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Let M be a 3-connected binary matroid; M is internally 4-con-
nected if one side of every 3-separation is a triangle or a triad, 
and M is (4, 4, S)-connected if one side of every 3-separa-
tion is a triangle, a triad, or a 4-element fan. Assume M
is internally 4-connected and that neither M nor its dual 
is a cubic Möbius or planar ladder or a certain coextension 
thereof. Let N be an internally 4-connected proper minor 
of M . Our aim is to show that M has a proper internally 
4-connected minor with an N -minor that can be obtained 
from M either by removing at most four elements, or by re-
moving elements in an easily described way from a special 
substructure of M . When this aim cannot be met, the earlier 
papers in this series showed that, up to duality, M has a good 
bowtie, that is, a pair, {x1, x2, x3} and {x4, x5, x6}, of disjoint 
triangles and a cocircuit, {x2, x3, x4, x5}, where M\x3 has 
an N -minor and is (4, 4, S)-connected. We also showed that, 
when M has a good bowtie, either M\x3, x6 has an N -minor 
and M\x6 is (4, 4, S)-connected; or M\x3/x2 has an N -minor 
and is (4, 4, S)-connected. In this paper, we show that, when 
M\x3, x6 has no N -minor, M has an internally 4-connected 
proper minor with an N -minor that can be obtained from M
by removing at most three elements, or by removing elements 
in a well-described way from a special substructure of M . This 

✩ The first author was supported by NSF IRFP Grant OISE0967050, an LMS Scheme 4 grant, and 
an AMS-Simons travel grant. The second author was supported by National Security Agency Grant 
H98230-11-1-0158.
* Corresponding author.

E-mail addresses: chun@usna.edu (C. Chun), oxley@math.lsu.edu (J. Oxley).
https://doi.org/10.1016/j.aam.2018.11.004
0196-8858/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.aam.2018.11.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yaama
mailto:chun@usna.edu
mailto:oxley@math.lsu.edu
https://doi.org/10.1016/j.aam.2018.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aam.2018.11.004&domain=pdf


C. Chun, J. Oxley / Advances in Applied Mathematics 104 (2019) 14–74 15
is a final step towards obtaining a splitter theorem for the class 
of internally 4-connected binary matroids.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Seymour’s Splitter Theorem [11] proved that if N is a 3-connected proper minor of a 
3-connected matroid M , then M has a proper 3-connected minor M ′ with an N -minor 
such that |E(M) − E(M ′)| ≤ 2. Furthermore, such an M ′ can be found with |E(M)| −
|E(M ′)| = 1 unless r(M) ≥ 3 and M is a wheel or a whirl. This result has been extremely 
useful in inductive and constructive arguments for 3-connected matroids. In [6], we prove 
a corresponding theorem for internally 4-connected binary matroids. In this paper, we 
prove one of the final steps needed to get that theorem. Specifically, we show here that 
if M and N are internally 4-connected binary matroids, and M has a proper N -minor, 
then M has a proper minor M ′ such that M ′ is internally 4-connected with an N -minor, 
and M ′ can be produced from M by a small number of simple operations.

Any unexplained matroid terminology used here will follow [10]. The only 3-sepa-
rations allowed in an internally 4-connected matroid have a triangle or a triad on one 
side. A 3-connected matroid M is (4, 4, S)-connected if, for every 3-separation (X, Y )
of M , one of X and Y is a triangle, a triad, or a 4-element fan, that is, a 4-element set 
{x1, x2, x3, x4} that can be ordered so that {x1, x2, x3} is a triangle and {x2, x3, x4} is a 
triad.

To provide a context for the main theorem of this paper, we briefly describe our 
progress towards obtaining the desired splitter theorem. Johnson and Thomas [7] showed 
that, even for graphs, a splitter theorem in the internally 4-connected case must take 
account of some special examples. For n ≥ 3, let Gn+2 be the biwheel with n +2 vertices, 
that is, Gn+2 consists of an n-cycle v1, v2, . . . , vn, v1, the rim, and two additional vertices, 
u and w, both of which are adjacent to every vi. Thus the dual of Gn+2 is a cubic planar 
ladder. Let M be the cycle matroid of G2n+2 for some n ≥ 3 and let N be the cycle 
matroid of the graph that is obtained by proceeding around the rim of G2n+2 and 
alternately deleting the edges from the rim vertex to u and to w. Both M and N are 
internally 4-connected but there is no internally 4-connected proper minor of M that 
has a proper N -minor. We can modify M slightly and still see the same phenomenon. 
Let G+

n+2 be obtained from Gn+2 by adding a new edge z joining the hubs u and w. Let 
Δn+1 be the binary matroid that is obtained from M(G+

n+2) by deleting the element 
vn−1vn and adding the third element on the line spanned by wvn and uvn−1. This new 
element is also on the line spanned by uvn and wvn−1. For r ≥ 3, Mayhew, Royle, and 
Whittle [9] call Δr the rank-r triangular Möbius matroid and note that Δr\z is the dual 
of the cycle matroid of a cubic Möbius ladder. The following is the main result of [3, 
Theorem 1.2].
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Fig. 1. All the elements shown are distinct. There are at least three dashed elements; and all dashed elements 
are deleted.

Theorem 1.1. Let M be an internally 4-connected binary matroid with an internally 
4-connected proper minor N such that |E(M)| ≥ 15 and |E(N)| ≥ 6. Then

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′ is internally 
4-connected with an N -minor; or

(ii) for some (M0, N0) in {(M, N), (M∗, N∗)}, the matroid M0 has a triangle T that 
contains an element e such that M0\e is (4, 4, S)-connected with an N0-minor; or

(iii) M or M∗ is isomorphic to M(G+
r+1), M(Gr+1), Δr, or Δr\z for some r ≥ 5.

That theorem led us to consider those matroids for which the second outcome in the 
theorem holds. In order to state the next result, we need to define some special structures. 
Let M be an internally 4-connected binary matroid and N be an internally 4-connected 
proper minor of M . Suppose M has disjoint triangles T1 and T2 and a 4-cocircuit D∗

contained in their union. We call this structure a bowtie and denote it by (T1, T2, D∗). If 
D∗ has an element d such that M\d has an N -minor and M\d is (4, 4, S)-connected, then 
(T1, T2, D∗) is a good bowtie. Motivated by (ii) of the last theorem, we aim to discover 
more about the structure of M when it has a triangle containing an element e such that 
M\e is (4, 4, S)-connected with an N -minor. One possible outcome here is that M has 
a good bowtie. Indeed, as the next result shows, if that outcome or its dual does not 
arise, we get a small number of easily described alternatives. We shall need two more 
definitions. A terrahawk is the graph that is obtained from a cube by adjoining a new 
vertex and adding edges from the new vertex to each of the four vertices that bound 
some fixed face of the cube. Fig. 1 shows a modified graph diagram, which we will use 
to keep track of some of the circuits and cocircuits in M , even though M need not be 
graphic. Each of the cycles in such a graph diagram corresponds to a circuit of M while 
a circled vertex indicates a known cocircuit of M . We refer to the structure in Fig. 1
as an open rotor chain noting that all of the elements in the figure are distinct and, for 
some n ≥ 3, there are n dashed edges. The figure may suggest that n must be even but 
we impose no such restriction. We will refer to deleting the dashed elements from Fig. 1
as trimming an open rotor chain.

We need to define another special structure. An augmented 4-wheel consists of a 
4-wheel restriction of M with triangles {z2, x1, y2}, {y2, x3, z3}, {z3, y3, x2}, {x2, y1, z2}
along with two additional distinct elements z1 and z4 such that M has {x1, y1, z1, z2}, 
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Fig. 2. An augmented 4-wheel.

{x2, y2, z2, z3}, and {x3, y3, z3, z4} as cocircuits. We call {x2, y2, z2, z3} the central cocir-
cuit of the augmented 4-wheel. A diagrammatic representation of an augmented 4-wheel 
is shown in Fig. 2.

The following is [5, Corollary 1.4].

Theorem 1.2. Let M and N be internally 4-connected binary matroids such that 
|E(M)| ≥ 16 and |E(N)| ≥ 6. Suppose that M has a triangle T containing an ele-
ment e for which M\e is (4, 4, S)-connected with an N -minor. Then one of the following 
holds.

(i) M has an internally 4-connected minor M ′ that has an N -minor such that 
1 ≤ |E(M) − E(M ′)| ≤ 3; or |E(M) − E(M ′)| = 4 and, for some (M1, M2) in 
{(M, M ′), (M∗, (M ′)∗)}, the matroid M2 is obtained from M1 by deleting the cen-
tral cocircuit of an augmented 4-wheel; or

(ii) M or M∗ has a good bowtie; or
(iii) M is the cycle matroid of a terrahawk; or
(iv) for some (M0, N0) in {(M, N), (M∗, N∗)}, the matroid M0 contains an open rotor 

chain that can be trimmed to obtain an internally 4-connected matroid with an 
N0-minor.

Note that there is a small error in [5, Theorem 1.1] since it requires at least five 
elements to be removed when trimming an open rotor chain. But, as the proof there 
makes clear, trimming exactly four elements is a possibility. Trimming exactly three 
elements is also possible but that is included under (i) of [5, Theorem 1.1].

This theorem leads us to consider a good bowtie ({x1, x2, x3}, {x4, x5, x6}, {x2, x3,

x4, x5}) in an internally 4-connected binary matroid M where M\x3 is (4, 4, S)-connected 
with an N -minor. In M\x3, we see that {x5, x4, x2} is a triad and {x6, x5, x4} is a 
triangle, so {x6, x5, x4, x2} is a 4-element fan. By [4, Lemma 2.5], which is included 
below as Lemma 3.1, either

(i) M\x3, x6 has an N -minor; or
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Fig. 3. A string of bowties. All elements are distinct except that a0 may be the same as cn.

(ii) M\x3, x6 does not have an N -minor, but M\x3/x2 is (4, 4, S)-connected with an 
N -minor.

In [1], we considered the case when (i) holds and M\x6 is not (4, 4, S)-connected. In this 
paper, we focus on the case when (ii) holds. The next and final paper in this series will 
complete the work to obtain the splitter theorem by considering the case when M\x3, x6

has an N -minor and M\x6 is (4, 4, S)-connected. Before stating the main result of [1], 
we define some structures that require special attention.

In a matroid M , a string of bowties is a sequence {a0, b0, c0}, {b0, c0, a1, b1},
{a1, b1, c1}, {b1, c1, a2, b2}, . . . , {an, bn, cn} with n ≥ 1 such that

(i) {ai, bi, ci} is a triangle for all i in {0, 1, . . . , n};
(ii) {bj , cj , aj+1, bj+1} is a cocircuit for all j in {0, 1, . . . , n − 1}; and
(iii) the elements a0, b0, c0, a1, b1, c1, . . . , an, bn, and cn are distinct except that a0 and 

cn may be equal.

The reader should note that this differs slightly from the definition we gave in [2]
in that here we allow a0 and cn to be equal instead of requiring all of the elements 
to be distinct. Fig. 3 illustrates a string of bowties, but this diagram may obscure the 
potential complexity of such a string. Evidently M\c0 has {c1, b1, a1, b0} as a 4-fan. 
Indeed, M\c0, c1, . . . , ci has a 4-fan for all i in {0, 1, . . . , n − 1}. We shall say that the 
matroid M\c0, c1, . . . , cn has been obtained from M by trimming a string of bowties. This 
operation plays a prominent role in our main theorem, and is the underlying operation 
in trimming an open rotor chain. Before stating this theorem, we introduce the other 
operations that incorporate this process of trimming a string of bowties. Such a string 
can attach to the rest of the matroid in a variety of ways. In most of these cases, the 
operation of trimming the string will produce an internally 4-connected minor of M with 
an N -minor. But, when the bowtie string is embedded in a modified quartic ladder in 
certain ways, we need to adjust the trimming process.

Consider the three configurations shown in Fig. 4 and Fig. 5 where the elements in each 
configuration are distinct except that d2 may equal wk. We refer to each of these configu-
rations as an enhanced quartic ladder. Indeed, in each configuration, we can see a portion 
of a quartic ladder, which can be thought of as two interlocking bowtie strings, one point-
ing up and one pointing down. In each case, we focus on M\c2, c1, c0, v0, v1, . . . , vk saying 
that this matroid has been obtained from M by an enhanced-ladder move.
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Fig. 4. In both (a) and (b), the elements shown are distinct, except that d2 may be wk. Furthermore, in (a), 
k ≥ 0; and in (b), k ≥ 1 and {wk−2, uk−1, vk−1, uk, vk} is a cocircuit.

Fig. 5. In this configuration, k ≥ 2 and the elements are all distinct except that d2 may be wk.

Suppose that {a0, b0, c0}, {b0, c0, a1, b1}, {a1, b1, c1}, . . . , {an, bn, cn} is a bowtie string 
for some n ≥ 2. Assume, in addition, that {bn, cn, a0, b0} is a cocircuit. Then the string 
of bowties has wrapped around on itself as in Fig. 7, and we call the resulting structure 
a ring of bowties. We refer to each of the structures in Fig. 6 as a ladder structure and we 
refer to removing the dashed elements in Fig. 7 and Fig. 6 as trimming a ring of bowties
and trimming a ladder structure, respectively.

In the case that trimming a string of bowties in M yields an internally 4-connected 
matroid with an N -minor, we are able to ensure that the string of bowties belongs to one 
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Fig. 6. In (a) and (b), n ≥ 2 and the elements shown are distinct, with the exception that dn may be 
the same as γ in (b). Either {dn−2, an−1, cn−1, dn−1} or {dn−2, an−1, cn−1, an, cn} is a cocircuit in (a) 
and (b). Either {b0, c0, a1, b1} or {β, a0, c0, a1, b1} is also a cocircuit in (b).

Fig. 7. A bowtie ring. All elements are distinct. The ring contains at least three triangles.

of the more highly structured objects we have described above. The following theorem 
is the main result of [1, Theorem 1.3].

Theorem 1.3. Let M and N be internally 4-connected binary matroids such that 
|E(M)| ≥ 13 and |E(N)| ≥ 7. Assume that M has a bowtie ({x0, y0, z0}, {x1, y1, z1},
{y0, z0, x1, y1}), where M\z0 is (4, 4, S)-connected, M\z0, z1 has an N -minor, and M\z1
is not (4, 4, S)-connected. Then one of the following holds.

(i) M has a proper minor M ′ such that |E(M)| − |E(M ′)| ≤ 3 and M ′ is internally 
4-connected with an N -minor; or

(ii) M contains an open rotor chain, a ladder structure, or a ring of bowties that can 
be trimmed to obtain an internally 4-connected matroid with an N -minor; or

(iii) M contains an enhanced quartic ladder from which an internally 4-connected minor 
of M with an N -minor can be obtained by an enhanced-ladder move.

In Theorem 1.3, not all of the moves that we perform on M to obtain an intermediate 
internally 4-connected binary matroid with an N -minor are bounded in size, but each 
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Fig. 8. All of the elements are distinct except that a may be f , or (a, b, c) may equal (d, e, f). There are at 
least three dashed elements.

unbounded move is highly structured. In this paper, we shall require one more such 
unbounded move. When M contains the structure in Fig. 8, where the elements are all 
distinct except that a may be f , or (a, b, c) may equal (d, e, f), we say that M contains 
an open quartic ladder. We will refer to deleting the dashed elements and contracting 
the arrow edge as a mixed ladder move. This is the only unbounded move that uses a 
contraction as well as a number of deletions. Note that both of the vertices of degree one 
in the diagram differ from the vertices closest to them.

The following theorem is the main result of this paper.

Theorem 1.4. Let M and N be internally 4-connected binary matroids such that 
|E(M)| ≥ 16 and |E(N)| ≥ 7. Let M have a bowtie ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}), where 
M\4 is (4, 4, S)-connected with an N -minor, and M\1, 4 has no N -minor. Then, for 
some (M0, N0) in {(M, N), (M∗, N∗)}, one of the following holds.

(i) M0 has a proper internally 4-connected minor M ′ such that M ′ has an N0-minor 
and either |E(M)| −|E(M ′)| ≤ 3, or |E(M) −E(M ′)| = 4 and M ′ is obtained from 
M0 by deleting the central cocircuit of an augmented 4-wheel; or

(ii) M0 contains an open rotor chain, a ladder structure, or a ring of bowties that can 
be trimmed to obtain an internally 4-connected matroid with an N0-minor; or

(iii) M0 contains an open quartic ladder and an internally 4-connected matroid with an 
N0-minor can be obtained by a mixed ladder move; or

(iv) M0 contains an enhanced quartic ladder from which an internally 4-connected minor 
of M0 with an N0-minor can be obtained by an enhanced-ladder move.

An outline of the proof of this theorem is given in Section 5. That section separates 
the argument into three subcases and these cases are treated in the three subsequent 
sections. The results from those three sections are combined in Section 9 to complete the 
proof of the theorem. Before all of that, Section 2 gives some basic preliminaries while 
Sections 3 and 4 present some properties of, respectively, bowties and quasi rotors, and 
bowties and ladders.

The next corollary follows immediately by combining Theorem 1.4 with Theorem 1.3. 
This corollary provides the context for the final paper [6] in this series, which proves a 
splitter theorem for internally 4-connected binary matroids.
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Corollary 1.5. Let M and N be internally 4-connected binary matroids such that 
|E(M)| ≥ 16 and |E(N)| ≥ 7. If M has a bowtie ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}), 
where M\4 is (4, 4, S)-connected with an N -minor, then either M\1, 4 has an N -minor 
and M\1 is (4, 4, S)-connected, or one of the following holds for some (M0, N0) in 
{(M, N), (M∗, N∗)}.

(i) M0 has a proper internally 4-connected minor M ′ such that M ′ has an N0-minor 
and either |E(M)| −|E(M ′)| ≤ 3, or |E(M) −E(M ′)| = 4 and M ′ is obtained from 
M0 by deleting the central cocircuit of an augmented 4-wheel; or

(ii) M0 contains an open rotor chain, a ladder structure, or a ring of bowties that can 
be trimmed to obtain an internally 4-connected matroid with an N0-minor; or

(iii) M0 contains an open quartic ladder and an internally 4-connected matroid with an 
N0-minor can be obtained by a mixed ladder move; or

(iv) M0 contains an enhanced quartic ladder from which an internally 4-connected minor 
of M0 with an N0-minor can be obtained by an enhanced-ladder move.

