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Abstract. We show that a matroid is binary or ternary if and only
if it has no minor isomorphic to U2,5, U3,5, U2,4 ⊕ F7, U2,4 ⊕ F ∗

7 ,
U2,4 ⊕2 F7, U2,4 ⊕2 F ∗

7 , or the unique matroids obtained by relaxing a
circuit-hyperplane in either AG(3, 2) or T12. The proof makes essential
use of results obtained by Truemper on the structure of almost-regular
matroids.

1. Introduction

In [5], Brylawski considered certain natural operations on minor-closed
classes of matroids, and examined how they effect the set of excluded minors
for those classes. In particular, he invited the reader to explore the excluded
minors for the union of two minor-closed classes. We do so in one special
case, and determine the excluded minors for the union of the classes of
binary and ternary matroids. This solves Problem 14.1.8 in Oxley’s list [19].

Theorem 1.1. The excluded minors for the class of matroids that are binary
or ternary are U2,5, U3,5, U2,4⊕F7, U2,4⊕F ∗

7 , U2,4⊕2F7, U2,4⊕2F ∗

7 , and the
unique matroids that are obtained by relaxing a circuit-hyperplane in either
AG(3, 2) or T12.

Recall that the matroid AG(3, 2) is a binary affine space, and is produced
by deleting a hyperplane from PG(3, 2). Up to isomorphism, there is a
unique matroid produced by relaxing a circuit-hyperplane in AG(3, 2). We
shall use AG(3, 2)′ to denote this unique matroid.

The matroid T12 was introduced by Kingan [13]. It is represented over
GF(2) by the matrix displayed in Figure 1. It is clear that T12 is self-
dual. Moreover, T12 has a transitive automorphism group and a unique
pair of circuit-hyperplanes. These two circuit-hyperplanes are disjoint. Up
to isomorphism, there is a unique matroid produced by relaxing a circuit-
hyperplane in T12. We denote this matroid by T ′

12.
A result due to Semple and Whittle [22] can be interpreted as showing

that U2,5 and U3,5 are the only 3-connected excluded minors for the class in
Theorem 1.1 that are representable over at least one field. We complete the
characterization by finding the non-representable excluded minors and the
excluded minors that are not 3-connected.
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Figure 1. A representation of T12.

The binary matroids and the ternary matroids are well known to have,
respectively, one excluded minor and four excluded minors. In this case,
the union of two classes with finitely many excluded minors itself has only
finitely many excluded minors. Brylawski [5] asked whether this is always
true in the case that the two classes have a single excluded minor each. In
unpublished work, Vertigan answered this question in the negative (see [7,
Section 5]).

Vertigan’s examples indicate that Brylawski’s project of finding the ex-
cluded minors of the union of minor-closed classes is a difficult one. How-
ever, in some special cases it may be more tractable. Matroids that are
representable over a fixed finite field have received considerable research at-
tention. Indeed, the most famous unsolved problem in matroid theory is
Rota’s conjecture that there is only a finite number of excluded minors for
representability over any fixed finite field [21]. This would stand in contrast
to general minor-closed classes. Rota’s conjecture is currently known to hold
for the fields GF(2), GF(3), and GF(4) [3, 9, 24, 29].

For a collection, F , of fields, let M∪(F) be the set of matroids that are
representable over at least one field in F . We believe that the following is
true.

Conjecture 1.2. Let F be a finite family of finite fields. There is only a
finite number of excluded minors for M∪(F).

Conjecture 1.2 is true if and only if it is true for all families F for which F
is an antichain in the sub-field order. Until now, Conjecture 1.2 was known
to hold for only three families satisfying this condition, namely {GF(2)},
{GF(3)}, and {GF(4)}. Thus Theorem 1.1 proves the first case of Conjec-
ture 1.2 that does not reduce to Rota’s conjecture.

We note that Conjecture 1.2 is false if we relax the constraint that F
is a finite collection. The authors of [14] construct an infinite number of
excluded minors for real-representability that are not representable over any
field. Rado [20] shows that any real-representable matroid is representable
over at least one finite field. Thus, if F is the collection of all finite fields,
then M∪(F) has an infinite number of excluded minors.
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We remark also that although an affirmative answer to Conjecture 1.2
would imply that Rota’s conjecture is true, it is conceivable that Conjec-
ture 1.2 fails while Rota’s conjecture holds.

Next we note a conjecture of Kelly and Rota [12] that is a natural com-
panion to Conjecture 1.2. Suppose that F is a family of fields. Let M∩(F)
be the class of matroids that are representable over every field in F .

Conjecture 1.3. Let F be a family of finite fields. There is only a finite
number of excluded minors for M∩(F).

It is easy to see that this conjecture holds when F is finite and con-
tains only fields for which Rota’s conjecture holds. Thus Conjecture 1.3 is
known to hold if F contains no field other than GF(2), GF(3), or GF(4).
Moreover, unpublished work of Geelen shows that the conjecture holds if
F = {GF(3), GF(4), GF(5)}, in which case M∩(F) is Whittle’s class of
“near-regular” matroids (see [10, 30, 31]).

It seems likely that the Matroid Minors Project of Geelen, Gerards, and
Whittle will affirm both Rota’s conjecture and Conjecture 1.3 (see [8]).

The proof of Theorem 1.1 relies heavily upon results due to Truemper [27].
If a matrix is not totally unimodular, but each of its proper submatrices
is totally unimodular, then it is called a minimal violation matrix for total
unimodularity. Truemper studied such matrices, and related them to a class
of binary matroids which he called “almost-regular”. An almost-regular
matroid is not regular, but every element has the property that either its
deletion or its contraction produces a regular matroid. Truemper gives a
characterization of almost-regular matroids, by showing that they can all be
produced from the Fano plane or an eleven-element matroid called N11, using
only ∆-Y and Y -∆ operations, along with series and parallel extensions.

Truemper’s characterization of almost-regular matroids is deep, and per-
haps not sufficiently appreciated within the matroid theory community. He
does much more than simply provide a ∆-Y reduction theorem. In the
process of obtaining this characterization, he obtains specific detailed in-
formation about the structure of almost-regular matroids. Without access
to these structural insights, we would not have been able to obtain Theo-
rem 1.1. We define almost-regular matroids and discuss Truemper’s result
in Section 2.6.

In the first half of our proof, we establish that every excluded minor
for the class of binary or ternary matroids is a relaxation of an excluded
minor for the class of almost-regular matroids, or more precisely the class
consisting of the almost-regular matroids and their minors. (Here we are
assuming certain conditions on the rank, corank, and connectivity of the
excluded minor.) Having done this, we perform a case analysis that bounds
the size of the excluded minor.

Now we give a more detailed description of the article. Section 2 estab-
lishes some fundamental notions and results that we use throughout the
rest of the proof. In Section 2.9 we prove that each of the matroids listed in
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Theorem 1.1 is indeed an excluded minor for the class of matroids that are
binary or ternary. Section 3 contains a discussion of the excluded minors
that have low rank, corank, or connectivity. Specifically, we show that any
excluded minor that has rank or corank at most three, or that fails to be
3-connected, must be one of those listed in Theorem 1.1. In Section 4 we
examine the excluded minors on eight or nine elements, and we show that
there is precisely one such matroid: AG(3, 2)′.

The results of Sections 3 and 4 show that we can restrict our attention to
3-connected excluded minors with rank and corank at least four, and with
at least ten elements. We do so in Section 5 where Theorem 5.1 shows that
if M is such an excluded minor, then M can be produced by relaxing a
circuit-hyperplane in a binary matroid, which we call MB . Section 6 shows
that every proper minor of MB is either regular, or belongs to Truemper’s
class of almost-regular matroids.

In Section 7 we use Truemper’s structural results on almost-regular ma-
troids and perform a case analysis that reduces the problem of finding the
remaining excluded minors to a finite task. We consider three cases: MB

has an R10-minor; MB has an R12-minor; and MB has neither an R10- nor
an R12-minor. In the first case we show that |E(MB)| = 12. Next we show
that the second case cannot arise, and finally we show that if MB has no
minor isomorphic to R10 or R12, then |E(MB)| ≤ 16. Having reduced the
problem to a finite case-check, we complete the proof of Theorem 1.1 in
Section 8.

2. Preliminaries

Throughout the article, M will denote the class of matroids that are
either binary or ternary; that is, M = M∪({GF(2), GF(3)}). The matroid
terminology used throughout will follow Oxley [19], except that si(M) and
co(M) respectively are used to denote the simple and cosimple matroids
associated with the matroid M . A triangle is a 3-element circuit, and a
triad is a 3-element cocircuit. We shall occasionally refer to a rank-2 flat as
a line. Suppose that a binary matroid is represented over GF(2) by [Ir|A].
We shall say that A is a reduced representation of M .

We start by stating the well-known excluded-minor characterizations of
binary and ternary matroids.

Theorem 2.1. (Tutte [29]). A matroid is binary if and only if it has no
minor isomorphic to U2,4.

Theorem 2.2. (Reid, Bixby [3], Seymour [24]). A matroid is ternary if and
only if it has no minor isomorphic to U2,5, U3,5, F7, or F ∗

7 .

2.1. Connectivity. Suppose that M is a matroid on the ground set E.
If X ⊆ E, then λM (X) (or just λ(X)) is defined to be rM (X) + rM (E −
X) − r(M). Note that λ(X) = λ(E − X) and λM (X) = λM∗(X) for all
subsets X ⊆ E. A k-separation of M is a partition (X1, X2) of E such
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that |X1|, |X2| ≥ k, and λM (X1) < k. A k-separation (X1, X2) is exact if
λM (X1) = k − 1. We say that M is n-connected if it has no k-separations
where k < n. A 2-connected matroid is often said to be connected. We
say that M is internally 4-connected if M is 3-connected, and, whenever
(X1, X2) is a 3-separation, min{|X1|, |X2|} = 3.

Proposition 2.3. Suppose that N is a minor of a matroid M , and that X
is a subset of E(N). Then λN (X) ≤ λM (X).

Suppose that M1 and M2 are matroids on the ground sets E1 and E2

respectively, and that Ci is the collection of circuits of Mi for i = 1, 2. If
E1∩E2 = ∅, then the 1-sum of M1 and M2, denoted by M1⊕M2, is defined
to be the matroid with E1 ∪E2 as its ground set and C1∪C2 as its collection
of circuits.

If E1∩E2 = {p} and neither M1 nor M2 has p as a loop or a coloop, then
we can define the 2-sum of M1 and M2, denoted by M1 ⊕2 M2. The ground
set of M1 ⊕2 M2 is (E1 ∪ E2) − p, and its circuits are the members of

{C ∈ C1 | p /∈ C} ∪ {C ∈ C2 | p /∈ C}∪

{(C1 ∪ C2) − p | C1 ∈ C1, C2 ∈ C2, p ∈ C1 ∩ C2}.

We say that p is the basepoint of the 2-sum.
The next results follow from [25, (2.6)] and [19, Proposition 7.1.15 (v)]

respectively.

Proposition 2.4. If (X1, X2) is an exact 2-separation of a matroid M ,
then there are matroids M1 and M2 on the ground sets X1 ∪ p and X2 ∪ p
respectively, where p is in neither X1 nor X2, such that M is equal to M1⊕2

M2. Moreover, M has proper minors isomorphic to both M1 and M2.

Proposition 2.5. Suppose that M1 and M2 are matroids and that the 2-sum
of M1 and M2 along the basepoint p is defined. If Ni is a minor of Mi such
that p ∈ E(Ni) for i = 1, 2, and p is a loop or coloop in neither N1 nor N2,
then N1 ⊕2 N2 is a minor of M1 ⊕2 M2.

2.2. Relaxations. Suppose that M1 and M2 are matroids sharing a com-
mon ground set, and that the collections of bases of M1 and M2 agree with
the exception of a single set Z that is a circuit-hyperplane in M1 and a basis
in M2. In this case we say that M2 is obtained from M1 by relaxing the
circuit-hyperplane Z.

Next we list some well-known properties of relaxation.

Proposition 2.6. Suppose that M2 is obtained from M1 by relaxing the
circuit-hyperplane Z. If e ∈ Z then M1\e = M2\e. Moreover, Z − e is
a hyperplane of M1/e, and M2/e is obtained from M1/e by relaxing Z − e.
Similarly, if e /∈ Z then M1/e = M2/e and Z is a hyperplane of M1\e. Then
M2\e is obtained from M1\e by relaxing Z.
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If M1 and M2 are matroids on the same set such that M1 6= M2, then
there is a some set that is independent in exactly one of M1 and M2. We
shall call such a set a distinguishing set. The next result is obvious.

Proposition 2.7. Suppose that M1 and M2 are two matroids on the same
ground set and that Z is a minimal distinguishing set for M1 and M2. Then
Z is a circuit in one of M1 and M2, and independent in the other.

Proposition 2.8. Let M1 and M2 be loopless matroids such that E(M1) =
E(M2) and r(M1) = r(M2). Suppose that M1 and M2 have a unique dis-
tinguishing set Z, and that Z is independent in M2. Then Z is a circuit-
hyperplane of M1 and a basis of M2, and M2 is obtained from M1 by relaxing
Z. Furthermore, Z ∪ e is a circuit of M2 for all e ∈ E(M2) − Z.

Proof. As Z is the unique distinguishing set, it is also a minimal distinguish-
ing set. Therefore Z is a circuit of M1 by Proposition 2.7. If Z is not a
basis of M2, then Z is properly contained in a basis B of M2. Since Z ⊂ B,
we deduce that B is dependent in M1, and we have a contradiction to the
uniqueness of Z. Thus Z is a basis of M2.

Suppose that there is an element y in clM1
(Z) − Z. Then there is a

circuit C of M1 such that y ∈ C and C ⊆ Z ∪ {y}. Since C 6= Z and C
is dependent in M1, it follows that C is dependent in M2. But Z ∪ {y}
contains a unique circuit CM2

(y, Z) of M2. Therefore CM2
(y, Z) ⊆ C. As

y is not a loop, it follows that there is an element e in CM2
(y, Z) − {y}.

By circuit elimination in M1 using the circuits C and Z and the common
element e, we deduce that there is a circuit C ′ of M1 such that y ∈ C ′ and
C ′ ⊆ (Z ∪ {y}) − {e}. Now C ′ 6= Z, so C ′ is dependent in M2. We can
again conclude that CM2

(y, Z) ⊆ C ′. But this is a contradiction as e /∈ C ′.
Therefore Z is a flat of M1. As |Z| = r(M2) = r(M1), it follows that Z is a
circuit-hyperplane of M1.

The independent sets of the matroid obtained from M1 by relaxing Z
are precisely the independent sets of M1, along with Z. This is exactly the
collection of independent sets of M2, so M2 is obtained from M1 by relaxing
Z. Suppose that e ∈ E(M2) − Z. As Z is a basis of M2, there is a circuit
C of M2 such that e ∈ C and C ⊆ Z ∪ e. Since C 6= Z, the set C cannot be
distinguishing. Therefore C is dependent in M1. But the only circuit of M1

that is contained in Z ∪ e is Z itself. Therefore C contains Z, so C = Z ∪ e.
This completes the proof. �

Recall that Wn is the graph obtained from the cycle on n vertices by
adding a new vertex adjacent to all other vertices. The edges adjacent to
the new vertex are known as spoke edges, and all other edges are known as
rim edges. We refer to M(Wn) as the rank-n wheel. The rim edges form a
circuit-hyperplane of the rank-n wheel. The matroid produced by relaxing
this circuit-hyperplane is the rank-n whirl, denoted by Wn.

An enlarged wheel is obtained by adding parallel elements to spoke edges,
and adding series elements to rim edges by subdividing them. The rim
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edges of the original graph, along with all the added series elements, form a
circuit-hyperplane of the enlarged wheel, and this set of edges is called the
rim of the enlarged wheel.

The following result of Oxley and Whittle characterizes when a relaxation
of a ternary matroid is ternary.

Lemma 2.9. [16, Theorem 5.3]. Suppose that M is a ternary matroid and
that Z is a circuit-hyperplane of M . Let M ′ be the matroid obtained from
M by relaxing Z in M . If M ′ is ternary, then there is an enlarged wheel G
such that M = M(G) and Z is the rim of G.

2.3. The Splitter Theorem. Suppose that N is a class of matroids that
is closed under taking minors. A splitter of N is a matroid N ∈ N such
that if N ′ is a 3-connected member of N and N ′ has an N -minor, then N ′

is isomorphic to N .
Seymour’s Splitter Theorem [25] reduces the problem of identifying split-

ters to a finite case check (see [19, Theorem 11.1.2]).

Theorem 2.10. Let N be a 3-connected proper minor of a 3-connected
matroid M and suppose that |E(N)| ≥ 4. Assume also that if N is a wheel,
then M has no larger wheel as a minor, while if N is a whirl, then M has
no larger whirl as a minor. Then M has an element e such that M\e or
M/e is 3-connected and has an N -minor.

2.4. The ∆-Y operation. Suppose that M is a matroid and that T is a
coindependent triangle of M . Let N be an isomorphic copy of M(K4),
where E(N) ∩ E(M) = T and T is a triangle of N . Then PT (N, M),
the generalized parallel connection of N and M , is defined [4]. It is the
matroid on the ground set E(M) ∪ E(N) with flats being all sets F such
that F ∩ E(M) and F ∩ E(N) are flats of M and N respectively. Then
PT (N, M)\T is said to be obtained from M by performing a ∆-Y operation
upon M . We denote this matroid by ∆T (M). If T is an independent triad
of M , then (∆T (M∗))∗ is defined, and is said to be obtained from M by a
Y -∆ operation. The resulting matroid is denoted by ∇T (M).

2.5. Regular decomposition. We shall make use of some of the interme-
diate results proved by Seymour [25] as part of his decomposition theorem
for regular matroids.

Theorem 2.11. Every regular matroid can be constructed using 1-, 2-, and
3-sums, starting from matroids that are graphic, cographic, or isomorphic
copies of R10.

The following matrix is a reduced representation of R10.












1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
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Any single-element deletion of R10 is isomorphic to M(K3,3) and any single-
element contraction is isomorphic to M∗(K3,3). Moreover, the automor-
phism group of R10 acts transitively upon pairs of elements, and R10 is
isomorphic to its dual [25, p. 328].

Proposition 2.12. [25, (7.4)]. The matroid R10 is a splitter for the class
of regular matroids.

The proof of the decomposition theorem features another important bi-
nary matroid, R12. The following matrix, A, is a reduced representation of
R12.

















1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 1
0 0 0 1 1 1

















Clearly R12 is self-dual. Suppose that the columns of [I6|A] are labeled
1, . . . 12. Then X1 = {1, 2, 5, 6, 9, 10} is a union of two triangles, and if
we let X2 be the complement of X1, then (X1, X2) is a 3-separation of R12.
Moreover, if M is a regular matroid and R12 is a minor of M , then there is
a 3-separation (Y1, Y2) of M such that Xi ⊆ Yi for i = 1, 2 (see [25, (9.2)]).

One of the important steps in the decomposition theorem is to prove the
following result.

