∗
6 = {x5, x6, x7, x8} for some element x8. Moreover, by orthogonality,

x8 ̸∈ {p, x1, x2, . . . , x7}. Thus 3.2.10 holds.
Recall that M/x5\x2, x4 is 3-connected. By the minimality of M , it fol-

lows that M/x5\x2, x4 has a triad T ∗. Then T ∗∪x4, T ∗∪x2, or T ∗∪ {x2, x4}
is a cocircuit of M where {x2, x4, x5}∩T ∗ = ∅. Suppose T ∗∪x4 is a cocircuit
of M . Then, by orthogonality, x1 ∈ T ∗ and x3 ∈ T ∗. Moreover, x6 ∈ T ∗, so
{x1, x3, x4, x6} is a cocircuit of M . Then

λM1({p, x1, x2, . . . , x6}) ≤ 4 + (7− 3)− 7 = 1.

Since {x5, x6, x7} is not a triad of M1, we deduce that M1 has an element
in clM1({x6, x7})− {x6, x7}, a contradiction to 3.2.8. Thus T ∗ ∪ x4 is not a
cocircuit of M .

Next assume that T ∗∪x2 is a cocircuit of M . Then x7 ∈ T ∗. As x4 ̸∈ T ∗,
we see that x1 ̸∈ T ∗, so x3 ∈ T ∗. Hence {x2, x3, x7} is in a 4-cocircuit F ∗ of
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M that avoids {x1, x4, x5, x6}. Let F ∗ = {x2, x3, x7, x9}, for some element
x9 that is not in {p, x1, x2, . . . , x7}. Now, by Lemma 2.4, x9 is in a triangle
T . By orthogonality, T contains {x2, x9}, {x3, x9}, or {x7, x9}. In the first
case, by orthogonality, T is {x1, x2, x9}, {x2, x4, x9}, or {x2, x5, x9}. By or-
thogonality with the triad {p, x1, x3} in M1, it follows that T ̸= {x1, x2, x9}.
If T is {x2, x4, x9} or {x2, x5, x9}, thenM/x6 has an O7-minor having p in its
triad, contradicting the minimality of M1. If T contains {x3, x9}, then, by
orthogonality with the triad {p, x1, x3} in M1, we get that T = {p, x3, x9},
a contradiction. We conclude that T contains {x7, x9}.

Next we show that

3.2.11. x8 ̸= x9.

Assume that x8 = x9. Then M1 has a cocircuit J∗ such that

J∗ ⊆ ({x2, x3, x7, x8} ∪ {x5, x6, x7, x8})− {x8}.

If x7 ∈ J∗, then, by orthogonality, T contains an element of {x2, x3, x5, x6}.
Thus x8 ∈ clM1({p, x1, x3, x6}), so

λM1({p, x1, x2, . . . , x8}) ≤ 4 + (9− 4)− 9 = 0.

Hence E(M1) = {p, x1, x2, . . . , x8}). Thus r(M1) = 4, a contradiction to
3.2.9. We conclude that 3.2.11 holds.

By orthogonality and 3.2.8, T is {x7, x8, x9}. Then

λM1({p, x1, x2, . . . , x9}) ≤ 5 + (10− 4)− 10 = 1.

Therefore |E(M) − {p, x1, x2, . . . , x9}| ≤ 1. By 3.2.9, r(M1) ≥ 5. As
r({p, x1, x2, . . . , x7}) = 4, we deduce that E(M1) − {p, x1, x2, . . . , x7} is a
triad, a contradiction. We deduce, when T ∗ ∪ x2 is not a cocircuit of M .

Therefore we now know that T ∗ ∪ {x2, x4} is a cocircuit of M where
T ∗ ∩ {x2, x4, x5} = ∅. Then, by orthogonality, x1 ∈ T ∗, x6 ∈ T ∗, and
x7 ∈ T ∗. Thus M has {x1, x2, x4, x6, x7} as a cocircuit. As {x1, x2, x4, x5} is
also a cocircuit, by eliminating x1, from the union of these two cocircuits, we
get a cocircuit contained is {x2, x4, x5, x6, x7}. The triangles {x1, x2, x3} and
{p, x1, x4} of M1 mean that {x5, x6, x7} is a cocircuit of M1, a contradiction.
Thus 3.2.5 holds and, by 3.2.3, the lemma follows. □

We may now focus on a 3-connected minor-minimal simple ternary ma-
troid M in M4.

Lemma 3.3. Let M be a 3-connected minor-minimal ternary matroid in
M4. Then M does not have U2,4 as a restriction.

Proof. Assume that M |{x1, x2, x3, x4} ∼= U2,4. Since every cocircuit of
M has at least four elements, |E(M)| ≥ 8. By Lemma 2.4, we may as-
sume that M has 4-cocircuits C∗

1 and C∗
2 such that {x1, x2, x3} ⊆ C∗

1 and
{x2, x3, x4} ⊆ C∗

2 . Observe that C∗
1 ̸= C∗

2 otherwise

λ({x1, x2, x3, x4}) ≤ 2 + (4− 1)− 4 = 1,
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so |E(M)| ≤ 5, a contradiction. Now suppose M has a point x5 such that
C∗
1 = {x1, x2, x3, x5} and C∗

2 = {x2, x3, x4, x5}. Then

λ({x1, x2, x3, x4, x5}) ≤ 3 + (5− 2)− 5 = 1.

However, this implies that |E(M)| ≤ 6, a contradiction. Therefore C∗
1 =

{x1, x2, x3, x5} and C∗
2 = {x2, x3, x4, x6} for distinct elements x5 and x6 not

in {x1, x2, x3, x4}. Now, by Lemma 2.4, x5 is in a triangle T . If x2 ∈ T , then
T = {x2, x5, x6}. Thus λ({x1, x2, x3, x4, x5, x6}) ≤ 3 + (6 − 2) − 6 = 1, so
|E(M)| ≤ 7, a contradiction. Therefore neither {x2, x5} nor {x3, x5} is in a
triangle and we may assume that {x1, x5, x7} is a triangle for some element
x7 that is not in {x1, x2, . . . , x6}. Similarly, we may assume that {x4, x6, x8}
is a triangle for some element x8 that is not in {x1, x2, . . . , x6}. Suppose
x7 = x8. Then λ({x1, x2, . . . , x7}) ≤ 1. As M has no triads, it follows that
E(M) − {x1, x2, . . . , x7} = {e} for some element e, and r(M) = 3. As
E(M)− (C∗

1 ∪C∗
2 ) is a rank-one set containing {x7, e}, we have a contradic-

tion. Thus x7 and x8 are distinct.
Now, λM\x5

({x1, x2, x3, x4, x6}) ≤ 3 + (5 − 2) − 5 = 1. As M\x5 has no
2-cocircuits, co(M\x5) = M\x5 and this matroid is not 3-connected. Thus,
by Bixby’s Lemma [2], si(M/x5) is 3-connected. Observe that si(M/x5) =
M/x5\x1. By the minimality of M , there is a triad T ∗ in M/x5\x1 and
T ∗ ∪ x1 is a cocircuit of M that avoids x5. Then x7 ∈ T ∗ and two of
x2, x3, and x4 are in T ∗. Observe that x4 ̸∈ T ∗, otherwise T ∗ also con-
tains x6 or x8, so |T ∗| ≥ 4, a contradiction. Thus T ∗ = {x2, x3, x7}, so
T ∗ ∪ x1 = {x1, x2, x3, x7} is a cocircuit of M . However, this implies that
M∗|{x1, x2, x3, x5, x7} ∼= U3,5. As M is ternary, this is a contradiction. □

Lemma 3.4. Let M be a minor-minimal ternary matroid in M4. If M has
a 4-cocircuit D∗ that contains a triangle, then M is isomorphic to P7 or
H12.

Proof. Assume that M is not isomorphic to P7 or H12. Let {x1, x2, x3, x4}
be D∗ and let {x1, x2, x3} be a triangle. Since M ̸∼= H12, Lemma 3.2
implies that M is 3-connected. Then co(M\x4) is not 3-connected be-
cause M\x4 has {x1, x2, x3} as a circuit and a cocircuit. Thus si(M/x4)
is 3-connected. Now, by Lemma 2.4, x4 is in a triangle of M . We may
assume that {x3, x4, x5} is a triangle, for some element x5 that is not in
{x1, x2, x3, x4}.

3.4.1. x4 is in a triangle other than {x3, x4, x5}.

Assume that x4 is in a unique triangle. Consider M/x4\x3. This matroid
is simple, so, by the minimality of M , it has a triad T ∗

3 . Thus T ∗
3 ∪ x3

is a cocircuit of M that does not contain x4. By orthogonality, x5 ∈ T ∗.
Observe that if T ∗

3 ∪x3 = {x1, x2, x3, x5}, thenM∗|{x1, x2, x3, x4, x5} ∼= U3,5,
a contradiction. Thus, by symmetry between x1 and x2, we may assume
that T ∗ ∪ x3 = {x2, x3, x5, x6} for some element x6 not in {x1, x2, . . . , x5}.
Then, by Lemma 2.4, x6 is in a triangle C6. Suppose x2 or x3 is in C6. As
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x4 ̸∈ C6, by orthogonality with {x1, x2, x3, x4}, we deduce that C6 contains
two elements of {x1, x2, x3}. Thus M has a 4-point line, a contradiction to
Lemma 3.3. We now know that C6 = {x5, x6, x7} for some element x7 not
in {x1, x2, . . . , x7}.