2. Preliminaries

In this section, we give some basic definitions mainly relating to matroid connectivity. 
Let M and N be matroids. We shall sometimes write N � M to indicate that M has an 
N -minor, that is, a minor isomorphic to N . Now let E be the ground set of M and r be 
its rank function. The connectivity function λM of M is defined on all subsets X of E
by λM (X) = r(X) + r(E −X) − r(M). Equivalently, λM (X) = r(X) + r∗(X) − |X|. We 
will sometimes abbreviate λM as λ. For a positive integer k, a subset X or a partition 
(X, E −X) of E is k-separating if λM (X) ≤ k− 1. A k-separating partition (X, E −X)
of E is a k-separation if |X|, |E − X| ≥ k. If n is an integer exceeding one, a matroid 
is n-connected if it has no k-separations for all k < n. This definition [12] has the 
attractive property that a matroid is n-connected if and only if its dual is. Moreover, 
this matroid definition of n-connectivity is relatively compatible with the graph notion 
of n-connectivity when n is 2 or 3. For example, when G is a graph with at least four 
vertices and with no isolated vertices, M(G) is a 3-connected matroid if and only if G
is a 3-connected simple graph. But the link between n-connectivity for matroids and 
graphs breaks down for n ≥ 4. In particular, a 4-connected matroid with at least six 
elements cannot have a triangle. Hence, for r ≥ 3, neither M(Kr+1) nor PG(r − 1, 2) is 
4-connected. This motivates the consideration of other types of 4-connectivity in which 
certain 3-separations are allowed.

A matroid is internally 4-connected if it is 3-connected and, whenever (X, Y ) is a 
3-separation, either |X| = 3 or |Y | = 3. Equivalently, a 3-connected matroid M is 
internally 4-connected if and only if, for every 3-separation (X, Y ) of M , either X or Y
is a triangle or a triad of M . A graph G without isolated vertices is internally 4-connected
if M(G) is internally 4-connected.
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Let M be a matroid. A subset S of E(M) is a fan in M if |S| ≥ 3 and there is 
an ordering (s1, s2, . . . , sn) of S such that {s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn}
alternate between triangles and triads. We call (s1, s2, . . . , sn) a fan ordering of S. For 
convenience, we will often refer to the fan ordering as the fan. We will be mainly con-
cerned with 4-element and 5-element fans. By convention, we shall always view a fan 
ordering of a 4-element fan as beginning with a triangle and we shall use the term 4-fan
to refer to both the 4-element fan and such a fan ordering of it. Moreover, we shall use 
the terms 5-fan and 5-cofan to refer to the two different types of 5-element fan where 
the first contains two triangles and the second two triads. Let (s1, s2, . . . , sn) be a fan 
ordering of a fan S. When M is 3-connected having at least five elements and n ≥ 4, 
every fan ordering of S has its first and last elements in {s1, sn}. We call these elements 
the ends of the fan while the elements of S−{s1, sn} are called the internal elements of 
the fan. When (s1, s2, s3, s4) is a 4-fan, our convention is that {s1, s2, s3} is a triangle, 
and we call s1 the guts element of the fan and s4 the coguts element of the fan since 
s1 ∈ cl({s2, s3, s4}) and s4 ∈ cl∗({s1, s2, s3}).

In a matroid M , a set U is fully closed if it is closed in both M and M∗. The full 
closure fcl(Z) of a set Z in M is the intersection of all fully closed sets containing Z. 
Let (X, Y ) be a partition of E(M). If (X, Y ) is k-separating in M for some positive 
integer k, and y is an element of Y that is also in cl(X) or cl∗(X), then it is well 
known and easily checked that (X ∪ y, Y − y) is k-separating, and we say that we have 
moved y into X. More generally, (fcl(X), Y − fcl(X)) is k-separating in M . Let n be an 
integer exceeding one. If M is n-connected, an n-separation (U, V ) of M is sequential
if fcl(U) or fcl(V ) is E(M). In particular, when fcl(U) = E(M), there is an ordering 
(v1, v2, . . . , vm) of the elements of V such that U ∪ {vm, vm−1, . . . , vi} is n-separating 
for all i in {1, 2, . . . , m}. When this occurs, the set V is called sequential. Moreover, if 
n ≤ m, then {v1, v2, . . . , vn} is a circuit or a cocircuit of M . A 3-connected matroid is 
sequentially 4-connected if all of its 3-separations are sequential. It is straightforward to 
check that, when M is binary, a sequential set with 3, 4, or 5 elements is a fan. Let (X, Y )
be a 3-separation of a 3-connected binary matroid M . We shall frequently be interested 
in 3-separations that indicate that M is, for example, not internally 4-connected. We call 
(X, Y ) or X a (4, 3)-violator if |Y | ≥ |X| ≥ 4. Similarly, (X, Y ) is a (4, 4, S)-violator if, 
for each Z in {X, Y }, either |Z| ≥ 5, or Z is non-sequential. We also say that (X, Y ) is a 
(4, 5, S, +)-violator if, for each Z ∈ {X, Y }, either |Z| ≥ 6, or Z is non-sequential, or Z
is a 5-cofan. A binary matroid that has no (4, 4, S)-violator is (4, 4, S)-connected, as we 
defined in the introduction, and it is (4, 5, S, +)-connected if it has no (4, 5, S, +)-violator.

Next we note another special structure from [13], which has arisen frequently in our 
work towards the desired splitter theorem. In an internally 4-connected binary ma-
troid M , we call ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) a quasi rotor
with central triangle {4, 5, 6} and central element 5 if {1, 2, 3}, {4, 5, 6}, and {7, 8, 9} are 
disjoint triangles in M such that {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits and {3, 5, 7} is 
a triangle (see Fig. 9). The next section is dedicated to results concerning bowties and 
quasi rotors.
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Fig. 9. A quasi rotor, where {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits.

Fig. 10. Right-maximal rotor chain configurations. In the case that n is even, the rotor chain is depicted on 
the left. If n is odd, then the rotor chain has the form on the right.

For all non-negative integers i, it will be convenient to adopt the convention through-
out the paper of using Ti and Di to denote, respectively, a triangle {ai, bi, ci} and a 
cocircuit {bi, ci, ai+1, bi+1}. Let M have (T0, T1, T2, D0, D1, {c0, b1, a2}) as a quasi rotor. 
Now T2 may also be the central triangle of a quasi rotor. In fact, we may have a structure 
like one of the two depicted in Fig. 10. If T0, D0, T1, D1, . . . , Tn is a string of bowties in M , 
for some n ≥ 2, and M has the additional structure that {ci, bi+1, ai+2} is a triangle 
for all i in {0, 1, . . . , n − 2}, then we say that ((a0, b0, c0), (a1, b1, c1), . . . , (an, bn, cn)) is a 
rotor chain. Clearly, deleting a0 from a rotor chain gives an open rotor chain. Note that 
every three consecutive triangles within a rotor chain have the structure of a quasi rotor; 
that is, for all i in {0, 1, . . . , n −2}, the sequence (Ti, Ti+1, Ti+2, Di, Di+1, {ci, bi+1, ai+2})
is a quasi rotor. Zhou [13] considered a similar structure that he called a double fan of 
length n − 1; it consists of all of the elements in the rotor chain except for a0, b0, bn, 
and cn.

If a rotor chain ((a0, b0, c0), (a1, b1, c1), . . . , (an, bn, cn)) cannot be extended to a ro-
tor chain of the form ((a0, b0, c0), (a1, b1, c1), . . . , (an+1, bn+1, cn+1)), then we call it a 
right-maximal rotor chain.

In the introduction, we defined a string of bowties. We say that such a string 
T0, D0, T1, D1, . . . , Tn is a right-maximal bowtie string in M if M has no triangle {u, v, w}
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such that T0, D0, T1, D1, . . . , Tn, {x, cn, u, v}, {u, v, w} is a bowtie string for some x in 
{an, bn}.

For each positive integer n ≥ 3, let Mn be the binary matroid that is obtained from 
a wheel of rank n by adding a single element γ such that if B is the basis of M(Wn)
consisting of the set of spokes of the wheel, then the fundamental circuit C(γ, B) is 
B ∪ γ. Observe that M3 ∼= F7 and M4 ∼= M∗(K3,3). Assume that the spokes of M(Wn), 
in cyclic order, are x1, x2, . . . , xn and that {xi, yi, xi+1} is a triangle of M(Wn) for all i in 
{1, 2, . . . , n} where we interpret all subscripts modulo n. Then, for all i in {1, 2, . . . , n}, 
the set {yi−1, xi, yi} is a triad of M(Wn) and {γ, yi−1, xi, yi} is a cocircuit of Mn. It is 
straightforward to check that Mn is internally 4-connected. Kingan and Lemos [8] denote 
Mn by F2n+1. When n is odd, which is the case that will be of most interest to us here, 
M∗

n is isomorphic to what Mayhew, Royle, and Whittle [9] call the rank-(n + 1) triadic 
Möbius matroid, Υn+1.

3. Some results for bowties and quasi rotors

In this section, we gather together a number of results that will be needed to prove 
the main theorem beginning with Lemma 2.5 from [4] and Lemmas 4.1 and 4.2 from [1]. 
The second of these will often be used implicitly without reference.

Lemma 3.1. Let M and N be internally 4-connected binary matroids and {e, f, g} be a 
triangle of M such that N � M\e and M\e is (4, 4, S)-connected. Suppose |E(N)| ≥ 7
and M\e has (1, 2, 3, 4) as a 4-fan. Then either

(i) N � M\e\1; or
(ii) N � M\e/4 and M\e/4 is (4, 4, S)-connected.

Lemma 3.2. Let N be an internally 4-connected matroid having at least seven elements 
and M be a binary matroid with an N -minor. If (s1, s2, s3, s4) is a 4-fan in M , then M\s1
or M/s4 has an N -minor. If (s1, s2, s3, s4, s5) is a 5-fan in M , then either M\s1, s5 has 
an N -minor, or both M\s1/s2 and M\s5/s4 have N -minors.

Lemma 3.3. Let M be an internally 4-connected matroid having at least ten elements. If 
({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) is a bowtie in M , then {2, 3, 4, 5} is the unique 4-cocircuit 
of M that meets both {1, 2, 3} and {4, 5, 6}.

When dealing with bowtie structures, we will repeatedly use the following result [1, 
Lemma 4.3], a modification of [2, Lemma 6.3].

Lemma 3.4. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in an internally 4-connected 
binary matroid M with |E(M)| ≥ 13. Then M\6 is (4, 4, S)-connected unless {4, 5, 6}
is the central triangle of a quasi rotor ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {y, 6, 7, 8},
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{x, y, 7}) for some x in {2, 3} and some y in {4, 5}. In addition, when M\6 is 
(4, 4, S)-connected, one of the following holds.

(i) M\6 is internally 4-connected; or
(ii) M has a triangle {7, 8, 9} disjoint from {1, 2, 3, 4, 5, 6} such that ({4, 5, 6}, {7, 8, 9},

{a, 6, 7, 8}) is a bowtie for some a in {4, 5}; or
(iii) every (4, 3)-violator of M\6 is a 4-fan of the form (u, v, w, x), where M has a 

triangle {u, v, w} and a cocircuit {v, w, x, 6} for some u and v in {2, 3} and {4, 5}, 
respectively, and |{1, 2, 3, 4, 5, 6, w, x}| = 8; or

(iv) M\1 is internally 4-connected and M has a triangle {1, 7, 8} and a cocircuit 
{a, 6, 7, 8} where |{1, 2, 3, 4, 5, 6, 7, 8}| = 8 and a ∈ {4, 5}.

In Theorem 1.3, we dealt with the case when M has a bowtie ({a0, b0, c0}, {a1, b1, c1},
{b0, c0, a1, b1}) such that M\c0 is (4, 4, S)-connected with an N -minor and M\c1 has an 
N -minor but is not (4, 4, S)-connected. We will therefore use the following hypothesis in 
the next lemma, and throughout this paper.

Hypothesis VII. If, for (M1, N1) ∈ {(M, N), (M∗, N∗)}, the matroid M1 has a bowtie 
({a0, b0, c0}, {a1, b1, c1}, {b0, c0, a1, b1}), where M1\c0 is (4, 4, S)-connected and M1\c0, c1
has an N1-minor, then M1\c1 is (4, 4, S)-connected.

The next lemma is related to the previous lemma. We begin with the same structure 
in M , a bowtie, but we add the additional consideration of preserving an N -minor, and 
we eliminate one outcome by adding Hypothesis VII.

Lemma 3.5. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in an internally 4-connected 
binary matroid M with |E(M)| ≥ 13. Let N be an internally 4-connected minor of M
having at least seven elements. Suppose that M\4 is (4, 4, S)-connected, that N � M\1, 4, 
and that Hypothesis VII holds. Then M\1 is (4, 4, S)-connected with an N -minor and

(i) M\1 is internally 4-connected; or
(ii) M has a triangle {7, 8, 9} such that ({1, 2, 3}, {7, 8, 9}, {7, 8, 1, s}) is a bowtie for 

some s in {2, 3} and |{1, 2, . . . , 9}| = 9; or
(iii) every (4, 3)-violator of M\1 is a 4-fan of the form (4, t, 7, 8), for some t in {2, 3}

where |{1, 2, 3, 4, 5, 6, 7, 8}| = 8; or
(iv) M\6 is internally 4-connected with an N -minor.

Proof. By Hypothesis VII, we may assume that M\1 is (4, 4, S)-connected. Now, if 
part (i) or (ii) of Lemma 3.4 holds, then (i) or (ii) of the current lemma holds. More-
over, if (iii) of Lemma 3.4 holds, then, since M\4 is (4, 4, S)-connected, part (iii) of the 
current lemma holds. Thus we may assume that (iv) of Lemma 3.4 holds. Then, by sym-
metry, we may assume that M has a triangle {6, 7, 8} and a cocircuit {1, 3, 7, 8} where 
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|{1, 2, 3, 4, 5, 6, 7, 8}| = 8 and M\6 is internally 4-connected. We may also assume that 
M\6 has no N -minor otherwise (iv) holds.

Now M\1, 4 is 3-connected having (6, 7, 8, 3) as a 4-fan and N � M\1, 4. As N �� M\6, 
it follows, by Lemma 3.2, that N � M\1, 4/3. But M\1, 4/3 ∼= M\2, 4/3 ∼= M\2, 4/5 ∼=
M\2/5\6. Hence N � M\6, a contradiction. �

The next two results [1, Lemmas 5.2 and 5.7] are helpful when dealing with bowtie 
strings.

Lemma 3.6. Let T0, D0, T1, D1, . . . , Tn be a string of bowties in a matroid M . Then

M\c0, c1, . . . , cn/bn ∼= M\a0, a1, . . . , an/b0

∼= M\c0, c1, . . . , ck−1/bk\ak, ak+1, . . . , an

∼= M\c0, c1, . . . , ck−1/bk−1\ak, ak+1, . . . , an

for all k in {1, 2, . . . , n}.

Lemma 3.7. Let M be a binary matroid with an internally 4-connected minor N where 
|E(N)| ≥ 7. Let T0, D0, T1, D1, . . . , Tn be a string of bowties in M . Suppose M\c0, c1
has an N -minor but M\c0, c1/b1 does not. Then M\c0, c1, . . . , cn has an N -minor, but 
M\c0, c1, . . . , ci/bi has no N -minor for all i in {1, 2, . . . , n}, and M\c0, c1, . . . , cj/aj has 
no N -minor for all j in {2, 3, . . . , n}.

In the following result, we consider a short bowtie string.

Lemma 3.8. Let T0, D0, T1, D1, T2 be a string of bowties in an internally 4-connected bi-
nary matroid M . Suppose M\c1 is (4, 4, S)-connected. Then M\c1/b1 is (4, 5, S, +)-con-
nected. Moreover, either M\c1/b1 is internally 4-connected, or M\c1/b1 has a 4-fan and, 
whenever (α, β, γ, δ) is such a 4-fan, a1 ∈ {β, γ, δ}, and {β, γ, δ, c1} is a cocircuit of M .

Proof. As M\c1 is (4, 4, S)-connected having (c2, b2, a2, b1) as a 4-fan, M\c1/b1 is 
3-connected. Suppose M\c1/b1 has a (4, 5, S, +)-violator (U, V ). Then, without loss of 
generality, |T2 ∩ U | ≥ 2. It is not difficult to check that (U ∪ T2 ∪ b1, V − T2) is a 
(4, 4, S)-violator of M\c1, a contradiction. We conclude that M\c1/b1 is (4, 5, S, +)-con-
nected.

Suppose that (α, β, γ, δ) is a 4-fan in M\c1/b1 such that a1 /∈ {β, γ, δ}. Orthogonality 
with T1 implies that {β, γ, δ, c1} is not a cocircuit of M . Hence {β, γ, δ} is a triad of M . 
As M is internally 4-connected, we deduce that {α, β, γ, b1} is a circuit of M , so, by 
orthogonality, {α, β, γ} meets {b0, c0, a1} and {a2, b2}. Thus {β, γ, δ} meets a triangle 
of M , a contradiction. We conclude that a1 ∈ {β, γ, δ}. Since a1 is in a triangle of M , 
we deduce that {c1, β, γ, δ} is a 4-cocircuit of M . �

We continue on this theme with the following lemma.
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Lemma 3.9. Let M be an internally 4-connected binary matroid and suppose that M has 
T0, D0, T1, D1, T2 as a string of bowties and that M\c1 is (4, 4, S)-connected. Then

(i) M\c1/b1 is internally 4-connected; or
(ii) M\c1/b1 is (4, 5, S, +)-connected and M has a triangle {1, 2, 3} that avoids T1 such 

that {2, 3, a1, c1} is a cocircuit; or
(iii) M\c1/b1 is (4, 5, S, +)-connected and M has elements d0 and d1 such that {d0, d1}

avoids T0 ∪ T1 ∪ T2 where {d0, a1, c1, d1} is a cocircuit, and {d0, a1, s} or {d1, c1, t}
is a triangle for some s in {b0, c0} or t in {a2, b2}.

Proof. Suppose (i) does not hold. By Lemma 3.8, M\c1/b1 has a 4-fan, (1, 2, 3, 4), where 
a1 ∈ {2, 3, 4}, and {2, 3, 4, c1} is a cocircuit. Lemma 3.3 implies that {2, 3, 4} avoids 
T0 and T2. Now M has {1, 2, 3} or {1, 2, 3, b1} as a circuit. Suppose that a1 = 4. If 
{1, 2, 3} is a triangle, then (ii) holds, so we assume not. Then {1, 2, 3, b1} is a circuit. 
Now orthogonality implies that {1, 2, 3} meets both {b0, c0} and {a2, b2}, so {2, 3} meets 
T0 or T2, a contradiction. We deduce that a1 �= 4. Without loss of generality, a1 = 3. If 
{1, 2, a1} is a triangle in M , then orthogonality implies that {1, 2} meets {b0, c0}. Hence 
1 ∈ {b0, c0} and, relabelling (1, 2, 4) as (s, d0, d1), we see that (iii) holds. If {1, 2, a1, b1}
is a circuit of M , then orthogonality with D1 implies that {1, 2} meets {a2, b2}. Thus 
1 ∈ {a2, b2} and {1, 2, a1, b1} 
 T1 is {1, 2, c1}, a triangle, so, relabelling (1, 2, 4) as 
(t, d1, d0), (iii) holds. �

Next, we prove a stronger version of [2, Lemma 8.4].