Lemma 2.13. [25, (14.2)]. If a 3-connected regular matroid has no minor
isomorphic to R10 or R12, then it is either graphic or cographic.

2.6. Almost-regular matroids. Next we discuss Truemper’s class of
almost-regular matroids [27]. Recall that a matroid is regular if and only if
it can be represented by a matrix over the real numbers with the property
that every subdeterminant belongs to {0, 1, −1}. Such a matrix is said to
be totally unimodular. If a matrix is not totally unimodular, but removing
any row or column produces a totally unimodular matrix, then it is said to
be a minimal violation matrix for total unimodularity. The study of this
class of matrices motivated Truemper to make the following definition.

Definition 2.14. A matroid M is almost-regular if it is binary but not
regular, and E(M) can be partitioned into non-empty sets del and con, such
that

(i) if e ∈ del then M\e is regular;
(ii) if e ∈ con then M/e is regular;
(iii) the intersection of any circuit with con has even cardinality; and
(iv) the intersection of any cocircuit with del has even cardinality.

Truemper shows that the study of minimal violation matrices for total
unimodularity is essentially reduced to the study of almost-regular matroids
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(see [28, Section 12.4]). Any such matrix that does not represent an almost-
regular matroid (over GF(2)) belongs to one of two simple classes.

Proposition 2.15. [27, Theorem 21.4 (ii)]. The class of almost-regular
matroids is closed under duality.

Proposition 2.16. [27, Theorem 21.4 (iii)]. Suppose that M is an almost-
regular matroid. Then every minor of M is either regular or almost-regular.

The focus of Truemper’s investigation into almost-regular matroids is the
class of almost-regular matroids that are irreducible. An almost-regular
matroid M is irreducible if M cannot be reduced in size by performing a
sequence of the following operations: (i) ∆-Y and Y -∆ operations; and (ii)
replacing a parallel (series) class with a non-empty parallel (series) class
of a different size. (Note that certain restrictions are placed upon these
operations. The restrictions depend upon the partition of the ground set into
del and con.) An irreducible almost-regular matroid is necessarily internally
4-connected [27, Theorem 22.1].

The main result of [27] shows that every almost-regular matroid can be
constructed using a sequence of the operations listed above, starting from
one of two matroids: F7 and N11. The second of these matroids is defined
in Section 7.1.

2.7. Grafts. Suppose that G is a graph and that D is a set of vertices
of G. We say that the pair (G, D) is a graft. Let A be the vertex-edge
incidence matrix describing G, so that the rows of A correspond to vertices
of G, and columns of A correspond to edges. Then M(G) = M [A], where
A is considered as a matrix over GF(2). Let A′ be the matrix obtained
from A by adding a column with entries from GF(2), so that an entry in
the new column is non-zero if and only if it appears in a row corresponding
to a vertex in D. Let M(G, D) be the binary matroid M [A′]. We abuse
terminology slightly by calling any binary matroid of the form M(G, D) a
graft. We shall call the element of M(G, D) that corresponds to the new
column of A′ the graft element. Clearly a binary matroid is a graft if and
only if it is a single-element extension of a graphic matroid.

The next result is easy to verify.

Proposition 2.17. Suppose that (G, D) is a graft. Let e be an edge of G
with end-vertices u and v. Then M(G, D)\e = M(G\e, D). Furthermore,
suppose that w is the vertex of G/e produced by identifying u and v. Then
M(G, D)/e = M(G/e, D′), where:

(i) D′ = D if |{u, v} ∩ D| = 0;
(ii) D′ = (D − {u, v}) ∪ w if |{u, v} ∩ D| = 1; and
(iii) D′ = D − {u, v} if |{u, v} ∩ D| = 2.

Let (G, D) be a graft. Suppose that v is a vertex of degree two in G and
that v ∈ D. Suppose that v is adjacent to the two vertices u and w. Let
a be the edge between v and u, and let b be the edge between v and w.
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Consider the graph G′ with the following properties: G′ has the same edge
set as G, and a joins v to w in G′, while b joins v to u. All other edges have
the same incidences as they do in G. Let D′ be the symmetric difference
of D and {u, w}. Then M(G′, D′) = M(G, D). We say that (G′, D′) is
obtained from (G, D) by switching.

2.8. Truemper graphs. In this section we introduce a family of graphs
that provide an important tool for studying almost-regular matroids.

Definition 2.18. A graph G is a Truemper graph if it contains two vertex-
disjoint paths R and S, such that every vertex of G is in either R or S, and
any edge not in either R or S joins a vertex of R to a vertex of S.

We shall use the notation G = (R, S) to indicate that G is a Truemper
graph, and that R and S are the vertex-disjoint paths described in Defini-
tion 2.18. In this case we shall say that an edge in either R or S is a path
edge, and any other edge is a cross edge. We shall say that the end-vertices
of R and S are terminal vertices. All other vertices will be known as internal
vertices. Often we are interested in a graft (G, D), where G is a Truemper
graph, and D consists of the four terminal vertices of G. However, much of
our argument will focus on structure in the underlying Truemper graph.

Let G = (R, S) be a Truemper graph. We say that G has an XX-minor
if we can obtain the graph shown in Figure 2 by contracting path edges
and deleting cross edges from G. The remaining path edges of G are the
horizontal edges in the diagram.

Figure 2. An XX-minor.

Proposition 2.19. [27, 23.50]. Suppose that G = (R, S) is a Truemper
graph. Let D be the set of terminal vertices of G. If the graft M(G, D) is
almost-regular, then G does not have an XX-minor.

Proof. Assume that G does have an XX-minor. Proposition 2.17 implies
that M(G, D) has M(G′, D) as a minor, where G′ is the graph shown in
Figure 2, and D is the set of vertices marked by squares. But M(G′, D) has a
minor isomorphic to AG(3, 2). Certainly AG(3, 2) is not regular, and every
single-element deletion or contraction of AG(3, 2) is isomorphic to F ∗

7 or
F7 respectively. Therefore AG(3, 2) is not almost-regular. Proposition 2.16
implies that M(G, D) cannot be almost-regular. �

The next result is easy to prove.

Proposition 2.20. Let G = (R, S) be a Truemper graph with no XX-minor
such that both R and S contain at least two vertices. Suppose that F is a set
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of four cross edges such that every terminal vertex of G is incident with at
least one edge in F . Then at least one edge in F joins two terminal vertices.

Corollary 2.21. Let G = (R, S) be a Truemper graph with no XX-minor
such that both R and S have at least two vertices. Suppose that the cross
edges of G form a spanning cycle. Then one of the following holds:

(i) One of the end-vertices of R is adjacent to both of the end-vertices
of S.

(ii) One of the end-vertices of S is adjacent to both of the end-vertices of R.

Proof. Suppose that the result fails. Since every vertex in G is incident
with exactly two cross edges, this means that for each terminal vertex v, we
can find a cross edge which joins v to an internal vertex. This provides a
contradiction to Proposition 2.20. �

2.9. Excluded minors. We end this preliminary section by proving one
direction of our main theorem.

Lemma 2.22. The matroids U2,5, U3,5, U2,4 ⊕ F7, U2,4 ⊕ F ∗

7 , U2,4 ⊕2 F7,

U2,4 ⊕2 F ∗

7 , AG(3, 2)′, and T ′

12 are all excluded minors for M.

Proof. The only matroids listed here for which the result is not obvious
are AG(3, 2)′ and T ′

12. Let M1 be a matroid such that M1
∼= AG(3, 2)

and let Z be a circuit-hyperplane of M1. Let M2 be the matroid obtained
from M1 by relaxing Z. Suppose that e ∈ Z. By Proposition 2.6, we
see that M2\e ∼= AG(3, 2)\e ∼= F ∗

7 and that M2/e can be obtained from
AG(3, 2)/e ∼= F7 by relaxing a circuit-hyperplane. Therefore M2/e ∼= F−

7 ,
where F−

7 is illustrated in Figure 3. Since F−

7 is non-binary, these facts show
that M2 is neither binary nor ternary.

On the other hand, if e /∈ Z then M2/e = M1/e ∼= F7, and M2\e is
isomorphic to the matroid obtained from AG(3, 2)\e ∼= F ∗

7 by relaxing a
circuit-hyperplane. Thus M2\e ∼= (F−

7 )∗, so every single-element deletion or
contraction of M2 is either binary or ternary, and we are done.

W3 P7 F−

7

Figure 3. W3, P7, and F−

7 .

Now we will assume that M1 is isomorphic to T12. Assume that the
columns of the matrix in Figure 1 are labeled {1, . . . , 12}. Then Z =
{2, 4, 6, 8, 10, 12} is a circuit-hyperplane. Let M2 be the matroid obtained
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by relaxing Z. Certainly M2 is not binary, for Z ∪ {1} and Z ∪ {3} are
circuits of M2. If M2 were binary, then the symmetric difference of these
sets, that is {1, 3}, would be a union of circuits, which is clearly not true.

By pivoting on the entry in column 7 and row 2, we see that
M1/{1, 3, 7}\{2, 12} is isomorphic to F7, so M1\12 has an F7-minor. There-
fore M2\12 has an F7-minor, by Proposition 2.6, so M2 is not ternary.

Proposition 2.6 implies that M2\6 = M1\6, so M2\6 is binary. Consider
M2/6. It is not difficult to show that this matroid is represented over GF(3)
by the matrix produced by deleting row 6 from the matrix in Figure 1. Thus
M2/6 is ternary. Now suppose that e is any element in {1, . . . , 12}. Since the
automorphism group of T12 is transitive, there is an automorphism which
takes e to 6. Thus M2\e and M2/e are isomorphic to M2\6 and M2/6,
and are therefore binary and ternary respectively. It follows that M2 is an
excluded minor for M, as desired. �

3. Excluded minors with low rank, corank, or connectivity

In this section we find all the excluded minors for M that have rank or
corank at most three, or that fail to be 3-connected.

Proposition 3.1. If M is an excluded minor for M, then M cannot have
as a minor either a simple connected single-element extension of F7 or a
cosimple connected single-element coextension of F ∗

7 .

Proof. It follows from the fact that F7 is a projective plane that it has
exactly two simple connected single-element extensions; one is obtained by
adding an element freely to F7, and the other is obtained by adding an
element freely on a line of F7. In either case, on contracting the newly
added element, we obtain a matroid with a U2,5-restriction, a contradiction
as U2,5 is an excluded minor for M. Hence M has no simple connected
single-element extension of F7 as a minor. The second part of the lemma
follows by duality. �

Lemma 3.2. The only excluded minors for M that have rank or corank less
than four are U2,5 and U3,5.

Proof. It is clear that U2,5 is the only rank-2 excluded minor for M. By
duality, U3,5 is the unique excluded minor for M with corank two. Now let
M be a rank-3 excluded minor for M that is not isomorphic to U3,5. Since
M is non-ternary and has rank three, it follows from Theorem 2.2 that M
has F7 as a minor. But M is non-binary and simple, and so has a simple
connected single-element extension of F7 as a restriction. This contradiction
to Proposition 3.1 implies that U3,5 is the unique rank-3 excluded minor for
M and, by duality, U2,5 is the unique excluded minor for M with corank
three. �

Lemma 3.3. The only excluded minors for M that are not 3-connected are
U2,4 ⊕ F7, U2,4 ⊕ F ∗

7 , U2,4 ⊕2 F7, and U2,4 ⊕2 F ∗

7 .
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Proof. We shall show that the excluded minors for M that are connected
but not 3-connected are U2,4 ⊕2 F7 and U2,4 ⊕2 F ∗

7 . A similar, but simpler,
argument shows that the disconnected excluded minors for M are precisely
U2,4 ⊕ F7 and U2,4 ⊕ F ∗

7 .
Let M be an excluded minor for M that is connected but not 3-connected.

It follows from Proposition 2.4 that M is the 2-sum of matroids M1 and M2

along the basepoint p. Then M1 and M2 are connected, for otherwise M
is not connected. Each of M1 and M2, being isomorphic to a proper minor
of M , is either binary or ternary. Moreover, since the property of being
representable over a particular field is closed under 2-sums, it follows that
at least one of M1 and M2 is non-binary, and at least one is non-ternary.
Thus we may assume that M1 is ternary but non-binary, and that M2 is
binary but non-ternary. Thus M1 has a U2,4-minor, and M2 has a minor
isomorphic to one of U2,5, U3,5, F7, or F ∗

7 . Both U2,5 and U3,5 are excluded
minors for M. Thus neither is a minor of M2. Hence M2 has a minor
isomorphic to one of F7 and F ∗

7 . It follows from roundedness results of
Seymour [23] and Bixby [2] (or see [19, p. 374]), that M2 has an F7- or
F ∗

7 -minor using p, and M1 has a U2,4-minor using p. Thus M has a minor
isomorphic to one of U2,4⊕2 F7 or U2,4⊕2 F ∗

7 by Proposition 2.5. Since these
two matroids are excluded minors for M, it follows that M is isomorphic to
either U2,4 ⊕2 F7 or U2,4 ⊕2 F ∗

7 . This completes the proof. �

4. Excluded minors with at most nine elements

In this section we find those excluded minors for M that have at most
nine elements.

Lemma 4.1. There is a unique 8-element excluded minor for M, namely
AG(3, 2)′.

Proof. Let M be an 8-element excluded minor for M. Thus M has no U2,5-
minor and no U3,5-minor. Moreover, M must be 3-connected by Lemma 3.3.
It follows from Lemma 3.2 that r(M) ≥ 4 and r∗(M) ≥ 4, so in fact r(M) =
r∗(M) = 4. We shall show next that M has no triangles and no triads. By
duality, it suffices to show that M has no triads.

Assume that M has a triad, T . Certainly T is independent, for M is
3-connected. Suppose that T = {a, b, c}. Note that T is a triangle in
∇T (M). Now ∇T (M) has rank three (see [15, Lemma 2.6]). Moreover, since
M is neither binary nor ternary, it follows by the proof of Theorem 6.1 in [1]
that ∇T (M) is neither binary nor ternary. Lemma 3.2 implies that ∇T (M)
has a minor isomorphic to either U2,5 or U3,5. If ∇T (M) has a U3,5-minor,
then, as U3,5 has no triangles, we can assume by relabeling if necessary that
∇T (M)\a has a U3,5-minor. It follows that M/a has a U3,5-minor ([15,
Corollary 2.14]). This is a contradiction, so ∇T (M) has no U3,5-minor but
it does have a U2,5-minor. Note that si(∇T (M)) has rank three. Suppose
that the corank of si(∇T (M)) is at most two. Then si(∇T (M)) contains at
most five elements. Since we can assume that T is a triangle of si(∇T (M)),
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it follows that si(∇T (M)) is not 3-connected. If si(∇T (M)) has rank and
corank at least three, then it follows from [19, Proposition 11.2.16] that
si(∇T (M)) is not 3-connected, so si(∇T (M)) is not 3-connected in either
case. Thus ∇T (M) is the union of two rank-2 flats, one of which contains
{a, b, c}. Since M = ∆T (∇T (M)) [15, Corollary 2.12], it is easy to see that
M also fails to be 3-connected, a contradiction. We conclude that M has
no triads.

Now M is non-ternary but has no U2,5- or U3,5-minor. Thus M has F7

or F ∗

7 as a minor. By duality, we may assume that M has an F ∗

7 -minor.
Let us assume that E(M) = {1, . . . , 8} and that M\8 ∼= F ∗

7 . Consider
M/8. Since M is non-binary and 3-connected, and M\8 is binary, it follows
from [18, Corollary 3.9] that if M/8 is binary, then M ∼= U2,4, which is
impossible. Therefore M/8 is non-binary and hence ternary. Since M has
no triangles and no U3,5-minors, we see that M/8 is simple and has no
rank-2 flat containing more than three points. This implies that M/8 is
3-connected. Since M/8 has W2 (that is, U2,4) as a minor but has no
U2,5- or U3,5-minor, we deduce from Theorem 2.10 that M/8 has a W3-minor.
Thus M/8 is a 3-connected and ternary single-element extension of W3 and
M/8 has no lines with more than three points. We will show that M/8
is isomorphic to either P7 or F−

7 , where these matroids are illustrated in
Figure 3.

Let us suppose that M/8\7 ∼= W3. Since matroid representations over
GF(3) are unique [6], we can assume that M/8\7 has the following reduced
representation.





1 0 1
1 1 0
0 1 1





By adjoining a single column to this matrix, we can obtain a representation
over GF(3) of M/8. This new column must contain three non-zero elements,
for M/8 is 3-connected and has no four-element lines. By scaling we may
assume that the first entry is 1. If the new column is [1 1 1]T , then M/8 is
isomorphic to F−

7 . In all other cases, M/8 ∼= P7.
Suppose that M/8 ∼= P7. Since M/8 has two disjoint triangles, M has two

4-element circuits meeting in {8}. These circuits must also be hyperplanes
of M , as M has no triangle and no U3,5-minor. Deleting 8 from each of these
two circuit-hyperplanes produces two disjoint hyperplanes of F ∗

7 of size three.
Thus F7 has two 4-element circuits whose union covers its ground set, and
this is easily seen to be false. Hence M/8 ∼= F−

7 .
Since F−

7 has exactly six non-trivial lines, there are exactly six 4-element
circuits of M that contain 8. Each of these must also be a hyperplane of
M . Thus M has exactly six 4-element cocircuits that avoid 8. Each of these
cocircuits is also a 4-element cocircuit of M\8 ∼= F ∗

7 . But F ∗

7 has exactly
seven 4-element cocircuits. Thus precisely one of the 4-element cocircuits of
M\8 arises by deleting 8 from a 5-element cocircuit of M . We may assume,
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without loss of generality, that {4, 5, 6, 7, 8} is a cocircuit of M . As the
complement of a 4-element cocircuit is independent in F ∗

7 , we can assume
that {1, 2, 3, 4} is a basis of M .

When B is a basis of a matroid N , consider a matrix [Ir(N)|A], where
the columns of Ir(N) and of A are labeled by the elements of B and by the
elements of E(N)−B, respectively. We call [Ir(M)|A] a partial representation
of N with respect to B if, for each x in B and each y in E(N)−B, the entry
in row x and column y of A is a one if (B − x) ∪ y is a basis of N , and a
zero otherwise.

Let [I4|A] be a partial representation of M with respect to {1, 2, 3, 4}.
The fact that {4, 5, 6, 7, 8} is a cocircuit of M\8 means that each of the
entries in A in the row associated with 4 and in a column labeled by 5, 6, 7
or 8 must be one. Note that, as M\8 is binary, the matrix produced by
deleting the column labeled by 8 from [I4|A] actually represents M\8 over
GF(2). Each column labeled by 5, 6, or 7 must contain at least three ones,
as M\8 ∼= F ∗

7 has no triangles. However, M\8 has no circuits of size five,
so each of these columns contains exactly three ones. Now we can assume
that [I4|A] is the matrix shown in Figure 4. As M has no triads, each of x1,
x2, and x3 must be equal to one.

I4

1 2 3 4 5

0
1
1
1

6

1
0
1
1

7

1
1
0
1

8

x1

x2

x3

x4

Figure 4. A partial representation of M .