Consider M/x2\x1. Because {x3, x4, x5} is the unique triangle of M con-
taining x4 and M has no 4-point lines, M/x2\x1 is simple. By the mini-
mality of M , it follows that M/x2\x1 has a triad T ∗

1 . Thus T ∗
1 ∪ x1 is a

cocircuit of M avoiding x2. By orthogonality, x3 ∈ T ∗
1 , and x4 or x5 is in

T ∗
1 . Suppose T ∗

1 ∪ x1 = {x1, x3, x4, e} for some element e. Then e ̸= x2
and M∗|{x1, x2, x3, x4, e} ∼= U3,5, a contradiction. Thus T ∗

1 ∪ x1 contains
{x1, x3, x5} so, by orthogonality, T ∗

1 ∪x1 is {x1, x3, x5, x6} or {x1, x3, x5, x7}.
In the first case, we get the contradiction that M∗|{x1, x2, x3, x5, x6} ∼= U3,5.
Hence T ∗

1 ∪ x1 = {x1, x3, x5, x7}. Thus

λ({x1, x2, . . . , x7}) ≤ r({x1, x2, . . . , x7})+(7−3)−7 = r({x1, x2, . . . , x7})−3.

If r({x1, x2, . . . , x7}) = 3, then E(M) = {x1, x2, . . . , x7} and, from the
known circuits and cocircuits, we obtain the contradiction that M ∼= P7.
Thus r({x1, x2, . . . , x7}) = 4, so M has at most one element not in
{x1, x2, . . . , x7}. As r({x1, x2, x3, x4, x5}) = 3, we deduce that M has a
cocircuit of size less than four, a contradiction. We conclude that 3.4.1
holds.

Now, by orthogonality, we may assume that M has {x2, x4, x6} as a tri-
angle for some element x6 not in {x1, x2, . . . , x5}. Assume that x1 is in a
triangle T1 other than {x1, x2, x3}. Then, by Lemma 3.3 and orthogonality,
T1 = {x1, x4, x7} for some element x7 not in {x1, x2, . . . , x6}. Now M has
a 4-cocircuit D∗

5 containing x5. By orthogonality, D∗
5 ⊆ {x1, x2, . . . , x7}.

Thus λ({x1, x2, . . . , x7}) ≤ 3 + (7 − 2) − 7 = 1. Hence M has at most
one element not in {x1, x2, . . . , x7}, and r(M) = 3. As {x1, x2, x3, x4} is a
cocircuit of M , it follows that E(M) − {x1, x2, x3, x4} is a line of M . By
Lemma 3.3, this line has exactly three points, that is, {x5, x6, x7} is a tri-
angle. Hence M ∼= P7, a contradiction. We deduce that {x1, x2, x3} is the
only triangle containing x1. Then M/x1\x2 is simple. Hence this matroid
has a triad T ∗

2 avoiding x1, so T ∗
2 ∪x2 is a cocircuit of M . By orthogonality,

x3 ∈ T ∗
2 . If x4 ∈ T ∗

2 , then M∗|({x1, x2, x3, x4}∪T ∗
2 )

∼= U3,5, a contradiction.
Thus x4 ̸∈ T ∗

2 . Then, by orthogonality, T ∗
2 ∪ x2 = {x2, x3, x5, x6}. Thus

λ({x1, x2, . . . , x6}) ≤ 3+ (6− 2)− 6 = 1. Hence r(M) = 3 and |E(M)| = 7.
Let x7 be the element of E(M) − {x1, x2, . . . , x6}. Then {x1, x4, x7} is the
complement in M of the cocircuit {x2, x3, x5, x6}. Thus {x1, x4, x7} is a
triangle, a contradiction. □

Lemma 3.5. Let M be a 3-connected minor-minimal ternary matroid in
M4. If M has a 4-cocircuit that is also a 4-circuit, then M is isomorphic
to F−

7 or P7.

Proof. Let X = {x1, x2, x3, x4} and assume that X is a circuit and a cocir-
cuit of M . Assume that r(M) ≥ 4. Take y in E(M) − cl(X). Then y is in
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a triangle Y of M . Since y ̸∈ cl(X), by orthogonality, X ∩ Y = ∅. Observe
that λ(X) = 3 + 3 − 4 = 2 = κM (X,Y ). By Theorem 2.1, M has a minor
N such that κN (X,Y ) = 2 and M |X = N |X while M |Y = N |Y . Then
rN (Y ) = rM (Y ) = 2 and rN (X) = rM (X) = 3. As 2 = rN (X) + rN (Y ) −
r(N), we deduce that r(N) = 3. Thus N is a rank-3 simple ternary matroid
having X as a circuit and Y as a hyperplane. As N has no 4-point lines,
it follows that N is isomorphic to F−

7 or P7. By the minimality of M , we
obtain a contradiction.

We now know that r(M) = 3. Then E(M)−X is a hyperplane Y of M .
By Lemma 3.3, Y cannot have more than three elements. Suppose Y has
exactly two elements. Then M has no triangles, otherwise it has a triad.
Thus M ∼= U3,6, a contradiction. We deduce that M is a rank-3 ternary
matroid whose ground set is the disjoint union of a triangle Y and a set that
is both a circuit and a cocircuit. Thus M is isomorphic to F−

7 or P7. □

For the rest of the section, every time we consider a 4-cocircuit C∗ of M ,
we may assume that r(C∗) = 4. The following lemma shows that we cannot
have two 4-cocircuits contained in the disjoint union of two triangles.

Lemma 3.6. Let M be a 3-connected minor-minimal ternary matroid in
M4 and suppose that M is not isomorphic to P7,M

∗(K3,3), or Q9. Let
C∗ = {x1, x2, x4, x5} be a cocircuit of M . Let {x1, x2, x3} and {x4, x5, x6}
be disjoint triangles of M . Then there is no 4-cocircuit other than C∗ that
meets both {x1, x2, x3} and {x4, x5, x6}.
Proof. Assume there is such a 4-cocircuit D∗. By Lemma 3.5, r(D∗) = 4.
Assume that {x1, x2} ⊆ D∗. As D∗ contains two members of {x4, x5, x6}, it
follows that M∗|(C∗∪D∗) ∼= U3,5, a contradiction. Therefore, {x1, x3} ⊆ D∗

or {x2, x3} ⊆ D∗. Furthermore, by symmetry, one of {x4, x6} or {x5, x6}
is contained in D∗. Thus we may assume that D∗ = {x2, x3, x5, x6}. Let
X = {x1, x2, . . . , x6}. By Lemma 3.5, r(X) ̸= 3, so r(X) = 4. Thus
λ(X) ≤ 4 + (6− 2)− 6 = 2. We next show that

3.6.1. r(M) = 4.

Assume that r(M) ≥ 5 and take y ∈ E(M) − cl(X). Then y is in a
triangle Y of M , and Y avoids X. We have that κM (X,Y ) = λ(X) = 2.
Thus, by Theorem 2.1, M has a minor N with ground set X ∪ Y such that
κN (X,Y ) = 2 while N |X = M |X and N |Y = M |Y . Thus rN (X) = 4
and rN (Y ) = 2, so r(N) = 4. Let Y = {x7, x8, x9}. Then {x1, x2, x3}
and {x4, x5, x6} are triangles of N . Moreover, since {x1, x2, x4, x5} and
{x2, x3, x5, x6} are cocircuits of M , each of these sets is a union of cocircuits
of N . Because rN ({x7, x8, x9}) = 2, it follows that {x1, x2, x4, x5} and
{x2, x3, x5, x6} are cocircuits of N . Because N is a simple minor of M ,
it follows that N has a cocircuit of size less than four. Suppose N has a
2-cocircuit Z. Then Z is contained in one of {x1, x2, x3}, {x4, x5, x6}, or
{x7, x8, x9}, and N\Z is a 7-point plane of N . As r({x1, x2, . . . , x6}) = 4,
we may assume that Z ⊆ {x1, x2, x3}. Then N\(Z ∪ {x1, x2, x4, x5}) is a



18 MATTHEW MIZELL AND JAMES OXLEY

line, {x6, x7, x8, x9}, ofN , a contradiction to orthogonality with the cocircuit
{x2, x3, x5, x6}. Hence N is cosimple. Thus N has a triad. By orthogonality
and the fact that rN (X) = 4, we may assume that {x1, x2, x3} is a triad
of N . Then deleting {x1, x2, . . . , x6} from N produces a rank-one matroid
with ground set {x7, x8, x9}, a contradiction. We conclude that 3.6.1 holds.

As r(M) = 4 and M has a plane with at least four points, it follows
that |E(M)| ≥ 8. Let x7 be an element of E(M) − {x1, x2, . . . , x6}. Then
x7 is in a triangle T of M . If T avoids {x1, x2, . . . , x6}, then |E(M)| ≥ 9.
If T meets {x1, x2, . . . , x6}, then M has a plane with at least five points,
so |E(M)| ≥ 9. Let E(M) − {x1, x2, . . . , x6} = {x7, x8, . . . , xn} for some
n ≥ 9. As E(M)− ({x1, x2, x4, x5} ∪ {x2, x3, x5, x6}) is a flat of M of rank
at most two and this flat contains {x7, x8, . . . , xn}, we deduce, by Lemma 3.3,
that n = 9 and {x7, x8, x9} is a rank-2 flat of M . Since M has no triads,
r({x7, x8, x9} ∪ L) = 4 for each L in {{x1, x2, x3}, {x4, x5, x6}}.