Lemma 3.10. Let M be an internally 4-connected binary matroid having T0, D0, T1, D1, T2
as a string of bowties. Then

(i) M/T1 is internally 4-connected; or
(ii) T1 is the central triangle of a quasi rotor; or
(iii) M\c1/b1 is internally 4-connected; or
(iv) M\c1/b1 is (4, 5, S, +)-connected and M has elements d0 and d1 such that {d0, d1}

avoids T0 ∪ T1 ∪ T2, and {d0, a1, c1, d1} is a cocircuit, and {d0, a1, s} or {d1, c1, t}
is a triangle for some s in {b0, c0} or t in {a2, b2}.

Proof. Assume the lemma does not hold. By Lemma 3.4, since T1 is not the central 
triangle of a quasi rotor, M\c1 is (4, 4, S)-connected. By Lemma 3.9, M has a trian-
gle {1, 2, 3} avoiding T1 such that {2, 3, a1, c1} is a cocircuit. Lemma 3.3 implies that 
{1, 2, 3} avoids D0 and D1, and that T0 and T2 avoid {2, 3}. Then (i) or (ii) holds by [2, 
Lemma 8.3], a contradiction. �

To conclude this section, we recall [1, Lemma 4.5], which is useful for dealing with 
quasi rotors.
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Fig. 11. n ≥ 1 and M has either {dn−2, an−1, cn−1, dn−1} or {dn−2, an−1, cn−1, an, cn} as a cocircuit, 
where d−1 = α if n = 1.

Lemma 3.11. Let M be an internally 4-connected binary matroid having ({1, 2, 3},
{4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) as a quasi rotor and having at least thir-
teen elements. Let N be an internally 4-connected matroid containing at least seven 
elements such that M/e has an N -minor for some e in {3, 5, 7}. Then one of M\1, 
M\9, M\1/2, M\9/8, or M\3, 4/5 is internally 4-connected with an N -minor.

4. Bowties and ladders

In this section, we consider how bowties can interact with ladders. We begin with a 
lemma that builds from the configuration in Fig. 11.

Lemma 4.1. Let M be an internally 4-connected binary matroid that has at least thirteen 
elements. Assume that M contains the configuration shown in Fig. 11 where n ≥ 1, all 
the elements shown are distinct except that dn and γ may be equal, and, in addition to the 
cocircuits shown, exactly one of {dn−2, an−1, cn−1, dn−1} and {dn−2, an−1, cn−1, an, cn}
is a cocircuit of M . Assume also that M is not isomorphic to the cycle matroid of a 
quartic Möbius ladder and that M\cn is (4, 4, S)-connected. Then M\c0, c1, . . . , cn, β is 
(4, 4, S)-connected and if it has a (4, 3)-violator, then one side of that (4, 3)-violator is a 
4-fan F where either

(i) F is a 4-fan in M\cn with bn as its coguts element; or
(ii) F is a 4-fan in M\β with α as its coguts element.

Proof. First we show the following.

4.1.1. When n = 1, neither {d0, d1} nor {b0, b1} is contained in a triangle of M . More-
over, none of a1, b0, b1, d0, nor d1 is in a triangle of M\c0, c1.

If {dn−1, dn} is in a triangle, then M\cn has a 5-fan, a contradiction. If {b0, b1} is in 
a triangle, then orthogonality implies that the triangle’s third element is in {β, γ}, so 
λ({α, β, γ, d0} ∪ T0 ∪ {a1, b1}) ≤ 2, a contradiction. By [1, Lemma 6.1], a1 is not in a 
triangle of M\c0, c1. If b0 or b1 is in a triangle of M\c0, c1, then orthogonality implies 
that this triangle contains {b0, b1}, a contradiction. Similarly, if d0 or d1 is in a triangle of 
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M\c0, c1, then orthogonality implies that this triangle contains {d0, d1}, a contradiction. 
We conclude that 4.1.1 holds.

Next we note that

4.1.2. M\c0, c1, . . . , cn is (4, 4, S)-connected.

This follows immediately from [1, Lemma 6.5] when n > 1. Moreover, it holds when 
n = 1 by combining 4.1.1 with [1, Lemma 6.1].

The matroid M\c0, c1, . . . , cn has (β, α, a0, d0) or (β, α, a0, a1) as a 4-fan where the 
latter can only arise when n = 1. Thus M\c0, c1, . . . , cn, β is 3-connected. Next we 
observe that M\c0, c1, . . . , cn, β is sequentially 4-connected. To see this, note that if 
M\c0, c1, . . . , cn, β has a non-sequential 3-separation (U, V ), then, as {a0, α} is in a triad, 
we may assume that this triad is contained in U . Thus (U ∪ β, V ) is a non-sequential 
3-separation of M\c0, c1, . . . , cn, a contradiction.

Now suppose M\c0, c1, . . . , cn, β has a 4-fan (w1, w2, w3, w4). Then M has a cocircuit 
C∗ such that {w2, w3, w4} � C∗ ⊆ {w2, w3, w4, β, c0, c1, . . . , cn}.

4.1.3. If (w1, w2, w3, w4) is a 4-fan of M\c0, c1, . . . , cn, then w4 = bn and {bn, cn, w2, w3}
is a cocircuit of M , so (w1, w2, w3, w4) is a 4-fan of M\cn.

Suppose that this fails. If n > 1, then, by (iii) of [1, Lemma 6.5], w4 = d0 and 
a0 ∈ {w2, w3}. Moreover, (w1, w2, w3, w4) is a 4-fan of M\c0. Thus {w2, w3, c0, d0} is 
a 4-cocircuit of M containing {a0, c0, d0}, so it is the 4-cocircuit {α, a0, c0, d0}. Thus 
{w1, w2, w3} contains {α, a0} and so is {α, a0, β}, a contradiction. We conclude that 
4.1.3 holds if n > 1.

Now let n = 1. By 4.1.1, neither {b0, b1} nor {d0, d1} is contained in a triangle of M . It 
follows by [1, Lemma 6.1] that w4 = b1. Now 4.1.3 holds if {w2, w3, b1, c1} is a cocircuit, so 
we assume that {w2, w3, b1, c0} or {w2, w3, b1, c0, c1} is a cocircuit. Orthogonality implies 
that {w2, w3} meets {d0, a1}, a contradiction to 4.1.1. Thus 4.1.3 holds.

We may now assume that (w1, w2, w3, w4) is not a 4-fan of M\c0, c1, . . . , cn. Then 
β ∈ C∗. Thus {α, a0} meets {w2, w3, w4}. Next we show that

4.1.4. a0 /∈ {w1, w2, w3, w4}.

First we show that a0 /∈ {w1, w2, w3}. Assume the contrary. Let n = 1. Then, by 
orthogonality, {w1, w2, w3} meets {α, d0} or {α, a1}. Thus d0 or a1 is in a triangle of 
M\c0, c1, a contradiction to 4.1.1. Hence we may assume that n ≥ 2. Then, by [1, 
Lemma 6.3], the triangle {w1, w2, w3} of M\c0, c1, . . . , cn meets {a0, b0, d0, a1, b1, d1, . . . ,
an, bn, dn} in {a0} or {a0, dn−1, dn}. By orthogonality, {a0, dn−1, dn} is not a trian-
gle. Thus {w1, w2, w3} avoids {b0, d0, a1, b1, d1, . . . , an, bn, dn}. By orthogonality between 
{w1, w2, w3} and both {β, γ, a0, b0} and {α, a0, c0, d0}, we find that {w1, w2, w3} =
{a0, α, γ}. But {a0, α, β} is a triangle, a contradiction. Hence a0 /∈ {w1, w2, w3}.
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Suppose now that a0 = w4. Orthogonality between C∗ and the circuit {a0, b0, d0, a1}
implies that {w2, w3} meets {b0, d0, a1}. Thus, by [1, Lemma 6.3], n = 1. But now we 
have a contradiction to 4.1.1. Thus 4.1.4 holds.

We now know that α ∈ {w2, w3, w4}. Suppose α ∈ {w2, w3}. If {α, a0, c0, d0} is a co-
circuit, then, by orthogonality, {a0, d0} meets {w1, w2, w3}. By [1, Lemma 6.3] and 4.1.4, 
n = 1 and d0 ∈ {w1, w2, w3}, a contradiction to 4.1.1. We deduce that {α, a0, c0, a1, c1} is 
a cocircuit of M , so n = 1. Then orthogonality implies that {w1, w2, w3} meets {a0, a1}. 
Thus, by 4.1.4 and 4.1.1, we have a contradiction. Hence α = w4.

Now suppose that ci ∈ C∗ for some i in {0, 1, . . . , n}. Then {w2, w3} meets {ai, bi}. 
Thus, by [1, Lemma 6.3], if n ≥ 2, then i = 0 and a0 ∈ {w2, w3}, a contradiction 
to 4.1.4. Moreover, if n = 1, then one of a0, b0, a1, or b1 is in {w2, w3}, a contradiction to 
4.1.4 or 4.1.1. We conclude that C∗ avoids {c0, c1, . . . , cn}, so C∗ = {w2, w3, α, β}, and 
(w1, w2, w3, α) is a 4-fan of M\β. �

Beginning with the next lemma and for the rest of the paper, we shall start abbrevi-
ating how we refer to the following four outcomes in the main theorem.

(i) M has a proper minor M ′ such that |E(M)| − |E(M ′)| ≤ 3 and M ′ is internally 
4-connected with an N -minor; or

(ii) M contains an open rotor chain, a ladder structure, or a ring of bowties that can 
be trimmed to obtain an internally 4-connected matroid with an N -minor;

(iii) M contains an open quartic ladder from which an internally 4-connected minor of 
M with an N -minor can be obtained by a mixed ladder move;

(iv) M contains an enhanced quartic ladder from which an internally 4-connected minor 
of M with an N -minor can be obtained by an enhanced-ladder move.

When (i) or (iv) holds, we say, respectively, that M has a quick win or an enhanced-ladder 
win. When trimming an open rotor chain, a ladder structure, or a ring of bowties in M
produces an internally 4-connected matroid with an N -minor, we say, respectively, that 
M has an open-rotor-chain win, a ladder win, or a bowtie-ring win. When (iii) holds, we 
say that M has a mixed ladder win.

5. An outline of the proof of the main theorem

Since the proof of the main theorem is long, we give an outline of it in this section. By 
hypothesis, M and N are internally 4-connected binary matroids and M has a bowtie 
({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) where M\4 is (4, 4, S)-connected with an N -minor, and 
M\1, 4 has no N -minor. We may assume that M\6 is (4, 4, S)-connected otherwise the 
theorem holds by Theorem 1.3. The one result in this section, Lemma 5.1, shows that 
either we get a quick win, or M contains one of configurations (A), (B), and C in Fig. 13. 
In Section 6, we treat the case when M contains configuration (C) noting first that, by 
Lemma 3.1, M\4/5 is (4, 4, S)-connected with an N -minor and with (a, b, c, 6) as a 4-fan. 
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Fig. 12. Either {dn−2, an−1, cn−1, dn−1} or {dn−2, an−1, cn−1, an, cn} is a cocircuit, where d−1 = α.

Fig. 13. In each structure, we view the labels on 2 and 3 as being interchangeable. The elements in each part 
are distinct except that a may equal 1 in (B) and (C).

Thus M\4/5, 6 or M\4/5\a has an N -minor. These two possibilities are dealt with in 
Lemmas 6.1 and 6.4, respectively.

In Section 7, we deal with the case when M contains configuration (A). First we prove 
a technical lemma detailing the possible structures surrounding a right-maximal bowtie 
chain in M that is also a right-maximal bowtie chain in M ′, a minor of M . Then we 
show in Lemma 7.3 that we obtain our result.

The results of Sections 6 and 7 mean that we can assume that M contains neither 
of configurations (C) or (A). It remains to consider when M contains configuration (B) 
from Fig. 13. This is done in Section 8. Finally, in Section 9, the parts already proved 
are combined to complete the proof of the main theorem.

We now show that M does indeed contain one of the three structures in Fig. 13.

Lemma 5.1. Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie in an internally 4-connected 
binary matroid M with |E(M)| ≥ 13. Let N be an internally 4-connected binary matroid 
having at least seven elements. Suppose that M\4 is (4, 4, S)-connected with an N -minor 
and that N �� M\1, 4. Then either M has an internally 4-connected minor M ′ with 
an N -minor such that 1 ≤ |E(M) − E(M ′)| ≤ 2, or, up to switching the labels on the 
elements 2 and 3, the matroid M contains one of the configurations shown in Fig. 13, the 
deletion M\6 is (4, 4, S)-connected, and {4, 5, 6} is the only triangle in M containing 5. 
Moreover, in each of (A), (B), and (C), the elements shown are distinct except that, in 
(B) and (C), it is possible that a = 1.

Proof. Since N �� M\1, 4, it follows by Lemma 3.1 that M\4/5 is (4, 4, S)-connected 
with an N -minor. Thus M\6/5 is (4, 4, S)-connected with an N -minor. We may assume 
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that M\6/5 is not internally 4-connected otherwise the lemma holds. If 5 is in a triangle 
T other than {4, 5, 6}, then M\4/5 has T − 5 as a circuit, a contradiction. Thus {4, 5, 6}
is the only triangle in M containing 5.

With a view to using Lemma 3.4, we now consider M\6. First suppose that {4, 5, 6}
is the central triangle of a quasi rotor ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {y, 6, 7, 8},
{x, y, 7}) for some x in {2, 3} and some y ∈ {4, 5}. Since M\4 is (4, 4, S)-connected, 
we deduce that y = 4. Then M\4/5 has (x, 6, 7, 8, 9) as a 5-fan, a contradiction. We 
conclude that {4, 5, 6} is not the central triangle of such a quasi rotor. Then Lemma 3.4
implies that either M\6 is internally 4-connected, and the lemma holds; or M\6 is 
(4, 4, S)-connected but not internally 4-connected. Moreover, in the latter case, one of 
the following holds.

(i) M has {a, b, c} as a triangle and {b, c, d, 6} as a cocircuit for some a in {2, 3} and b
in {4, 5}, where |{1, 2, . . . , 6, c, d}| = 8; or

(ii) M contains the structure in Fig. 13(C) where the elements are all distinct except 
that a may be the same as 1; or

(iii) M has a triangle {7, 8, 9} and a cocircuit {5, 6, 7, 8} where the elements are all 
distinct except that 1 may be the same as 9.

To see this, observe first that (i) above occurs when (iii) of Lemma 3.4 holds. On the 
other hand, outcomes (ii) and (iv) of Lemma 3.4 have been combined into (ii) and (iii) 
above with the separation between the latter being determined by the relative placement 
of the elements 4 and 5.

If (i) holds, then we know that b = 4, otherwise {a, 5, c} is a triangle in M that 
contains 5 but is not {4, 5, 6}; a contradiction. Thus, up to switching the labels on 2
and 3, if (i) holds, then M contains the structure in Fig. 13(A) where all of the elements 
shown are distinct.

Since (ii) yields (C) in Fig. 13, we may now assume that (iii) holds. Recall that M\6/5
is (4, 4, S)-connected but not internally 4-connected. Thus M\6/5 has a 4-fan (a, b, c, d). 
Lemma 3.8 implies that 4 ∈ {b, c, d}, and {b, c, d, 6} is a cocircuit of M . By symmetry 
between b and c, we may assume that 4 = b or 4 = d.

Assume first that 4 = b. Then M has {4, c, d, 6} as a cocircuit, and Lemma 3.3 implies 
that {c, d} avoids {1, 2, 3} so |{1, 2, . . . , 6, c, d}| = 8, and M has {a, 4, c} or {5, a, 4, c} as 
a circuit. In the first case, orthogonality with {2, 3, 4, 5} implies that a ∈ {2, 3}, so, up 
to switching the labels of 2 and 3, the structure (A) in Fig. 13 occurs, where all of the 
elements are distinct. If {5, a, 4, c} is a circuit of M , then M also has {a, c, 6} as a circuit, 
so M contains the structure in Fig. 13(B) where all of the elements are distinct except 
that a may be a repeated element. Certainly a /∈ {5, 6, b, c, d}. Hence, by orthogonality, 
either a is distinct from the other elements in (B), or a = 1.

We may now assume that 4 = d. Then {b, c, 4, 6} is a cocircuit of M . Lemma 3.3
implies that {b, c} avoids {1, 2, 3, 7, 8, 9}. Either {a, b, c} or {a, b, c, 5} is a circuit of M . 
In the first case, (C) in Fig. 13 occurs and orthogonality implies that all of the elements 
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are distinct except that a may be 1. Now suppose that M has {a, b, c, 5} as a circuit. 
Orthogonality between this circuit and {2, 3, 4, 5} implies that {a, b, c} meets {2, 3}. 
By symmetry between 2 and 3, we may assume that 3 ∈ {a, b, c}. As {b, c} avoids 
{1, 2, 3, 7, 8, 9}, we deduce that 3 = a. In (iii), we know that {5, 6, 7, 8} is a cocircuit. 
Orthogonality between this cocircuit and the circuit {3, b, c, 5} implies that {3, b, c} meets 
{6, 7, 8}, a contradiction. �

We reiterate here that, in each of configurations (A), (B), and (C) in Fig. 13, while 
the labels of 1, 4, 5, and 6 are fixed, we allow the labels on 2 and 3 to be interchanged 
without regarding the resulting structures as being different.

6. Configuration (C)

In this section, we treat the case when M contains the configuration in Fig. 13(C). 
We arrived at this configuration by assuming that N �� M\1, 4. Thus, by Lemma 3.1, 
M\4/5 is (4, 4, S)-connected with an N -minor. Since M\4/5 has (a, b, c, 6) as a 4-fan, 
by Lemma 3.2, N � M\4/5/6 or N � M\4/5\a. The next lemma deals with the first of 
these cases.

Lemma 6.1. Let M and N be binary internally 4-connected matroids such that |E(M)| ≥
13 and |E(N)| ≥ 7. Suppose that M contains structure (C) in Fig. 13, where M\4 is 
(4, 4, S)-connected with an N -minor and N �� M\1, 4. If M\4/5, 6 has an N -minor, then 
M has a quick win.