For each e in {1, 2, 3}, the matroid M\8/e ∼= M(K4). Thus M/e is a
binary or ternary extension of M(K4) with no 4-element lines, so M/e is
isomorphic to F7 or F−

7 . Because {1, 2, 3, 8} is not a circuit of M , it follows
that M/e ∼= F−

7 for each e ∈ {1, 2, 3}. Using this, one easily checks that
the following six sets must be circuits of M :

{1, 4, 5, 8}, {1, 6, 7, 8}, {2, 4, 6, 8}, {2, 5, 7, 8}, {3, 4, 7, 8}, {3, 5, 6, 8}.

In addition, all seven 4-element circuits of M\8 are also circuits of M . We
have now described thirteen 4-element circuits of M . If this is the complete
list of 4-element circuits of M\8, then it is easy to see that M ∼= AG(3, 2)′.
Therefore assume that C is a 4-element circuit of M that is not one of the
thirteen circuits we have described. Obviously 8 ∈ C. If our only choice of
C is C = {1, 2, 3, 8}, then M must be isomorphic to AG(3, 2), a contradic-
tion. Therefore we assume that C 6= {1, 2, 3, 8}. Now |C∩{1, 2, 3, 8}| 6= 3,
otherwise M has a U3,5-restriction. Similarly, |C ∩ {4, 5, 6, 7}| 6= 3. Thus
C contains 8, a single element from {1, 2, 3}, and a single element from
{4, 5, 6, 7}. We can again find a 4-element circuit that meets C in three
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elements, and deduce the presence of a U3,5-minor. This contradiction com-
pletes the proof. �

Our next task is to eliminate the excluded minors on nine elements. We
need some preliminary facts.

Proposition 4.2. Suppose that M is a 3-connected excluded minor for M.
For every element e ∈ E(M), either M\e or M/e is ternary.

Proof. Suppose that, for some element e of M , neither M\e nor M/e is
ternary. Then both M\e and M/e are binary. Thus M is isomorphic to
U2,4 by a result of Oxley’s [18, Corollary 3.9]. This contradiction completes
the proof. �

Proposition 4.3. Suppose that M is a 3-connected excluded minor for M.
Then M has no minor isomorphic to AG(3, 2).

Proof. For every element e of AG(3, 2), the matroids AG(3, 2)\e and
AG(3, 2)/e are isomorphic to F ∗

7 and F7, respectively. As neither of the
last two matroids is ternary, the result follows by Proposition 4.2. �

The binary matroid S8 is represented over GF(2) by the following matrix.








1 0 0 0 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1









Clearly S8 is self dual. Seymour [26] proved the following result.

Proposition 4.4. The only 3-connected binary single-element coextensions
of F7 are AG(3, 2) and S8.

Proposition 4.5. Suppose that M is a 3-connected excluded minor for M
and that |E(M)| ≥ 9. Then M has S8 as a minor.

Proof. The hypotheses imply that M has no minor isomorphic to U2,5 or
U3,5. As M is non-ternary it must have either an F7-minor or a F ∗

7 -minor.
The Splitter Theorem (2.10) implies that M has a minor M1 such that M1

is a 3-connected single-element extension or coextension of either F7 or F ∗

7 .
Proposition 3.1 implies that M1 is an extension of F ∗

7 or a coextension of
F7. If M1 is non-binary, then M1 is both non-binary and non-ternary, so
M1 = M and hence |E(M)| = 8, contradicting our assumption. Therefore
M1 is binary and so, by Propositions 4.4 and 4.3, M1 is isomorphic to S8. �

Lemma 4.6. Suppose that M is a 3-connected excluded minor for M. Then
|E(M)| 6= 9.

Proof. Assume that E(M) = {1, . . . , 9}. Lemma 3.2 implies that the rank
and corank of M both exceed three. By duality we may assume that r(M) =
4. Proposition 4.5 implies that M has an S8-minor, so assume that M\9 ∼=
S8. Thus M has the partial representation shown in Figure 5.
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1

1
0
0
0

2

0
1
0
0

3

0
0
1
0

4

0
0
0
1

5

1
1
1
0

6

1
1
0
1

7

1
0
1
1

8

1
1
1
1

9

x1

x2

x3

x4

Figure 5. A partial representation for M .

Let MB be the binary matroid for which this partial representation is
a GF(2)-representation. Clearly M\9 = MB\9. Furthermore, M\8\9 =
MB\8\9 ∼= F ∗

7 , so M\8 is non-ternary. Thus M\8 is binary, so M\8 =
MB\8. Moreover, M\9/1 = MB\9/1 ∼= F7. Therefore M/1 is non-ternary,
and hence binary, so M/1 = MB/1.

Recall that a distinguishing set for M and MB is some set Z ⊆ {1, . . . , 9}
such that Z is independent in one of M and MB and dependent in the other.
Let Z be such a distinguishing set. The arguments above show that

(4.1) {8, 9} ⊆ Z ⊆ E(M) − {1}.

Suppose that MB is not simple. As 9 is not a loop of M , it follows
that 9 is in a parallel pair P in MB . As M contains no parallel pairs,
we deduce that P is a distinguishing set for M and MB, so (4.1) implies
that P = {8, 9}. Thus (x1, x2, x3, x4)

T = (1, 1, 1, 1). Now {2, 7, 9} and
{3, 6, 9} are triangles of MB\8 = M\8. Moreover, {2, 7, 8} and {3, 6, 8}
are triangles of MB\9 = M\9. Let A = {2, 7, 8, 9} and let B = {3, 6, 8, 9}.
Then rM (A) = rM (B) = 2. Moreover, rM (A ∪ B) > 2, otherwise M |(A ∪
B) ∼= U2,6. Now

rM ({8, 9}) = rM (A ∩ B) ≤ rM (A) + rM (B) − rM (A ∪ B) ≤ 1,

so M contains a parallel pair, a contradiction.
We may now assume that MB is simple. Let Z be a minimal distin-

guishing set for M and MB . By symmetry, there are three possibilities for
(x1, x2, x3, x4)

T :

(i) (0, 1, 1, 1);
(ii) (0, 0, 1, 1); and
(iii) (1, 1, 0, 0).

In the first case, MB\8 = M\8 is isomorphic to AG(3, 2), contradicting
Proposition 4.3. Suppose that case (ii) holds. Note that {2, 7, 8} is a circuit
of MB , and as it avoids 9, it is also a circuit of M . Hence

M/2\7 ∼= M/2\8 = MB/2\8 ∼= F7.

Thus M/2\7 is non-ternary, so M/2 and M\7 are non-ternary and hence
binary. Therefore M/2 = MB/2 and M\7 = MB\7. Hence 7 ∈ Z but 2 6∈ Z,
so {7, 8, 9} ⊆ Z ⊆ {3, . . . , 9}. Suppose that |Z| = 3. Then Z = {7, 8, 9}.
As Z is not a triangle of MB , it follows that Z is independent in MB and
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a triangle in M . As {2, 7, 8} is a triangle in MB\9 = M\9, we see that
{2, 7, 8, 9} is a rank-2 flat of M . Thus M/2 contains a parallel class of size
three. But we concluded above that M/2\7 ∼= F7, so we have a contradiction.
Therefore |Z| = 4. There is no 4-element dependent set in MB that contains
{7, 8, 9}, so Z is a basis of MB . Proposition 2.7 implies that Z is a 4-element
circuit of M . Now {2, 7, 8} is a circuit of MB and of M , and Z = {7, 8, 9, x}
for some element x ∈ {3, 4, 5, 6}. By circuit elimination in M , there is a
circuit C of M contained in {2, 7, 9, x}. Since this circuit does not contain 8,
it is also a circuit of MB . But there is no 3- or 4-element circuit in MB

containing {2, 7, 9}. The only 3-element circuits of MB containing two
of 2, 7, and 9 are {2, 7, 8} and {1, 7, 9}. But x /∈ {1, 8}, so we have a
contradiction.

Now we suppose that case (iii) holds. We note that {1, 4, 6, 7} is a
basis of MB and hence of M , and the fundamental circuits of M and MB

with respect to this basis are the same since no such circuit can contain
{8, 9}. Thus the matrix in Figure 6 is a representation for MB and a partial
representation for M .

1

1
0
0
0

6

0
1
0
0

7

0
0
1
0

4

0
0
0
1

5

1
1
1
0

2

1
1
0
1

3

1
0
1
1

8

1
1
1
1

9

0
1
0
1

Figure 6. A partial representation for M .

Since MB/7 has {2, 8} as a circuit, so does M/7. Thus

M/7\2 ∼= M/7\8 = MB/7\8 ∼= F7.

Hence M/7\2 is non-ternary. Therefore M/7 and M\2 are binary, so
M/7 = MB/7 and M\2 = MB\2. It follows that 2 ∈ Z and that
Z ⊆ {2, 3, 4, 5, 6, 8, 9}.

Suppose that |Z| = 3, so that Z = {2, 8, 9}. As {2, 8, 9} is independent
in MB , we see that Z is a triangle in M . As {2, 7, 8} is also a triangle of
M , it follows that M/7\2 cannot be isomorphic to F7, a contradiction.

We know now that |Z| = {2, 8, 9, x} for some x ∈ {3, 4, 5, 6}. By
circuit exchange in M between Z and {2, 7, 8}, we conclude that {2, 7, 9, x}
contains a circuit of M\8 = MB\8. But the only circuits of MB that meet
{2, 7, 9} in more than one element are {1, 2, 9} and {2, 7, 8}. As x /∈ {1, 8},
we have arrived at a contradiction that completes the proof. �

In the light of Lemmas 3.2, 3.3, 4.1, and 4.6, we need now only characterize
the excluded minors for M that are 3-connected with rank and corank at
least four, and which have a ground set containing at least ten elements. In
the next section we begin to move towards this goal.
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5. A structure theorem for excluded minors

The following theorem is the main result of this section.

Theorem 5.1. Let M be a 3-connected excluded minor for M such that
|E(M)| ≥ 10 and both the rank and corank of M exceed three. Then there
is a 3-connected binary matroid MB such that E(MB) = E(M) and:

(i) There are disjoint circuit-hyperplanes J and K in MB such that
E(MB) = J ∪ K;

(ii) M is obtained from MB by relaxing J ; and
(iii) The matroid MT that is obtained from MB by relaxing J and K is

ternary.

Before we prove Theorem 5.1, we discuss some preliminary facts. The
binary matroid P9 is a 3-connected extension of S8, and is represented over
GF(2) by the matrix in Figure 7.

1

1
0
0
0

2

0
1
0
0

3

0
0
1
0

4

0
0
0
1

5

1
1
1
0

6

1
1
0
1

7

1
0
1
1

8

1
1
1
1

9

0
0
1
1

Figure 7. A representation of P9.

The following fact follows from [17, Lemma (2.6)].

Proposition 5.2. Every binary 3-connected single-element extension of S8

is either isomorphic to P9 or has an AG(3, 2)-minor.

Proposition 5.3. Suppose that M is a 3-connected excluded minor for M
and that |E(M)| ≥ 10. Then M has either P9 or P ∗

9 as a minor.

Proof. Proposition 4.5 implies that M has a minor M1 isomorphic to S8.
Now the Splitter Theorem implies that M has a minor M2 that is a 3-con-
nected extension or coextension of S8. If M2 is non-binary, then M2 is both
non-binary and non-ternary, so M2 = M and hence |E(M)| = 9. This is
a contradiction, so M2 is binary. Thus, by Propositions 5.2 and 4.3 and
duality, we see that M2 is isomorphic to either P9 or P ∗

9 . �

Proof of Theorem 5.1. Let M be a 3-connected excluded minor for M such
that r(M), r(M∗) ≥ 4 and |E(M)| ≥ 10. By duality, we may assume that
r(M) ≤ r∗(M). By Proposition 5.3, M has a minor N that is isomorphic
to P9 or P ∗

9 . Suppose that N = M\X/Y , where we may assume that Y is
independent and that X is coindependent in M . As |E(M)| ≥ 10, it follows
that X ∪ Y is non-empty. We assume that N has ground set {1, 2, . . . , 9}
and that if N is P9, then N is represented over GF(2) by the matrix in
Figure 7, while if N is P ∗

9 , then N is represented over GF(2) by the matrix
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in Figure 8. We note, for future reference, that P9/1\7, P9/1\9, P9/2\7,
and P9/2\8 are all isomorphic to F7.

1

1
0
0
0
0

2

0
1
0
0
0

3

0
0
1
0
0

4

0
0
0
1
0

5

0
0
0
0
1

6

1
1
1
1
0

7

1
1
0
1
0

8

1
0
1
1
1

9

0
1
1
1
1

Figure 8. A representation of P ∗

9 .

We wish to fix a basis B and a cobasis B′ of N . If N = P9, we choose
B = {1, 2, 3, 4}, and B′ = {5, 6, 7, 8, 9}, while if N = P ∗

9 , we choose
B = {5, 6, 7, 8, 9}, and B′ = {1, 2, 3, 4}. Now Y ∪ B is a basis of M .
Suppose that [Ir|A] is a partial representation of M with respect to the
basis B. Let MB be the binary matroid represented over GF(2) by [Ir|A].
The rest of the proof involves showing that MB has the properties specified
in the theorem. Note that there must be at least one subset of E(M) that is
independent in one of M and MB , and dependent in the other. Recall that
we call any such set a distinguishing set.

Lemma 5.4. If x ∈ X ∪ B′ and M\x is binary, then M\x = MB\x. If
y ∈ Y ∪ B and M/y is binary, then M/y = MB/y.

Proof. Suppose x ∈ X ∪ B′ and that M\x is binary. Then, by deleting the
column of [Ir|A] labeled by x, we obtain a partial representation for M\x.
Since M\x is binary, this matrix in fact represents M\x over GF(2). It
also represents MB\x over GF(2), so M\x = MB\x. The second statement
follows by a similar argument. �

Lemma 5.5. There are subsets X ′ ⊆ B′ and Y ′ ⊆ B of E(M) with the
following properties:

(i) X ⊆ X ′ ⊆ E(M) − Y ′ ⊆ E(M) − Y ;
(ii) E(M) − (X ′ ∪ Y ′) = {3, 4, 5, 6};
(iii) if x ∈ X ′, then M\x is non-ternary and M\x = MB\x;
(iv) if y ∈ Y ′, then M/y is non-ternary and M/y = MB/y;
(v) |X ′| = r∗(M) − 2;
(vi) |Y ′| = r(M) − 2;
(vii) if e ∈ E(M) − (X ′ ∪ Y ′), then X ′ ∪ Y ′ ∪ {e} spans both M and MB;

and
(viii) if Z is a distinguishing set for M and MB then X ′ ⊆ Z ⊆ E(M)−Y ′.

Proof. We first consider the case that N ∼= P9. Let X ′ = X ∪ {7, 8, 9},
and let Y ′ = Y ∪ {1, 2}. Then (i) and (ii) are certainly true. Suppose that
x ∈ X. Then M\x has a P9-minor, and as P9 has an F7-minor, it follows
that M\x is non-ternary, and therefore binary. The fact that M\x = MB\x
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follows from Lemma 5.4. Moreover, if x ∈ {7, 8, 9}, then N\x has an
F7-minor, so M\x is non-ternary, and hence binary. Therefore (iii) holds. A
similar argument shows that (iv) holds. Statement (viii) follows immediately
from (iii) and (iv). As N has rank four and corank five, it follows that
|X| = r∗(M)− 5 and |Y | = r(M)− 4. Thus (v) and (vi) are immediate. To
see that (vii) is true, note that M\X/Y = MB\X/Y = P9. Since {3, 4, 5, 6}
is a cocircuit of P9, it follows that if e ∈ {3, 4, 5, 6}, then {1, 2, 7, 8, 9, e}
contains a basis of N . Thus {1, 2, 7, 8, 9, e} ∪ Y contains a basis B0 of M .
Suppose that B0 is not a basis of MB . Then there is a minimal distinguishing
set Z for M and MB such that Z ⊆ B0 and Z is independent in M and
dependent in MB . Part (viii) shows that {7, 8, 9} ⊆ Z, but Z does not
contain any element in {1, 2} ∪ Y . It follows that there is a circuit of
MB\X/Y = N that is contained in {7, 8, 9, e}. But no such circuit exists,
so B0 is a basis of both M and MB . Therefore (vii) holds.

In the case that N ∼= P ∗

9 , we set X ′ to be X ∪ {1, 2} and Y ′ to be
Y ∪ {7, 8, 9}. Then similar arguments show that the lemma holds. �

For the rest of the proof, X ′ and Y ′ refer to the sets described in
Lemma 5.5. We will make frequent use of the following fact.

Proposition 5.6. Suppose that {M1, M2} = {M, MB} and that C is a
circuit of M1. If C does not contain X ′, then it is also a circuit of M2.

Proof. Suppose that C does not contain X ′. Then C cannot be a distinguish-
ing set by Lemma 5.5 (viii). Since C is dependent in M1, it must therefore
be dependent in M2. If C is not a circuit of M2, it properly contains a circuit
C ′ of M2. Now C ′ is independent in M1, so it is a distinguishing set of M1

and M2. However, C ′ does not contain X ′, so we have a contradiction to
Lemma 5.5 (viii). Therefore C is a circuit of M2. �

Lemma 5.7. Suppose that Z is a distinguishing set for M and MB. Then
|Z| = r(M) = r(MB).

Proof. Let r be the common rank of M and MB , and let r∗ = r∗(M) =
r∗(MB). Suppose that Z is a distinguishing set for M and MB and that
|Z| 6= r. Obviously |Z| ≤ r, so |Z| ≤ r − 1. Let {M1, M2} = {M, MB},
where we assume that Z is dependent in M1 and independent in M2. We
can assume that Z is a minimal distinguishing set, so Z is in fact a circuit
of M1.

Lemma 5.5 (v) and (vii) imply that X ′ ⊆ Z, and |X ′| = r∗−2. Therefore
r∗ − 2 ≤ r − 1. But we have assumed that r ≤ r∗, so r∗ ∈ {r, r + 1}. Hence
|X ′| ∈ {r − 2, r − 1}.

Note that Z ∩ Y ′ = ∅ by Lemma 5.5 (viii). Suppose that y ∈ Y ′. Then
M1/y = M2/y by Lemma 5.5 (iv). As Z is dependent in M1/y, it follows that
Z is dependent in M2/y, so Z ∪ y is dependent in M2. As Z is independent
in M2, this means that y ∈ clM2

(Z). Therefore Y ′ ⊆ clM2
(Z).

Suppose that Z 6= X ′. Then |X ′| = r − 2 and |Z| = r − 1, so Z − X ′

contains a unique element z. Moreover, z /∈ X ′∪Y ′ by Lemma 5.5 (vii). We
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have already shown that Y ′ ⊆ clM2
(Z), so Lemma 5.5 (vii) implies that Z

is spanning in M2. This is a contradiction since |Z| < r(M2). We conclude
that Z = X ′.