Since {x1, x2, x4, x5} and {x2, x3, x5, x6} are cocircuits of M , the sets
{x1, x4, x7, x8, x9} and {x3, x6, x7, x8, x9} are planes of M . As r(X) = 4, we
see that {x1, x3, x4, x6} is not a circuit ofM . SinceM is ternary, in the rank-
4 ternary projective geometry P of whichM is a restriction, clP ({x7, x8, x9})
has a single point z3 that is not in {x7, x8, x9}. Thus, by symmetry, we may
assume that {x3, x6, x9} is a triangle of M . Moreover, by symmetry again,
{x1, x4, z3} or {x1, x4, x7} is a triangle of P .

We may assume that {x1, x4, z3} is a triangle of P , otherwise, by
Lemma 3.1, we obtain the contradiction that M ∼= M∗(K3,3) or M has
P7 as a minor. Lemma 3.1 also implies that {x7, x8, x9} is the unique tri-
angle of M containing e for each e in {x7, x8}. Now M/x7\x8 has rank
three and has {x1, x2, x3}, {x4, x5, x6}, {x3, x6, x9} and {x1, x4, x9} as tri-
angles. Since P7 ̸∼= M/x7\x8, the last matroid, which is ternary, has
{x1, x2, x3, x5} or {x2, x4, x5, x6} as a line. ThusM has {x1, x2, x3, x5, x7} or
{x2, x4, x5, x6, x7} as a rank-3 set. Then, by considering M/x8\x7 instead of
M/x7\x8, we deduce that M has {x1, x2, x3, x5, x8} or {x2, x4, x5, x6, x8} as
a plane. Now M cannot have both {x1, x2, x3, x5, x7} and {x1, x2, x3, x5, x8}
as planes or M has a triad. Therefore either both {x1, x2, x3, x5, x7} and
{x2, x4, x5, x6, x8} are planes of M or both {x1, x2, x3, x5, x8} and
{x2, x4, x5, x6, x7} are planes of M . The first of these possibilities gives
that P has {x5, x7, z1} and {x2, x8, z2} as triangles where {x1, x2, x3, z1}
and {x4, x5, x6, z2} are lines of P for some points z1 and z2 of P . The
second case is symmetric. In both cases, M ∼= Q9, a contradiction. □

Lemma 3.7. Let M be a minor-minimal ternary matroid in M4. Let
x1, x2, . . . , x6, and x7 be distinct elements of E(M) such that {x1, x2, x3},
{x1, x4, x6}, and {x1, x5, x7} are triangles of M , and {x1, x2, x4, x5} and
{x1, x3, x6, x7} are cocircuits of M . Then M is isomorphic to F−

7 , P7, or
M(K5).

Proof. Let X = {x1, x2, . . . , x7}. We may assume that r(X) ≥ 4, otherwise
M ∼= P7. Assume r(X) = 4. Then |E(M) − X| ≥ 2 as M ∈ M4 and X
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contains a plane with at least five points. Suppose |E(M) − X| = 2 and
y ∈ E(M) −X. Then y is in a triangle that, by symmetry, has x3 and x6
as its other elements. Then M has a plane with at least six elements, so
|E(M)−X| ≥ 4, a contradiction. We may now assume that |E(M)−X| ≥ 3.
As λ(X) = 2, we see that r(E(M)−X) = 2. Then, by Lemma 3.3, E(M)−X
is a triangle ofM . When r(M) = 4, we call this triangle Y . When r(M) ≥ 5,
take z to be an element of E(M) − cl(X). In this case, we let Y be this
triangle. Thus, whenever r(M) ≥ 4, we have a triangle of M that avoids X.
Now κM (X,Y ) = λ(Y ) = 2, so, by Theorem 2.1, M has a minor N with
E(N) = X∪Y and κN (X,Y ) = 2 such that M |X = N |X and M |Y = N |Y .
Thus rN (Y ) = 2 and rN (X) = r(N) = 4. Now each of {x1, x2, x4, x5} and
{x1, x3, x6, x7} is a cocircuit of N , otherwise rN (Y ) ≤ 1, a contradiction.

Let P be the rank-4 ternary projective space of which N is a restriction.
Let clP (Y ) = {a, b, c, d}. Now N has Y ∪ {x2, x4, x5} and Y ∪ {x3, x6, x7}
as planes that meet on the line Y . Let {x2, x4, a}, {x2, x5, b}, and {x4, x5, c}
be triangles of P . Note that r({x2, x3, x4, x6}) = 3. Now the projective line
clP (Y ) meets the projective plane clP ({x2, x3, x4, x6}) in the point a because
clP (Y ) is not contained in the projective plane. Thus {x3, x6, a} is a triangle
of P . Similarly, {x3, x7, b} and {x6, x7, c} are triangles of P . If all of a, b,
and c are in Y , then N\x1 ∼= M(K5\e). The triangles containing x1 imply
that N ∼= M(K5). We may now assume that exactly two of a, b, and c are
in Y . Thus d ∈ Y and N/d is a rank-3 matroid having three 3-point lines
containing x1 and having {x2, x4, x5} and {x3, x6, x7} as triangles. Thus
N/d has a P7-minor, a contradiction. □

Lemma 3.8. Let M be a minor-minimal ternary matroid in M4. If M is
3-connected, then no element of M is in at least three triangles unless M is
isomorphic to F−

7 , P7, or M(K5).

Proof. Assume that M is not isomorphic to F−
7 , P7, or M(K5). Recall that,

by Lemma 3.5, every 4-cocircuit is independent. Let {x1, x2, x4, x5} be a
cocircuit C∗ of M . Assume that x1 is in more than three triangles. Let
T1, T2, T3, and T4 be four such triangles. Then, by Lemma 3.4, |C∗∩Ti| = 2
for all i in {1, 2, 3, 4}. However, this would imply that x1 is contained in a
four-point line, a contradiction to Lemma 3.3. Thus we may assume that x1
is in exactly three triangles, say, {x1, x2, x3}, {x1, x4, x6}, and {x1, x5, x7}.
We first show the following.

3.8.1. x4 is in a triangle other than {x1, x4, x6}.

Assume that this fails. Then M/x4\x1 is simple. By the minimality of
M , it follows that M/x4\x1 has a triad T ∗. Thus T ∗ ∪ x1 is a cocircuit
of M where x4 ̸∈ T ∗. Then x6 ∈ T ∗ and, by orthogonality, T ∗ contains
x2 or x3, and T ∗ contains x5 or x7. If {x1, x2, x5, x6} is a cocircuit, then
M∗|{x1, x2, x4, x5, x6} ∼= U3,5, a contradiction. If {x1, x3, x5, x6} is a cocir-
cuit, then, as {x1, x2, x4, x5} is a cocircuit, by circuit elimination, we deduce
that M has a cocircuit contained in {x2, x3, x4, x5, x6}. By orthogonality
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with the triangle {x1, x5, x7}, we see that {x2, x3, x4, x6} is a cocircuit. How-
ever, {x2, x3, x4, x6} is also a circuit, a contradiction to Lemma 3.5. Now
assume that {x1, x2, x6, x7} is a cocircuit. Then, again, as {x1, x2, x4, x5}
is a cocircuit, there is a cocircuit contained in {x2, x4, x5, x6, x7}. By or-
thogonality with the triangle {x1, x2, x3}, we deduce that {x4, x5, x6, x7}
is a cocircuit. As {x4, x5, x6, x7} is also a circuit, we get a contradiction
to Lemma 3.5. We conclude that {x1, x3, x6, x7} is a cocircuit of M . By
Lemma 3.7, this yields a contradiction. Thus 3.8.1 holds.

By 3.8.1 and symmetry, {x4, x5, x8} is a triangle of M for some element
x8 not in E(M) − {x1, x2, . . . , x7}. By symmetry again, x2 is in a triangle
other than {x1, x2, x3}, so M has {x2, x4, x9} or {x2, x5, x9} as a triangle for
some element x9. By applying the permutation (x4, x5)(x6, x7) to E(M),
we deduce that these two cases are symmetric, so it suffices to consider the
former.

Suppose first that x1, x2, . . . , x8, and x9 are distinct. Now M has a co-
circuit C∗

6 that contains x6. By orthogonality, x1 or x4 is in C∗
6 , so C∗

6

is {x1, x3, x6, x7} or {x4, x6, x8, x9}. The first case gives a contradiction
by Lemma 3.7. In the second case, M has {x1, x4, x6}, {x2, x4, x9}, and
{x4, x5, x8} as triangles and has {x1, x2, x4, x5} and {x4, x6, x8, x9} as cocir-
cuits and again we get a contradiction by Lemma 3.7.