Proof. We observe that M\4/5, 6 ∼= M/4/5/6. Now apply Lemma 3.10. If (i) or (iii) of 
that lemma holds, then the required result is immediate. If (ii) holds, then, as M/e has an 
N -minor for all e in {4, 5, 6}, it follows by [1, Lemma 4.5] that the lemma holds. Finally, 
suppose that (iv) holds. Then either M has a triangle containing 5 and a member of 
{2, 3}; or M has a triangle containing 6 and a member of {b, c}. In each case, we obtain 
a contradiction to the fact that M\4 is (4, 4, S)-connected. �

The next lemma concerns the structure in Fig. 14, which arises in Lemma 6.3.

Lemma 6.2. Suppose M is an internally 4-connected binary matroid. If M contains the 
structure in Fig. 14, where all of the elements are distinct, then M is the cycle matroid 
of a 16-element quartic planar ladder having {a1, c0, d0} and {a0, c3, d3} as triangles.

Proof. Clearly |E(M)| ≥ 16. Moreover, T0∪T1∪T2∪T3∪{d1, d2} has rank at most seven 
and contains at least five cocircuits, none of which is the symmetric difference of any 
others. Thus this 14-element set is 3-separating, so |E(M)| ≤ 17, and has rank equal to 
seven. Suppose |E(M)| = 17. Then M has {d0, d3, e} as a triad for some element e that 
is not shown in Fig. 14. Then the symmetric difference of all of the vertex cocircuits and 
{d0, d1, e} is {e, a0, c0}, so M is not internally 4-connected, a contradiction. We conclude 
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Fig. 14. All of the elements are distinct.

Fig. 15. All of the elements are distinct except a0 may be g, or T0 may be {e, f, g}.

that |E(M)| = 16. As r(M) = 7, we see that {a0, c0, a1, b1, a2, b2, c3} is a basis B of M . 
By orthogonality with the vertex cocircuits in Fig. 14, we deduce that the fundamental 
circuit C(d0, B) for d0 is {d0, a1, c0}. Similarly, C(d3, B) = {d3, a0, c3}. The lemma now 
follows because M is binary and so is determined by its fundamental circuits with respect 
to B. �

Next we deal with a structure that leads to a mixed ladder win.

Lemma 6.3. Let M be an internally 4-connected binary matroid having at least fifteen 
elements. Suppose that M contains the structure in Fig. 15, where k ≥ 2 and all of the 
elements are distinct except that a0 may be g, or T0 may be {e, f, g}, or d0 may be dk.

(i) The set {b0, c0} �= {e, f} and d0 �= dk.
(ii) If M\ci is (4, 4, S)-connected for all i in {1, 2, . . . , k}, then

(a) {d0, a1} is contained in a triangle; or
(b) {ck, dk} is contained in a triangle; or
(c) M\c1, c2, . . . , ck/bk is internally 4-connected.

Proof. Let X = T1 ∪T2 ∪ · · · ∪Tk ∪{d1, d2, . . . , dk−1}. Then E(M) −X contains T0 ∪d0. 
To establish (i), it suffices to show that λ(X) ≤ 2 if {b0, c0} = {e, f} or if d0 = dk. In 
the first case, D0 
 {bk, ck, e, f} = {a1, b1, ak, ck}, which is a cocircuit contained in X. 



36 C. Chun, J. Oxley / Advances in Applied Mathematics 104 (2019) 14–74
In the second case, {d0, a1, c1, d1} 
{dk−1, ak, ck, dk} is also a cocircuit contained in X. 
In each case, one easily checks that λ(X) ≤ 2, so (i) holds.

Next we note that, by [1, Lemma 5.3], M\c1, c2, . . . , ck is 3-connected unless this 
matroid has a 1- or 2-element cocircuit D∗ that contains aj or bj for some j in 
{3, 4, . . . , k}. Consider the exceptional case. Then M has a cocircuit C∗ such that 
D∗ � C∗ ⊆ D∗ ∪ {c1, c2, . . . , ck}. For i �= j, orthogonality implies that ci ∈ C∗ if 
and only if |D∗ ∩ {ai, bi}| = 1. As C∗ meets Tj , it must have at least four elements. 
Hence C∗ = {x, ci, y, cj} for some x in {ai, bi} and y in {aj , bj}. Let s be the smaller of i
and j. Then {i, j} = {s, s +1} and as+1 ∈ C∗ otherwise we get a contradiction to orthog-
onality between C∗ and {cs, ds, as+1}. Thus C∗ is a 4-cocircuit meeting Ts and Ts+1 and 
containing {as+1, cs+1}. This contradiction to Lemma 3.3 implies that M\c1, c2, . . . , ck
is indeed 3-connected.

Clearly M\c1, c2, . . . , ck has bk as the coguts element of a 4-fan. The proof of the next 
assertion occupies most of the rest of the proof of the lemma finishing just before 6.3.5.

6.3.1. If M\c1, c2, . . . , ck is (4, 4, S)-connected and has bk as the coguts element of every 
4-fan, then part (b) of the lemma holds.

Certainly M\c1, c2, . . . , ck/bk is 3-connected. Suppose (U, V ) is a non-sequential 
3-separation of this matroid. Without loss of generality, {e, f, g} ⊆ U , so (U ∪ bk, V )
is a non-sequential 3-separation of M\c1, c2, . . . , ck, a contradiction. Thus M\c1, c2,
. . . , ck/bk is sequentially 4-connected.

Let (α, β, γ, δ) be a 4-fan in M\c1, c2, . . . , ck/bk. By the hypothesis, (α, β, γ, δ) is not 
a 4-fan in M\c1, c2, . . . , ck, so {α, β, γ, bk} is a circuit, C. Next we observe that

6.3.2. C contains {bk−1, bk}, avoids {ak−1, ak, ck−1, ck}, and meets both {bk−2, ck−2} and 
{e, f}.

The last part of 6.3.2 is an immediate consequence of orthogonality. Suppose ak ∈ C. 
Then orthogonality with the cocircuits {dk−1, ak, ck, dk} and {dk−2, ak−1, ck−1, dk−1}
implies that the last element in C is dk, so C contains {ak, dk, bk}. The symmetric 
difference of C with Tk is a triangle containing {ck, dk}. Thus (ii)(b) holds, a contra-
diction. We may now assume that ak /∈ C. Then bk−1 ∈ C and orthogonality implies 
that {bk−2, ck−2, ak−1} meets C. Moreover, orthogonality with {dk−2, ak−1, ck−1, dk−1}
implies that ak−1 is not in C. Thus 6.3.2 holds.

Suppose that k ≥ 3. Then, by orthogonality, ck−2 /∈ C. Moreover, without loss of gen-
erality, we may assume that e ∈ C. Thus C = {e, bk−2, bk−1, bk}. Then, by orthogonality 
between C and {bk−3, ck−3, ak−2, bk−2}, we deduce that e ∈ {bk−3, ck−3}. Thus k = 3
and T0 = {e, f, g}. Without loss of generality, e = b0. Since (i) holds, c0 = g, and M
contains the structure in Fig. 14 with all the elements in that figure being distinct. Then 
Lemma 6.2 implies that (ii)(a) holds.
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We may now assume that k = 2. Recall that C = {α, β, γ, b2} where (α, β, γ, δ) is 
a 4-fan of M\c1, c2/b2. Now M has a cocircuit C∗ such that {β, γ, δ} ⊆ C∗ ⊆ {β, γ, δ,
c1, c2}. Since {β, γ} meets {b1, b0, c0}, it follows that |C∗| �= 3.

Next we show the following.

6.3.3. If {e, f, g} = T0, then C = {b0, b1, b2, y} for some element y that is not in T0 ∪
T1 ∪ T2 ∪ {d0, d1, d2}. If {e, f, g} �= T0, then, without loss of generality, e ∈ C and C is 
{b0, b1, b2, e} or {c0, b1, b2, e}.

Suppose first that {e, f, g} = T0. By (a), we may assume that (a0, b0, c0) = (e, f, g). 
If M has a triangle that meets T0, T1, and T2, then λ(T0 ∪ T1 ∪ T2) ≤ 2, a contradiction. 
Thus we may assume that M has no such triangle. Now C contains {b1, b2} and meets 
both {b0, c0} and {a0, b0}. Thus C meets each of T0, T1, and T2. If C contains two 
elements of one of these triangles, say Ti, then C 
 Ti is a triangle that meets each of 
T0, T1, and T2, a contradiction. Thus C = {b0, b1, b2, y} for some element y that avoids 
T0 ∪ T1 ∪ T2. By orthogonality, y also avoids {d0, d1, d2}. Thus the first part of 6.3.3
holds. The second part is an immediate consequence of 6.3.2.

6.3.4. If {e, f, g} = T0, then {β, γ} is {b1, y}; otherwise {β, γ} is {b1, e}.

To see this, note that, by 6.3.3, {α, β, γ} is one of {b0, b1, y}, {b0, b1, e}, or {c0, b1, e}. 
To prove 6.3.4, it suffices to show that T0 avoids {β, γ}. Assume the contrary. Then 
orthogonality between C∗ and T0 implies that δ ∈ T0. Suppose c1 ∈ C∗. Then orthogo-
nality implies that {β, γ} − T0 = {b1} and c2 /∈ C∗. Thus C∗ is a 4-cocircuit that meets 
both T0 and T1 but is not {b0, c0, a1, b1}, a contradiction to Lemma 3.3. Thus c1 /∈ C∗. 
Hence c2 ∈ C∗ and we contradict orthogonality with T2. We conclude that 6.3.4 holds.

We now know that b1 ∈ C∗. As |C∗ ∩ T1| is even, either c1 ∈ C∗, or c1 /∈ C∗ and C∗

is {b1, y, a1, c2} or {b1, e, a1, c2}. Thus c1 ∈ C∗ otherwise orthogonality between C∗ and 
the circuit {c1, b2, c2, d1} gives a contradiction. Suppose c2 ∈ C∗. Then, by orthogonality, 
δ = a2, so C∗ is a 5-cocircuit containing {b1, c1, a2}. The symmetric difference of this 
cocircuit with the cocircuit {b1, c1, a2, b2} is a triad that contains c2, a contradiction. 
Hence c2 /∈ C∗. Thus C∗ is {b1, y, δ, c1} or {b1, e, δ, c1}. By orthogonality, with the cir-
cuit {c1, c2, d1, b2}, we deduce that δ = d1. If {e, f, g} �= {a0, b0, c0}, then we have a 
contradiction to orthogonality between C∗ and {e, f, g}. If {e, f, g} = {a0, b0, c0}, then 
λ(T0 ∪ T1 ∪ T2 ∪ {d1, y}) ≤ 2, a contradiction as |E(M)| ≥ 15. This completes the proof 
of 6.3.1.

Now assume that part (ii) of the lemma fails. Next we show the following.

6.3.5. k ≥ 3

Assume that k = 2. Then applying Lemma 6.1 of [1], we see that part (i) of that 
lemma does not hold. Moreover, part (v) of that lemma does not hold by 6.3.1. If (ii) of [1, 
Lemma 6.1] holds, that is, {d1, d2} is in a triangle of M , then this triangle together with 
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c1 and a2 forms a 5-fan in M\c2, a contradiction. If (iv) of [1, Lemma 6.1] holds, that is, 
a1 is in a triangle that avoids {b1, c1, d1}, then orthogonality with {d0, a1, c1, d1} implies 
that this triangle contains d0, so (ii)(a) of the current lemma holds, a contradiction. Thus 
(iii) of [1, Lemma 6.1] holds, that is, {b1, b2} is in a triangle T of M . By orthogonality, 
T meets both {b0, c0} and {e, f}. Thus T0 = {e, f, g}, so {b1, b2, b0} or {b1, b2, c0} is a 
triangle. Then λ(T0 ∪ T1 ∪ T2) ≤ 2, a contradiction. We conclude that 6.3.5 holds.

We now apply Lemma 6.5 of [1] to the configuration induced by T1 ∪ T2 ∪ · · · ∪
Tk ∪ {d1, d2, . . . , dk}. Neither (i) nor (ii) of that lemma holds, and if (iv) holds, then 
{dk, ck} is in a triangle, that is, (ii)(b) of the current lemma holds, a contradiction. We 
deduce that (iii) of [1, Lemma 6.5] holds. Thus M\c1, c2, . . . , ck is (4, 4, S)-connected 
and every (4, 3)-violator of it is a 4-fan (u1, u2, u3, u4) where either u4 = d1 and a1
is in {u2, u3}; or u4 = bk. Suppose that (u1, u2, a1, d1) is a 4-fan in M\c1, c2, . . . , ck. 
By orthogonality, {u1, u2} meets {d0, d1}. Hence {d0, a1} is contained in a triangle and 
(ii)(a) holds, a contradiction. We conclude that every 4-fan of M\c1, c2, . . . , ck has bk as 
its coguts element. This contradiction to 6.3.1 completes the proof of the lemma. �

We now consider the case when M contains the configuration in Fig. 13(C), but 
N �� M\1, 4 and N � M\4/5\a.

Lemma 6.4. Let M and N be binary internally 4-connected matroids such that |E(M)| ≥
15 and |E(N)| ≥ 7. Suppose that Hypothesis VII holds and that M contains structure (C) 
in Fig. 13, where M\6/5\a has an N -minor, and M\4 and M\6 are (4, 4, S)-connected. 
If M\4, 1 has no N -minor, then

(i) M has a quick win; or
(ii) M has an open-rotor-chain win or a ladder win; or
(iii) M has a mixed ladder win; or
(iv) M has an enhanced-ladder win.

Proof. Suppose that M has no quick win. As M\6/5\a ∼= M\4/5\a, each of these 
matroids has an N -minor.

6.4.1. Neither M\4, a/c nor M\4, a/b has an N -minor.

Assume that 6.4.1 fails. Note that M\4, a/b ∼= M\4, c/b ∼= M\4, c/6 and, by symme-
try, M\4, a/c ∼= M\4, b/6. Since M\4, a/c or M\4, a/b has an N -minor, we deduce that 
M\4/6 has an N -minor. As M\4/6 has (1, 2, 3, 5) as a 4-fan, but M\4, 1 has no N -minor, 
it follows that M\4/6/5 has an N -minor. Therefore, by Lemma 6.1, we conclude that 
6.4.1 holds.

Next we relabel letting (5, 6, 4) = (a0, b0, c0) and (b, c, a) = (a1, b1, c1). Take T0, D0,

T1, D1, . . . , Tn to be a right-maximal bowtie string in M . Now M\c0, c1 has an N -minor 
but none of M\c0, c1/b1, M\c0, c1/a1, and M\c0, 1 has an N -minor.
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Suppose that {a0, b0, x, cn} is not a cocircuit for all x in {an, bn}. Now, by Lemma 5.1, 
a0 is in a unique triangle of M . Therefore, by [1, Lemma 10.1], the lemma holds.

We may now assume that {a0, b0, x, cn} is a cocircuit for some x in {an, bn}. Then 
a0 �= cn, so all of the elements in the bowtie string are distinct. Up to relabelling an
and bn, we may assume that x = bn. Lemma 3.3 implies that n > 1. If n = 2, then 
λ(T0∪T1∪T2) ≤ 2, a contradiction. Therefore n ≥ 3. By Lemma 3.7 and the observations 
at the end of the second-last paragraph, we have that

6.4.2. M\c0, c1, . . . , cn has an N -minor, but M\c0, c1, . . . , ci/ai has no N -minor for all i
in {1, 2, . . . , n}.

Next we show that

6.4.3. {1, 2, 3} avoids {c0, c1, . . . , cn} ∪ {an, bn}.

Suppose first that {1, 2, 3} meets {c0, c1, . . . , cn}. Then {2, 3} meets the last set, since 
M\c0, 1 has no N -minor. Up to switching the labels on 2 and 3, we may assume that 
3 = ci for some i in {0, 1, . . . , n}. Then 2 is in a 1- or 2-cocircuit of M\c0, ci, so M\c0, ci/2
has an N -minor. Hence so does M\c0, /2\1, a contradiction. We deduce that {1, 2, 3}
avoids {c0, c1, . . . , cn}.

Now suppose that {1, 2, 3} meets {an, bn}. As {1, 2, 3} �= Tn, orthogonality between 
{1, 2, 3} and Dn−1 implies that bn−1 ∈ {1, 2, 3}. If n = 2, then λ(T0∪T1∪T2) ≤ 2, a con-
tradiction. If n ≥ 3, then orthogonality with Dn−2 implies, since {1, 2, 3} �= Tn−1, that 
bn−2 ∈ {1, 2, 3}. Then orthogonality between {1, 2, 3} and Dn−3 gives a contradiction. 
Thus 6.4.3 holds.

Evidently (1, 2, 3, a0) is a 4-fan in M\c0, c1, . . . , cn. Since deleting 1 from the last ma-
troid destroys all N -minors, Lemma 3.2 implies that M\c0, c1, . . . , cn/a0 has an N -minor. 
Now

M\c0, c1, . . . , cn−1, cn/a0 ∼= M\b0, c1, . . . , cn−1, cn/a0

∼= M\b0, c1, . . . , cn−1, cn/bn

∼= M\b0, c1, . . . , cn−1, an/bn

∼= M\b0, c1, . . . , cn−1, an/bn−1

...
∼= M\b0, c1, a2 . . . , an−1, an/b1

∼= M\b0, a1, . . . , an−1, an/c0.

Therefore M/bi\ci has an N -minor for all i in {1, 2, . . . , n}. Hypothesis VII implies that 
M\c1 is (4, 4, S)-connected and, indeed, that M\ci is (4, 4, S)-connected for all i in 
{1, 2, . . . , n}.
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Consider M/bn\cn, which has an N -minor. Lemma 3.9 implies that M/bn\cn is 
(4, 5, S, +)-connected and either

(I) M has a triangle {x, y, z} such that {y, z, an, cn} is a cocircuit; or
(II) M has elements dn−1 and dn such that {dn−1, dn} avoids Tn−1 ∪ Tn ∪ T0 where 

{dn−1, an, cn, dn} is a cocircuit, and {dn−1, an, s} or {dn, cn, t} is a triangle for some 
s in {bn−1, cn−1} or t in {a0, b0}.