Now suppose that y ∈ Y ′ and that y ∈ clM1
(Z). Then there is a circuit

C ⊆ Z ∪ y such that y ∈ C. Note that C does not contain X ′ = Z, as Z is
a circuit of M1. Proposition 5.6 implies that C is a circuit of M2. The fact
that M and MB are loopless means that C 6= {y}, so there is an element
e ∈ X ′ ∩ C.

By circuit elimination between Z and C in M1, there is a circuit C ′

of M1 such that y ∈ C ′ and C ′ ⊆ (Z − e) ∪ y. As C ′ does not contain e,
Proposition 5.6 implies that C ′ is a circuit of M2. Now C and C ′ are circuits
of M2 contained in Z ∪ y, and C 6= C ′ as e /∈ C ′. But Z is independent in
M2, so this leads to a contradiction. This shows that clM1

(Z) ∩ Y ′ = ∅.
We have shown that if y ∈ Y ′ then y ∈ clM2

(Z). In fact, we can prove
something stronger: that Z ∪ y is a circuit of M2. Suppose that this is not
the case. Then there is a circuit C that is properly contained in Z ∪ y, such
that y ∈ C. Certainly C does not contain X ′ = Z, so C is a circuit of M1.
Therefore y ∈ clM1

(Z), contrary to our earlier conclusion. Thus Z ∪ y is
indeed a circuit of M2.

We know that |Y ′| ≥ 2, so let y and y′ be distinct members of Y ′. Then
Z ∪ y and Z ∪ y′ are circuits of M2. If M2 is binary, then {y, y′} contains a
circuit of M2. But Y ′ is contained in the common basis B so this leads to a
contradiction. Therefore M2 6= MB , so M1 = MB and M2 = M .

Suppose that r∗ = r. Then |Z| = |X ′| = r∗ − 2 = r − 2. As Z is
independent in M2, it follows that rM2

(Z) = r−2. Moreover r−2 = rM2
(Z∪

Y ′) = rM2
(X ′∪Y ′), from our earlier conclusion that Y ′ ⊆ clM2

(Z). However,
it follows from Lemma 5.2 (vii) that rM2

(X ′ ∪ Y ′) ≥ r − 1. Therefore we
have a contradiction, and we conclude that r∗ = r + 1, so |Z| = r − 1. Thus
rM2

(Z) = r − 1.
Let W = E(M)−(X ′∪Y ′) = {3, 4, 5, 6}. We already know that clM1

(Z)
does not meet Y ′. Suppose that there is some element w ∈ W such that
w ∈ clM1

(Z). Then there is a circuit C of M1 such that C ⊆ Z ∪ w and
w ∈ C. As Z is a circuit of M1, it follows that there is an element z ∈ Z
such that z /∈ C. Therefore C does not contain X ′ = Z, so C is a circuit of
M2. Thus clM2

(Z) contains w and Y ′, and therefore Z is spanning in M2.
But this is a contradiction as rM2

(Z) = r − 1. We conclude that Z is a flat
of M1.

Recall that M1 = MB and that Z is a circuit and a flat of M1 with
cardinality r − 1. Consider M1/Z. This is a loopless rank-2 binary matroid
on the ground set W ∪ Y ′. Obviously M1/Z contains no more than three
parallel classes. As |W | = 4, we deduce that some parallel class of M1/Z
contains w and w′, two distinct elements of W . Therefore there is a circuit
C of M1 such that C ⊆ Z ∪{w, w′} and w, w′ ∈ C. Note that C must meet
Z, for w and w′ are not parallel in MB\X/Y = N , so they are not parallel
in M1.
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Let C ′ = (Z−C)∪{w, w′}. Since M1 is binary, C ′, which is the symmetric
difference of C and Z, is a disjoint union of circuits of M1. Any circuit in
C ′ that contains w must also contain w′, for w /∈ clM1

(Z). Note that C ′ ∩Z
is a proper subset of Z, as C ∩ Z is non-empty. These observations imply
that C ′ must in fact be a circuit of M1. Moreover, C ′ ∩ Z is non-empty, as
C cannot contain the circuit Z.

Both C and C ′ are circuits of M2 since neither contains Z. Thus M2 has
a circuit contained in (C ∪ C ′) − w′. This circuit must contain w, so w ∈
clM2

(Z). Hence, by Lemma 5.5 (vii), Z is spanning in M2; a contradiction.
�

Corollary 5.8. Both M and MB are simple.

Proof. Certainly M is simple as it is 3-connected and |E(M)| ≥ 10. If
MB contains a circuit of at most two elements, then that set contains a
distinguishing set. But Lemma 5.7 implies that any distinguishing set has
cardinality at least four. �

Corollary 5.9. Suppose that Z is a distinguishing set of M and MB. Then
Z is a circuit in one of M and MB, and a basis in the other. Moreover,
r∗(M) ∈ {r(M), r(M) + 1, r(M) + 2}.

Proof. It follows from Lemma 5.7 that any distinguishing set of M and MB

is in fact a minimal distinguishing set. The fact that Z is a circuit in one of
M and MB and a basis in the other now follows easily.

Lemma 5.5 implies that X ′ ⊆ Z and that |X ′| = r∗(M) − 2. Thus
r∗(M) − 2 ≤ |Z| = r(M) by Lemma 5.7. The corollary follows from our
assumption that r(M) ≤ r∗(M). �

We now set to the task of showing that M and MB have a unique distin-
guishing set.

Lemma 5.10. Let {M1, M2} = {M, MB} and suppose that the distinguish-
ing set Z is a circuit in M1 and a basis in M2. Then

(i) if M1 is binary, then Z is a hyperplane of M1; and
(ii) if Z is not a hyperplane of M1, then r(M) = r∗(M).

Moreover | clM1
(Z)| ≤ |Z| + 1.

Proof. Let r = r(M) and let r∗ = r∗(M). We note that X ′ ⊆ Z and that
|X ′| = r∗− 2 by Lemma 5.5. Corollary 5.9 states that r∗ ∈ {r, r +1, r +2}.
Note that |Z − X ′| = r − r∗ + 2, so r∗ = r if and only if Z − X ′ contains
exactly two elements. We prove the following claim:

5.10.1. Suppose that y is in clM1
(Z)−Z. Then (Z −X ′)∪ y is a circuit of

both M1 and M2.

Proof. There is a circuit C of M1 such that y ∈ C and C ⊆ Z ∪ y. Assume
that C is not a circuit of M2. If C is a distinguishing set, then X ′ ⊆ C. On
the other hand, if C is not a distinguishing set, then C is dependent in M2
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and C must properly contain a circuit C ′ of M2. Since C ′ is a proper subset
of the circuit C of M1, it follows that C ′ is a distinguishing set of M1 and
M2, and therefore X ′ ⊆ C ′. Hence X ′ ⊆ C in either case.

Choose e in X ′. Then e ∈ Z ∩ C. By circuit elimination in M1, there is
a circuit C ′ ⊆ (Z − e) ∪ y such that y ∈ C ′. Note that C ′ does not contain
X ′, so C ′ is a circuit of M2 by Proposition 5.6. Therefore we can relabel
C ′ with C, and assume that C is a circuit of both M1 and M2 such that
C ⊆ Z ∪ y and y ∈ C.

If C does not avoid X ′, then C ∩ X ′ contains an element e and, by
circuit elimination in M1, there is a circuit C ′ of M1 such that y ∈ C ′ and
C ′ ⊆ (Z − e)∪ y. Since C ′ does not contain X ′, Proposition 5.6 implies that
C ′ is a circuit of M2. Thus Z is independent in M2, but Z ∪ y contains two
distinct circuits of M2, namely C and C ′. This contradiction means that C
avoids X ′, so C ⊆ (Z − X ′) ∪ y. But |Z − X ′| ≤ 2 and M2 is simple by
Corollary 5.8. Thus C = (Z − X ′) ∪ y is a circuit of both M1 and M2. �

Suppose that Z is not a hyperplane of M1. As rM1
(Z) = |Z| − 1 = r − 1,

there must be some element y in clM1
(Z) − Z. Then (5.10.1) implies that

(Z−X ′)∪y is a circuit of M1. As |Z−X ′| ≤ 2 and M1 is simple, we conclude
that |Z −X ′| = 2, and that therefore r = r∗ by our earlier observation. We
have shown that statement (ii) of the lemma holds.

Suppose that M1 = MB . Then M1 is binary and ((Z − X ′) ∪ y)△ Z is a
disjoint union of circuits of M1. Thus X ′∪y contains a circuit C ′ of M1 that
contains y. Clearly |C ′| ≤ |X ′|+1 = r∗−1 = r−1. Therefore C ′ cannot be a
distinguishing set by Lemma 5.7. Hence C ′ is dependent in M2. If C ′ is not
a circuit of M2, then it properly contains a circuit of M2, and this circuit is
a distinguishing set with cardinality less than r, a contradiction. Therefore
C ′ is a circuit of M2. Note that C ′ 6= (Z − X ′) ∪ y, so Z ∪ y contains two
distinct circuits of M2. This is a contradiction. Therefore | clM1

(Z)| > |Z|
implies that M1 is not binary. It follows that if M1 is binary, then Z is a
hyperplane of M1. This completes the proof of statement (i).

We may now assume that M1 is non-binary, so that M2 is binary. Suppose
that y1 and y2 are distinct elements of clM1

(Z)−Z. Then (Z −X ′)∪ y1 and
(Z −X ′)∪ y2 are both circuits of M2 by (5.10.1). By taking the symmetric
difference of these circuits, we deduce that {y1, y2} is a disjoint union of
circuits of M2, and this is a contradiction. It follows that clM1

(Z) can
contain at most one element not in Z. This completes the proof. �

Lemma 5.11. Suppose that Z is a distinguishing set for M and MB. Then
Z is a circuit-hyperplane in MB and a basis in M .

Proof. Let {M1, M2} = {M, MB}, and assume that Z is a circuit in M1 and
a basis in M2. If M1 is binary, then Z is a hyperplane of M1 by Lemma 5.10
and there is nothing left to prove, so we assume that M1 = M and M2 = MB .
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Note that Z does not meet Y ′ by Lemma 5.5 (viii). Suppose that Z is a
hyperplane of M1. Then

|Y ′ − clM1
(Z)| = |Y ′| = r(M) − 2 ≥ 2.

On the other hand, if Z is not a hyperplane of M1, then r(M) = r∗(M) and
| clM1

(Z)| ≤ |Z| + 1 by Lemma 5.10. In this case, r(M) = |E(M)|/2 ≥ 5.
Hence

|Y ′ − clM1
(Z)| ≥ |Y ′| − 1 = r(M) − 3 ≥ 2.

In either case, Y ′ − clM1
(Z) contains distinct elements y1 and y2.

Clearly Z is a circuit of M1/yi for i = 1, 2. Lemma 5.5 (iv) implies that
M1/yi = M2/yi. Therefore Z is a circuit of M2/yi and, as Z is independent
in M2, this means that Z ∪ yi is a circuit of M2. Therefore Z ∪ y1 and
Z ∪ y2 are distinct circuits of the binary matroid M2, so {y1, y2} is a union
of circuits in M2. This contradiction completes the proof. �

Lemma 5.12. Suppose that Z1 and Z2 are distinct distinguishing sets for
M and MB. Then

(i) |Z1| = |Z2| = r(M) = r∗(M);
(ii) Z1 − X ′ and Z2 − X ′ are disjoint sets;
(iii) |Z1 − X ′| = |Z2 − X ′| = 2;
(iv) Z1 △ Z2 = {3, 4, 5, 6}; and
(v) Z1 △ Z2 is a circuit of M .

Proof. Let r = r(M) and r∗ = r∗(M). From Lemma 5.11, we see that
Z1 and Z2 are circuit-hyperplanes of MB , so |Z1| = |Z2| = r. Moreover,
X ′ ⊆ Zi ⊆ E(M) − Y ′ by Lemma 5.5. Note that r∗ − 2 = |X ′| ≤ |Zi| = r
for i = 1, 2. As r ≤ r∗, this means that |Zi − X ′| ≤ 2. Since

(5.1) Z1 △ Z2 ⊆ (Z1 − X ′) ∪ (Z2 − X ′),

it follows that |Z1 △ Z2| ≤ 4. Moreover |Z1 △ Z2| is even, as |Z1| = |Z2|.
Now Z1 △ Z2 is a disjoint union of circuits in the simple matroid MB . It

follows that Z1 △ Z2 is a circuit, and that |Z1 △ Z2| = 4. Equation (5.1)
implies that Z1 − X ′ and Z2 − X ′ must be disjoint sets, each of cardinality
two. Since

Zi − X ′ ⊆ E(M) − (X ′ ∪ Y ′) = {3, 4, 5, 6}

for i = 1, 2, we have that Z1 △Z2 = {3, 4, 5, 6} is a circuit. As |Z1 −X ′| =
|Z2−X ′| = 2, it follows that |Z1| = |Z2| = |X ′|+2 = r∗, so we are done. �

Proposition 5.13. Suppose that Z is a distinguishing set for M and MB.
If e ∈ E(M) − Z, then Z ∪ e is a circuit of M .

Proof. As Z is a basis of M , there is a circuit C of M such that e ∈ C and
C ⊆ Z ∪ e. If C is a distinguishing set for M and MB , then it is a circuit
of MB by Lemma 5.11, implying that e ∈ clM1

(Z). But Z is a hyperplane
of M1, so this is a contradiction. Hence C is not a distinguishing set, and
is therefore dependent in MB. But there is only one circuit of MB that is
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contained in Z ∪ e, namely Z itself. Therefore C contains Z, so C = Z ∪ e
is a circuit of M , as desired. �

For the next step we will need a result due to Kahn and Seymour [11]
(see [19, Lemma 10.3.7]).

Lemma 5.14. Let N1 and N2 be matroids having distinct elements a and
b such that the following conditions hold:

(i) N1 and N2 are distinct connected matroids having a common ground
set;

(ii) N1\a = N2\a and N1\b = N2\b;
(iii) N1\a\b = N2\a\b and this matroid is connected; and
(iv) {a, b} is not a cocircuit of N1 or of N2.

Then at most one of N1 and N2 is ternary.

Lemma 5.15. There is a unique distinguishing set for M and MB.

Proof. Lemma 5.12 says that if Z1 and Z2 are distinct distinguishing sets,
then Z1−X ′ and Z2−X ′ are disjoint sets of cardinality two. As both Z1−X ′

and Z2−X ′ are contained in {3, 4, 5, 6}, it follows that there can be no more
than two distinguishing sets for M and MB . Suppose that there are precisely
two, Z1 and Z2. We deduce from Lemma 5.12 that r(M) = r∗(M) and that
Z1 − X ′ = {a, b} while Z2 − X ′ = {c, d}, where {a, b, c, d} = {3, 4, 5, 6}.

5.15.1. If e ∈ E(M) − X ′ then M\e is non-binary.

Proof. Since X ′ = Z1 ∩ Z2, we can assume without loss of generality that
e /∈ Z1. Let a and b be distinct elements in E(M)−(Z1∪e). Proposition 5.13
implies that Z1 ∪ a and Z1 ∪ b are circuits of M\e. If M\e is binary, then
this would imply that {a, b} is a union of circuits in M ; a contradiction.
Therefore M\e is non-binary. �

Suppose that e ∈ E(M) − Z1. Then Z1 ∪ e is a circuit of M by Proposi-
tion 5.13. This observation means that if A is a proper subset of E(M)−Z1,
then M\A is connected. Similarly, if A is a proper subset of E(M) − Z2,
then M\A is connected.

We have shown in (5.15.1) that M\a and M\b are non-binary, and there-
fore ternary. Obviously M\a\b is ternary. Suppose that M\a\b is repre-
sented over GF(3) by the matrix [Ir|A]. It is known [6] that ternary matroids
are uniquely representable over GF(3). One consequence of this is that there
are column vectors a and b over GF(3) such that [Ir|A|a] and [Ir|A|b] repre-
sent M\b and M\a respectively over GF(3). Let MT be the ternary matroid
that is represented over GF(3) by the matrix [Ir|A|a|b]. Thus MT \a = M\b
and MT \b = M\b.

Let e be a arbitrary element in Y ′. We wish to show that M\e = MT \e.
We know that M\e is non-binary, and hence ternary, by (5.15.1). Certainly
MT \e\a = M\e\a and MT \e\b = M\e\b. Moreover, our earlier observation
implies that M\e and M\e\a are connected. If MT \e is not connected, then
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e must be a loop or a coloop in MT \a. This means that e is a loop of MT ,
or {a, e} is a series pair in MT . But MT contains no loops as M contains no
loops; and {a, e} is not a series pair of MT , as MT \a = M\a is connected.
Therefore MT is connected. The set {a, b} is not a cocircuit of either MT \e,
or M\e, for M\e\a = MT \e\a and M\e\b = MT \e\b, and both these
matroids are connected. Finally, M\e\a\b = MT \e\a\b and this matroid
is connected, since Z2 avoids all of e, a, and b. We have shown that the
hypotheses of Lemma 5.14 apply to M\e and MT \e. Since M\e and MT \e
are both ternary, Lemma 5.14 implies that M\e and MT \e are not distinct.
Therefore M\e = MT \e.

The matroids M and MT are distinct as M is not ternary. Let Z be a
minimal distinguishing set for M and MT . We have deduced that M\x =
MT \x for every x ∈ Y ′ ∪ {a, b} = E(M) − Z2. Thus Y ′ ∪ {a, b} ⊆ Z. But
|Y ′| = r∗(M) − 2 = r(M) − 2, so |Z| ≥ r(M). However, |Z| ≤ r(M), so
|Z| = r(M), and Z = Y ′∪{a, b}. Therefore there is a unique distinguishing
set for M and MT , and Proposition 2.8 implies that Z is a circuit-hyperplane
in one of these matroids, and a basis in the other.

Suppose that Z is a basis of M . Then Proposition 2.8 states that Z ∪ e
is a circuit of M for all e in E(M)−Z. Since Z ∪ e contains neither Z1 nor
Z2, we deduce that Z ∪ e is a circuit of MB for all e ∈ E(M) − Z. If e and
e′ are distinct elements in E(M) − Z, then {e, e′} is a union of circuits in
MB, a contradiction. Therefore, from Proposition 2.8, we conclude that Z
is a circuit-hyperplane of M , and MT is obtained from M by relaxing Z.

We know from (5.15.1) that M\c is non-binary, and hence ternary. We
have already noted that M\c is connected. Moreover, Proposition 2.8 im-
plies that Z ∪ e is a circuit of MT for every e ∈ E(M) − Z. Thus MT \c
is connected. We have shown that if y1, y2 ∈ Y ′, then M\yi = MT \yi for
i ∈ {1, 2}. Therefore M\c\yi = MT \c\yi. Also M\c\y1\y2 = MT \c\y1\y2

and this last matroid is connected, since Z1 avoids c, y1, and y2. Finally,
{y1, y2} is not a cocircuit of M\c or of MT \c, for M\c\yi = MT \c\yi for
i = 1, 2, and these matroids are connected. We apply Lemma 5.14. Since
both M\c and MT \c are ternary, we conclude that M\c = MT \c. But Z
is a circuit of M\c, and a basis of MT \c. This contradiction completes the
proof. �

Lemma 5.16. Suppose that Z is a distinguishing set for M and MB. Then
E(M) − Z is a circuit-hyperplane of M , and the matroid obtained from M
by relaxing E(M) − Z is ternary.