We may now assume that x1, x2, . . . , x8, and x9 are not distinct. Since
x1, x2, . . . , x6, and x7 are distinct, x8 or x9 is in {x1, x2, . . . , x7}. But one
easily checks that each possibility implies that r({x1, x2, . . . , x7}) = 3, a
contradiction. We conclude that Lemma 3.8 holds. □

Lemma 3.9. Let M be a minor-minimal matroid in M4. If M has
{x1, x2, x3} as the unique triangle containing x1, then M has a 4-cocircuit
that meets {x1, x2, x3} in {x2, x3}.
Proof. Consider M/x1\x3. Since it is simple, by the minimality of M , the
matroid M/x1\x3 has a triad T ∗. Thus T ∗ ∪ x3 is a cocircuit of M . By
orthogonality, x2 ∈ T ∗ since x1 ̸∈ T ∗

1 . Hence the 4-cocircuit T ∗ ∪ x3 meets
{x1, x2, x3} in {x2, x3}. □

Lemma 3.10. Let M be a minor-minimal ternary matroid in M4 that
is not isomorphic to M∗(K3,3) or Q9. Assume that M has {x1, x2, x3},
{x4, x5, x6}, and {x7, x8, x9} as disjoint triangles and has no other trian-
gles meeting {x1, x2, . . . , x9}. Then M does not have all of {x1, x2, x4, x5},
{x2, x3, x7, x8}, and {x5, x6, x8, x9} as cocircuits.

Proof. Assume that M does have the three specified sets as cocircuits. By
Lemma 3.9, M has a 4-cocircuit C∗ containing {x1, x3}. Thus, by Lem-
mas 3.4 and 3.5, C∗ = {x1, x3, x10, x11} for some elements x10 and x11 in
E(M)− {x1, x2, . . . , x9}.
3.10.1. M has no 4-circuit containing {x2, x3}.

Assume M has such a circuit C. As {x1, x2, x4, x5} is a cocircuit, C
contains x4 or x5. By Lemma 3.5, C does not contain {x4, x5} otherwise
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r({x1, x2, x3, x4, x5, x6}) = 3 and M has {x1, x2, x4, x5} as a circuit and a
cocircuit. Thus C is {x2, x3, x4, α} or {x2, x3, x5, β} for some elements α
and β. Suppose C = {x2, x3, x5, β}. Then β ∈ {x6, x8, x9} and we obtain
a contradiction to orthogonality with the cocircuit {x1, x3, x10, x11}. Thus
C = {x2, x3, x4, α} and, by symmetry, we may assume that α = x10.

As {x2, x3, x4, x10} and {x1, x2, x3} are circuits of M , we can eliminate
x2 to obtain that {x1, x3, x4, x10} is a circuit of M since each of x1, x3, and
x4 is in just one triangle. But this circuit meets the cocircuit {x2, x3, x7, x8}
in a single element, a contradiction. Hence 3.10.1 holds.

Consider M/x2, x3\x1. By 3.10.1 and the fact that each of x2 and x3 is in
a single triangle, we deduce that this matroid is simple. Now M/x2, x3\x1
has no triad T ∗ otherwiseM has T ∗∪x1 as a cocircuit that meets {x1, x2, x3}
in a single element. We deduce that M/x2, x3\x1 contradicts the minimality
of M . □

Lemma 3.11. Let M be a minor-minimal ternary matroid in M4. Assume
that no element of M is more than one triangle. Then there is no integer n
such that M has T1, T2, . . . , Tn as disjoint triangles and has C∗

1 , C
∗
2 , . . . , C

∗
n

as 4-cocircuits such that, interpreting all subscripts modulo n, the sets C∗
i ∩Ti

and C∗
i−1 ∩ Ti are distinct and |C∗

i ∩ Ti| = 2 = |C∗
i ∩ Ti+1| for all i.

Proof. Assume that there is such an integer. Choose a least such integer n.
By Lemmas 3.5 and 3.10, n ≥ 4. Let Ti = {xi1, xi2, xi3} for all i. We can
shuffle the labels within each Ti such that, for j < n, the cocircuit C∗

j is

{xj2, xj3, x(j+1)2, x(j+1)3} when j is odd and {xj1, xj2, x(j+1)1, x(j+1)2} when
j is even. Moreover, we can take C∗

n to be {xn2, xn3, x11, x12} when n is
odd and {xn1, xn2, x11, x12} when n is even. Now consider M/x11, x13\x12.
Suppose it has a triad T ∗. Then T ∗ ∪ x12 is a cocircuit of M that meets
T1 in a single element, a contradiction. By the minimality of M , it has a
4-circuit C that contains {x11, x13}. By orthogonality, C contains x22 or x23
and C also contains a member of {xn2, xn3} when n is odd and a member
of {xn1, xn2} when n is even. The cocircuit {x21, x22, x31, x32} implies that
x22 ̸∈ C, so x23 ∈ C. Thus C = {x11, x13, x23, xnα} for some α in {1, 2, 3}.
Now, by Lemma 3.9, M has a 4-cocircuit D∗ that contains {x21, x23}. By
Lemma 3.5, this cocircuit does not meet T1, Thus xnα ∈ D∗ so |D∗∩Tn| = 2.
The minimality of n is contradicted unless D∗ ∩ Tn = Tn ∩ C∗

n−1. In the
exceptional case, D∗∆C∗

n−1 is a 4-cocircuit D∗
n−1 of M that meets Tn−1 in

exactly two elements. Then the triangles T2, T3, . . . , Tn−2, and Tn−1 and the
cocircuits C∗

2 , C
∗
3 , . . . , C

∗
n−2, and D∗

n−1 violate the minimality of n. □

Lemma 3.12. Let M be a minor-minimal ternary matroid in M4. Suppose
that M has {x1, x2, x4, x5} as a cocircuit and has {x1, x2, x3}, {x1, x4, x6},
and {x2, x4, x7} as triangles. Then M is isomorphic to F−

7 , P7, or M(K5).

Proof. Assume that M is not isomorphic to F−
7 , P7 or M(K5). Since M has

a triangle containing x5, by orthogonality, this triangle contains x1, x2, or
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br+1 a1 a2 a3 . . . ar−1 ar ar+1



b1 1 1 0 0 0 1 0
b2 1 1 1 0 0 1 1
b3 1 0 1 1 0 1 1
b4 1 0 0 1 0 1 1
...

br−1 1 0 0 0 1 1 1
br 1 0 0 0 1 0 1

Figure 11. The matrix Ar.

b1 b2

b3

b4

b5

a3a5

a1

a4 a2

Figure 12. K5.

x4. Thus one of those elements is in at least three triangles, a contradiction
to Lemma 3.8. □

For r ≥ 4, let Mr be the matroid that is represented over GF (3) by the
matrix [Ir|Ar] where Ar is the ternary matrix shown in Figure 11. We omit
the routine proof of the following result.

Lemma 3.13. For all r ≥ 6,

Mr/a1, a2\b1, b2 ∼= Mr−2.

For all i in [r + 1], we see that {bi, ai, bi+1} is a triangle of Mr, and
{ai, bi+1, bi+2, ai+2} is a cocircuit where all subscripts are interpreted modulo
r + 1.

Lemma 3.14. M4
∼= M(K5) and M5

∼= M(K2,2,2).

Proof. It is straightforward to check that each of the triangles in the graph
K5 in Figure 12 is a circuit in M4. It follows that M4/e is binary for all
e. Thus M4 is binary as r(M4) = 4. Therefore, as M4 is ternary, M4 is

regular. Since |E(M4)| = 10 =
(
r(M4)+1

2

)
, it follows by a result of Heller [9]

that M4
∼= M(K5). It is straightforward to check that the triangles of M5

have the structure of Figure 7. Thus, by Lemma 2.7, M5
∼= M(K2,2,2). □
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Lemma 3.15. Let M be a minor-minimal ternary matroid in M4. Assume
that M is not isomorphic to M(K5) or M(K2,2,2). For some k ≥ 4, let
y1, z1, y2, z2, . . . , yk, zk, yk+1 be a sequence of distinct elements of M such
that {yi, zi, yi+1} is a triangle for all i in [k] and {zj , yj+1, yj+2, zj+2} is a
cocircuit for all j in [k−2]. Assume that none of z1, z2, . . . , zk−1, or zk is in
more than one triangle of M . Then M has elements zk+1 and yk+2 that are
not in {y1, z1, y2, . . . , yk, zk, yk+1} such that {yk+1, zk+1, yk+2} is a triangle,
{zk−1, yk, yk+1, zk+1} is a cocircuit, and zk+1 is in only one triangle of M .

Proof. As M/zk\yk+1 is simple, it has a triad T ∗
k+1. Then T ∗

k+1 ∪ yk+1 is a
cocircuit of M and yk ∈ T ∗

k+1. By orthogonality, zk−1 or yk−1 is in T ∗
k+1.

Suppose yk−1 ∈ T ∗
k+1. Then zk−2 or yk−2 is in T ∗

k+1. In the latter case, the
triangle {yk−3, zk−3, yk−2} contradicts orthogonality. In the former case,
M∗|{zk−2, yk−1, yk, zk, yk+1} ∼= U3,5, a contradiction. Then yk−1 ̸∈ T ∗

k+1,
so zk−1 ∈ T ∗

k+1. Let T ∗
k+1 − {zk−1, yk} = {zk+1}. By orthogonality and

Lemma 3.3, zk+1 ̸∈ {y1, z1, y2, . . . , zk, yk+1}. Now zk+1 is in a triangle T
of M . By Lemma 3.8, yk is not in three triangles, and, by assumption,
zk−1 is in only one triangle, so zk+1 is in only one triangle and this triangle
avoids {zk−1, yk}. Thus yk+1 ∈ T . Let T − {yk+1, zk+1} = {yk+2}. The
known 4-cocircuits of M imply that yk+2 ̸∈ {y1, z1, y2, z2, . . . , yk+1, zk+1}
unless yk+2 = y1.