6.4.4. Part (I) does not hold.

Suppose that (I) does hold. Since we have a right-maximal bowtie string, we know that 
{x, y, z} meets T0∪T1∪· · ·∪Tn. By Lemma 5.1, T0 is the only triangle containing a0. Thus, 
by [1, Lemma 5.4], {x, y, z} = Ti for some i in {0, 1, . . . , n −2}. Moreover, by Lemma 3.3, 
i �= 0. If ci ∈ {y, z}, then M\c0, c1, . . . , cn has an in a cocircuit of size at most two, so 
we can contract an from the last matroid keeping an N -minor, a contradiction to 6.4.2. 
Therefore ci = x, so {ai, bi} = {y, z}. Now Di−1 
 {y, z, an, cn} is {bi−1, ci−1, an, cn}, 
which must be a cocircuit. Again an is in a cocircuit in M\c0, c1, . . . , cn of size at most 
two, so contracting an from the last matroid retains an N -minor, a contradiction to 6.4.2. 
We conclude that 6.4.4 holds.

We may now assume that (II) holds. Next we show the following.

6.4.5. M has no triangle containing {dn, cn}.

Suppose M has a triangle T containing {dn, cn}. By orthogonality with the cocircuit 
{bn, cn, a0, b0}, we deduce that a0 or b0 is in T . As T0 is the only triangle containing a0, 
it follows that T = {dn, cn, b0}. Orthogonality implies that dn ∈ {c0, a1, b1} and hence 
that {dn−1, dn} ⊆ T1. Then (I) holds so we have a contradiction to 6.4.4 that completes 
the proof of 6.4.5.

We now know that {dn−1, an, s} is a triangle for some s in {bn−1, cn−1}. If s = bn−1, 
then orthogonality implies that dn−1 ∈ {bn−2, cn−2}. Hence orthogonality implies that 
{dn−1, dn} ⊆ Tn−2, and λ(Tn−2 ∪ Tn−1 ∪ Tn) ≤ 2, a contradiction. Thus s = cn−1. By 
assumption, {dn−1, dn} avoids Tn−1∪Tn∪T0. If {dn−1, dn} meets T0∪T1∪· · ·∪Tn, then, 
by orthogonality between {dn−1, an, bn, dn} and each Ti, we see that {dn−1, dn} ⊆ Ti for 
some i /∈ {n − 1, n, 0}, and (I) holds, a contradiction. We deduce that the elements of 
T0 ∪ T1 ∪ · · · ∪ Tn ∪ {dn−1, dn} are distinct.

By taking j = n − 1, we see that M contains the structure in Fig. 16 where all of 
the elements shown are distinct except those with the same labels. Next we show the 
following.

6.4.6. Suppose M contains the structure in Fig. 16 for some j with 1 ≤ j ≤ n −1 where all 
of the elements are distinct except those with the same label. Then either M has a mixed 
ladder win, or there is an element dj−1 that is not in T0∪T1∪· · ·∪Tn∪{dj , dj+1, . . . , dn}
such that {cj−1, dj−1, aj} is a triangle and {dj−1, aj , cj , dj} is a cocircuit.
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Fig. 16. All of the elements are distinct except those with the same label.

We apply Lemma 3.9 to the bowtie string Tj−1, Dj−1, Tj , Dj , Tj+1, noting that 
M/bj\cj has an N -minor. As M has no quick win, outcome (i) of that lemma does not 
hold. Thus (ii) or (iii) of Lemma 3.9 holds, so {aj , cj} is contained in a 4-cocircuit D∗. 
Lemma 3.3 implies that D∗ avoids Tj+1. By orthogonality with the circuit {cj , dj , aj+1}, 
we see that D∗ contains dj . Let dj−1 be the fourth element of D∗. The structure induced 
on Tj−1 ∪Tj ∪ · · · ∪Tn ∪T0 ∪{dj−1, dj , . . . , dn} has the form of the one shown in Fig. 15.

By orthogonality using the cocircuit {dj−1, aj , cj , dj} and the triangles in Fig. 16, we 
see that dj−1 avoids T0 ∪ T1 ∪ · · · ∪ Tn, and dj−1 avoids {dj , dj+1, . . . , dn−1}. We now 
apply Lemma 6.3 to the structure on Tj−1∪Tj∪· · ·∪Tn∪T0∪{dj−1, dj , . . . , dn}. If (ii)(c) 
of that lemma holds, then M has a mixed ladder win. Part (ii)(b) does not hold by 6.4.5, 
so part (ii)(a) holds; that is, {dj−1, aj} is contained in a triangle T . By orthogonality 
between T and the cocircuits {bj−1, cj−1, aj , bj} and {bj−2, cj−2, aj−1, bj−1}, we deduce 
that T = {dj−1, aj , cj−1}. We conclude that 6.4.6 holds.

By repeatedly applying 6.4.6, we find that either M has a mixed ladder win or M has 
{c0, d0, a1} as a triangle. Hence we may assume the latter. But recall that we began with 
a triangle {1, 2, 3} and a cocircuit that, after relabelling, became {2, 3, a0, c0}. Now the 
elements in {1, 2, 3, a0, b0, c0, a1, b1, c1} are distinct except that 1 and c1 may be equal. By 
orthogonality between {c0, d0, a1} and {2, 3, a0, c0}, we see that {d0, a1} meets {2, 3, b0}
so d0 ∈ {2, 3}. Suppose 1 = c1. Then the circuit {1, 2, 3} is {d0, c1, a2} or {d0, c1, b2}. 
The first possibility contradicts the fact that {d1, c1, a2} is a circuit; the second violates 
orthogonality. We deduce that 1 �= c1, so {1, 2, 3} avoids {a0, b0, c0, a1, b1, c1}. Now or-
thogonality between {1, 2, 3} and {d0, a1, c1, d1} implies that {d0, d1} ⊆ {1, 2, 3}. Then 
λ({1, 2, 3} ∪ T0 ∪ T1) ≤ 2, a contradiction. �

The results in this section enable us to conclude that M does not contain the structure 
in Fig. 13(C).

7. Configuration (A)

In this section, we deal with the case when M contains configuration (A) from Fig. 13, 
where M\4/5 has an N -minor and M\4, 1 has no N -minor. We begin with a straight-
forward lemma that will aid our efforts in this case.

Lemma 7.1. Suppose that ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) is a bowtie in an internally 
4-connected binary matroid M and that M has {2, 4, 7} as a triangle. Let N be an 
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internally 4-connected matroid with at least seven elements such that N is a minor of 
M/{x, y} for some pair {x, y} of elements of {4, 5, 6}. Then N � M\1, 4.

Proof. As {4, 5, 6} is a triangle of M , clearly N � M/{4, 5, 6}, so N � M/5, 6\4. Since 
M/5, 6\4 has {2, 7} as a circuit, it follows that N � M\4, 2, so N � M\4, 2/3. Hence 
N � M\1, 4. �

In the following lemma, we consider a matroid that is not necessarily internally 
4-connected, or even 3-connected. In the case that a binary matroid has {a, b, c} as 
a disjoint union of circuits and {b, c, d} as a disjoint union of cocircuits, we say that 
(a, b, c, d) is a loose 4-fan. If (a, b, c, d) and (e, d, c, b) are loose 4-fans, then we say that 
(a, b, c, d, e) is a loose 5-fan in M and a loose 5-cofan in M∗. It is easy to see, by modify-
ing the proof of Lemma 3.2, that if M has a loose 4-fan and has an internally 4-connected 
minor N having at least seven elements, then either deleting the first element or con-
tracting the last element of the loose 4-fan retains the N -minor. We will use this fact 
within the proof of the next lemma.

Lemma 7.2. Let M and N be internally 4-connected binary matroids such that
|E(M)| ≥ 16 and |E(N)| ≥ 7. Suppose that Hypothesis VII holds and that M is not 
the cycle matroid of a terrahawk or a quartic Möbius ladder and is not the dual of a 
triadic Möbius matroid. Let M ′ = M\X/Y for some sets X and Y , and let M have 
T0, D0, T1, D1, . . . , Tn as a right-maximal bowtie string that is also a bowtie string in M ′. 
Suppose that M ′\c0, c1, . . . , cn has an N -minor. Then one of the following holds.

(i) M has a quick win; or
(ii) M has an open-rotor-chain win, a ladder win, or an enhanced-ladder win; or
(iii) M has {a0, b0, z, cn} as a 4-cocircuit for some z in {an, bn}; or
(iv) the structure in Fig. 12 is contained in M , up to switching the labels on an

and bn, and either {dn−2, an−1, cn−1, dn−1} or {dn−2, an−1, cn−1, an, cn} is a co-
circuit, where d−1 = α; or

(v) M ′\c0, c1/b1 has an N -minor, or n = 1 and M ′\c0, c1/a1 has an N -minor; or
(vi) n = 1 and M contains one of the structures in Fig. 17 or Fig. 18, where all of the 

elements are distinct and the labels a1 and b1 are viewed as being interchangeable. 
Moreover, if M contains the structure in Fig. 18, then d1 ∈ Y , and either d0 ∈ X

or M ′\c0, c1, d0 has an N -minor; or
(vii) deleting the central cocircuit of some augmented 4-wheel in M gives an internally 

4-connected matroid with an N -minor.

Furthermore, if neither (iii) nor (v) holds, then M has no triangle Tn+1 such that 
{x, cn, an+1, bn+1} is a 4-cocircuit for any x in {an, bn}.
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Fig. 17. The elements in both structures are all distinct, and we view the labels on a1 and b1 as being 
interchangeable.

Fig. 18. The elements in this structure are all distinct, and we view the labels on a1 and b1 as being 
interchangeable. Furthermore, d1 ∈ Y , and either d0 ∈ X or M ′\c0, c1, d0 has an N-minor.

Proof. Suppose that neither (iii) nor (v) holds. By Lemma 3.6, we get the following.

7.2.1. If i ∈ {1, 2, . . . , n}, then M ′\c0, c1, . . . , ci/bi has no N -minor. If j ∈ {1, 2,
. . . , n − 1}, then M ′\c0, c1, . . . , cj/aj+1 has no N -minor.

7.2.2. If M has a triangle Tn+1 where {x, cn, an+1, bn+1} is a cocircuit for some x in 
{an, bn}, then a0 �= cn.

To show this, suppose that a0 = cn. Then n ≥ 2. Without loss of generality, we 
assume that x = bn. By orthogonality with T0, the cocircuit Dn meets {b0, c0}. Up 
to switching the labels on an+1 and bn+1, we may assume that bn+1 ∈ {b0, c0}. Then 
orthogonality with D0 implies that Tn+1 meets {a1, b1}. As a0 ∈ Dn, Lemma 3.3 implies 
that an+1 /∈ T1. Hence cn+1 ∈ {a1, b1}.

Suppose cn+1 = b1. Then orthogonality between Tn+1 and D1 implies that an+1 ∈
{a2, b2}. Moreover, orthogonality with Dn implies that T2 meets {bn, a0, bn+1}. It follows 
that n = 2, so c2 = a0 and λ(T0 ∪ T1 ∪ T2) ≤ 2, a contradiction. Thus cn+1 = a1.

As the next step towards 7.2.2, we now show that

7.2.3. {bn+1, cn+1} ⊆ E(M ′) and an+1 ∈ Y .

Since bn+1 ∈ {b0, c0} and cn+1 = a1, we know that {bn+1, cn+1} ⊆ E(M ′). If 
an+1 ∈ X, then M ′\c0, c1, . . . , cn has bn in a 1- or 2-cocircuit, so M ′\c0, c1, . . . , cn/bn
has an N -minor, a contradiction to 7.2.1. Suppose an+1 ∈ E(M ′). If bn+1 = c0, 
then M ′\c0, c1, . . . , cn has {bn, an+1} as a disjoint union of cocircuits and again we 
get a contradiction to 7.2.1. Thus bn+1 = b0 and (a1, b0, an+1, bn) is a loose 4-fan in 
M ′\c0, c1, . . . , cn. By 7.2.1, we see that M ′\c0, c1, . . . , cn, a1 has an N -minor. The last 
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Fig. 19. From 7.2.4, M contains this structure.

matroid has {b0, b1} as a disjoint union of cocircuits, a contradiction to 7.2.1. Hence 7.2.3
holds.

Still aiming to show 7.2.2, we show next that

7.2.4. bn+1 = c0.

Suppose that bn+1 �= c0. Then M ′\c0, c1, . . . , cn has {bn+1, a1} as a disjoint union of 
circuits, so M ′\c0, c1, . . . , cn, a1 has an N -minor. But the last matroid has {b0, b1} as a 
disjoint union of cocircuits, a contradiction to 7.2.1. Thus 7.2.4 holds.

We now know that M contains the structure in Fig. 19 and that M\c0, c1, . . . ,
cn−1, cn/bn has an N -minor. By Lemma 3.6, M\ci/bi has an N -minor for all i in 
{0, 1, . . . , n}.

As the next step towards 7.2.2, we now show the following.

7.2.5. For each i in {1, 2, . . . , n}, the matroid M has a 4-cocircuit containing {ai, ci}.

Since M has no quick win, this follows by Lemma 3.8 and Hypothesis VII unless M\c1
is not (4, 4, S)-connected. Consider the exceptional case. By Lemma 3.4, M has a quasi 
rotor (T0, T1, {7, 8, 9}, D0, {v, c1, 7, 8}, {u, v, 7}) for some u in {b0, c0} and v in {a1, b1}. 
Since M/b1 has an N -minor, Lemma 3.11 implies that b1 �= v. Thus v = a1. By orthogo-
nality between {c0, a1, an+1} and the cocircuit {a1, c1, 7, 8}, it follows that {7, 8} meets 
{c0, an+1}. Since the triangles T0, T1, and {7, 8, 9} are disjoint, c0 /∈ {a1, c1, 7, 8}. Hence 
an+1 ∈ {7, 8}. By orthogonality between {7, 8, 9} and {a0, c0, bn, an+1}, it follows that 
bn ∈ {7, 8, 9}. Then orthogonality between {7, 8, 9} and Dn−1 implies that {7, 8, 9} meets 
{bn−1, cn−1}. Then M has (Tn−1, Tn, {c0, a1, an+1}, Dn−1, {a0, c0, bn, an+1}, {7, 8, 9}) as 
a quasi rotor in which bn is in two triangles. As M/bn has an N -minor, Lemma 3.11
gives a contradiction. Hence 7.2.5 holds.

We continue the proof of 7.2.2 by showing that M contains the structure in Fig. 20. We 
will construct the left side of the figure first. Take dn = b0. Let � = n if {cn−1, an} is not 
contained in a triangle of M . If {cn−1, an} is contained in a triangle, then take � minimal 
in {1, 2, . . . , n −1} such that {ci, ai+1, di} is a triangle of M for all i in {�, � +1, . . . , n −1}, 
where di is an element in E(M). By 7.2.5, M has a 4-cocircuit containing {an, a0}. By 
orthogonality with T0 and Lemma 3.3 applied to (Tn, {c0, a1, an+1}, {a0, c0, bn, an+1}), 
this cocircuit contains b0. If � < n, then orthogonality and Lemma 3.3 imply that the 
fourth element of this cocircuit is dn−1. By repeated application of this argument, we see 
that M has {di−1, ai, ci, di} as a cocircuit for all i in {� + 1, � + 2, . . . , n − 1}. Moreover, 
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Fig. 20. The elements depicted are all distinct, � ≤ n, where we let dn = b0, and m ≥ 0. Furthermore, 
m ≤ � − 2.

M has {e, a�, c�, d�} as a cocircuit for some element e where we note that this includes 
the case when � = n.

We continue to construct the structure in Fig. 20 by showing that

7.2.6. � ≥ 2.

Suppose instead that � = 1. Then by orthogonality between {e, a1, c1, d1} and the 
triangle {c0, a1, an+1} and Lemma 3.3, we deduce that e = an+1. By [1, Lemma 6.4], the 
elements in T1 ∪ T2 ∪ · · · ∪ Tn ∪ {c0, an+1} ∪ {d1, d2, . . . , dn−1, b0} are distinct. Now it is 
easy to see that M is the cycle matroid of a quartic Möbius ladder or is the dual of a 
triadic Möbius ladder, a contradiction. Thus 7.2.6 holds.

We now consider the right side of Fig. 20. It is convenient to let an+1 = d0. Take m
maximal in {0, 1, . . . , � − 1} such that, for all j in {0, 1, . . . , m}, there is an element dj
such that {cj , dj , aj+1} is a triangle. By the definition of �, we know that {c�−1, a�} is 
not contained in a triangle of M . Hence

7.2.7. m ≤ � − 2.

As before, by orthogonality and Lemma 3.3, we know that {dj−1, aj , cj , dj} is a co-
circuit for all j in {1, 2, . . . , m}. Moreover, {dm, am, cm, dm+1} is a cocircuit for some 
element dm+1. We deduce that M contains the structure in Fig. 20 where � ≤ n, and 
m ≥ 0.

Next we show that

7.2.8. The elements in Fig. 20 are distinct.

By [1, Lemma 6.4], since M is neither the dual of the triadic Möbius matroid nor 
the cycle matroid of a quartic Möbius ladder, the elements in Fig. 20 other than 
{e, cm+1, dm+1} are distinct except that (bm, bm+1) may equal (a�, b�). As � �= m + 1, we 
deduce that the elements in Fig. 20 are distinct unless e, cm+1, or dm+1 is equal to one 
of the other elements.

Suppose cm+1 is equal to another element in Fig. 20. Then cm+1 ∈ {e, d0, d1, . . . ,
dm, d�, d�+1, . . . , dn−1}. By orthogonality between Tm+1 and the cocircuits in Fig. 20, it 
follows that e ∈ {am+1, bm+1} and cm+1 = d�. Then orthogonality with the cocircuits 
in Fig. 20 implies that (�, m) = (n, 0), and T1 is {e, b0, b1} or {e, b0, a1}. In either case, 
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λ(Tn ∪ {c0, d0, a1, e, b0, b1}) ≤ 2, a contradiction. Thus cm+1 is not equal to any other 
element in Fig. 20.

By orthogonality between the triangles in Fig. 20 and the cocircuit {dm, am+1,

cm+1, dm+1}, we know that dm+1 avoids all of the triangles in that figure. Similarly, or-
thogonality between these triangles and the cocircuit {e, a�, c�, d�} implies that e avoids 
all these triangles. We deduce that 7.2.8 holds unless dm+1 = e. In the exceptional case, 
the set {e, a�, c�, d�} 
{dm, am+1, cm+1, dm+1} contains a cocircuit, and the set Z of el-
ements in Fig. 20 other than {e, dm+1} is 3-separating. Then Z meets T�−1 ∪ e otherwise 
we contradict the fact that M is internally 4-connected. But now we get a contradiction 
to orthogonality between T�−1 and the cocircuits in the figure. Thus 7.2.8 holds.