Proof. Much of the argument in this lemma is similar to that in Lemma 5.15.
Note that Z is a circuit-hyperplane of MB by Lemma 5.11. Since Z is a
unique distinguishing set by Lemma 5.15, we see from Proposition 2.8 that
M is obtained from MB by relaxing Z.

Suppose that e ∈ E(M)−Z. Let a and b be distinct elements in E(M)−
(Z ∪ e). Then Z ∪ a and Z ∪ b are circuits of M\e by Proposition 5.13.
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If M\e were binary, then {a, b} would be a union of circuits in M . This
contradiction implies that M\e is ternary for every element e ∈ E(M) −Z.

The fact that Z ∪ e is a circuit of M for every e ∈ E(M)−Z means that
M\A is connected for every proper subset of E(M) − Z.

Choose elements a, b ∈ E(M) − Z. Then M\a, M\b, and M\a\b are
all ternary. Suppose that these three matroids are represented over GF(3)
by the matrices [Ir|A|b], [Ir|A|a], and [Ir|A] respectively. Let MT be the
ternary matroid represented over GF(3) by [Ir|A|a|b], so that MT \a = M\a
and MT \b = M\b.

Suppose that e ∈ E(M) − Z. Then M\e is ternary. Furthermore,
M\e\a = MT \e\a and M\e\b = MT \e\a, and these matroids are both
connected. We have already observed that M\e is connected. If MT \e is
not connected, then e is a loop or a coloop in MT \a. But MT has no loops,
and {a, e} is not a series pair of MT as MT \a = M\a, and this matroid
is connected. We also note that M\e\a\b = MT \e\a\b, and this last ma-
troid is connected. Finally, {a, b} is not a series pair of M\e or MT \e as
M\e\a = MT \e\b and M\e\b = MT \e\b are connected.

We have shown that Lemma 5.14 applies to M\e and MT \e. Since both
these matroids are ternary, we deduce that M\e = MT \e.

Let Z ′ be a distinguishing set for M and MT . Then E(M) − Z ⊆ Z ′, so
r∗(M) = |E(M)−Z| ≤ |Z ′|. But |Z ′| ≤ r(M) ≤ r∗(M), so Z ′ = E(M)−Z.
Thus E(M)−Z is the unique distinguishing set for M and MT , and one of
these matroids is obtained from the other by relaxing E(M) − Z.

Suppose that M is obtained from MT by relaxing the circuit-hyperplane
E(M) − Z. Then (E(M) − Z) ∪ e is a circuit of M for all e in Z. Thus
(E(M) − Z) ∪ e is a circuit of MB for all e ∈ Z. It follows that MB has a
circuit of size at most two. This contradiction shows that MT is obtained
from M by relaxing the circuit-hyperplane E(M) − Z, and this completes
the proof. �

To complete the proof of Theorem 5.1, we suppose that Z is a distinguish-
ing set for M and MB . Then Z is a circuit-hyperplane of MB by Lemma 5.11.
Lemma 5.15 says that Z is unique, so M is obtained from MB by relaxing
the circuit-hyperplane Z (Proposition 2.8). Also, E(M) − Z is a circuit-
hyperplane of M , and the matroid MT produced by relaxing E(M) − Z in
M is ternary by Lemma 5.16. It is an easy exercise to see that E(M) − Z
is a circuit-hyperplane of MB , and that relaxing both Z and E(M) − Z in
MB produces MT . Thus, if we can show that MB is 3-connected, the result
follows by renaming Z with J and E(M) − Z with K.

Suppose that (X1, X2) is a k-separation of MB for some k < 3. As
M is 3-connected, (X1, X2) is not a k-separation of M . Thus rM (Xi) >
rMB

(Xi), where {i, j} = {1, 2}. It is easy to see that this means Xi = Z.
Thus rMB

(Xi) = r(MB) − 1. Therefore rMB
(Xj) ≤ 2. If rMB

(Xj) = 1,
then MB is not simple, a contradiction. Therefore rMB

(Xj) = 2. Suppose
that Xj contains three distinct elements, a b, and c. Then {a, b, c} is a
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triangle of MB . Moreover, MB has a circuit C contained in Xi ∪{a, b} such
that a, b ∈ C. Taking the symmetric difference of C and Xi shows that
c ∈ clMB

(Xi) = clMB
(Z) = Z. Hence |Xj | = 2. Thus M has corank two,

and Z is a series class of M . It follows that M is ternary, a contradiction. �

We close this section with some simple consequences of Theorem 5.1.

Corollary 5.17. Let M be a 3-connected excluded minor for M such that
|E(M)| ≥ 10 and both the rank and corank of M exceed three. Let MB

be the binary matroid supplied by Theorem 5.1, and let J and K be the
circuit-hyperplanes that partition E(MB). Then

(i) r(M) = r∗(M);
(ii) |E(M)| is divisible by 4;
(iii) every non-spanning circuit of M has even cardinality;
(iv) every non-cospanning cocircuit of M has even cardinality;
(v) MB contains no triangles and no triads; and
(vi) the matroid obtained from MB by relaxing K is an excluded minor for

M.

Proof. Statement (i) is clear. Observe that J and K are both circuits and
cocircuits of MB . As MB is binary, this means that |J | = |K| is even.
Therefore |E(M)| = |J | + |K| is a multiple of 4.

Any non-spanning circuit of M is also a circuit in MB, and must therefore
meet both J and K in an even number of elements. If H is the complement
of a non-cospanning cocircuit in M , then H is dependent in M , and hence
in MB. It follows easily that E(M)−H is a cocircuit of MB, and therefore
meets J and K in an even number of elements.

If T is a triangle of MB , then it is also a triangle of M , which contradicts
statement (iii). If T ∗ is a triad of MB , then it cannot be a triad of M ,
by statement (iv). Since M is obtained from MB by relaxing the circuit-
hyperplane J , it follows that T ∗ must be E(M) − J = K. As |E(M)| =
|J | + |K| = 2|K|, this means that |E(M)| = 6, a contradiction.

Finally, let M ′ be the matroid obtained from MB by relaxing K. Suppose
that M ′ is binary. Then, for any two elements j, j′ ∈ J , both K ∪ j and
K ∪ j′ are circuits of M ′, and hence {j, j′} is a circuit of M ′. This implies
that MB contains a parallel pair, and this contradicts the fact that MB is
3-connected. Suppose that M ′ is ternary. Then the matroid, MT , obtained
from M ′ is relaxing J is also ternary, and Lemma 2.9 implies that M ′ is
binary, a contradiction. Therefore M ′ does not belong to M. By applying
Proposition 2.6 we see that a single-element deletion or contraction of M ′ is
equal to a single-element deletion or contraction of either the binary matroid
MB or the ternary matroid MT . The result follows. �

6. Almost-regular matroids

In this section we establish a connection between the excluded minors for
M, and Truemper’s class of almost-regular matroids, defined in Section 2.6.
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Theorem 6.1. Let M be an excluded minor for M with |E(M)| ≥ 10 and
r(M), r∗(M) ≥ 4. Let MB be the binary matroid supplied by Theorem 5.1,
so that E(M) is partitioned into two circuit-hyperplanes, J and K, of MB.
Then MB\e and MB/e are almost-regular, for every element e ∈ E(M). In
particular, if e ∈ J , then MB\e is almost-regular, with con = J − e and
del = K, and MB/e is almost-regular with con = K and del = J − e. If
e ∈ K, then MB\e is almost-regular, with con = K − e and del = J , and
MB/e is almost-regular with con = J and del = K − e.

Proof. Theorem 5.1 states that relaxing both J and K in MB produces
a ternary matroid MT . Let e be an element in J . Let con = J − e
and let del = K. It follows from Proposition 2.6 that if f is in K, then
MB\e\f = MT \e\f . Hence MB\e\f is both binary and ternary, and is
therefore regular. On the other hand, if f ∈ J−e, then MB\e/f = MT \e/f ,
so MB\e/f is regular.

Next we show that MB\e itself is not regular. Suppose that it is. Then, in
particular, MB\e is ternary. Note that K is a circuit-hyperplane of MB\e,
and that relaxing this circuit-hyperplane in MB\e produces MT \e, by Propo-
sition 2.6. Therefore MB\e and MT \e are both ternary matroids, and the
second is produced from the first by relaxing K. Lemma 2.9 asserts that
there is an enlarged wheel G such that K is the rim of G and MB\e = M(G).
Now MB is simple, so G contains no parallel edges. Since J − e makes up
the spoke edges of G, and |K| = |J − e| + 1, it follows that the rim of
G contains precisely one series pair. But MB contains no series pair, as
it is 3-connected. Therefore MB contains at least one triad, contradicting
Corollary 5.17. Hence MB\e is not regular.

We note that J − e is a cocircuit of MB\e, so any circuit of this matroid
meets J − e in an even number of elements. Similarly, K is a circuit of
MB\e, so any cocircuit of MB\e meets K in a set of even cardinality. We
conclude that MB\e is almost-regular.

Next we consider MB/e. Let con = K and let del = J − e. If f ∈ K,
then MB/e/f = MT /e/f , and if f ∈ J − e, then MB/e\f = MT /e\f , so
both these matroids are regular. Suppose that MB/e is regular. Now J − e
is a circuit-hyperplane of MB/e, and the matroid produced from MB/e by
relaxing J − e is MT /e. Therefore MB/e is the cycle matroid of an enlarged
wheel G, and J − e is the rim of G. Since MB is 3-connected, it follows
that MB/e has no series pairs. As the rim of G has cardinality r(M) − 1
and the complement of the rim contains r(M) elements, this means that G
must contain a parallel pair. Therefore MB contains a triangle, so we have a
contradiction to Corollary 5.17. Finally, we observe that K is a cocircuit of
MB/e, so any circuit of this matroid meets K in an even number of elements,
and J − e is a circuit of MB/e, so any cocircuit meets J − e in a set with
even cardinality. It follows that MB/e is almost-regular.

An identical argument works in the case that e ∈ K. �
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Proposition 6.2. Let M be an excluded minor for M with |E(M)| ≥ 10 and
r(M), r∗(M) ≥ 4. Let MB be the binary matroid supplied by Theorem 5.1.
Then MB\e and MB/e are internally 4-connected, for every e in E(M).

Proof. By duality it suffices to prove that MB\e is internally 4-connected.
Since MB is 3-connected, MB\e is certainly 2-connected. Suppose that
MB\e is not 3-connected. Since MB\e is almost-regular, Theorem 22.1
of [27] implies that MB\e must contain a series pair. But this implies that
MB contains a triad, a contradiction to Corollary 5.17.

We now assume that MB\e is 3-connected. If MB\e is not internally
4-connected, then [27, Theorem 22.1] implies that MB\e contains both a
triangle and a triad. Thus MB contains a triangle, and again we have a
contradiction to Corollary 5.17. �

7. Reduction to a finite list of excluded minors

We are now ready to proceed with the proof of Theorem 1.1. In what
follows, M will be an excluded minor for M such that |E(M)| ≥ 10 and
r(M), r∗(M) ≥ 4. Theorem 5.1 supplies us with the matroid MB . We
consider three cases. In the first, MB has an R10-minor; in the second,
MB has an R12-minor; and, in the last case, MB has no R10-minor and no
R12-minor. In each case, we bound the size of |E(M)|, and thereby reduce
the remainder of the proof to a finite case check.

7.1. The R10 case. In this section we consider the easiest case, namely
when MB has an R10-minor. The arguments of this section closely follow
those of Truemper in Section 26 of [27].

The matroid N11 plays an important role in Truemper’s characterization
of the almost-regular matroids. It is the rank-5 binary matroid with eleven
elements and a distinguished element z such that N11\z ∼= R10, where z
is in a triangle with two elements of E(N11) − z. Since the automorphism
group of R10 is transitive on pairs of elements ([25, p. 328]), this matroid
is well-defined up to isomorphism. As R10 contains no triangles, it follows
that z is in no parallel pair of N11. Therefore N11 is 3-connected. Since R10

is a splitter for the class of regular matroids (Proposition 2.12), it follows
that N11 is not regular. However, it is not difficult to see that N11 is almost-
regular. The following matrix is a reduced representation of N11 over GF(2).













1 1 0 0 1 1
1 1 1 0 0 1
0 1 1 1 0 0
0 0 1 1 1 0
1 0 0 1 1 0













Deleting the last column of this matrix produces a reduced representation
of R10.

Proposition 7.1. The matroid N11/z is not regular.
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Proof. Let A be the matrix displayed above, so that [I5|A] represents N11.
Suppose that the columns of [I5|A] are labeled with the integers 1, . . . , 11,
so that z corresponds to the column labeled by 11. By pivoting on the first
entry in column 11 and then deleting the first row, and columns 1, 6, and
7, we see that N11/z has an F ∗

7 -minor, and is therefore not regular. �

Proposition 7.2. Suppose that N is a 3-connected almost-regular matroid
such that |E(N)| = 11 and N has an R10-minor. Then N is isomorphic to
either N11 or N∗

11.

Proof. Since R10 is self-dual, we can assume that N is a extension of R10

by the element z. We will be done if we can show that z is contained in a
triangle of N .

Consider the partition (del, con) of E(N). The set con is non-empty, by
definition. Suppose that con contains only a single element. This element
is contained in a circuit, as N is connected. But this circuit meets con
in precisely one element, which contradicts the definition of almost-regular
matroids. Thus we can choose an element e ∈ con such that e 6= z.

Suppose that N/e is 3-connected. It is regular as e ∈ con. Since N/e
has rank four, and contains ten elements, it has neither an R10- nor an
R12-minor, and is therefore either graphic or cographic by Lemma 2.13.
Every single-element contraction of R10 is isomorphic to M∗(K3,3), so N/e
is a 3-connected cographic extension of M∗(K3,3) by the element z. But it is
easy to see that no such cographic matroid exists, so we have a contradiction.

We now know that N/e is not 3-connected. As N/e is a single-element
extension of M∗(K3,3), a 3-connected matroid, it follows that z is in a parallel
pair in N/e. Therefore z is in a triangle in N . Thus we are done. �

Proposition 7.3. Let e be an element of E(N11) such that no triangle of
N11 contains {e, z}. Let M be the binary matroid obtained by adding the
element f to N11 so that {e, f, z} is a triangle. Then M\e\z is not regular.

Proof. Note that z is contained in at least one triangle in M\f . Let {a, b, z}
be such a triangle. We start by showing that M/a\z is simple. Since M is
simple by construction, if M/a\z is not simple, there is a triangle T of M
such that a ∈ T , but T avoids z. Note that M/a\z\f is isomorphic to a
single-element contraction of R10, and is therefore simple. Thus f ∈ T . Let
x be the single element in T − {a, f}. Then x is not equal to b, for that
would imply that f and z are parallel in M , and x 6= e, as that would imply
that a and z are parallel in M .

Now a, b, e, f, x, z are distinct elements of M , and {a, b, z}, {e, f, z},
and {a, f, x} are triangles of M . The symmetric difference of these sets
is {b, e, x}, which is therefore a triangle of M\z\f ∼= R10. As R10 has no
triangles, we conclude that M/a\z is simple.

Next we observe that M/a\z\f is a single-element contraction of R10,
and is therefore isomorphic to M∗(K3,3). Moreover, {b, e, f} is a triangle of
M/a\z. Thus M/a\z is isomorphic to the matroid obtained from M∗(K3,3)
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by adding the element f so that it forms a triangle with b and e, where no
triangle of M∗(K3,3) contains {b, e}.

There is a unique four-element circuit C of M∗(K3,3) that contains b and
e. It follows easily that f is contained in precisely two triangles in M/a\z,
namely {b, e, f}, and (C − {b, e}) ∪ f . Thus f is in exactly one triangle in
M/a\z\e, so M/a/f\z\e has exactly one parallel pair. Now si(M/a/f\z\e)
has rank three, and contains seven elements. It is therefore isomorphic to
F7. Hence M\e\z is non-regular, as desired. �

The following result is the key step in this part of the case analysis (see
also [27, Theorem 26.1]).

Lemma 7.4. Let N be an internally 4-connected almost-regular matroid
having an R10-minor. Then N is isomorphic to either N11 or N∗

11.

Proof. Since N is not regular, it cannot be isomorphic to R10. By the Splitter
Theorem (Theorem 2.10), there is a 3-connected minor N0 of N such that N0

is a single-element extension or coextension of R10. Proposition 7.2 implies
that N0 is isomorphic to either N11 or N∗

11. By exploiting duality, we can
assume the former. Let z be the distinguished element of E(N0) such that
N0\z ∼= R10 and z is contained in a triangle of N0.

If N is equal to N0, we are done, so assume that N0 is a proper minor
of N . Since N0/z is non-regular by Proposition 7.1, it follows that N/z is
non-regular. Thus N\z is regular and has a proper R10-minor. But R10 is
a splitter for the class of regular matroids, so N\z is not 3-connected. As
N is 3-connected, we see that N\z is certainly 2-connected.

Suppose that (X1, X2) is a 2-separation of N\z, and that |X1|, |X2| ≥ 3.
Then both (X1 ∪ z, X2) and (X1, X2 ∪ z) are 3-separations of N , and we
have a contradiction to the fact that N is internally 4-connected. We deduce
from this that if (X1, X2) is a 2-separation of N\z, then either X1 or X2 is
a series pair of N\z. This implies that co(N\z) is 3-connected. As co(N\z)
is regular with an R10-minor, co(N\z) must in fact be isomorphic to R10.

Consider a series pair P of N\z, and suppose that P ⊆ E(N0). Then N0\z
must contain a cocircuit of size at most two, and this is a contradiction, as
N0\z ∼= R10. Therefore we can find a set S containing exactly one element
from each series pair of N\z, such that S does not meet E(N0). Note
that N\z/S ∼= co(N\z). Thus |E(N\z/S)| = 10. But E(N\z/S) contains
E(N0\z), and this set also has cardinality ten. Thus every element of E(N)
not in S is an element of N0.

Let P be a series pair of N\z. Then P ∪ z is a triad of N . Let s be the
unique element in P ∩ S. Suppose that N0 is a minor of N\s. Then N0

contains (P − s)∪ z, and this set is a series pair of N\s. Thus N0 contains a
cocircuit of size at most two, a contradiction. Therefore N0 is not a minor
of N\s, for any element s ∈ S. It follows that N0 = N/S.

Next we suppose that P is a series pair of N\z, that P = {e, s} where
s ∈ S, and that there is no triangle of N0 that contains both {e, z}. Consider
the matroid N/(S − s). This matroid cannot be regular, since it has N0
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as a minor. Hence it is almost-regular, by Proposition 2.16. Note that
N/(S − s)/s is not regular, so N/(S − s)\s must be regular. However,
P ∪ z is a triad of N/(S − s). Let M be the binary matroid obtained from
N0 by adding an element so that it forms a triangle with z and e. Then
N/(S−s)\s/e ∼= M\e\z. The last matroid is not regular by Proposition 7.3.
Thus we have a contradiction, and conclude that if P is a series pair of N\z,
then the single element in P − S is contained in a triangle of N0 with z.