3.15.1. If yk+2 = y1, then M is isomorphic to M(K5) or M(K2,2,2).

Assume yk+2 = y1. Now M/zk+1\yk+2 is simple and so has triad T ∗
k+2.

Then T ∗
k+2 ∪ yk+2 is a cocircuit of M that contains yk+1. Thus zk or yk is in

T ∗
k+2, and z1 or y2 is in T ∗

k+2. The triangles {yk−1, zk−1, yk} and {y2, z2, y3}
imply that zk and z1 are in T ∗

k+2, so {zk, yk+1, y1, z1} is a cocircuit of M .
Let V = {y1, z1, . . . , yk+1, zk+1}. Then V is spanned by {y1, y2, . . . , yk+1}.

Moreover, we get {z1, y2, y3, z3}, {z2, y3, y4, z4}, . . . , {zk−1, yk, yk+1, zk+1},
and {zk, yk+1, y1, z1} as cocircuits of V , where each of which contains an
element that is not in the union of its predecessors, so r∗(V ) ≤ 2(k+1)− k.
Since r(V ) ≤ k + 1, it follows that λ(V ) ≤ 1. Thus |E(M) − V | ≤ 1. As-
sume E(M)−V = {w}. Then w is in a triangle. But each of y1, y2, . . . , yk+1

is already in two triangles, while each of z1, z2, . . . , zk+1 is already in one
triangle. Thus w is not in a triangle, a contradiction. We deduce that
E(M) − V = ∅, so λ(V ) = 0. Hence 0 = r(V ) + r∗(V ) − 2(k + 1). If
r(V ) = k+1, then E(M)− cl({y1, y2, . . . , yk}) ⊆ {zk, yk+1, zk+1}, so M has
a triad, a contradiction. Hence r(V ) ≤ k. The k cocircuits listed above
imply that r(V ) ≥ k. Hence r(V ) = k = r(M).

We now construct a representation ofM . Let B∪yk+1 = {y1, y2, . . . , yk+1}
where B is the basis {y1, y2, . . . , yk}. Then B ∪ yk+1 contains a circuit
containing yk+1. By orthogonality with the known 4-cocircuits of M , we
deduce that {y1, y2, . . . , yk+1} is a circuit of M .

From this representation, we now make it a ternary representation for
M . By using the fundamental circuits with respect to B and scaling the
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yk+1 z1 z2 z3 . . . zk−1 zk zk+1



y1 1 1 0 0 0 1 wk+1

y2 1 v2 1 0 0 1 1
y3 1 0 v3 1 0 1 1
y4 1 0 0 v4 0 1 1
...

yk−1 1 0 0 0 1 1 1
yk 1 0 0 0 vk wk 1

Figure 13. A ternary representation for M .

yk+1 z1 z2 z3 . . . zk−1 zk zk+1



y1 1 1 0 0 0 1 0
y2 1 1 1 0 0 1 1
y3 1 0 1 1 0 1 1
y4 1 0 0 1 0 1 1
...

yk−1 1 0 0 0 1 1 1
yk 1 0 0 0 1 0 1

Figure 14. The matrix Ar in Lemma 3.15.

rows so that yk+1 consists of all ones, we see that the matrix in Figure 13
is a representation for M where v2, v3, . . . , vk are all non-zero. The circuits
{yk, zk, yk+1} and {yk+1, zk+1, y1} imply we may assume that the columns zk
and zk+1 are as shown, where wk and wk+1 may be zero. Now, the cocircuits
{zk−1, yk, yk+1, zk+1} and {zk, yk+1, y1, z1} imply that wk = 0 = wk+1. The
cocircuit {z1, y2, y3, z3} implies v3 = 1. By symmetry, each of v4, v5, . . . , vk
is 1. Finally, the cocircuit {zk+1, y1, y2, z2} implies that v2 = 1. Hence M is
represented as shown in Figure 14.

By Lemma 3.14, if k is 4 or 5, then M is isomorphic to M(K5) or
M(K2,2,2), respectively. By Lemma 3.13, if k ≥ 6, then M has M(K5)
or M(K2,2,2) as a proper minor. The minimality of M implies that 3.15.1
holds. Hence so does the lemma. □

Lemma 3.16. Let M be a 3-connected minor-minimal ternary matroid in
M4. Assume that M has {x1, x2, x4, x5} as a cocircuit and has {x1, x2, x3},
{x1, x4, x6}, and {x2, x5, x7} as triangles, but M has no triangle containing
{x4, x5}. Then M is isomorphic to P7,M

∗(K3,3), Q9,M(K5), or M(K2,2,2).
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Proof. Assume that M is not isomorphic to P7, Q9,M
∗(K3,3), or M(K2,2,2).

By Lemma 3.5, r({x1, x2, x4, x5}) = 4. Moreover, by Lemma 3.3, M has no
4-point line. Thus x7 ̸= x3. Also x7 ̸= x6 otherwise r({x1, x2, x4, x5}) = 3,
a contradiction. Thus x1, x2, . . . , x6, and x7 are distinct.

By Lemma 3.12, M/x4\x6 is simple. By the minimality ofM , the matroid
M/x4\x6 has a triad T ∗

6 , and T ∗
6 ∪ x6 is a cocircuit of M that avoids x4.

Thus M has {x1, x2, x5, x6}, {x1, x2, x6, x7}, or {x1, x3, x6, x8} as a cocircuit
for some element x8 not in {x1, x2, . . . , x7}. The first two cases violate
Lemma 3.6. Thus M has {x1, x3, x6, x8} as a cocircuit. Now x8 is in a
triangle T of M . By Lemma 3.8, x1 ̸∈ T . Thus x3 or x6 is in T .

First assume that {x3, x8} ⊆ T and let α be the third element of T . We
show next that α ̸∈ {x1, x2, . . . , x8}. Assume α ∈ {x1, x2, . . . , x8}. Then
α ∈ {x6, x7}. By Lemma 3.4, α ̸= x6. Thus α = x7. Now x7 is in a
4-cocircuit D∗. By Lemma 3.12, {x2, x3, x7} ̸⊆ D∗. By orthogonality, x2
or x5 is in D∗, and x3 or x8 is in D∗. Moreover, x1 ̸∈ D∗. Thus if x2
or x3 is in D∗, then both are, a contradiction. Hence {x5, x7, x8} ⊆ D∗.
Let D∗ = {x5, x7, x8, β}. The triangles {x1, x2, x3} and {x1, x4, x6} im-
ply that β ̸∈ {x1, x2, . . . , x8}. Now β is in a triangle T ′. By Lemma 3.8
and the lemma’s hypothesis, x7 ̸∈ T ′ and x5 ̸∈ T ′. Thus x8 ∈ T ′. Let
T ′ = {β, x8, γ}. The cocircuit {x1, x3, x6, x8} implies, by Lemma 3.8, that
γ = x6, that is, {β, x6, x8} is a triangle. Let X = {x1, x2, . . . , x8, β}. Then
r(X) = 4 and λ(X) ≤ 4 + (9 − 3) − 9 = 1, so |E(M) − X| ≤ 1. As
r({x1, x2, x3, x5, x7, x8}) = 3, we deduce that |E(M) − X| = 1 otherwise
M has a triad. Let E(M)−X = {δ}. Deleting the cocircuits {x1, x2, x4, x5}
and {x1, x3, x6.x8} from M leaves {x7, β, δ}, which must be a triangle. Thus
x7 is in three triangles, a contradiction to Lemma 3.8. We conclude that
α ̸∈ {x1, x2, . . . , x8}.

By the minimality of M , the simple matroid M/x5\x7 has a triad T ∗
7 and

T ∗
7 ∪ x7 is a cocircuit of M that avoids x5, so it contains x2. Now x1 ̸∈ T ∗

7 ,
otherwise {x1, x2, x4, x7} or {x1, x2, x6, x7} is a cocircuit of M . The first
case gives the contradiction that M∗ has a U3,5-minor, while the second
case violates Lemma 3.6. We deduce that {x2, x3, x7, x8} or {x2, x3, x7, α}
is a cocircuit. Suppose {x2, x3, x7, x8} is a cocircuit. As {x1, x3, x6, x8} is
a cocircuit, eliminating x8 gives a cocircuit contained in {x1, x2, x3, x6, x7}.
The triangle {x3, x8, α} implies that the cocircuit avoids x3, so it must be
{x1, x2, x6, x7}. This gives a contradiction to Lemma 3.6. We deduce that
{x2, x3, x7, α} is a cocircuit of M .