Continuing the proof of 7.2.2, we show next that

7.2.9. M/dm+1 has an N -minor.

Recall that M\c0, c1, . . . , cn−1, cn/bn has an N -minor. By Lemma 3.6, M\a1, a2, . . . ,
am+1, cm+1, cm+2, . . . , cn−1, cn/dm has an N -minor. The last matroid is isomorphic to 
M\a1, a2, . . . , am+1, cm+1, cm+2, . . . , cn−1, a0/dm+1. Hence 7.2.9 holds.

Next we show that

7.2.10. dm+1 is in no triangle of M .

Suppose M has dm+1 in a triangle, T . By orthogonality between T and the 4-cocircuits 
in Fig. 20, we see that {cm+1, dm+1} ⊆ T . By the maximality of m, we know that 
am+2 /∈ T . Thus orthogonality with Dm+1 implies that bm+2 ∈ T , a contradiction to 
orthogonality with Dm+2. Thus 7.2.10 holds.

As M has no quick win, we know that M/dm+1 is not internally 4-connected. We 
complete the proof of 7.2.2 by giving a contradiction to this fact.

Suppose (U, V ) is a non-sequential 2- or 3-separation of M/dm+1. By [5, Lemma 3.3], 
we may assume that Tm ∪Tm+1 ∪ dm ⊆ U . Then (U ∪ dm+1, V ) is a non-sequential 2- or 
3-separation of M , a contradiction. By 7.2.10, M/dm+1 has no sequential 2-separation. 
It follows that M/dm+1 is 3-connected having a 4-fan, (u, v, w, x). Hence M has {v, w, x}
as a cocircuit and {dm+1, u, v, w} as a circuit. By orthogonality with the cocircuit 
{dm, am+1, cm+1, dm+1}, the set {u, v, w} meets {dm, am+1, cm+1}. If {u, v, w} meets Dm

or Dm+1, then orthogonality implies that two elements of {u, v, w} is in one of these co-
circuits. Then {v, w, x} meets Tm, Tm+1, or Tm+2, a contradiction. Thus {u, v, w} avoids 
{am+1, cm+1}, so dm ∈ {u, v, w}. Either {dm−1, am, cm, dm} is a cocircuit, or m = 0 and 
{bn, a0, c0, d0} is a cocircuit. Hence {u, v, w} contains two elements from one of these co-
circuits, so the triad {v, w, x} meets a triangle in Fig. 20, a contradiction. Thus M/dm+1
has no 4-fan, a contradiction. We conclude that a0 �= cn. Thus 7.2.2 holds.

Next we show that

7.2.11. M does not have a triangle Tn+1 such that (Tn, Tn+1, {x, cn, an+1, bn+1}) is a 
bowtie for some x in {an, bn}.
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Suppose M has such a bowtie. Then [1, Lemma 5.4] implies that Tn+1 = Tj for some 
j in {0, 1, . . . , n − 2}, so n ≥ 2. If cj ∈ {an+1, bn+1}, then M ′\c0, c1, . . . , cn has x in a 
1- or 2-cocircuit, so M ′\c0, c1, . . . , cn/x has an N -minor, a contradiction to 7.2.1. Thus 
cj = cn+1 so {aj , bj} = {an+1, bn+1}. If j = 0, then (iii) holds, a contradiction. Thus 
j ≥ 1, and Dj−1 
{x, cn, an+1, bn+1} is {bj−1, cj−1, x, cn}, a disjoint union of cocircuits 
in M ′. Again M ′\c0, c1, . . . , cn has x in a 1- or 2-cocircuit, a contradiction. Thus 7.2.11
holds, as does the last assertion of the lemma.

We now assume that the lemma fails. We show next that

7.2.12. M\cn is (4, 4, S)-connected and every 4-fan in M\cn has the form (u, v, dn−1, dn)
for some u and v in {bn−1, cn−1} and {an, bn}, respectively, where |Tn−1 ∪ Tn ∪
{dn−1, dn}| = 8.

As (i) does not hold, M\cn is not internally 4-connected. Observe that, if Tn is the 
central triangle of a quasi rotor with an or bn as its central element, then we have a 
contradiction to 7.2.11. Thus, applying Lemma 3.4 to the bowtie (Tn−1, Tn, Dn−1), we 
deduce using 7.2.11 that outcome (iii) of that lemma holds; that is, 7.2.12 holds.

Without loss of generality, we may now assume that M\cn has a 4-fan of the form 
(u, an, dn−1, dn) for some u in {bn−1, cn−1}.

7.2.13. u �= bn−1.

To show this, we assume the contrary. Suppose that n > 1. Then orthogonality be-
tween {bn−1, an, dn−1} and Dn−2 implies that dn−1 ∈ {bn−2, cn−2}. Then orthogonality 
between {an, dn−1, dn, cn} and Tn−2 implies that {an, cn, dn} meets Tn−2. If an−2 = cn, 
then n = 2 and, since d1 ∈ {b0, c0}, the triangle T0 is in the closure of T1 ∪ T2, so 
λ(T0 ∪ T1 ∪ T2) ≤ 2, a contradiction. Thus an−2 �= cn, so dn ∈ Tn−2, a contradiction 
to 7.2.11. We deduce that n = 1 and M contains the structure in Fig. 18.

Suppose {d0, d1} avoids Y . If {d0, d1} meets X, then M ′\c0, c1 has a1 in a 1- or 
2-cocircuit, so (v) holds, a contradiction. Thus {d0, d1} avoids X, and (b1, b0, a1, d0, d1)
is a loose 5-cofan of M ′\c0, c1, so (v) holds, a contradiction. We deduce that {d0, d1}
meets Y . If d0 ∈ Y , then {b0, a1} is a disjoint union of circuits in M ′\c0, c1, so 
M ′\c0, c1, b0 has an N -minor. As this matroid has {a1, b1} as a disjoint union of co-
circuits, (v) holds, a contradiction. Thus d0 /∈ Y , so d1 ∈ Y . If d0 ∈ X, then (vi) holds, 
a contradiction. Thus d0 /∈ X, so (d0, b0, a1, b1) is a loose 4-fan in M ′\c0, c1, and (v) or 
(vi) holds, a contradiction. We conclude that 7.2.13 holds.

We show next that

7.2.14. M contains the configuration in Fig. 21 where the elements an and bn are viewed 
as being interchangeable. Moreover, the elements in this figure are distinct with the pos-
sible exception that (a0, b0) may equal (cn, dn) when n > 1. Also if n > 1, then dn−1 /∈ Y .
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Fig. 21. We view the labels an and bn as being interchangeable. These elements are all distinct with the 
possible exception that (a0, b0) may be (cn, dn) in the case that n > 1. Furthermore, if n > 1, then 
dn−1 /∈ Y .

By 7.2.13, u = cn−1. Thus, M contains the configuration in Fig. 21. Moreover, by 
7.2.12, when n = 1, the elements in the figure are all distinct. Hence we may suppose 
that n ≥ 2. By 7.2.11, the pair {dn−1, dn} is not contained in a triangle of M . Hence, 
by orthogonality, {dn−1, an, cn, dn} avoids T1 ∪T2 ∪ · · · ∪Tn−2. Now dn−1 /∈ Y otherwise 
(bn−2, an−1, bn−1, an, bn) is a loose 5-cofan in M ′\c0, c1, . . . , cn, so M ′\c0, c1, . . . , cn/bn
has an N -minor, a contradiction to 7.2.1.

Suppose T0 meets {dn−1, dn}. By orthogonality with {dn−1, an, cn, dn}, it follows that 
a0 = cn, and {b0, c0} meets {dn−1, dn}. Orthogonality between D0 and {cn−1, dn−1, an}
implies that dn−1 /∈ {b0, c0}. Hence dn ∈ {b0, c0}. Suppose dn = c0. As dn−1 ∈
E(M ′) ∪ X, we see that an is in a 1- or 2-cocircuit of M ′\c0, c1, . . . , cn, a contradic-
tion to 7.2.1. We conclude that 7.2.14 holds.

7.2.15. n ≥ 2.

As a first step towards proving this, we now show the following.

7.2.16. If n = 1, then M has {b0, b1, q} as a triangle for some element q that is not in 
T0 ∪ T1 ∪ {d0, d1}.

As n = 1, 7.2.14 implies that the elements in Fig. 21 are distinct. We now apply 
[1, Lemma 6.1] assuming first that (v) of that lemma does not hold, that is, that M
has no triangle containing {b0, b1}. As the current lemma fails, it follows using 7.2.11
that none of (i), (ii), or (iv) of [1, Lemma 6.1] holds. Thus (iii) of that lemma holds, so 
M\c0, c1 has a 4-fan of the form (1, 2, 3, b1). By 7.2.11, M does not have {2, 3, b1, c1} as 
a cocircuit. Thus M has {2, 3, b1, c0, c1} or {2, 3, b1, c0} as a cocircuit. Since T0 ∪ T1 ∪ d0
is not 3-separating, this set contains no cocircuit of M other than D0. By orthogonality, 
{2, 3} meets both {a0, b0} and {d0, a1}. Hence {2, 3} = {b0, a1}, so a1 is in a triangle 
of M\c0, c1, a contradiction to [1, Lemma 6.1]. We conclude that (v) of [1, Lemma 6.1]
holds, that is, M has a triangle of the form {b0, b1, q}. Clearly q �= a0, and orthogonality 
with the cocircuits D0 and {d0, a1, c1, d1} implies that q /∈ T0∪T1∪{d0, d1}. Thus 7.2.16
holds.

We continue our proof of 7.2.15 by showing the following.

7.2.17. Either q ∈ X, or M ′\c0, c1, q has an N -minor.
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Fig. 22. We view the labels a1 and b1 as being interchangeable. The elements shown are distinct.

To prove this, suppose first that q ∈ Y . Then {b0, b1} is a disjoint union of circuits 
in M ′\c0, c1, so M ′\c0, c1, b0 has an N -minor. As this matroid has {a1, b1} as a disjoint 
union of cocircuits, (v) holds, a contradiction. Suppose q ∈ E(M ′). Then (q, b0, b1, a1) is 
a loose 4-fan in M ′\c0, c1, and, as (v) does not hold, M ′\c0, c1, q has an N -minor. Thus 
7.2.17 holds.

Consider M\q. Since this matroid is not internally 4-connected, by applying 
Lemma 3.4 to the bowtie ({d0, c0, a1}, {b0, b1, q}, {a1, c0, b0, b1}), we deduce that {q, b0}
or {q, b1} is contained in a 4-cocircuit of M . By orthogonality with the circuits T0 and T1, 
it follows using Lemma 3.3 that {q, a0, b0} or {q, b1, c1} is contained in a 4-cocircuit 
of M .

Next we show that

7.2.18. M has no 4-cocircuit containing {q, b1, c1}.

Suppose that {q, b1, c1, s} is a 4-cocircuit in M , for some element s. By orthogonality 
between this cocircuit and T0, T1, and {c0, d0, a1}, we see that either s is a new element, 
or s = d1. The latter gives the contradiction that λ(T0 ∪ T1 ∪ {d0, q, s}) ≤ 2. Thus s
is a new element and M contains the structure in Fig. 22. Since M\c0, c1, q has {b1, s}
as a disjoint union of cocircuits, M\c0, c1, q/b1 has an N -minor. This matroid is iso-
morphic to M\a0, a1, q/b0 by Lemma 3.6. By Lemma 3.4, as M has no quick win, a0
is in a 4-cocircuit D of M . By orthogonality, D meets {b0, c0}. Lemma 3.3 implies that 
D avoids T1, so orthogonality with {c0, d0, a1} and {b0, b1, q} implies that D contains 
{a0, c0, d0} or {q, a0, b0}. If the fourth element of D is d1 or s, then the symmetric dif-
ference of D with the 4-cocircuit in Fig. 22 containing d1 or s, respectively, is a new 
cocircuit contained in T0∪T1∪{d0, q}. Thus the last set is 3-separating, a contradiction. 
Using D together with the structure in Fig. 22, we see that M contains a good augmented 
4-wheel. Since M\c0, c1, q/b1 has an N -minor and is isomorphic to M\c0, a1, b0/b1 and 
hence to M\c0, a1, b0, b1, we see that M contains an augmented 4-wheel such that re-
moving the central cocircuit preserves an N -minor. Then [5, Theorem 4.1] implies that 
(i) or (vii) holds, a contradiction. Thus 7.2.18 holds.

We now continue the proof of 7.2.15 knowing that {a0, b0, q, p} is a cocircuit in M , 
for some element p. By orthogonality between this cocircuit and the circuits T0, T1, 
and {c0, d0, a1}, we see that either p is a new element, or p = d1. If p = d1, then 
λ(T0 ∪ T1 ∪ {d0, q, d1}) ≤ 2, a contradiction. We now apply [1, Lemma 6.2]. Clearly 
(i) of that lemma does not hold. Also 7.2.11 and 7.2.18 imply that neither (ii) nor 
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(v) holds. If (iv) holds, then M has a triangle {a0, p, t} for some element t which is 
new unless it equals s. Orthogonality excludes the exceptional case. Thus M contains 
structure (a) in Fig. 17, and (vi) of the current lemma holds, a contradiction. We deduce 
that (iii) of [1, Lemma 6.2] holds, that is, M has a triangle {s1, s2, s3} and a cocircuit 
{q, c1, b1, s2, s3} where {s1, s2, s3} avoids {b0, c0, q, a1, b1, c1}. Orthogonality and 7.2.11
imply that {s1, s2, s3} avoids {d0, d1}. If {s1, s2, s3} meets {p, a0}, then orthogonality 
implies that {p, a0} ⊆ {s1, s2, s3}, and λ({b0, c0} ∪T1∪{s1, s2, s3, q}) ≤ 2, a contradiction. 
We conclude that {s1, s2, s3} avoids p as well as all of the elements in Fig. 22. Thus 
M contains structure (a) in Fig. 17, and (vi) holds, a contradiction. Therefore 7.2.15
holds.

Take m minimal such that, for all i in {m, m + 1, . . . , n − 1}, the matroid M has 
{ci, di, ai+1} as a triangle and has {di, ai+1, ci+1, di+1} or {di, ai+1, ci+1, ai+2, ci+2} as a 
cocircuit, where the 5-cocircuit option is only possible when i = n − 2.

7.2.19. The elements in Tm ∪ Tm+1 ∪ · · · ∪ Tn ∪ {dm, dm+1, . . . , dn} are all distinct and 
dj /∈ Y if max{1,m} ≤ j ≤ n − 1.

To see this, suppose first that the elements in this set are not all distinct. 
By 7.2.11, {dn−1, dn} is not contained in a triangle. By [1, Lemma 6.4], we deduce 
that (am, bm) = (cn, dn), and M has {bn, cn, cm, dm} as a cocircuit. Then m ≤ n − 2. 
But {cm, dm, am+1} is a triangle of M , so we get a contradiction to 7.2.11. Thus the 
elements in Tm ∪ Tm+1 ∪ · · · ∪ Tn ∪ {dm, dm+1, . . . , dn} are all distinct.

Suppose that dj ∈ Y for some j with max{1, m} ≤ j ≤ n − 1. Then (bj−1, aj , bj ,
aj+1, bj+1) is a loose 5-cofan in M ′\c0, c1, . . . , cn. Then M ′\c0, c1, . . . , cn/bj+1 has an 
N -minor, a contradiction to 7.2.1. Thus 7.2.19 holds.

Next we show that

7.2.20. m = n − 1.

Suppose m < n − 1. We consider M\cm, cm+1, . . . , cn. By [1, Lemma 6.5] and 7.2.11, 
since M has no ladder win, M\cm, cm+1, . . . , cn is (4, 4, S)-connected and every 4-fan 
of this matroid is either a 4-fan of M\cn with bn as its coguts element or a 4-fan of 
M\cm with dm as its coguts element and with am as an interior element. By 7.2.11, 
M\cn does not have a 4-fan with bn as its coguts element. Therefore M\cm has a 4-fan 
of the form (β, α, am, dm), so {α, am, dm, cm} is a cocircuit of M . As (iv) does not oc-
cur, we know that m ≥ 1. Orthogonality implies that {α, β} meets {bm−1, cm−1, bm}. 
As {α, β, am} �= Tm, we know that bm /∈ {α, β}. Furthermore, Lemma 3.3 implies that 
α /∈ Tm−1. Hence β ∈ {bm−1, cm−1}. By the minimality of m, we deduce that β = bm−1.

Suppose m > 1. Then orthogonality between {bm−1, α, am} and Dm−2, implies 
that α ∈ {bm−2, cm−2, am−1}. As α /∈ Tm−1, the cocircuit {α, am, cm, dm} meets 
Tm−2. Orthogonality implies that this 4-cocircuit is contained in Tm−2 ∪ Tm. Hence 
λ(Tm−2 ∪ Tm−1 ∪ Tm) ≤ 2, a contradiction. We conclude that m = 1.
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By 7.2.19, d1 /∈ Y . Thus d1 ∈ X ∪ E(M ′). If d1 ∈ X, then a2 is in a 1- or 2-cocircuit 
of M ′\c0, c1, . . . , cn, so M ′\c0, c1/a2 has an N -minor, a contradiction to 7.2.1. Hence 
d1 ∈ E(M ′). If α ∈ E(M ′), then (b1, b0, a1, α, d1) is a loose 5-cofan in M ′\c0, c1, so 
M ′\c0, c1/b1 has an N -minor, a contradiction to 7.2.1. Thus α /∈ E(M ′). Then α ∈ Y or 
α ∈ X so, in M ′\c0, c1, . . . , cn, either {b0, a1} is a disjoint union of circuits, or {a1, d1} is a 
disjoint union of cocircuits. The former implies that M ′\c0, c1, . . . , cn, a1 has an N -minor. 
As the last matroid also has {b0, b1} as a disjoint union of cocircuits, we get a contradic-
tion to 7.2.1. Therefore {a1, d1} is a disjoint union of cocircuits in M ′\c0, c1, . . . , cn, so 
M ′\c0, c1/d1 has an N -minor. As the last matroid has (b0, a1, b1, a2, b2) as a loose 5-cofan, 
M ′\c0, c1/b2 has an N -minor. This contradiction to 7.2.1 completes the proof of 7.2.20.

We now apply [1, Lemma 6.1] to M\cn−1, cn. By assumption and 7.2.11, neither (i) 
nor (ii) of that lemma holds.

We show next that

7.2.21. bn is not the coguts element of any 4-fan of M\cn−1, cn.