Suppose that there are distinct triangles T1 and T2 of N0 such that z ∈
T1 ∩ T2, and there are elements e1 ∈ T1 − z and e2 ∈ T2 − z such that
ei is contained in the series pair {ei, si} of N\z for i = 1, 2. Let N ′ be
N/(S − {s1, s2}). Then N ′ is not regular, since it has N0 as a minor. Thus
N ′ is almost-regular.

Note that N ′/s1/s2/z = N0/z is non-regular by Proposition 7.1. But e1 is
in a parallel pair of N0/z, so N ′/s1/s2/z\e1, and hence N ′\e1 is non-regular.
It follows that N ′/e1 is regular.

We observe that N0\z, and hence N ′\z, has an R10-minor. But {e1, s1} is
a series pair of N ′\z, so N ′\z/e1, and hence N ′/e1 has an R10-minor. Thus
N ′/e1 is regular with a proper R10-minor. We will obtain a contradiction
by showing that N ′/e1 is 3-connected.

First we show that N ′ is 3-connected. The matroid N ′/s1/s2 is 3-con-
nected, as it is isomorphic to N11. Neither s1 nor s2 is a loop of N ′, so if
N ′ is not 3-connected, it contains a cocircuit of size at most two. Hence so
does N , a contradiction. Thus N ′ is 3-connected.

Suppose that N ′/e1 is not simple. Then there is a triangle T of N ′ that
contains e1. The triad {e1, s1, z} must meet T in two elements. If s1 were
in T , then N ′/s1/s2 = N0 would contain a circuit of size at most two, a
contradiction. Therefore z ∈ T . The triad {e2, s2, z} must meet T in two
elements, and s2 is not in T , by the previous argument, so T = {e1, e2, z}.
Now T1, T2, and {e1, e2, z} are triangles of N0, and this implies the existence
of a parallel pair in N0. This contradiction means that N ′/e1 is simple.

Suppose that (X1, X2) is a 2-separation of N ′/e1. It follows easily from
the fact that N ′/e1 contains no series or parallel pairs that |X1|, |X2| ≥ 4.
Note that N ′/e1/s1/s2

∼= N0/e1 and the last matroid is obtained from
M∗(K3,3) by adding a single parallel element. Thus if (Y1, Y2) is a 2-sepa-
ration of N ′/e1/s1/s2, then either Y1 or Y2 is a parallel pair. Now Proposi-
tion 2.3 implies that s1 and s2 must be contained in either X1 or X2. With-
out loss of generality, we assume the former. It follows that X1 − {s1, s2}
is the unique parallel pair of N ′/e1/s1/s2. Thus |X1| = 4.

As N ′/e1 is simple, rN ′/e1
(X1) ≥ 3. Thus rN ′/e1

(X2) ≤ r(N ′/e1) − 2, so

X1 contains at least two cocircuits of N ′/e1. This implies the existence of a
cocircuit of size at most two in N ′, and we have a contradiction.

This argument shows that there is a triangle T of N0, such that if P
is a series pair of N\z, then the unique element in P − S is contained in
T . There is a circuit C ⊆ T ∪ S such that C contains T . But C must be
equal to T , for otherwise C meets a triad of N in three elements. Thus T
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is a triangle of N which meets at least one triad. This is impossible in an
internally 4-connected matroid, so we have arrived at a contradiction that
completes the proof of the lemma. �

Now we can state the conclusion of this analysis.

Lemma 7.5. Suppose that M is an excluded minor for the class M such
that |E(M)| ≥ 10 and r(M), r∗(M) ≥ 4. Let MB be the binary matroid
supplied by Theorem 5.1. If MB has an R10-minor, then M is a single-
element extension of N11 or N∗

11, and hence |E(M)| = 12.

Proof. By duality we can assume that there is an element e ∈ E(M) such
that MB\e has an R10-minor. Then MB\e is almost-regular and internally
4-connected by Theorem 6.1 and Proposition 6.2. The result follows from
Lemma 7.4. �

7.2. The R12 case. In this section we assume that M is an excluded minor
for M with |E(M)| ≥ 10 and r(M), r∗(M) ≥ 4, and that MB , the matroid
supplied by Theorem 5.1, has an R12-minor.

Recall that Truemper graphs were defined in Section 2.8. We use these
graphs repeatedly in this section and the next.

Proposition 7.6. Let G = (R, S) be a simple Truemper graph. Assume
that both R and S contain at least two edges, and that every vertex is incident
with at least one cross edge. Then either:

(i) G contains a triangle;
(ii) an internal vertex of G has degree three; or
(iii) G has an XX-minor.

Proof. Let r1, . . . , rm and s1, . . . , sn be the vertices of R and S respectively.
Thus m, n ≥ 3. Assume that the result fails, and that G is a counterexample,
but that the result holds for graphs with fewer edges than G.

We first suppose that m = 3. Consider s2 and sn−1. Because G is a
counterexample, both these vertices meet at least two cross edges. Neither
can be adjacent to r2, for that implies that G contains a triangle. Thus s2

and sn−1 are adjacent to r1 and r3. If s1 were adjacent to r1 or r3, then G
would contain a triangle. Thus s1 is adjacent to precisely one vertex in R,
namely r2. Similarly, sn is adjacent to r2, and no other vertex in R. But
now the edges r1s2, r2s1, r2sn, r3s2 form an XX-minor. This contradiction
means that m > 3 and, by symmetry, n > 3.

Proposition 2.20 implies that there is an edge joining two terminal ver-
tices. By relabeling if necessary, we assume that there is an edge e joining
r1 and s1. Suppose that both r1 and s1 meet at least two cross edges in
G. Then the hypotheses of the proposition apply to G\e, so our minimality
assumption implies that G\e contains either a triangle, an XX-minor, or an
internal vertex with degree three. However, in any of these cases, the result
also holds for G, and we have a contradiction. Hence either r1 or s1 has
degree exactly two. By symmetry, we assume that r1 has degree two.
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Let f be the edge r1r2. Assume that s1 has degree greater than two.
Since m, n > 3, the hypotheses of the lemma apply to G\e/f . Therefore
G\e/f contains (a) an XX-minor, (b) an internal vertex with degree three,
or (c) a triangle. If G\e/f has an XX-minor, then so does G, and we have a
contradiction. The internal vertices of G\e/f are internal vertices of G, and
the degree of such a vertex in G\e/f is the same as its degree in G. Therefore
(b) cannot occur. Finally, we suppose that (c) occurs. Then G\e/f has a
triangle, but G does not. Thus f is contained in a cycle of length four in
G\e. But f is a pendant edge in this graph, and we have a contradiction.

We may now assume that the degree of s1 is two. Let g be the edge s1s2.
The result holds for G\e/f/g, so G\e/f/g has an XX-minor, an internal
vertex with degree three, or a triangle. The first two cases quickly lead to
contradictions. Thus G\e/f/g has a triangle, but G does not. Therefore
there is a cycle of G\e that contains either f or g. As these are pendant
edges in G\e, we have a contradiction. �

Truemper introduced a particular almost-regular matroid, V13. There is
a distinguished element z in V13 such that V13\z is isomorphic to R12. The
dual matroid, V ∗

13, has the reduced representation shown in Figure 9.

a1

a2

a3

a4

a5

a6

z

b1 b2 b3 b4 b5 b6

1
0
1
0
1
0
0

0
1
0
1
0
1
0

1
1
1
0
1
0
0

1
1
0
1
0
1
1

0
0
1
1
1
0
0

0
0
1
1
0
1
1

Figure 9. A reduced representation of V ∗

13.

Let A0 be the matrix in Figure 9. We assume that the columns of [I7|A0]
are labeled a1, . . . , a6, z, b1, . . . , b6. Thus the rows of A0 correspond in a
natural way with the columns of the identity matrix, as reflected by the
labels in Figure 9.

The next result follows from Theorem 25.9 of [27].

Lemma 7.7. Let N be a 3-connected almost-regular matroid having an
R12-minor. Then N has a minor isomorphic to either V13 or V ∗

13.

Proposition 7.8. The matroid V ∗

13\z is non-regular.

Proof. Consider the matrix obtained from that in Figure 9 by pivoting on the
entry labeled by z and b6, on the entry labeled by a1 and b1, and on the entry
labeled by a2 and b2. If we then delete the second and sixth columns, and the
second, third, sixth, and seventh rows, we obtain a reduced representation
of F7. Thus deleting z from V ∗

13 produces a non-regular matroid. �
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Suppose that A is a matrix, and that X (respectively Y ) is a set of rows
(columns) of A. We use A[X, Y ] to denote the submatrix of A induced by
X and Y .

Lemma 7.9. Suppose that N is an almost-regular matroid with a minor
N0 such that N0

∼= V ∗

13. Let E(N0) = {a1, . . . , a6, b1, . . . , b6, z}, and assume
that A0 is a reduced representation of N0 over GF(2), where A0 is the matrix
in Figure 9. Let A be a reduced representation of N over GF(2), and assume
that {a1, . . . , a6, z} label rows of A, while {b1, . . . , b6} label columns. Then,
up to row and column permutations, A has the form shown in Figure 10,
and the following conditions hold:

(i) A[A1, B2] is the zero matrix; and
(ii) A[A2, B1] has rank three, while A[A2 − z, B1] has rank two.

A1

A2

B1 B2

a1

a2

a3

a4

a5

a6

z

b1 b2 b3 b4 b5 b6

1
0
1
0
1
0
0

0
1
0
1
0
1
0

1
1
1
0
1
0
0

1
1
0
1
0
1
1

0
0
1
1
1
0
0

0
0
1
1
0
1
1

Figure 10

Proof. Proposition 7.8 implies that N\z is non-regular, so N/z is regular.
Recall that V ∗

13/z
∼= R12. Thus V ∗

13/z has a 3-separation (X1, X2) such
that |X1| = |X2| = 6. In particular, X1 = {a1, a2, b1, b2, b3, b4} and X2 =
{a3, a4, a5, a6, b5, b6}, so (X1, X2) is the 3-separation of V ∗

13/z indicated by
the division of the matrix in Figure 9.

Now N/z is a regular matroid with an R12-minor, and therefore N/z has
a 3-separation (Y1, Y2) such that Xi ⊆ Yi for i = 1, 2 (see [25, (9.2)]). From
this fact, Truemper deduces that any reduced representation of N must be
as is illustrated in Figure 10. (Note that the figure (25.12) of [27] contains an
error. The upper right submatrix should consist of zeroes.) He concludes,
moreover, that A[A1, B2] is the zero matrix, A[A2, B1] has rank three, and
A[A2 − z, B1] has rank two (see [27, p. 294]). �

Suppose that A is any matrix of the form in Figure 10, and that A is
a reduced representation of an almost-regular matroid N . We let A11 =
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A1 − {a1, a2} and B11 = B1 − {b1, b2, b3, b4}. Similarly, we let A22 = A2 −
{a3, a4, a5, a6, z} and B22 = B2 − {b5, b6}. If the column b /∈ {b1, . . . , b6}
has zero entries for all rows in A11, then we shall say that b is a righthand
column. Otherwise, we shall say that b is a lefthand column. Similarly, if a
is a row of A − {a1, . . . , a6, z}, and the row vector A[{a}, B1] is in the row
space of A[{a3, a4}, B1], then we shall say that a is a lower row. Otherwise
we say that a is an upper row. Note that the rank conditions upon the
matrix A[A2, B1] mean that if b is a lefthand column, then the entry in
column b and row a, where a ∈ A2 − z, is completely determined by the
entries of b in rows a3 and a4.

Truemper studies the matroid N/A11\B11, that is, the matroid with the
reduced representation A[A2 ∪ {a1, a2}, B2 ∪ {b1, b2, b3, b4}]. He starts by
considering the rows of the matrix A[A22, {b1, . . . , b6}]. Any such row must
be one of the following vectors (see [27, (25.15)]).

I [1 0 1 0 0 0] II [0 0 0 0 1 0]
III [0 1 0 1 0 1] IV [1 1 1 1 0 0]
V [1 0 1 0 1 1] VI [0 0 0 0 0 1]

If a is an element of A22 that corresponds to a row of type I, then we shall
say that a is type I element, and so on.

Consider the family of graphs illustrated in Figure 11. In this diagram,
the dashed edges represent (possibly empty) paths. We let G0 stand for any
graph in this family. We let R (respectively S) be the path consisting of the
horizontal edges joining vertices 1 and 7 (respectively 8 and 14).

1 2 3 4 5 6 7

8 9 10 11 12 13 14

b1 b5 a6

a3 b6 b4

a1

a2

b3

a5a4

z

Figure 11. The graph G0.

Lemma 7.10. Suppose that N is an almost-regular matroid with a reduced
representation A, where A is as shown in Figure 10. Then N/A11\B11 is
equal to a graft of the form M(G, D), where G is obtained from G0 by adding
edges between R and S, and D = {1, 7, 8, 14}. Here the graft element is b2.
In the graph G:

(i) The subpath of R between 2 and 3 consists of type I elements.
(ii) The subpath of R between 4 and 5 consists of type II elements.
(iii) The subpath of R between 6 and 7 consists of type III elements.
(iv) The subpath of S between 8 and 9 consists of type IV elements.
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(v) The subpath of S between 10 and 11 consists of type V elements.
(vi) The subpath of S between 12 and 13 consists of type VI elements.

Proof. This follows immediately from Lemma 25.20 of [27]. �

Note that the graph G in Lemma 7.10 is a Truemper graph, as defined
in Section 2.8. We remark that the cross edges added to G0 to obtain G
are precisely the members of B22. Similarly, every element in A22 is an edge
that appears in one of the paths represented by dashed edges.

Proposition 7.11. Suppose that N is an almost-regular matroid and that
A is a reduced representation of M , where A is a matrix of the type
in Figure 10. Let (G, D) be the graft supplied by Lemma 7.10, so that
M(G, D) = N/A11\B11. Let v be an internal vertex of G other than 2
or 13, and let C∗ be the set of edges incident to v in G. Then C∗ is a
cocircuit of N .

Proof. This follows by examining the matrix in Figure 10. (See [27, p. 298].)
�

Now we are ready to prove the concluding result in this case.

Lemma 7.12. Suppose that M is an excluded minor for the class M such
that |E(M)| ≥ 10 and r(M), r∗(M) ≥ 4. Let MB be the binary matroid
supplied by Theorem 5.1. Then MB has no R12-minor.

Proof. Let us assume that lemma fails, and that MB does have a minor
isomorphic to R12. Corollary 5.17 implies the following:

7.12.1. MB has no triangles and no triads.

7.12.2. By exploiting duality, we can assume that there is an element e of
E(MB) such that MB\e is internally 4-connected, almost-regular, and has
a V ∗

13-minor.

Proof. Since MB is not regular, it follows that MB has a proper R12-minor.
Theorem 2.10 implies that there is an element e ∈ E(MB) such that either
MB\e or MB/e is 3-connected with an R12-minor.

Suppose that MB\e is 3-connected with an R12-minor. Theorem 6.1 says
that MB\e is almost-regular, so MB\e has either a V13- or a V ∗

13-minor, by
Lemma 7.7. If MB\e has a V ∗

13-minor, then we are done, since MB\e is
internally 4-connected by Proposition 6.2, so we assume that MB\e has a
V13-minor. Thus MB/e has a V ∗

13-minor.
Next we assume that MB/e is 3-connected with an R12-minor. Now

MB/e is internally 4-connected and almost-regular, so it has either a V13- or
a V ∗

13-minor. If it has a V13-minor, then we can switch to the dual, and we
are done. Thus we assume that MB/e has a V ∗

13-minor.
In either case, we have assumed that MB/e has a V ∗

13-minor. It follows
from Lemma 7.9 that we can assume MB/e has a reduced representation A
over GF(2), where A is as shown in Figure 10. If B11 ∪ B22 is non-empty,
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then there is an element f ∈ B11∪B22 such that MB/e\f , and hence MB\f ,
has a V ∗

13-minor. As MB\f is internally 4-connected and almost-regular, we
are done. Therefore we assume that B11 ∪ B22 = ∅.

Lemma 7.10 implies that MB/e/A11 is equal to a graft M(G, D). As
B22 is empty, no cross edges are added to G0 to obtain G. But this means
that the set of edges incident with vertex 5 in G is a triad of M(G, D) =
MB/e/A11. Thus MB contains a triad. This contradicts 7.12.1. �

In what follows, we will utilize 7.12.2, and assume that e is an element
of MB such that MB\e in an internally 4-connected almost-regular matroid
with a V ∗

13-minor. Thus we can assume, by Lemma 7.9, that MB\e has
a reduced representation, A, over GF(2), of the type shown in Figure 10.
There is a column which we can add to A so that the resulting matrix is
a reduced representation of MB over GF(2). We will abuse notation, and
refer to this column as e.

7.12.3. The set A11 is non-empty.

Proof. By considering the six possibilities for rows of A[A22, {b1, . . . , b6}],
we see that the columns of A labeled by b1 and b3 are identical in all rows
except a2, and possibly rows in A11. Thus, if A11 is empty, then {a2, b1, b3}
is a triangle of MB\e, and hence of MB . This contradiction completes the
proof of the claim. �

7.12.4. The set B11 ∪ B22 is non-empty.

Proof. Suppose that B11 ∪B22 is empty. By 7.12.3, there is an element a in
A11. Let Aa be the matrix obtained from A by adding the column e, and
then deleting the row a. Now MB/a is almost-regular by Theorem 6.1, and
Aa is a reduced representation of MB/a. Lemma 7.9 implies that Aa must
have the form illustrated in Figure 10. This means that either:

(i) the column e has zero entries in all rows labeled by A11 − a; or
(ii) the entries of e in A2 − z are completely determined by the entries of

e in a3 and a4.

In the first case, we call e a righthand column of Aa, and in the second we
call it a lefthand column. If e is a righthand column of Aa, then we let B′

11
be B11 = ∅, and if e is a lefthand column, we let B′

11 be {e}.
In either case, MB/A11\B

′

11 is equal to a graft M(G, D), as described in
Lemma 7.10. But G is obtained from a graph G0, either by adding a single
edge (if e is a righthand column), or by adding no edges at all (if e is a
lefthand column). If the second case applies, then the set of edges incident
with the vertex 5 is a triad of M(G, D), and of MB/a, by Proposition 7.11.
Thus MB contains a triad, a contradiction.

We may now assume that e is a righthand column, and that we obtain G
by adding the edge e to the graph G0. It is easy to check that all the dashed
edges in Figure 11 must represent empty paths, for otherwise G0 has at least
three internal vertices (other than 2 and 13) of degree two or three. This
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means that G contains an internal vertex of degree at most three, so MB/a
has a cocircuit of size at most three. This argument shows that Aa has no
lower rows. A lower row of A is also a lower row of Aa, so this argument
shows that A has no lower row, and that therefore A22 = ∅.