Let X = {x1, x2, . . . , x8, α}. Then r(X) ≤ 5 and λ(X) ≤ r(X) − 3,
so λ(X) ≤ 2. Suppose r(X) = 4. Then λ(X) ≤ 1, so M has at most one
element that is not inX. Assume that E(M)−X = {e}. Then r(M) = 4. As
M has {x1, x2, x4, x5}, {x1, x3, x6, x8}, and {x2, x3, x7, α} as cocircuits, by
considering the set obtained from E(M) by deleting each two of these three
cocircuits, we deduce that M has {x6, x8, e}, {x7, α, e}, and {x4, x5, e} as
triangles. Thus e is in at least three triangles, a contradiction to Lemma 3.8.
We conclude that X = E(M). Then {x1, x2, x3, x8, α} is a hyperplane of
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M , so M has {x4, x5, x6, x7} as a cocircuit. As {x4, x5} is not in a triangle,
we obtain the contradiction that M ∼= Q9. We conclude that r(X) > 4, so
r(X) = 5.

Assume that r(M) = 5. If λ(X) ≤ 1, then M has at most one element
not in X. As r({x1, x2, . . . , x7}) = 4, it follows that M has a cocircuit of
size less than four. Then λ(X) = 2, so r(X) = 5 and r(E(M) − X) = 2.
Hence E(M) − X is a line containing exactly two or exactly three points.
Assume E(M) − X = {y1, y2}. Then each yi is in a triangle Ti. Be-
cause X is a union of cocircuits, {y1, y2} is not contained in a triangle.
By Lemma 3.8, none of x1, x2, or x3 is in Ti. By assumption, Ti avoids
{x4, x5}. Thus Ti−yi ⊆ {x6, x7, x8, α} for each i. By Lemma 3.3, M has no
line with more than three points, so, by using the cocircuits {x1, x3, x6, x8}
and {x2, x3, x7, α}, we may assume that {y1, x6, x8} and {y2, x7, α} are tri-
angles. Then r({x1, x2, x3, x4, x6, x8, y1, α}) ≤ 4 so M has a cocircuit of size
less than four, a contradiction. We conclude that E(M) − X is a triangle
when r(M) = 5.

Assume r(M) > 5. Then, as r(X) = 5, we must have λ(X) = 2 otherwise
M has a cocircuit of size less than four. Now, M has a triangle Y disjoint
from cl(X). By Theorem 2.1, M has a 12-element rank-5 minor N having
ground set X∪Y with M |X = N |X and M |Y = N |Y such that λN (Y ) = 2.
Then r(N) = 5. Now E(N) can be written as a disjoint union of triangles.
Thus N has no triads. By the minimality of M , we see that N must have a
2-element cocircuit S∗. As r(X) = 5, and Y is a triangle of N , we see that
S∗ ⊆ X. The triangles in X imply that S∗ is {x4, x6},{x5, x7} or {x8, α}.
Since rN (Y ) = 2, each of the cocircuits {x1, x2, x4, x5}, {x1, x3, x6, x8} and
{x2, x3, x7, α} of M is also a cocircuit of N . The additional cocircuit S∗

gives a contradiction. We conclude that r(M) = 5.
Let E(M) − X = {e, f, g}, which is a triangle of M . The cocircuits of

M imply that M has {e, f, g, x7, α}, {e, f, g, x4, x5} and {e, f, g, x6, x8} as
planes. We may view M as a restriction of a rank-5 ternary projective space
P . Let h be the unique point in clP ({e, f, g}) − {e, f, g}. Since {x4, x5}
is not in a triangle of M , we deduce that {x4, x5, h} is a triangle of P . If
{x4, x5, x7, α}, {x4, x5, x6, x8}, or {x6, x7, x8, α} is a circuit of M , we obtain
the contradiction that r(X) = 4. Thus each of clP ({x7, α}), clP ({x4, x5}),
and clP ({x6, x8}) meets {e, f, g, h} in a distinct point. Hence we may assume
that {x6, x8, e} and {x7, α, f} are triangles of M .

Next we construct a ternary representation for the matroid M ′ that is
obtained from M by adjoining the element h. Then {x1, x2, x4, x5, x8} is a
basis B for this matrix and the representation is shown in Figure 15. To
verify that this is indeed a representation, we use the fundamental circuits
of x3, x6, and x7 with respect to B and the circuit {x3, x8, α}. Scaling rows
2–5 so that their first non-zero entries are 1, we deduce that the columns
corresponding to x3, x6, x7, and α are as indicated. Moreover, the column
corresponding to h is as indicated, where u1 ̸= 0. The circuit {x6, x8, e}
implies that the column e is as indicated with u2 ̸= 0. Because {e, f, g, h}
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x3 x6 x7 α e f g h


x1 1 1 0 1 1 1 1 0
x2 1 0 1 1 0 0 0 0
x4 0 1 0 0 1 0 u5 1
x5 0 0 1 0 0 u3 u6 u1
x8 0 0 0 1 u2 u4 u7 0

Figure 15. Building a representation for M ′.

is a 4-point line, the second coordinates of columns f and g are zero. The
triangle {x7, α, f} implies that the third coordinate of column f is zero
while we may take the first coordinate of f to be 1. The fourth and fifth
coordinates of column f are u3 and u4 both of which are non-zero. The
triangle {e, g, h} implies that we may take the first coordinate of column
g to be 1. The last three coordinates of g are non-zero, u5, u6, and u7,
respectively.

The circuit {x7, α, f} implies that u3 = −1 and u4 = 1. The circuit
{e, f, g} implies that u5 = −1, u6 = 1, and u7 = −u2 − 1. Finally, the
circuit {f, g, h} implies that u1 = 1 and u2 = 1, so Figure 16 is a represen-
tation for the extension of M by the element h. One can now check that
M ′/g\e, f, h ∼= Q9, a contradiction. We conclude that {x3, x8} ̸⊆ T .

We now know that {x6, x8} ⊆ T . By Lemma 3.12 applied to the co-
circuit {x1, x3, x6, x8}, we deduce that x3 is not in a triangle apart from
{x1, x2, x3}, otherwise this triangle contains x8, which we eliminated above.
Let T = {x6, x8, α1}. Then, by Lemma 3.12, the cocircuit {x1, x3, x6, x8}
implies that M has no additional triangles containing x8. Observe that
α1 ̸∈ {x1, x2, . . . , x8} unless α1 = x7. Now M/x8\α1 is simple and so has a
triad T ∗

1 avoiding x8. Then x6 ∈ T ∗
1 , and T ∗

1 ∪α1 is a cocircuit of M . By or-
thogonality and Lemma 3.4, exactly one x1 and x4 is in T ∗

1 . Suppose x1 ∈ T ∗
1 .

Then either {x1, x3, x6, α1} is a cocircuit, or α1 = x7 and {x1, x2, x6, x7} is a
cocircuit. In the first case, M∗|{x1, x3, x6, x8, α1} ∼= U3,5, a contradiction. In
the second case, the union of the two triangles {x1, x2, x3} and {x6, x7, x8}

x3 x6 x7 α e f g h


x1 1 1 0 1 1 1 1 0
x2 1 0 1 1 0 0 0 0
x4 0 1 0 0 1 0 −1 1
x5 0 0 1 0 0 −1 1 1
x8 0 0 0 1 1 1 1 0

Figure 16. A matrix A such that M ′ ∼= M [I5|A].



28 MATTHEW MIZELL AND JAMES OXLEY

contains two 4-circuits, a contradiction to Lemma 3.6. We conclude that
x1 ̸∈ T ∗

1 . Thus x4 ∈ T ∗
1 . Again if α1 = x7, then T ∗

1 ∪ α1 = {x4, x5, x6, x7},
and this cocircuit together with {x1, x2, x4, x5} gives a contradiction to
Lemma 3.6. Thus α1 ̸∈ {x1, x2, . . . , x8}. Letting

(x7, x5, x2, x3, x1, x4, x6, x8, α1) = (y1, z1, y2, z2, y3, z3, y4, z4, y5)

in Lemma 3.15, we deduce, by repeated applications of that lemma, that M
is isomorphic to M(K5) or M(K2,2,2), otherwise |E(M)| is infinite. □

Lemma 3.17. Let M be a minor-minimal ternary matroid in M4. If M has
{x1, x2, x4, x5} as a cocircuit and has {x1, x2, x3}, {x1, x4, x7}, {x4, x5, x6},
and {x2, x5, x8} as triangles, then x1, x2, . . . , x7, and x8 are distinct, and M
has a 4-cocircuit {x2, x3, x8, σ} or {x4, x6, x7, τ} where neither σ nor τ is in
{x1, x2, . . . , x8}.

Proof. By Lemma 3.5, x3 ̸= x6 otherwise r({x1, x2, x4, x5}) = 3. By sym-
metry, x7 ̸= x8. Similarly, x3 ̸= x8 and, by Lemma 3.3, x3 ̸= x7. Thus
x1, x2, . . . , x7, and x8 are distinct.

Consider M/x5\x2, x4. This matroid is simple. By Lemma 3.6, M
does not have a 4-cocircuit containing {x2, x4} and avoiding x5. Thus
M/x5\x2, x4 is cosimple. By the minimality of M , the matroid M/x5\x2, x4
has a triad T ∗. Thus one of T ∗ ∪ x2, T

∗ ∪ x4, or T
∗ ∪ {x2, x4} is a cocircuit

of M where x5 ̸∈ T ∗.
Assume that T ∗ ∪ {x2, x4} is a cocircuit of M . Then, by orthogonality.