Suppose (α, β, γ, bn) is a 4-fan in M\cn−1, cn. By 7.2.11, we know that {β, γ, bn, cn}
is not a cocircuit of M . Hence either {β, γ, bn, cn−1, cn} or {β, γ, bn, cn−1} is a cocircuit 
D of M . By orthogonality between D and the triangles Tn−1 and {cn−1, dn−1, an}, we 
see that {β, γ} ⊆ {an−1, bn−1, dn−1, an}. Now Tn−1 ∪ Tn ∪ dn−1 is not 3-separating in 
M , and so D = Dn−1. Thus {β, γ} = {bn−1, an}, so an is in a triangle of M\cn−1, cn, 
a contradiction to [1, Lemma 6.1]. Hence 7.2.21 holds.

By 7.2.21, part (v) of [1, Lemma 6.1] does not hold. Now suppose that (iv) of [1, 
Lemma 6.1] holds. Then M has a triangle {α, β, an−1} that differs from Tn−1, and M
has {α, an−1, cn−1, dn−1} or {α, an−1, cn−1, an, cn} as a cocircuit. By the minimality of 
m, we deduce that β �= cn−2. By 7.2.15, n ≥ 2. Orthogonality between {α, β, an−1} and 
Dn−2 implies that {α, β} meets {bn−2, cn−2, bn−1}, so bn−2 = β, or α ∈ {bn−2, cn−2}.

7.2.22. bn−2 �= β.

Suppose that bn−2 = β. We begin by locating the element α. Suppose first that 
α ∈ Y . Then {bn−2, an−1} is a disjoint union of circuits in M ′\c0, c1, . . . , cn, so M ′\c0, c1,
. . . , cn, an−1 has an N -minor. The last matroid has {bn−2, bn−1} as a disjoint union of 
cocircuits, so we get a contradiction to 7.2.1. Thus α /∈ Y .

Suppose next that α ∈ X. Then, since {α, an−1, cn−1, dn−1} or {α, an−1, cn−1, an, cn}
is a cocircuit in M , either M ′\c0, c1, . . . , cn/dn−1 or M ′\c0, c1, . . . , cn/an has an 
N -minor. The second option contradicts 7.2.1. If M ′\c0, c1, . . . , cn/dn−1 has an 
N -minor, then, as the last matroid has (bn−2, an−1, bn−1, an, bn) as a loose 5-cofan, 
M ′\c0, c1, . . . , cn/dn−1/bn has an N -minor. This contradiction to 7.2.1 establishes that 
α /∈ X.

We now know that α ∈ E(M ′). Then (bn−1, bn−2, an−1, α, x) is a loose 5-cofan in 
M ′\c0, c1, . . . , cn for some x in {dn−1, an}, so M ′\c0, c1, . . . , cn/bn−1 has an N -minor. 
This contradiction to 7.2.1 completes the proof of 7.2.22.
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From the above, if (iv) of [1, Lemma 6.1] holds, then α ∈ {bn−2, cn−2}. Thus, by 
Lemma 3.3, {α, an−1, cn−1, dn−1} is not a cocircuit of M , so {α, an−1, cn−1, an, cn} is a 
cocircuit. Orthogonality with Tn−2 implies that n = 2 and a0 = c2. By orthogonality 
with {d1, a2, c2, d2}, the triangle T0 meets {d1, d2}. Thus T0 is {α, c2, d1} or {α, c2, d2}, 
so λ(T1 ∪ T2 ∪ {α, d1, d2}) ≤ 2, a contradiction. We conclude that (iv) of [1, Lemma 6.1]
does not hold.

It now follows that (iii) of [1, Lemma 6.1] holds, that is, {bn−1, bn} is contained 
in a triangle. Recall that n ≥ 2 by 7.2.15. Orthogonality with Dn−2 implies that the 
third element of this triangle is in {bn−2, cn−2}. If {bn−2, bn−1, bn} is a triangle, then 
M ′\c0, c1, . . . , cn has (an, bn, bn−1, bn−2, an−1) as a loose 5-cofan, so M ′\c0, c1, . . . , cn/an
has an N -minor, a contradiction to 7.2.1. We conclude that

7.2.23. {cn−2, bn−1, bn} is a triangle of M .

Next we show that

7.2.24. {cn, dn} is not contained in a triangle.

Suppose {cn, dn} is contained in a triangle T . Then (T, {an, dn−1, cn−1}, {dn, cn,
an, dn−1}) is a bowtie of M . By 7.2.12, M\cn is (4, 4, S)-connected and M\cn, cn−1
has an N -minor. Thus, by applying Hypothesis VII to the last bowtie, we get that 
M\cn−1 is (4, 4, S)-connected. This is a contradiction as the last matroid has a 5-fan. 
Hence 7.2.24 holds.

Consider the rotor chain ((cn, an, bn), (cn−1, bn−1, an−1), (cn−2, bn−2, an−2)). If this 
rotor chain can be extended to the right by adjoining (x, y, z), then {bn−2, an−2, x, y}
is a cocircuit and {an−1, bn−2, x} is a circuit. By orthogonality, x ∈ {bn−3, cn−3}. 
Indeed, by orthogonality with Dn−4, it follows that x = cn−3 unless n = 3. Thus 
{x, y} = {bn−3, cn−3}, so z = an−3. Continuing in this way, we see that a right-maximal 
bowtie chain that begins as above has one of the following forms, where we note that 
we have (b0, c0, a0) rather than (c0, b0, a0) in (b).

(a) ((cn, an, bn), (cn−1, bn−1, an−1), . . . , (c�, b�, a�)) for some �, which may be negative; or
(b) ((cn, an, bn), (cn−1, bn−1, an−1), . . . , (c1, b1, a1), (b0, c0, a0), (c−1, b−1, a−1), . . . ,

(c�, b�, a�)) for some � ≤ 0.

To eliminate the second possibility, assume that it arises. Recall that M\c0, c1, . . . , cn
has an N -minor. The last matroid has (b0, b1, a2, b2) as a 4-fan. Then M\c0, c1, . . . , cn\b0
or M\c0, c1, . . . , cn/b2 has an N -minor. In both cases, M/b1 has an N -minor. To see this, 
observe in the second case that M\c0, c1, . . . , cn/b2 ∼= M\c0, c1, c3, c4 . . . , cn\a2/b2 ∼=
M\c0, c1, c3, c4 . . . , cn\a2/b1; in the first case, note that M\c0, c1, . . . , cn\b0 has b1 in 
a cocircuit of size at most two. Thus M/b1 does indeed have an N -minor, and it 
follows by Lemma 3.11 that M has a quick win, a contradiction. We conclude that 
(a) holds.
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Fig. 23. These elements are all distinct.

If � > 0, then M\c0, c1, . . . , c� has an N -minor. Now suppose that � ≤ 0. Let k be a 
non-negative integer such that −k ≥ �. We argue by induction on k that M\c0, c1, . . . ,
c0, c−1, . . . , c−k has an N -minor. This is certainly true if k = 0. Hence we may assume 
that k ≥ 1. Now M\cn, cn−1, . . . , c0, c−1, . . . , c−k+1 has (c−k, b−k+1, a−k+2, b−k+2) as a 
loose 4-fan. By Lemma 3.11, M/b−k+2 does not have an N -minor. Thus M\c0, c1, . . . , c−k

has an N -minor.
When � �= 0, we will now adjust the notation to make � = 0 irrespective of whether 

it was originally positive or negative. This will change n but we will continue to use the 
same symbol for this quantity noting that we still know that its value is at least two and 
that M\cn, cn−1, . . . , c0 has an N -minor.

We show next that the elements in the rotor chain ((cn, an, bn), (cn−1, bn−1, an−1),
. . . , (c0, b0, a0)) are distinct. Suppose not. Then a0 = cn. Orthogonality between T0 and 
{dn−1, an, cn, dn} implies that T0 meets {dn−1, dn}. By 7.2.24, we see that dn−1 ∈ T0
but dn−1 �= a0. Then {cn−1, dn−1, an} meets D0 in a single element, a contradiction to 
orthogonality. We conclude that the elements in the rotor chain are distinct.

Suppose {dn−1, dn} meets a triangle in this rotor chain. Then orthogonality with the 
cocircuit {dn−1, an, cn, dn} implies that {dn−1, dn} is contained in this triangle, a con-
tradiction to 7.2.11. Thus M contains the structure in Fig. 23 where all of the elements 
shown are distinct.

Since N � M\c1, c0 and M\c1 is not (4, 4, S)-connected, it follows by Hypothesis VII 
that M\c0 is not (4, 4, S)-connected. Now M has a bowtie of the form (T, {z, b1, c0}, D1)
where z is b2 when n = 2, and z is c2 otherwise. Applying Lemma 3.4 to this bowtie gives 
that M has a quasi rotor having {z, b1, c0} as its central triangle. Moreover, M\c0 has 
a 5-fan (p, q, s, t, u) whose elements are contained in this quasi rotor. Then {q, s, t, c0}
is a cocircuit D of M . By orthogonality with {z, b1, c0}, the cocircuit D meets either 
T1 or T2. If D meets T2, then orthogonality implies that it is contained in T0 ∪ T2, and 
λ(T0 ∪T1 ∪T2) ≤ 2, a contradiction. Thus D meets T1. Lemma 3.3 implies that D = D0. 
Since D0 ∩D1 = {b1}, it follows that b1 is the central element of the quasi rotor. Thus 
{b0, a1, g} is a triangle for some element g. By orthogonality with the cocircuits shown 
in Fig. 23, we know that g is a new element.

Now M\c0, c1, . . . , cn has an N -minor and has (g, b0, a1, b1) as a loose 4-fan. Since, 
by Lemma 3.11, M/b1 has no N -minor, we deduce that



54 C. Chun, J. Oxley / Advances in Applied Mathematics 104 (2019) 14–74
Fig. 24. These elements are all distinct except that f may be dn. No set in {{f, g}, {cn, dn}, {dn−1, dn}} is 
contained in a triangle. Deleting the dashed elements preserves an N-minor.

7.2.25. M\c0, c1, . . . , cn, g has an N -minor.

Now M has ({z, b1, c0}, {b0, a1, g}, D0) as a bowtie where z is b2 when n = 2 and is 
a2 otherwise. As M\g is not internally 4-connected, Lemma 3.4 implies that M has a 
4-cocircuit of the form {v, w, x, g}. By orthogonality with {g, b0, a1}, T0, and T1, we know 
that {v, w, x} contains two elements of T0 or two elements of T1. By Lemma 3.3, {v, w, x}
avoids {z, b1, c0}, so {v, w, x, g} contains {a0, b0, g} or {a1, c1, g}. If the latter holds, then, 
since M\c0, c1, g has an N -minor, we deduce that M\c0, c1, g/a1 has an N -minor. This 
gives a contradiction to Lemma 3.11 because a1 is in two triangles of a quasi rotor of M . 
Thus {v, w, x, g} = {a0, b0, f, g} for some element f . By orthogonality with the triangles 
in Fig. 23, we deduce that either f = dn, or f differs from all the elements in Fig. 23.

We show next that

7.2.26. {f, g} is not contained in a triangle of M .

Suppose {e, f, g} is a triangle of M . Since we constructed a right-maximal rotor chain, 
we know that {e, f, g} meets the set of elements in Fig. 23. But g avoids this set of el-
ements, and so does f unless f = dn. By orthogonality with the cocircuits shown in 
Fig. 23, it follows that f = dn and e ∈ {dn−1, an, cn}. Furthermore, orthogonality im-
plies that e /∈ Dn−1, so e �= an. By 7.2.11, we deduce that e = cn, so {cn, dn} is contained 
in a triangle, a contradiction to 7.2.24. Thus 7.2.26 holds.

Now M contains the structure in Fig. 24. Moreover, by 7.2.11, 7.2.24, and 6.3.3, none 
of {dn−1, dn}, {cn, dn}, and {f, g} is contained in a triangle. Next we show that

7.2.27. neither M/a1 nor M/b0 has an N -minor, and {f, g, a0, b0} is the only 4-cocircuit 
in M containing a0.

Suppose M/b0 has an N -minor. Then, since M/b0 has {a0, c0} and {g, a1} as circuits, 
M/b0\a1, c0 has an N -minor. This matroid is isomorphic to M/b1\a1, c0, so M/b1 has 
an N -minor, a contradiction to Lemma 3.11. Thus M/b0 has no N -minor. Moreover, an 
immediate consequence of Lemma 3.11 is that M/a1 has no N -minor.
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Now suppose that a0 is in a 4-cocircuit D other than {f, g, a0, b0}. Lemma 3.3 implies 
that D avoids T1. Orthogonality with T0 implies that D meets {b0, c0}, so orthogonality 
with {g, b0, a1} and either {a2, b1, c0} or {b2, b1, c0} implies that D contains {a0, b0, g} or 
{a0, c0, z}, for some element z in {a2, b2}. Since D is not {f, g, a0, b0}, the latter holds. 
Then orthogonality implies that it is contained in T0 ∪ T2, and λ(T0 ∪ T1 ∪ T2) ≤ 2, 
a contradiction. Thus 7.2.27 holds.

7.2.28. M\c0, c1, . . . , cn, g is sequentially 4-connected.

To see this, first observe that, by [1, Lemma 7.1], M\c0, c1, . . . , cn is sequentially 
4-connected. The last matroid has g in a triangle, so either it has g in a triad, or 
M\c0, c1, . . . , cn, g is 3-connected. The former implies, by orthogonality with {g, b0, a1}, 
that {b0, g} or {a1, g} is contained in a triad of M\c0, c1, . . . , cn. Then 7.2.25 implies that 
M\g, c0, c1, . . . , cn/x has an N -minor for some x ∈ {b0, a1}, a contradiction to 7.2.27. 
Thus M\c0, c1, . . . , cn, g is 3-connected. Suppose this matroid has a non-sequential 
3-separation. Without loss of generality, we may assume that the triad {b0, a1, b1} is 
contained on one side of the 3-separation, and we can add g to that side to get a 
non-sequential 3-separation of M\c0, c1, . . . , cn, a contradiction. Thus 7.2.28 holds.

Next we show that

7.2.29. M has an element h such that {a0, f, h} is a triangle and M\g, h has an N -minor.

Since M has no open-rotor-chain win, M\c0, c1, . . . , cn, g has a 4-fan (1, 2, 3, 4), so 
M has a cocircuit C∗ such that {2, 3, 4} � C∗ ⊆ {2, 3, 4, c0, c1, . . . , cn, g}. By orthog-
onality with the cocircuits in Fig. 24, we deduce that {1, 2, 3} can only meet the set 
of elements in that figure if it contains {dn−1, dn}, {cn, dn}, {f, g}, or {a0, f}. The first 
three possibilities have been excluded, so either {1, 2, 3} avoids the set of elements in 
Fig. 24, or {a0, f} ⊆ {1, 2, 3}. Suppose the latter occurs. Then M has a triangle of 
the form {a0, f, h}, so M\g has (h, f, a0, b0) as a 4-fan. By 7.2.27, M\g/b0 does not 
have an N -minor. Thus M\g, h has an N -minor, so 7.2.29 holds. We may now as-
sume that {1, 2, 3} avoids the set of elements in Fig. 24. Suppose ci ∈ C∗ for some 
i in {0, 1, . . . , n − 1}. Then, since ci is in two triangles in Fig. 24, orthogonality with 
these triangles implies that {2, 3, 4} contains two elements in this figure. Hence {2, 3}
contains an element in the figure, a contradiction. Thus C∗ avoids {c0, c1, . . . , cn−1}, 
so C∗ ⊆ {2, 3, 4, cn, g}. Furthermore, orthogonality with {g, b0, a1} and Tn implies that 
either C∗ = {2, 3, 4, g} and 4 ∈ {b0, a1}, or C∗ = {2, 3, 4, cn} and 4 ∈ {an, bn}. Thus C∗

meets one of the triangles T0, T1, {cn−1, dn−1, an}, or {cn−2, bn−1, bn} in a single element, 
a contradiction to orthogonality. Thus 7.2.29 holds.

By orthogonality with the cocircuits in Fig. 24, either h differs from all the elements 
in that figure, or dn = f and h ∈ {cn, dn−1}. By 7.2.11 and 7.2.24, we deduce that h is 
a new element.

We now show that
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7.2.30. M\h is (4, 4, S)-connected, and every 4-fan of this matroid has f as its coguts 
element.

Let (z, y, x, w) be a 4-fan in M\h. Then {w, x, y, h} is a cocircuit of M , and or-
thogonality with {a0, f, h} implies that {w, x, y} meets {a0, f} in a single element. 
By 7.2.27, a0 /∈ {w, x, y}, so f ∈ {w, x, y}. Suppose f ∈ {x, y, z}. Then orthogonal-
ity with {f, g, a0, b0} implies that {x, y, z} meets {g, a0, b0}. By 7.2.26, g /∈ {x, y, z}. As 
{x, y, z} does not contain {e0, f}, it must contain {f, b0}. By orthogonality with D0, the 
triangle {x, y, z} is {f, b0, b1}, a contradiction to orthogonality with D1. Thus f = w, 
that is, f is the coguts element of every 4-fan of M\h. Thus M\h has no 5-fan. It follows 
by Lemma 3.4 that M\h is (4, 4, S)-connected. Thus 7.2.30 holds.

Since M has no quick win, M\h has a 4-fan (z0, y0, x0, f). Thus ({a0, f, h}, {x0, y0, z0},
{f, h, x0, y0}) is a bowtie.

7.2.31. M\h/f has an N -minor.

To show this, we assume the contrary. Then M\h, z0 has an N -minor. Ex-
tend the bowtie ({a0, f, h}, {x0, y0, z0}, {f, h, x0, y0}) to a right-maximal bowtie string 
{a0, f, h}, {f, h, x0, y0}, {x0, y0, z0}, . . . , {xk, yk, zk}. Now M\h, z0/y0 ∼= M\h, x0/y0 ∼=
M\h, x0/f . Thus M\h, z0/y0 has no N -minor. Therefore, by Lemma 3.7, M\h, z0, z1,

. . . , zk has an N -minor.
To complete the proof of 7.2.31, we aim to apply [1, Lemma 10.1], but first we need 

to show that

7.2.32. ({xk, yk, zk}, {a0, f, h}, {γ, zk, a0, f}) is not a bowtie for all γ in {xk, yk}.

Assume that M contains such a bowtie. Then, by 7.2.27, {γ, zk} = {g, b0}. By Lem-
ma 3.3, k > 0. Suppose zk = b0. Then M\b0 has an N -minor. This matroid has (c1, a1,

b1, c0, z) as a 5-fan where z = a2 unless n = 2, in which case z = b2. By Lemma 3.2, 
M\b0, c1, z or M\b0, c1/a1 has an N -minor. The former implies that M/b1 has an 
N -minor, so in both cases we get a contradiction to Lemma 3.11. We conclude that 
zk �= b0, so zk = g. Now M\h, z0, z1, . . . , zk has an N -minor, and, by 7.2.30, M\h is 
(4, 4, S)-connected. By Hypothesis VII, it follows that M\z0 is (4, 4, S)-connected, that 
M\zi is (4, 4, S)-connected for all i in {1, 2, . . . , k − 1}, and that M\g is (4, 4, S)-con-
nected. But M\g has a 5-fan, a contradiction. Thus 7.2.32 holds.