We now know that G0 has exactly three internal vertices with degree
three: those in Figure 11 labeled by 5, 11, and 13. Proposition 7.11 implies
that in the edge e must join 5 and 11 in G. Now {a5, b5, e} is a triangle of
M(G, D) = MB/A11. By considering the matrix in Figure 10, we see that
the column e has non-zero entries in rows a3 and a4, and that if s is any
other row in A2, then e has a zero in row s.

Suppose now that e has a zero entry in row a. Then e contains precisely
two non-zero entries: in rows a3 and a4. This means that {a5, b5, e} is a
triangle of MB , and we have a contradiction. Therefore e contains precisely
three non-zero entries: in rows a, a3, and a4.

Now we suppose that A11 − a is non-empty, and that a′ is an element in
this set. We let Aa′ be the matrix obtained from A by adding the column
e, and deleting the row a′. As before, Aa′ is a reduced representation of
the almost-regular matroid MB/a′, and Aa′ must have the form described
in Lemma 7.9. But e has a non-zero entry in A11 − a′, so e cannot be a
righthand column of Aa′ . Thus e is a lefthand column of Aa′ , and MB/A11 is
equal to a graft M(G′, D′). In this case, G′ is obtained from a graph G0 by
adding no edges. Thus M(G′, D′) contains a triad at the internal vertex 5,
and hence MB/a′ contains a triad by Proposition 7.11. This contradiction
means that A1 − a is empty.

We have shown that A22 = ∅, and that |A11| = 1. Since B11 ∪ B22 = ∅,
we conclude that |E(MB\e)| = 14. Thus |E(MB)| < 16, and Corollary 5.17
implies that |E(MB)| ≤ 12. This is a contradiction as MB has a proper
R12-minor. �

By virtue of 7.12.4, there is a column b ∈ B11 ∪B22. Consider the matrix
Ab produced by adding the column e to A and then deleting b. Then Ab is
a reduced representation MB\b, an almost-regular matroid with a V ∗

13-mi-
nor. Thus Ab is of the form described in Lemma 7.9. Thus e is either a
righthand or a lefthand column of Ab. We say that e is a right or lefthand
element, according to which of these cases is true. Clearly this definition is
independent of our choice of b.

By 7.12.3, there is a row a in A11. Let Aa be the matrix obtained from A
by adding the column e, and deleting a. Thus Aa is a reduced representation
of the almost-regular matroid MB/a. If e is a lefthand element, then let
B′

11 = B11 ∪ e, and otherwise let B′

11 = B11. Now consider MB/A11\B
′

11.
Lemma 7.10 says that this matroid is equal to a graft M(G, D), where G is
a member of the family illustrated in Figure 11.

7.12.5. The vertices 1 and 14 have degree three in G.

Proof. Let X be the set of edges that are incident with 1 in G. Assume
that X − {a1, a2, b1} is non-empty, and let b be an element of this set, so
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that either b ∈ B22 or b = e (in which case e is a righthand element). Then
X ∪ b2 is a cocircuit of M(G, D) = MB/A11\B

′

11. By examining the matrix
in Figure 10, we see that this means that the column of A labeled by b has a
non-zero entry in the one of the rows labeled by a1 or a2. This means that b
cannot be equal to e, for if it were e would not be a righthand element. Thus
b ∈ B22, and this contradicts the fact that A[A1, B2] is the zero matrix.

Now let X be the set of edges incident with 14. If X − {a2, b3, b4} is
non-empty, we can deduce, using the same type of argument, that either e
is a righthand column, and has a non-zero entry in row a2, or that some
member of B22 has a non-zero entry in row a2. In either case, we have a
contradiction that completes the proof. �

Let G′ be the graph obtained from G by deleting a1, a2, and b3. We obtain
G′′ from G′ by contracting b1 and b4, and possibly two other edges: if vertex
2 has degree two in G′, then we contract both of its incident edges, and if
8 has degree one in G′, then we contract its incident edge. Every vertex in
G′′ must be incident with at least one cross edge, for otherwise G contains
an internal vertex with degree two and, in this case, Proposition 7.11 would
imply that MB/a, and hence MB , contains a series pair. Certainly the two
vertex-disjoint paths in G′′ contain at least two edges each, so we can apply
Proposition 7.6 to G′′.

If G′′ has an XX-minor, then M/A11\B
′

11 has a minor isomorphic to
AG(3, 2), and is therefore neither regular nor almost-regular. This contra-
dicts Proposition 2.16. The internal vertices of G′′ are internal vertices of
G, and 2 and 13 are not internal vertices of G′′. The degree of an internal
vertex in G′′ equals its degree in G. Therefore no internal vertex of G′′

has degree three, by Proposition 7.11 and 7.12.1. We conclude from Propo-
sition 7.6 that G′′ contains a triangle T . Now G′′ can be obtained from
G′ = G\a1\a2\b3 by contracting pendant edges, so T is also a triangle of
G′, and hence of G.

Clearly T must contain at least one element corresponding to a column
of Aa. Since T is a triangle of G′′, it does not contain b1, b2, b3, or b4. Thus
any column contained in T is either a member of B2, or is equal to e (in
which case e is a righthand element). This implies that any column in T has
zero entries in any row in A11. It follows that T is a triangle of M [A] = MB .
This contradiction completes the proof of the lemma. �

7.3. The no R10 and no R12 case. The two previous sections mean that
we now need only consider the case that the binary matroid MB has no
minor isomorphic to R10 or R12.

Lemma 7.13. Suppose that N is an internally 4-connected almost-regular
matroid and assume that N has no R10- or R12-minor. Suppose also that
N = M(G, D) for some graft (G, D). If D is minimal under switching,
then |D| = 4 and G = (R, S) is a Truemper graph. Moreover

(i) the set del consists of all path edges, along with the graft element;
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(ii) the set con consists of all cross edges; and
(iii) the vertices in D are precisely the terminal vertices of G.

Proof. Theorem 23.41 of [27] proves this result in the case that N is an
irreducible almost-regular matroid. A close examination of [27, Section 23]
up to the proof of Theorem 23.41 reveals that the hypothesis of N being ir-
reducible is not needed. Truemper shows that an irreducible almost-regular
matroid is necessarily internally 4-connected [27, Theorem 22.1], and the
proof of Theorem 23.41 holds under the weaker hypothesis that N is inter-
nally 4-connected. �

Lemma 7.14. Let G = (R, S) be a Truemper graph with no XX-minor.
Assume that the cross edges of G form a spanning path P and that the end-
vertices of P are terminal vertices of G. If both R and S contain at least
four vertices, then G contains distinct triangles T1, T2, and T3, two of which
are edge-disjoint.

Proof. Assume that G is a minimal counterexample to the proposition.
Thus |V (R)| ≥ 4 and |V (S)| ≥ 4. Suppose the terminal vertices of G
are {v1, v2, v3, v4} and that the end-vertices of P are v1 and v4. Let e1

and e4 respectively be the cross edges incident with v1 and v4. Now v2 and
v3 are incident with exactly two cross edges each. It follows that we can
find distinct cross edges e2 and e3 such that e2 is incident with v2 and e3 is
incident with v3, and neither e2 nor e3 joins v2 to v3. Since no cross edge
joins v1 to v4, we conclude, by applying Proposition 2.20 to {e1, e2, e3, e4},
that one of v1 or v4 is adjacent to one of v2 or v3. We will assume without
loss of generality that v1 is adjacent to v2.

Suppose that max{|V (R)|, |V (S)|} > 4. If |V (R)| = |V (S)|, then R and
S each contain one of the vertices v1 and v4. In this case, we will assume
by relabelling if necessary that v1 is in R. If |V (R)| 6= |V (S)|, then let
us assume, by relabelling if necessary, that |V (R)| > |V (S)|. In this case,
both v1 and v4 are contained in R. Thus v1 is in R and |V (R)| > 4 in
either case, so R − v1 contains at least four vertices. Moreover, P − v1 is
a spanning path of G − v1 and the end-vertices of P − v1 are v2 and v4,
which are terminal vertices of the Truemper graph G − v1 = (R − v1, S).
By our assumption on the minimality of G, it follows that G − v1 contains
distinct triangles T1, T2, and T3, two of which are edge-disjoint. This implies
that G is not a counterexample to the proposition, so we must assume that
|V (R)| = |V (S)| = 4.

It remains only to show that the result holds when both R and S have ex-
actly four vertices each. This is easily done: We simply construct all relevant
Truemper graphs G = (R, S) where R and S have vertices r1, r2, r3, r4 and
s1, s2, s3, s4 respectively. We identify (v1, v2, v4) with (r1, s1, s4). Thus r1

is adjacent to s1 and the cross edges form a spanning path with end-vertices
r1 and s4. Ignoring automorphisms, there are exactly twelve such graphs.
These are obtained from the graphs in Figure 13 on page 56 by deleting the
extra edge joining r1 and s4. Four of the twelve graphs have XX-minors,
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marked by heavy edges. The remaining eight graphs each contain three tri-
angles, two of which are edge-disjoint. Therefore the proposition holds in
the case that |V (R)| = |V (S)| = 4, and hence holds in general. �

Lemma 7.15. Let G = (R, S) be a Truemper graph and assume that the
cross edges of G form a spanning cycle. Let the vertices of R and S be
r1, . . . , rn and s1, . . . , sn respectively where n ≥ 3. Assume that r1 is adjacent
to both s1 and sn and that sn is not adjacent to r2. Suppose that f is the
edge r1r2 and that g is the edge s1s2. If s1 is not adjacent to r2, then let
G′ = G/f . Otherwise let G′ = G/f/g. In either case, G′ is a 3-connected
graph. Moreover, if T is the edge set of a triangle of G and T is also a
triangle in G′, then G′/T is 2-connected.

Proof. We start by proving the following claim.

7.15.1. Suppose that u and v are distinct vertices of G and that {r1, s1} ∩
{u, v} = ∅. There are three paths P1, P2, and P3, such that u and v are
the end-vertices of P1, P2, and P3, and:

(i) P1, P2, and P3 are internally disjoint;
(ii) at most one of P1−{u, v}, P2−{u, v}, and P3−{u, v} meets {r1, r2};
(iii) if s1 is adjacent to r2, then at most one of P1 − {u, v}, P2 − {u, v},

and P3 − {u, v} meets {s1, s2}; and
(iv) if T is a triangle of G, then at most two of P1 − {u, v}, P2 − {u, v},

and P3 − {u, v} meet the vertices of T .

Proof. The proof of the claim is divided into several cases and subcases.

Case 1. u = si and v = sj where 1 < i < j ≤ n.

We let P1 be the path si, . . . , sj and let P2 be the path with vertex se-
quence si, . . . , s1, r1, sn, . . . , sj. Since every vertex of G is incident with two
cross edges, there are vertices ri1 and rj1 such that siri1 and sjrj1 are edges.
Since 1 < i < n, it follows that r1 is not adjacent to si. Thus we can choose
i1 so that 2 < i1. Similarly, by using the assumption that sn is not adjacent
to r2, we can assume that 2 < j1. We let P3 be the path formed by siri1

and sjrj1 and the segment of R between ri1 and rj1 .
It is easy to see that condition (i) is satisfied. Since 2 < i1, j1, it also

follows that (ii) is satisfied, and it is clear that (iii) holds. To see that
condition (iv) is satisfied, we note that the vertex set of any triangle in G
contains either two adjacent vertices in R or two adjacent vertices in S.
Since 2 < i1, j1, it follows that no triangle of G can meet all three of the
sets P1 − {u, v}, P2 − {u, v}, and P3 − {u, v}.

Case 2. u = ri and v = rj, where 1 < i < j ≤ n.

We let P1 be the path ri, . . . , rj . Assume that u is adjacent to si1 and
si2 and that v is adjacent to sj1 and sj2 where 1 ≤ i1 < i2 ≤ n and
1 ≤ j1 < j2 ≤ n.

Case 2.1. j1 ≤ i1.
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In this case j1 < i2. We let P2 be the path ri, . . . , r1, s1, . . . , sj1, rj and we
let P3 be the path formed from risi2, rjsj2, and the segment of S between si2

and sj2. It is clear that conditions (i) and (ii) are satisfied. If more than one
of these three sets has a non-empty intersection with {s1, s2}, then j1 = 1
and either i2 = 2 or j2 = 2. As j1 = 1, we have s1 adjacent to both r1 and
rj, and therefore s1 is not adjacent to r2. Thus (iii) is satisfied.

If condition (iv) is violated, then j1 + 1 ∈ {i2, . . . , j2}, and some triangle
contains sj1, sj1+1, and a vertex w in {ri+1, . . . , rj−1}. Thus either i2 = j1+1
or j2 = j1 + 1. In the first case, i1 = j1, so the only vertices in R that sj1

is adjacent to are ri and rj . Thus the triangle cannot exist. In the second
case, the cross edges contain the cycle {wsj1 , sj1rj , rjsj2, sj2w}. This is a
contradiction as n ≥ 3 and the cross edges form a spanning cycle.

Case 2.2. i2 ≤ j2 and i1 < j1.

In this case, i1 < j2. We let P2 be the path ri, . . . , r1, sn, . . . , sj2, rj

and we let P3 be the path formed from risi1 and rjsj1 and the segment of
S between si1 and sj1. As in the previous case, it is easy to check that
conditions (i) and (ii) hold. Moreover, (iii) holds as i1 < j1 < j2.

If (iv) is violated, then j2 − 1 ∈ {si1 , . . . , sj1} and there is a triangle with
vertices sj2, sj2−1 and w ∈ {ri+1, . . . , rj−1}. Thus j1 = j2 − 1 and the cross
edges contain the cycle {wsj1, sj1rj, rjsj2, sj2w}; a contradiction.

Case 2.3. i1 < j1 and j2 < i2.

We let P2 be ri, si1, . . . , sj1, rj and we let P3 be ri, si2, . . . , sj2, rj. Be-
cause j1 < j2, it follows that condition (i) holds, and it is obvious that (ii)
and (iii) hold. The only way in which (iv) can fail is if j2 = j1 + 1 and there
is a triangle with vertices sj1, sj2 and w ∈ {ri+1, . . . , rj−1}. In this case, the
cross edges contain the cycle {wsj1 , sj1rj , rjsj2, sj2w}.

Case 3. u = ri and v = sj where 1 < i, j ≤ n.

Suppose that u is adjacent to si1 and si2 where 1 ≤ i1 < i2 ≤ n and that
v is adjacent to rj1 and rj2, where 1 ≤ j1 < j2 ≤ n.

Case 3.1. i ≤ j2.

Case 3.1.1. j ≤ i2

We let P1 be the path ri, si2, . . . , sj and let P2 be the path ri, . . . , rj2, sj.
We also let P3 be the path ri, . . . , r1, s1, . . . , sj. It is easy to see that condi-
tions (i), (ii), (iii), and (iv) are satisfied.

Case 3.1.2. i2 < j.

We let P1 be the path ri, si2 , . . . , sj , we let P2 be the path ri, . . . , rj2, sj,
and we let P3 be the path ri, . . . , r1, sn, . . . , sj. In this case, the result holds.

Case 3.2. j2 < i.

Case 3.2.1. i1 ≤ j and j ≤ i2.
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We let P1 be the path ri, si1 , . . . , sj , we let P2 be the path ri, si2, . . . , sj,
and we let P3 be the path ri, . . . , rj2 , sj . It is easy to see that conditions (i),
(ii), (iii), and (iv) hold.

Case 3.2.2. j < i1.

Let P1 be the path ri, si1, . . . , sj, let P2 be the path ri, . . . , rj2 , sj, and
let P3 be the path ri, si2 , . . . , sn, r1, . . . , rj1 , sj. Statement (i) holds. If (ii)
fails, then j2 = 2, so j1 = 1. Since the only vertices in S adjacent to r1

are s1 and sn, it follows that j = n. But then j2 < i1 ≤ n, so we have a
contradiction. Clearly (iii) is satisfied.

If condition (iv) fails, then either: j2 = j1 + 1 and some triangle contains
rj1, rj2 and some vertex in {sj+1, . . . , si1}; or i2 = i1 + 1, and some triangle
contains si1 , si2, and some vertex in {rj2 , . . . , ri−1}. In either of these cases,
the set of cross edges contains a cycle of length four, which is a contradiction
as we have assumed n ≥ 3.

Case 3.2.3. i2 < j.

Let P1 be the path ri, si2, . . . , sj, let P2 be the path ri, . . . , rj2 , sj, and
let P3 be the path ri, si1, . . . , s1, r1, . . . , rj1 , sj. Clearly (i) is true. If (ii) is
not true, then j1 = 1 and j2 = 2. This implies that j = n and that sn is
adjacent to r2, a contradiction. For (iii) to be false, we must have i1 = 1
and i2 = 2, and s1 is adjacent to r2. Thus ri is adjacent to s1. However,
j2 < i, so 2 < i. Thus s1 is adjacent to three vertices in R: r1, r2, and ri.
This is a contradiction.

We again see that if (iv) fails then the cross edges of G contain a cycle of
length four, a contradiction.

We have now exhausted all possible cases, so the claim must hold. �

We continue with the proof of the lemma. First suppose that s1 is adjacent
to r2. Then G′ = G/f/g. Let T be an arbitrary triangle of G that is also
a triangle in G′. Suppose that u′ and v′ are distinct vertices of G′. Let
u and v be vertices of G that correspond to u′ and v′ respectively. Since
r1 is identified with r2 and s1 is identified with s2 in G′, we may assume
that {u, v}∩{r1, s1} = ∅. Claim 7.15.1 says that there are three internally
disjoint paths in G joining u to v, and conditions (ii) and (iii) imply that
these paths lead to three internally disjoint paths in G′ joining u′ to v′.
Since u′ and v′ were arbitrary distinct vertices in G′, this means that G′ is
3-connected. Moreover, condition (iv) implies the existence of two internally
disjoint paths in G′/T joining u′ to v′. Thus G′/T is 2-connected.

Next we suppose that s1 is not adjacent to r2. In this case, G′ = G/f .
Suppose that G′ is not 3-connected. Then there are subsets X, Y ⊆ V (G′)
such that (i) X ∪Y = V (G′); (ii) |X ∩Y | ≤ 2; (iii) neither X−Y nor Y −X
is empty; and (iv) no edge of G′ joins a vertex in X−Y to a vertex in Y −X.

Let u′ and v′ be vertices in X − Y and Y −X respectively, and let u and
v be vertices of G which correspond to u′ and v′. Since r1 is identified with
r2 in G′, we may assume that neither u nor v is equal to r1. If neither u nor
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v is equal to s1, then Claim 7.15.1 implies there are three internally disjoint
paths joining u to v in G, and that furthermore these paths lead to three
internally disjoint paths from u′ to v′ in G′. This is a contradiction as any
path from u′ to v′ contains a vertex in X ∩Y . Thus we assume that u = s1.
Since s1 is not incident with f , this means u′ = s1. As u′ was an arbitrary
vertex in X − Y , it follows that X − Y = {u}. Now any vertex that is
adjacent with u in G′ must be in X ∩ Y . However, u is adjacent to distinct
vertices s2, r1, and ri in G, where 2 < i ≤ n, and these three vertices are
distinct in G′. Thus |X ∩ Y | > 2, a contradiction.