{x6, x8} ⊆ T ∗ and also x1 ∈ T ∗. Thus {x1, x2, x4, x6, x8} is a cocircuit of M .
Eliminating x1 from the union of {x1, x2, x4, x5} and {x1, x2, x4, x6, x8}, we
deduce that M has a cocircuit D∗ that is contained in {x2, x4, x5, x6, x8}.
By orthogonality, x4 ̸∈ D∗ and x2 ̸∈ D∗, so |D∗| ≤ 3, a contradiction. Hence
T ∗ ∪ {x2, x4} is not a cocircuit of M .

Next suppose that T ∗ ∪ x2 is a cocircuit of M . As x5 ̸∈ T ∗, we deduce
that x8 ∈ T ∗. Also x1 or x3 is in T ∗. If x1 ∈ T ∗, we get a contradiction to
Lemma 3.5. Thus x3 ∈ T ∗, so T ∗ ∪ x2 = {x2, x3, x8, σ} for some element σ
that, by orthogonality, is not in {x1, x2, . . . , x8}. By symmetry, if T ∗ ∪ x4
is a cocircuit of M , then T ∗ ∪ x4 = {x4, x6, x7, τ} for some element τ not in
{x1, x2, . . . , x8}. □

Lemma 3.18. Let M be a minor-minimal ternary matroid in M4. As-
sume that M has {x1, x2, x4, x5} as a cocircuit and has {x1, x2, x3} and
{x1, x4, x7}, as triangles. Then M is isomorphic to P7,M

∗(K3,3), Q9,
M(K5),M(K2,2,2), or H12.

Proof. As x5 is in a triangle of M , by Lemmas 3.8 and 3.16, we may as-
sume that {x4, x5, x6} and {x2, x5, x8} are triangles of M . Moreover, by
Lemma 3.17, x1, x2, . . . , x7, and x8 are distinct. We shall use the diagram
in Figure 17 to expose the symmetries that arise in the argument. The
ring around the set {x1, x2, x4, x5} is to indicate that this set is a cocir-
cuit of M . By Lemma 3.17, M has {x2, x3, x8, y2} or {x4, x6, x7, y4} as
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x7

x4

x1 x2 x3

x5 x6

x8

Figure 17. The triangles of M at the beginning of the proof
of Lemma 3.18.

a cocircuit for some elements y2 and y4 not in {x1, x2, . . . , x8}. Redraw-
ing Figure 17 as Figure 18 corresponding to the two possibilities above,
we see that these two cases are symmetric. We may assume that M has
{x2, x3, x8, y2} as a cocircuit. By Lemma 3.16, M has triangles {x3, y2, y3}
and {x8, y2, y8}. As M has no 4-point lines, y3 ̸= y8. Moreover, by orthog-
onality, {y3, y8} ∩ {x1, x2, x3, x4, x5, x8, y2} = ∅.

Suppose x6 = y3. There is a 4-cocircuit C∗
6 containing x6. Then, by

Lemma 3.4, C∗
6 contains exactly one of x4 and x5 and exactly one of x3

and y2. By Lemma 3.6, x3 ̸∈ C∗
6 and x5 ̸∈ C∗

6 . Thus {x4, x6, y2} ⊆ C∗
6

so, by orthogonality, C∗
6 must contain x7 and y8, so x7 = y8. It follows by

Lemma 2.6 that M has M∗(K3,3) as a minor, so we deduce that x6 ̸= y3.
By symmetry, x7 ̸= y8.

Next suppose that x6 = y8. Let D
∗
6 be a 4-cocircuit containing x6. Then,

by Lemma 3.4, D∗
6 contains exactly one of x4 and x5 and contains exactly one

of x8 and y2. Now D∗
6 cannot contain {x4, x6, x8} otherwise, by orthogonal-

ity, |D∗
6| ≥ 5, a contradiction. Moreover, by Lemma 3.12, {x5, x6, x8} ̸⊆ D∗

6.
We deduce that {x6, y2} ⊆ D∗

6.

x7

x1

x4 x5 x6

x2 x3

y2
x8

x8

x5

x2 x1 x3

x4 x6

x7

y4

Figure 18. The ringed sets correspond to cocircuits.
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x7

x1

x4 x5 x6

x2 x3

y2
x8

y3

y8

Figure 19. The ringed sets correspond to cocircuits.

Suppose {x4, x6, y2} ⊆ D∗
6. Then, by Lemma 3.4, D∗

6 contains x1 or
x7 and contains x3 or y3. As |D∗

6| = 4, it follows that y3 = x7 and
D∗

6 = {x4, x6, x7, y2}. The cocircuits {x1, x2, x4, x5}, {x2, x3, x8, y2}, and
{x4, x6, x7, y2} imply that λ({x1, x2, . . . , x8, y2}) ≤ 4 + (9 − 3) − 9 = 1,
so |E(M) − {x1, x2, . . . , x8, y2}| ≤ 1. As r({x2, x4, x5, x6, x8, y2}) = 3,
to avoid M having a cocircuit of size less than four, we must have that
E(M)−{x1, x2, . . . , x8, y2} contains a single element, say γ. The complement
of the hyperplane {x2, x4, x5, x6, x8, y2} is {x1, x3, x7, γ}. As {x1, x2, x3},
{x3, x7, y2}, and {x1, x4, x7} are triangles, we get a contradiction to
Lemma 3.12. We conclude that {x4, x6, y2} ̸⊆ D∗

6.
We now know that {x5, x6, y2} ⊆ D∗

6. Then x2 or x8 is in D∗
6, and x3 or y3

is inD∗
6. Then, we obtain the contradiction that |D∗

6| ≥ 5 unless x3 or y3 is in
{x2, x5, x6, x8, y2}. Consider the exceptional case. As x1, x2, . . . , x8, and y2
are distinct, we must have that y3 ∈ {x2, x5, x6, x8, y2}. But we showed that
y3 ̸= x6. Also y3 ̸= y2. By orthogonality between the triangle {x3, y2, y3}
and the cocircuit {x1, x2, x4, x5}, we see that y3 ̸∈ {x2, x5}. Finally, y3 ̸= x8
or else the cocircuit {x2, x3, x8, y2} contains a triangle, a contradiction to
Lemma 3.4. We conclude that x6 ̸= y8. By symmetry, x7 ̸= y3. Thus

3.18.1. x1, x2, . . . , x8, y2, y3, and y8 are distinct.

Let Z = {x1, x2, . . . , x8, y2, y3, y8}. Now {x5, x6} or {x4, x6} is in a
4-cocircuit S∗

6 of M . By Lemma 3.6, S∗
6 avoids {x1, x2, x3}. Thus S∗

6

is {x5, x6, x8, y8} or {x4, x6, x7, β6} for some element β6 not in Z. By
symmetry, M has a 4-cocircuit S∗

7 containing x7 and x1 or x4. Then S∗
7

is {x1, x3, x7, y3} or {x4, x6, x7, β7} for some element β7 not in Z. By
symmetry, M has 4-cocircuits S∗

3 and S∗
8 where S∗

3 contains {y2, y3} or
{x3, y3}, while S∗

8 contains {y2, y8} or {x8, y8}. Then S∗
3 is {y2, y3, y8, β3} or

{x1, x3, x7, y3}, and S∗
8 is {y2, y3, y8, β8} or {x5, x6, x8, y8} where neither β3

nor β8 is in Z.

3.18.2. If M has both {x5, x6, x8, y8} and {x1, x3, x7, y3} as cocircuits, then
M ∼= M(K2,2,2).
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Observe that as M has {x5, x6, x8, y8} and {x1, x3, x7, y3} as cocircuits,
λ(Z) ≤ 5+(11−4)−11 = 1, so |E(M)−Z| ≤ 1. If r(M) = 4, then deleting
the cocircuits {x1, x2, x4, x5} and {x2, x3, x8, y2} from E(M) gives a rank-2
flat that contains {x6, x7, y3, y8}, a contradiction. Therefore r(M) ≥ 5. As
r({x1, x2, x3, x4, x5, x6, x7, x8}) = 4, to avoid M having a triad, we must
have that |E(M) − Z| = 1 and r(M) = 5. Let E(M) − Z = {δ}. Delet-
ing the union of the three cocircuits {x1, x2, x4, x5}, {x2, x3, x8, y2}, and
{x5, x6, x8, y8} from E(M) leaves {x7, y3, δ}, so this set is a triangle of M .
By symmetry, {x6, y8, δ} is a triangle of M . It follows by Lemma 2.7 that
M ∼= M(K2,2,2).

3.18.3. {x5, x6, x8, y8} or {x1, x3, x7, y3} is a cocircuit, or M ∼= M(K2,2,2).

Assume that neither {x5, x6, x8, y8} nor {x1, x3, x7, y3} is a cocircuit of
M . Then both {x4, x6, x7, β6} and {y2, y3, y8, β3} are cocircuits of M where
neither β6 nor β3 is in Z, although β6 and β3 may be equal. By Lemma 3.16,
M has distinct triangles containing {x6, β6} and {x7, β6}, andM has distinct
triangles containing {y3, β3} and {y8, β3}.