Next we suppose that T is an arbitrary triangle of G and that T is a
triangle in G′. Suppose that G′/T is not 2-connected. Then there are
subsets X, Y ⊆ V (G′/T ) such that: (i) X ∪Y = V (G/T ′); (ii) |X ∩Y | ≤ 1;
(iii) neither X − Y nor Y − X is empty; and (iv) no edge of G′/T joins a
vertex in X − Y to a vertex in Y − X.

Assume that u′ and v′ are vertices in X −Y and Y −X respectively, and
let u and v be corresponding vertices of G. We may assume that neither u
nor v is r1. If neither u nor v is s1, then there are three internally disjoint
paths between u and v, and these paths lead to two internally disjoint paths
in G′/T , a contradiction. Thus u = s1, without loss of generality, and if
we assume that u is also a vertex of G′/T , then X − Y = {u}. Now every
vertex adjacent to u must be in X ∩ Y . Since |X ∩ Y | ≤ 1, this means that
all vertices of G that are adjacent to u must be identified in G′/T . Thus the
vertices of T are s2, r1, and ri. But n ≥ 3, so r1 is not adjacent to s2, and
we have a contradiction. This completes the proof of the lemma. �

Definition 7.16. Suppose that M is a connected matroid. A triangle T of
M is a separating triangle if M/T is not connected.

Lemma 7.17. Let G′ be a 2-connected graph and let T1, T2, and T3 be
distinct non-separating triangles of M(G′). If M ′ is a single-element coex-
tension of M(G′), and none of T1, T2, or T3 is a triangle in M ′, then M ′

is not cographic.

Proof. Assume that M ′ is a coextension of M(G′) by the element e. Suppose
that M ′ is cographic, so that M ′ = M∗(H) for some graph H. Now T1, T2,
and T3 are triads in

M∗(G′) = (M ′/e)∗ = M(H\e).

Thus T1, T2, and T3 are minimal edge cut-sets in H\e.
Let the two components of H\e\T1 be H1 and H2. If both H1 and H2

contain at least one edge, then M(H\e\T1), and hence M∗(H\e\T1), is not
connected. But M∗(H\e\T1) = M(G′)/T1, so this contradicts the fact that
T1 is not a separating triangle of M(G′). Thus we assume that H1 contains
no edges. Every vertex in H\e has degree at least two. It follows that H1

must contain a single vertex, so T1 is the set of edges incident with a vertex
v1 in H\e. The same argument implies that T2 and T3 are the sets of edges
incident with vertices v2 and v3 in H\e.
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None of T1, T2, or T3 is a triad in H, so e must be incident in H with the
distinct vertices v1, v2, and v3, an impossibility. �

Proposition 7.18. Suppose that M is an excluded minor for the class M
such that |E(M)| ≥ 10 and r(M), r∗(M) ≥ 4, and that MB is the binary
matroid supplied by Theorem 5.1. Assume that MB has no R10-minor and
no R12-minor. Then there are distinct elements e and d in E(MB) such
that either MB/e\d or M∗

B/e\d is graphic.

Proof. Let e be an arbitrary element of E(MB). Then MB/e is almost-
regular by Theorem 6.1, so E(MB/e) can be partitioned into non-empty del
and con sets. Let d be an element in del. Then MB/e\d is regular.

Proposition 6.2 implies that MB/e is internally 4-connected. If MB/e\d is
not 3-connected, then MB/e must contain a triad, which contradicts Corol-
lary 5.17. As MB has no R10- or R12-minor, Lemma 2.13 implies that
MB/e\d is either graphic or cographic. If MB/e\d is graphic, then we are
done. Therefore we assume that MB/e\d is cographic. In this case,

(MB/e\d)∗ = M∗

B/d\e

is graphic and the result follows by swapping the labels on e and d. �

We can now prove the main result in this part of the case analysis.

Lemma 7.19. Let M be an excluded minor for the class M with |E(M)| ≥
10 and r(M), r∗(M) ≥ 4. Let MB be the binary matroid supplied by Theo-
rem 5.1. If MB has no R10-minor and no R12-minor, then |E(M)| ≤ 16.

Proof. Let us assume that |E(M)| > 16.
Corollary 5.17 implies the following fact:

7.19.1. MB has no triangles and no triads.

By virtue of Proposition 7.18, and by switching to the dual if necessary,
we will henceforth assume that e and d are distinct elements of E(MB) such
that MB/e\d is graphic. Thus MB/e is almost-regular and a graft, where d
is the graft element. By Proposition 6.2 and Lemma 7.13, we can assume
that MB/e = M(G, D), where G = (R, S) is a Truemper graph and D is
exactly the set of terminal vertices of G. Proposition 2.19 implies that:

7.19.2. G has no XX-minor.

By virtue of Corollary 5.17 (vi), we can relabel J and K, so we assume
that e ∈ J . It follows from Theorem 6.1 that MB/e is almost-regular with
del = J − e and con = K. By Lemma 7.13, del = J − e consists of the path
edges of G along with d; con = K consists of the cross edges. Thus d ∈ J .
But K is a spanning circuit of MB/e. From this, we deduce the following.

7.19.3. The paths R and S have the same length, and the cross edges form
a spanning cycle of G.
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Suppose that the vertices of R and S are r1, . . . , rn and s1, . . . , sn re-
spectively. Since we are assuming |E(M)| > 16, it follows that n ≥ 5. By
Corollary 2.21, we may assume the following without loss of generality.

7.19.4. r1 is adjacent to both s1 and sn.

Both s1 and sn cannot be adjacent to r2, otherwise the cross edges contain
the cycle {r1s1, s1r2, r2sn, snr1}. Thus we will assume the following.

7.19.5. sn is not adjacent to r2.

Let f and g be the edges r1r2 and s1s2 respectively. First let us suppose
that s1 is adjacent to r2. Let G′ be G/f/g and let M ′ be MB\d/f/g. Thus
M ′ is a coextension of M(G′) by the element e.

Note that G− {r1, s1} is a subgraph of G′. Furthermore, G− {r1, s1} =
(R − r1, S − s1) is a Truemper graph and both R − r1 and S − s1 contain
at least four vertices. The cross edges of G−{r1, s1} form a spanning path
joining the terminal vertex r2 to the terminal vertex sn. From Lemma 7.14,
we conclude that G−{r1, s1}, and hence G′, contains distinct triangles, T1,
T2, and T3, such that at least two of these triangles are edge-disjoint.

Since T1, T2, and T3 are triangles of MB/e\d, but MB has no triangles,
T1 ∪ e, T2 ∪ e, and T3 ∪ e are circuits of MB. Hence each Ti ∪ e is a union of
non-loop circuits of MB\d/f/g = M ′. As Ti is a circuit of M ′/e, it follows
that Ti ∪ e is a circuit of M ′ for each i in {1, 2, 3}.

Since T1, T2, and T3 are triangles of G − {r1, s1}, and hence of G,
Lemma 7.15 implies that G′/Ti is 2-connected for all i ∈ {1, 2, 3}. Thus T1,
T2, and T3 are non-separating triangles of M(G′).

As d is a member of J , Theorem 6.1 states that MB\d is almost-regular
with del = K and con = J − d. Both f and g are path edges of G, and
are therefore in J − e, so f, g ∈ con. Thus M ′ = MB\d/f/g is regular.
Furthermore, G′ is a 3-connected graph by Lemma 7.15, and M ′ is a single-
element coextension of M(G′). It is not difficult to check that M ′ can be
obtained from a 3-connected matroid M ′′ by a sequence of parallel or series
extensions. Since M ′ has no R10- or R12-minor, Lemma 2.13 tells us that M ′′

is either graphic or cographic. Therefore M ′ is either graphic or cographic.
Lemma 7.17 implies that M ′ is not cographic. So we may assume that

M ′ is graphic. Thus M ′ = M(H) for some graph H so that e is an edge
of H and M(H/e) = M(G′). Since G′ is 3-connected by Lemma 7.15, it
follows from Whitney’s 2-isomorphism theorem that H/e = G′.

Suppose that e is incident with vertices v0 and v1 in H, and let v be the
vertex of H/e = G′ that results from identifying v0 and v1.

We will suppose that v has degree at most four. Since MB is 3-connected
having no triads and M(G′) = MB\d/e/f/g, both v0 and v1 have degree
three in H. Thus if T is the set of edges incident with v0 in H, then T ∪ d is
a cocircuit of MB . Moreover, as both e and d are contained in J , and both
J and K are circuits of MB , it follows that either T − e ⊆ J or T − e ⊆ K.
If T − e ⊆ J , then J contains the cocircuit T ∪ d and, as J is a cocircuit
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of MB , this means that J = T ∪ d. This implies that |E(MB)| = 2|J | = 8,
a contradiction. Therefore T − e ⊆ K, so the two edges other than e that
are incident with v0 in H are members of K, implying that they are cross
edges of G. The same argument shows that two edges other than e that are
incident with v1 in H are cross edges of G. Thus v is incident with precisely
four edges in G′, and they are all cross edges of G. But no such vertex of
G′ exists, so we conclude that v has degree at least five in G′.

We may assume that r2 and s2 are vertices of G′. Then they are the only
two vertices of degree at least five. Thus v = r2 or v = s2. Since T1 ∪ e,
T2 ∪ e, and T3 ∪ e are circuits in M ′ = M(H), it follows that all of T1, T2,
and T3 are incident with v in H/e = G′, and hence in G − {r1, s1}. But r2

and s2 have degree at most three in G − {r1, s1}, so no pair of triangles in
{T1, T2, T3} can be edge-disjoint, a contradiction.

This completes the argument in the case that s1 is adjacent to r2. The
argument when s1 is not adjacent to r2 is very similar: Let G′ be G/f and
let M ′ be MB\d/f . Both R − r1 and S contain at least four vertices, and
G − r1 = (R − r1, S) is a Truemper graph in which the cross edges form a
spanning path joining two terminal vertices. Thus G − r1, and hence G′,
contains distinct triangles T1, T2, and T3, two of which are edge-disjoint.
None of these triangles are triangles in M ′.

We observe that MB\d is almost-regular with del = K and con = J − d.
Since f ∈ J − d, it follows that M ′ is regular. Hence M ′ is graphic or
cographic. Since T1, T2, and T3 are non-separating triangles of M(G′), it
follows that M ′ is not cographic.

We now know that M ′ = M(H) for some graph H, where H/e = G′. If v
is the vertex of H/e formed by identifying the two end-vertices of e, then v
must have degree at least five, so v = r2. Thus T1, T2, and T3 are incident
with r2 in G − r1. However, r2 has degree three in G − r1, so no two of T1,
T2, and T3 are edge-disjoint, a contradiction.

This completes the proof of the lemma. �

8. Case-checking

The results in Section 7 mean that the proof of our main theorem is
reduced to a finite case check. In this section we develop the tools required
for such a check, and we prove our principal result. We start by deducing
some information about representations of the binary matroid MB .

Lemma 8.1. Suppose that M is an excluded minor for M such that
|E(M)| ≥ 10, while r(M), r∗(M) ≥ 4. Let r = r(M), and let MB be
the rank-r binary matroid supplied by Theorem 5.1, so that MB contains
two disjoint circuit-hyperplanes, J and K. For all j in J and all k in K,
there is a matrix A(j, k) such that MB is represented over GF(2) by the
following matrix.
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j

1

0

K − k

0T

Ir−1

k

0

1

J − j

1T

A(j, k)

Proof. It is clear that (K−k)∪j is a basis of MB . Moreover (K−k)∪k = K is
a circuit, and no element of J−j is spanned by K−k. The result follows. �

Before proving the next result, we give an alternative reduced represen-
tation of T12.

















0 1 1 1 1 1
1 1 0 0 0 1
1 1 1 0 0 0
1 0 1 1 0 0
1 0 0 1 1 0
1 0 0 0 1 1

















This representation is obtained from the one in the introduction
by pivoting so that, if the columns in the original representation
are ordered 1, 2, . . . , 12, those in the new representation are ordered
5, 2, 10, 4, 6, 8, 12, 11, 3, 9, 1, 7.

Lemma 8.2. T ′

12 is the unique 12-element excluded minor for M.

Proof. Let M be a 12-element excluded minor for M. Then M is 3-con-
nected, and r(M), r∗(M) ≥ 4, by Lemmas 3.2 and 3.3. Theorem 5.1 im-
plies that there is a binary matroid MB having two complementary circuit-
hyperplanes, J and K, such that M is obtained from MB by relaxing J .
Corollary 5.17 implies that r(MB) = r∗(MB) = 6.

We start by proving that MB has no R10-minor. Assume otherwise.
We can assume that there is an element e ∈ E(MB) such that MB\e has
an R10-minor. Theorem 6.1 and Proposition 6.2 imply that MB\e is an
internally 4-connected almost-regular matroid. As |E(MB\e)| = 11 and
r(MB\e) = 6, Lemma 7.4 implies that MB\e ∼= N∗

11. Therefore MB\e is
represented by [I6|A], where A is the following matrix.

















1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 0

















Assume the columns of [I6|A] are labeled 1, . . . , 11. It is routine to check
that MB\e has a unique circuit-hyperplane, namely {1, 2, 7, 8, 9, 11}. Thus
{3, 4, 5, 6, 10, e} is a circuit of MB. But {3, 4, 5, 10} is a circuit of MB, so
{6, e} must also be a circuit of MB , and this contradicts the fact that MB

is 3-connected. Therefore MB has no R10-minor, as desired.
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Figure 12. Two Truemper graphs.

Lemma 7.12 says that MB has no R12-minor. By using Proposition 7.18
and duality, we can assume there are distinct elements e, d ∈ E(MB) such
that MB/e\d is graphic. By Corollary 5.17 (vi), we assume that e ∈ J .
As MB/e is almost-regular and internally 4-connected, Lemma 7.13 says
that it is isomorphic to a graft M(G, D), where G = (R, S) is a Truemper
graph. As (del, con) = (J − e, K) by Theorem 6.1, the cross edges of G
comprise K, and therefore form a spanning cycle of G. Thus R and S both
contain exactly three vertices. Since G has no XX-minor, we can assume
by Corollary 2.21 that r1 is adjacent to both s1 and s3. We enumerate the
Truemper graphs having these properties, and we see that G must be one of
the two (isomorphic) graphs in Figure 12. In either case, we let j = e, and
we let k be the edge labeled as such in Figure 12. If the elements of K − k
and J − j are ordered k1, . . . , k5 and j1, . . . , j5 respectively (where j5 is the
graft element d), then A(j, k) is the following matrix.













1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1













Thus MB is isomorphic to T12, so M is isomorphic to T ′

12, as desired. �

Lemma 8.3. There is no 16-element excluded minor for M.

Proof. Suppose that M is a 16-element excluded minor for M, and that MB

is the binary matroid appearing in Theorem 5.1. Recall that AG(3, 2) has
the following reduced representation.









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









We will deduce that MB has a minor isomorphic to AG(3, 2). Since every
proper minor of MB is either regular or almost-regular (Proposition 2.16
and Theorem 6.1), and AG(3, 2) is neither, this will yield a contradiction.

Let J and K be the complementary circuit-hyperplanes of MB . Now MB

has no R10- or R12-minor, by Lemmas 7.5 and 7.12. As in the proof of
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Lemma 8.2, we deduce that, up to duality, there are elements e and d in MB

such that MB/e\d is graphic, and MB/e ∼= M(G, D). Here G = (R, S) is a
Truemper graph, the cross edges of G form a spanning path, and both R and
S have exactly four vertices. We assume that e ∈ J . We also assume that r1

is adjacent to both s1 and s4. The twelve Truemper graphs satisfying these
constraints are enumerated in Figure 13 (we ignore symmetries).

Four of these Truemper graphs have XX-minors, and so can be disre-
garded. In the remaining cases, we assume that j = e. One of the edges in
G is labeled by k. We also assume that the elements of J − j and K − k are
ordered j1, . . . j7 and k1, . . . , k7 respectively (where j7 is the graft element
d). Now it easy to see that A(j, k) is one of the following three matrices.





















1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1









































1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 1 0 1
0 0 1 0 1 1 1
0 0 0 0 0 1 1









































1 0 0 0 0 0 1
1 1 0 0 0 0 0
1 1 1 0 0 0 1
1 0 1 1 0 0 1
0 0 1 1 1 0 1
0 0 1 0 1 1 1
0 0 0 0 0 1 1





















In each of these three cases, we demonstrate that MB has an AG(3, 2)-minor.
Recall that MB has the following reduced representation.

A =

[

0 1T

1 A(j, k)

]

.

Suppose that A(j, k) is equal to the first of the three matrices above. We
pivot on the entry of A in the second row and first column, and the entry
in the first row and second column. By deleting all rows from A except the
first, fourth, fifth, and seventh, and all columns except the first, third, fifth,
and sixth, we see that MB has an AG(3, 2)-minor.

Now suppose A(j, k) is the second displayed matrix. We pivot on the
entry in the first row and second column of A, and then delete all rows except
the first, second, sixth, and eighth, and all columns except the first, fourth,
seventh, and eighth. This reveals an AG(3, 2)-minor. Similarly, if A(j, k) is
the third displayed matrix, we pivot on the entry of A in the first row and
second column, and then delete all rows except the first, fourth, sixth, and
seventh, and all columns except the first, fourth, fifth, and seventh. �

We are now ready to prove our main theorem, which we restate here.

Theorem 8.4. The excluded minors for the class of matroids that are binary
or ternary are U2,5, U3,5, U2,4 ⊕ F7, U2,4 ⊕ F ∗

7 , U2,4 ⊕2 F7, U2,4 ⊕2 F ∗

7 ,
AG(3, 2)′, and T ′

12.

Proof. Let M be an excluded minor for M. If M is not 3-connected, or if the
rank or corank of M is less than four, then M is isomorphic to one of U2,5,
U3,5, U2,4 ⊕F7, U2,4 ⊕F ∗

7 , U2,4 ⊕2 F7, or U2,4 ⊕2 F ∗

7 , by Lemmas 3.2 and 3.3.
Thus we assume that M is 3-connected, and that r(M), r∗(M) ≥ 4. Hence
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|E(M)| ≥ 8. If |E(M)| = 8 then M ∼= AG(3, 2)′, by Lemma 4.1. Thus we
assume that |E(M)| ≥ 9. This implies that |E(M)| ≥ 10, by Lemma 4.6.

Now we apply Theorem 5.1 to deduce the existence of a binary matroid
MB such that M is obtained from MB by relaxing a circuit-hyperplane.
Lemma 7.12 says that MB has no R12-minor. If MB has an R10-minor, then
|E(M)| = 12, by Lemma 7.5. On the other hand, if MB has no R10-minor,
then |E(M)| ≤ 16, by Lemma 7.19. Therefore we have established that
|E(M)| ≤ 16. Corollary 5.17 implies that we need only consider the case
that |E(M)| = 12 or 16. If |E(M)| = 12 then M ∼= T ′

12, by Lemma 8.2, and
Lemma 8.3 implies that |E(M)| 6= 16. Therefore the proof is complete. �
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Figure 13. Twelve Truemper graphs.