Suppose β6 = β3. Then M has {x6, y3, β6} and {x7, y8, β6} as triangles,
or M has {x6, y8, β6} and {x7, y3, β6} as triangles. Then

λ(Z ∪ β6) ≤ 5 + (12− 4)− 12 = 1.

Thus |E(M)− (Z ∪β6}| ≤ 1. If |E(M)− (Z ∪β6)| = 1, let ν be the element
in E(M)− (Z ∪ β6). Then ν is in a triangle of M . But the other elements
of these triangles are in Z ∪ β6 and each element of this set is already in
two triangles. Thus we have a contradiction to Lemma 3.8. We conclude
E(M) = Z ∪ β6. Moreover, when M has {x6, y8, β6} and {x7, y3, β6} as
triangles, by Lemma 2.7, M ∼= M(K2,2,2) because r(M) = 5. Finally, when
M has {x6, y3, β6} and {x7, y8, β6} as triangles, the matroid M/β6\y3, y8
has rank 4 and has six triangles as in Figure 5. Thus, by Lemma 2.6, this

x1

x7

x4 x6 x5

β6 z7

z6

(a)

x3

y3

y2 y8 x8

β3 z3

z8

(b)

Figure 20. The symmetry between two cases in Lemma
3.18.
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matroid is isomorphic to M∗(K3,3), a contradiction. We may now assume
that β6 ̸= β3.

As {x4, x6, x7, β6} is a cocircuit of M , by Lemma 3.16, {x7, z7, β6} and
{x6, z6, β6} are triangles for some elements z6 and z7. By Lemma 3.17,
x1, x4, x5, x6, x7, β6, z6, and z7 are distinct. Moreover, M has a 4-cocircuit
D∗

6 that contains {x5, x6, z6} or {x1, x7, z7}. By symmetry, as {y2, y3, y8, β3}
is a cocircuit, M has triangles {y3, z3, β3} and {y8, z8, β3} for some elements
z3 and z8, where the elements x3, x8, y2, y3, y8, z3, z8, and β3 are distinct.
Moreover, M has a 4-cocircuit D∗

3 that contains {x8, y8, z8} or {x3, y3, z3}.
Suppose {x5, x6, z6} ⊆ D∗

6. The triangle {x2, x5, x8} implies that x2 or
x8 is in D∗

6. Now x2 ̸= z6 otherwise x2 is in three triangles, a contradiction
to Lemma 3.8. If x2 ∈ D∗

6, then x1 or x3 is in D∗
6. Thus z6 ∈ {x1, x3}, so

z6 is in three triangles, a contradiction to Lemma 3.9. Thus x2 ̸∈ D∗
6, so

x8 ∈ D∗
6. Now x8 ̸= z6, otherwise x8 is in three triangles. By orthogonality,

y2 or y8 is in D∗
6. Thus z6 ∈ {y2, y8}. If z6 = y2, then z6 is in the triangles

{x3, y3, z6}, {x8, y8, z6}, and {x6, z6, β6}, a contradiction. Thus z6 = y8, so z6
is in the triangles {x8, y2, z6}, {z6, z8, β3}, and {x6, z6, β6}, a contradiction.
We deduce that {x5, x6, z6} ̸⊆ D∗

6. By the symmetry shown in Figure 20,
{x1, x7, z7} ̸⊆ D∗

6. We conclude that 3.18.3 holds.
We may now assume that M has as cocircuits

(i) both {x5, x6, x8, y8} and {y2, y3, y8, β3}, or
(ii) both {x1, x3, x7, y3} and {x4, x6, x7, β6}.

To see that these two cases are symmetric, recall that we began knowing
that M has {x1, x2, x4, x5} as a 4-cocircuit. Then we assumed, by symmetry,
that M has {x2, x3, x8, y2} as a cocircuit. The two cases noted above can
be represented as in Figure 21.

By symmetry, we may assume that Figure 21(a) holds. By 3.18.1,
x1, x2, . . . , x8, y2, y3, and y8 are distinct. Moreover, we noted when β3 was

x7

x1

x4 x5 x6

x2 x3

y2
x8

y3

y8

β3

(a)

y8

x8

y2 x3 y3

x2 x5

x4
x1

x6

x7

β6

(b)

Figure 21. The cocircuits include the ringed sets along with
{x5, x6, x8, y8} or {x1, x3, x7, y3}, respectively.
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introduced that it is not equal to any of these eleven elements. By Lem-
mas 3.16 and 3.17, M has triangles {y3, z3, β3} and {y8, z8, β3} for some
elements z3 and z8, where x3, x8, y2, y3, y8, z3, z8, and β3 are distinct. More-
over, M has a 4-cocircuit D∗ that contains {x8, y8, z8} or {x3, y3, z3}. If
{x8, y8, z8} ⊆ D∗, then x2 or x5 is in D∗. If x2 ∈ D∗, then z8 ∈ {x1, x3}, so
z8 is in at least three triangles, a contradiction to Lemma 3.8. Thus x5 ∈ D∗,
so z8 ∈ {x4, x6}. To avoid having z8 in more than two triangles, we must
have that z8 = x6, so D∗ = {x5, x6, x8, y8}. Similarly, if {x3, y3, z3} ⊆ D∗,
then z3 = x7 and D∗ = {x1, x3, x7, y3}.

Recall that Z = {x1, x2, . . . , x8, y2, y3, y8} and β3 is not in Z. Assume
that {x8, y8, z8} ⊆ D∗. Then z8 = x6 and D∗ = {x5, x6, x8, y8}. Thus
λ((Z−x7)∪β3) ≤ 5+(11−4)−11 = 1. Therefore |E(M)−((Z−x7)∪β3)| ≤ 1.
Thus E(M) = Z ∪ β3, so z3 ∈ Z ∪ β3. As each element of Z ∪ β3 except x7
is in two triangles, we deduce that z3 = x7. Then, by Lemma 2.7, we get
the contradiction that M ∼= M(K2,2,2) when x6 = z8. We may now assume
that {x3, y3, z3} ⊆ D∗. Then z3 = x7 and D∗ = {x1, x3, x7, y3}. Thus
λ((Z − x6) ∪ β3) ≤ 1, so E(M) = Z ∪ β3 and z8 ∈ Z ∪ β3. By symmetry
with the previous case, z8 = x6 and so M ∼= M(K2,2,2) a contradiction. □

4. Proof of the Main Theorem

In this section, we prove Theorem 1.4 and then use that to prove Theo-
rem 1.2.

Proof of Theorem 1.4. Assume that every cocircuit of M has size at least
four, but M does not have F−

7 , P7,M
∗(K3,3), Q9,M(K5),M(K2,2,2), or H12

as a minor. If M is not 3-connected, then, by Lemma 3.2, M ∼= H12. Thus
we may assume that M is 3-connected. By Lemmas 3.4 and 3.5, we may
assume that every 4-cocircuit of M is independent. By Lemma 3.8, every
element of M is in at most two triangles. If every element of M is in at
most one triangle, then, as every element of M is in a triangle, E(M) is a
disjoint union of triangles. This contradicts Lemmas 3.10 and 3.11.

We now know thatM has an element x1 that is in two triangles {x1, x2, x3}
and {x1, x4, x7}. By Lemma 2.4, there is a 4-cocircuit C∗ containing x1. As
C∗ is independent, we may assume that C∗ = {x1, x2, x4, x5} for a new ele-
ment x5. By Lemma 3.12, there is not a triangle containing {x2, x4}. Now,
by Lemma 2.4, x5 is in a triangle. Then either there is a triangle containing
{x2, x5} but not {x4, x5}, a triangle containing {x4, x5} but not {x2, x5},
or there are two triangles, one containing {x2, x5} and the other containing
{x4, x5}. The first two cases are symmetric, so we may assume there is a
triangle containing {x2, x5} but not {x4, x5}. Then, by Lemma 3.16, M is
isomorphic to P7,M

∗(K3,3), Q9, or M(K2,2,2), a contradiction. Therefore
there is a triangle containing {x2, x5} and a triangle containing {x4, x5}.
As M has no 4-point lines, these two triangles are distinct. Therefore, by
Lemma 3.18, M is isomorphic to P7,M

∗(K3,3), Q9,M(K5),M(K2,2,2), or
H12, a contradiction. This contradiction completes the theorem. □
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Proof of Theorem 1.2. Assume that every cocircuit of M has size at least
four, butM does not have U2,5, F7, F

−
7 , P7,M

∗(K3,3), Q9,M(K5),M(K2,2,2),
or H12 as a minor. We first assume that M is not 3-connected. Then, by
Lemma 2.5, M = M1⊕2M2 for some 3-connected matroids M1 and M2 each
of which has rank at least three. Assume that some Mi is not ternary. If
r∗(Mi) = 2, then M has a cocircuit of size less than four, a contradiction.
Thus we may assume that the rank and corank of each Mi are at least three.
Hence, by Theorem 2.3, as M does not have U2,5 or F7 as a minor, Mi

∼= F ∗
7 .

Then M has a triad, a contradiction. We deduce that both M1 and M2 are
ternary. Thus, by Lemma 3.2, M has an H12-minor, a contradiction.

We now know that M is 3-connected. Then, by Theorem 2.3, as M does
not have F7 or U2,5 as a minor and M ̸∼= F ∗

7 , we deduce that M is ternary.
Therefore, by Theorem 1.4, the theorem holds. □
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