We can now apply [1, Lemma 10.1]. None of (i), (ii), or (v) of that lemma holds. If 
(iii) holds, then a0 is in a 4-cocircuit with h, a contradiction to 7.2.27. Thus (iv) holds, 
so M\h, z0/y0 or M\h, z0/x0 has an N -minor. Lemma 3.6 implies that M\h/f has an 
N -minor, a contradiction. We conclude that 7.2.31 holds.

Since M has no quick win, we know that M\h/f is not internally 4-connected. We now 
apply Lemma 3.8 to the bowtie string {a1, g, b0}, {b0, g, a0, f}, {a0, f, h}, {f, h, x0, y0} to 
obtain that M has {a0, h} contained in a 4-cocircuit, a contradiction to 7.2.27. �



C. Chun, J. Oxley / Advances in Applied Mathematics 104 (2019) 14–74 57
Fig. 25. Some possible configurations in M .

Lemma 7.3. Let M and N be internally 4-connected binary matroids such that |E(M)| ≥
16 and |E(N)| ≥ 7. Suppose Hypothesis VII holds. Suppose that M contains configura-
tion (A) labelled as in Fig. 25 where M\4 is (4, 4, S)-connected with an N -minor, but 
N �� M\1, 4. Then

(i) M has a quick win; or
(ii) M∗ has an open-rotor-chain win, a ladder win, or an enhanced-ladder win; or
(iii) deleting the central cocircuit of an augmented 4-wheel in M∗ gives an internally 

4-connected matroid with an N∗-minor.

Proof. Assume the lemma does not hold. First we show that

7.3.1. M\6/8 and M/8 are 3-connected, and M/5\6/8 is 3-connected with an N -minor.

Clearly M/5\4 ∼= M/5\6. As N �� M\1, 4, it follows by Lemma 3.1 that M/5\6
is (4, 4, S)-connected having an N -minor. Since M/5\6 has (2, 4, 7, 8) as a 4-fan, both 
M/5\6/8 and M/5\6\2 are 3-connected, and at least one of these matroids has an 
N -minor. As M/5\6, 2 ∼= M/5\4, 2 ∼= M\4, 2/3 ∼= M/3\4, 1, and N �� M\1, 4, we 
deduce that N � M/5\6/8.

By Lemma 5.1, we know that M\6 is (4, 4, S)-connected. As M\6 has (2, 4, 7, 8)
as a 4-fan, M\6/8 is 3-connected. Thus M/8 is 3-connected unless M has a triangle 
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containing {6, 8}. In the exceptional case, M\4/5 has a 5-fan containing {2, 6, 7, 8}. This 
contradiction completes the proof of 7.3.1.

Next we note that

7.3.2. M/8 is sequentially 4-connected.

Suppose that M/8 has a non-sequential 3-separation (U, V ). Then, by [5, Lemma 3.3], 
we may assume that {1, 2, . . . , 7} ⊆ U . Thus we can adjoin 8 to U to obtain a non-
sequential 3-separation of M , a contradiction. Thus 7.3.2 holds.

Next we show that

7.3.3. M contains one of the configurations (F) and (G) in Fig. 25, where all of the 
elements shown are distinct, and every 4-fan in M/8 has its guts element in {6, 7}.

To see this, note that, since N � M/8 but M has no quick win, M/8 has a 4-fan 
(u1, u2, u3, u4). Thus M has {u1, u2, u3, 8} as a circuit and has {u2, u3, u4} as a triad. 
By orthogonality, {u1, u2, u3} meets {4, 6, 7}, so u1 ∈ {4, 6, 7}. If u1 = 4, then, by 
orthogonality, 2, 3, or 5 is in {u2, u3, u4}, so M has a 4-fan, a contradiction. Thus u1 ∈
{6, 7}. By construction, 8 /∈ {u2, u3, u4}. As {u2, u3, u4} is a triad, this set also avoids 
{1, 2, . . . , 7}. Hence 7.3.3 holds.

Next we show the following.

7.3.4. If M contains configuration (G), then M\6/8 is sequentially 4-connected.

By 7.3.1, we know that M\6/8 is 3-connected. Let (U, V ) be a non-sequential 
3-separation of M\6/8. Then we may assume that {u2, u3, u4} ⊆ U . Thus (U ∪ 6, V )
is a non-sequential 3-separation of M/8, a contradiction to 7.3.2. Hence 7.3.4 holds.

7.3.5. If M contains configuration (G), then M contains configuration (F).

To see this, observe, since M\6/8 is sequentially 4-connected with an N -minor, but 
(i) does not hold, M\6/8 has a 4-fan (v1, v2, v3, v4). Suppose first that {v2, v3, v4} is a 
triad of M . Then the 4-fan is a fan in M/8, and 7.3.3 implies that v1 = 7. Hence M
contains configuration (F) where vi replaces ui for each i in {1, 2, 3}.

We may now assume that {v2, v3, v4, 6} is a cocircuit of M . Lemma 3.3 implies that 
{v2, v3, v4} avoids {1, 2, 3}. Orthogonality implies that {4, 5} meets {v2, v3, v4}. Sup-
pose 4 ∈ {v2, v3, v4}. Then, by orthogonality, {2, 7} meets {v2, v3, v4}. Thus {v2, v3, v4}
contains {4, 7}, so {6, v2, v3, v4} = {6, 4, 7, 8}, a contradiction. We conclude that 4 /∈
{v2, v3, v4}. Thus 5 ∈ {v2, v3, v4}.

By Lemma 5.1, we know that {4, 5, 6} is the only triangle containing 5. Suppose 
that 5 ∈ {v2, v3}. Then, without loss of generality, {v1, v2, 5, 8} is a circuit. In this 
case, orthogonality with {2, 3, 4, 5} and {4, 6, 7, 8} implies that either 4 ∈ {v1, v2}, or 
{v1, v2} = {7, z}, for some z in {2, 3}. If 4 ∈ {v1, v2}, then {v1, v2, 5, 8} 
{4, 5, 8, u2, u3}
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is a triangle meeting {u2, u3}, a contradiction. Thus {v1, v2} = {7, z}, for some z ∈
{2, 3}, and λ({1, 2, . . . , 8}) ≤ 2, a contradiction. We conclude that 5 /∈ {v2, v3}, so 
5 = v4. Moreover, by orthogonality between {6, 8, u2, u3} and {v2, v3, 5, 6}, we deduce 
that {u2, u3} meets {v2, v3}. Thus, we may assume that v3 = u3. As u3 is not in a 
triangle of M , the set {v1, v2, u3, 8} is a circuit. By orthogonality, {4, 7} and {u2, u4}
meet {v1, v2}. Hence v2 ∈ {4, 7, u2, u4}. By orthogonality between {v2, v3, 5, 6} and the 
circuits {2, 4, 7} and {6, 8, u2, u3}, we know that v2 /∈ {4,7, u2}. Hence v2 = u4. Then 
{u4, u3, 5, 6} 
 {u2, u3, u4}, which is {u2, 5, 6}, is a triad, a contradiction. We conclude 
that 7.3.5 holds.

We may now assume that M contains configuration (F). We relabel (u2, u3, u4) as 
(a0, b0, c0), for reasons that will become clear later. We show next that

7.3.6. M/5\6/8/c0 has an N -minor but M/5\6/8\7 does not.

As M/5\6/8 has an N -minor and has (7, a0, b0, c0) as a 4-fan, we deduce that N �
M/5\6/8\7 or N � M/5\6/8/c0. In the first case, as M/5\6/8\7 ∼= M/5\6, 7/4, we see 
that N � M/5, 4. Thus, by Lemma 7.1, we deduce that N � M\4, 1, a contradiction. 
We conclude that 7.3.6 holds.

From 7.3.6, N � M/c0. Since c0 is in a triad of M , we see that M/c0 is 3-connected.

7.3.7. M/c0 is sequentially 4-connected.

To show this, suppose that (U, V ) is a non-sequential 3-separation of M/c0. Then, 
by [5, Lemma 3.3], we may assume that {1, 2, . . . , 7} ⊆ U . Hence we may also assume 
that 8 ∈ U . Now if a0 or b0 is in U , then we may assume that both are in U , in which 
case we can adjoin c0 to U to get a non-sequential 3-separation of M , a contradiction. 
Hence {a0, b0} ⊆ V and we can adjoin c0 to V to get a non-sequential 3-separation of M , 
a contradiction. Thus 7.3.7 holds.

Next we observe the following.

7.3.8. If a0 or b0 is the guts element of a 4-fan of M/c0, then, up to switching the labels 
on a0 and b0, the matroid M contains structure (J) in Fig. 25 where all of the elements 
shown are distinct.

We need only check that the elements are distinct. Clearly {a1, b1, c1} avoids {1, 2,
. . . , 7, b0, c0}. If {a1, b1, c1} meets {a0, 8}, then it contains this set. Now a0 /∈ {a1, b1}
as the binary matroid M does not have a 3-element circuit–cocircuit intersection. Thus 
a0 = c1. Then 8 ∈ {a1, b1} and we get a contradiction to orthogonality. Hence 7.3.8
holds.

We now show that

7.3.9. M contains structure (J) in Fig. 25 where all of the elements shown are distinct 
and the labels on a0 and b0 may be interchanged.
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As M has no quick win, by 7.3.7, M/c0 has a 4-fan (α, β, γ, δ). Thus M has {α, β, γ, c0}
as a circuit. By orthogonality, {a0, b0} meets {α, β, γ}. If α ∈ {a0, b0}, then the result 
follows by 7.3.8. Thus we may assume that γ = b0. Then {β, γ, δ} contains exactly two 
elements of {a0, b0, 7, 8}. Now 7 /∈ {β, γ, δ}, and {β, γ, δ} does not contain {a0, b0}, so 
8 ∈ {β, δ}.

As the next step towards proving 7.3.9, we now show that

7.3.10. M does not have {2, 5, a0, c0} or {6, 8, b0, c0} as a circuit.

Since M has {a0, b0, 2, 5, 6, 8} as a circuit and {a0, b0, 2, 5, 6, 8} 
 {2, 5, a0, c0} =
{6, 8, b0, c0}, it suffices to prove that {2, 5, a0, c0} is not a circuit. Assume otherwise. 
By 7.3.6, we know that M/5, 8, c0\6 has an N -minor. Hence so does M/5, 8, c0\6, 2. But 
M/5, 8, c0\6, 2 ∼= M/5, 8, c0\4, 2 ∼= M\4, 2/3, 8, c0 ∼= M/3, 8, c0\4, 1, so N � M\1, 4, 
a contradiction. Hence 7.3.10 holds.

Recall that 8 ∈ {β, δ}. Suppose that 8 = β. Then, by orthogonality between 
{α, 8, b0, c0} and the cocircuits {4, 6, 7, 8} and {2, 3, 4, 5}, it follows that α ∈ {6, 7}. 
As {7, 8, a0, b0} is also a circuit, α �= 7, so α = 6 and we have a contradiction to 7.3.10. 
We deduce that 8 �= β, so 8 = δ. Hence M/c0 has (α, β, b0, 8) as a 4-fan.

7.3.11. M has {α, β, b0, c0} as a circuit and has {β, b0, 8} and {a0, b0, c0} as triads, these 
being its only triads containing b0.

The first part of this is immediate. By orthogonality, a triad containing b0 must contain 
a0 or 8, so the last part also holds.

By 7.3.6, we see that N � M/c0, 8. Still aiming at obtaining 7.3.9, we show next that

7.3.12. M/c0, 8 is 3-connected.

Assume the contrary. As M/c0 is 3-connected having (α, β, b0, 8) as a 4-fan, we de-
duce that M/c0 has {8, b0} or {8, β} in a triangle. Suppose {8, β} is in a triangle of 
M/c0. Then {8, β, c0} is contained in a 4-circuit of M , which, by orthogonality, must be 
{8, β, c0, a0} or {8, β, c0, b0}. But M has {α, β, b0, c0} as a circuit. As α �= 8, it follows 
that {8, β, c0, a0} is a circuit. By taking the symmetric difference of the last two circuits, 
we deduce that {α, 8, a0, b0} is a circuit, so α = 7. Then {7, β, b0, c0} is a circuit, so 
β ∈ {4, 6}, a contradiction to orthogonality. We conclude that {8, β} is not in a triangle 
of M/c0. Thus M/c0 has {8, b0} contained in a triangle, so M has {8, b0, c0} contained 
in a 4-circuit. By orthogonality, this 4-circuit is {8, b0, c0, 6}, a contradiction to 7.3.10. 
We conclude that 7.3.12 holds.

By 7.3.7, M/c0 is sequentially 4-connected. It follows that M/c0, 8 is sequentially 
4-connected for if (U, V ) is a non-sequential 3-separation of the last matroid, then we 
may assume that {α, β, b0} ⊆ U , so (U ∪ 8, V ) is a non-sequential 3-separation of M/c0, 
a contradiction.
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Since M has no quick win, M/c0, 8 has a 4-fan (s1, s2, s3, s4). Thus M has a circuit C
such that {s1, s2, s3} � C ⊆ {s1, s2, s3, c0, 8}, and {s2, s3, s4} avoids {1, 2, . . . , 7, 8, c0}. 
Suppose c0 /∈ C. Then C = {s1, s2, s3, 8}. By orthogonality, s1 ∈ {4, 6, 7}. But s1 �= 4
otherwise {s2, s3} meets {2, 3, 5}. Thus s1 ∈ {6, 7}. Now M has {β, b0, 8} as a triad, 
so {s2, s3} meets {β, b0} in a single element. The triad {s2, s3, s4} avoids {c0, 8} so 
differs from both {a0, b0, c0} and {b0, β, 8}. Hence, by 7.3.11, b0 /∈ {s2, s3, s4}, so β ∈
{s2, s3}. Thus, by orthogonality between {s2, s3, s4} and {α, β, b0, c0}, we deduce that 
α ∈ {s2, s3, s4}. It follows that M/c0 has a 4-fan having b0 as its guts element and 
{s2, s3, s4} as its triad, a contradiction to 7.3.8. We conclude that c0 ∈ C.

Suppose C = {s1, s2, s3, c0}. By orthogonality and 7.3.8, {s2, s3} meets {a0, b0}. As 
{s2, s3, s4} is not {a0, b0, c0}, it follows by orthogonality that {s2, s3, s4} meets {7, 8}, 
a contradiction. We deduce that C �= {s1, s2, s3, c0}, so C = {s1, s2, s3, c0, 8}. Then, by 
orthogonality, s1 ∈ {4, 6, 7}, and {s2, s3} meets {a0, b0}. By 7.3.11, b0 /∈ {s2, s3, s4} so 
a0 ∈ {s2, s3}. Thus, by orthogonality between {s2, s3, s4} and {a0, b0, 7, 8}, we obtain a 
contradiction. We conclude that 7.3.9 holds.

We may now assume that M∗ has (T0, T1, D0) as a bowtie. In M∗, take a right-
maximal bowtie string T0, D0, T1, D2, . . . , Tn noting that n may equal 1. Next we show 
the following.

7.3.13. The elements in {1, 2, . . . , 8} ∪ T0 ∪ T1 ∪ · · · ∪ Tn are distinct.

The triangles in this string are triads in M , so the elements in the string avoid 
{1, 2, . . . , 7}. Therefore 7.3.13 holds unless either a0 = cn, or 8 is in the bowtie string. 
Suppose 8 ∈ Ti. Then, since 8 /∈ T0, orthogonality between Ti and {7, 8, a0, b0} implies 
that a0 = ci and i = n. Then 8 ∈ {an, bn}. By orthogonality, {bn−1, cn−1, an, bn} meets 
{4, 6, 7}, so a triangle in M meets a triangle in M∗, a contradiction. We conclude that 8
is not in the bowtie string. By orthogonality between Tn and the cocircuit {7, 8, a0, b0}
in M∗, we see that cn �= a0. Thus 7.3.13 holds.

We want to apply Lemma 7.2 to M∗. Since M∗ contains both triangles and triads, 
it is not isomorphic to the cycle matroid of a quartic Möbius ladder. Moreover, if M∗

is isomorphic to the cycle matroid of a terrahawk, then so is M , and therefore M has a 
second triangle containing 5, a contradiction to Lemma 5.1. Let X = {5, 8}, let Y = {6}, 
and let M ′ = M∗\X/Y . In M ′, each Ti is a disjoint union of circuits while each Dj is a 
disjoint union of cocircuits. Since M ′ is 3-connected, it follows that T0, D0, T1, D2, . . . , Tn

is a bowtie string in M ′.

7.3.14. M ′\c0, c1, . . . , cn has an N∗-minor and M ′\c0, c1, . . . , ci/e has no N∗-minor for 
all e in {ai, bi} where i ∈ {1, 2, . . . , n}.

To see this, observe first that, by 7.3.6, M ′\c0 has an N∗-minor but M ′/7 does 
not. It follows from this that M ′\a0/b0 has no N∗-minor since M ′\a0 has {b0, 7}
as a cocircuit, so M ′\a0/b0 ∼= M ′\a0/7. Suppose M ′\c0, c1, . . . , ci has an N∗-minor 
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for some i in {0, 1, . . . , n − 1}. As this matroid has (ci+1, ai+1, bi+1, bi) as a 4-fan, 
either M ′\c0, c1, . . . , ci+1 has an N∗-minor, or M ′\c0, c1, . . . , ci/bi has an N∗-minor. 
By Lemma 3.6, the latter implies that M ′\a0, a1, . . . , ai/b0 has an N∗-minor. Hence 
so does M ′\a0/b0, a contradiction. It follows by induction that M ′\c0, c1, . . . , cn has 
an N∗-minor. Furthermore, if M ′\c0, c1, . . . , ci/ai has an N∗-minor for some i in 
{1, 2, . . . , n}, then Lemma 3.6 implies that M ′\a0, a1, . . . , ai−1, bi/b0 has an N∗-minor, 
so M ′\a0/b0 has an N∗-minor, a contradiction. Thus 7.3.14 holds.

Clearly none of (i), (ii), and (vii) of Lemma 7.2 holds in M∗.

7.3.15. Neither (iii) nor (v) of Lemma 7.2 holds in M∗.

To see this, observe that, by 7.3.14, it follows that (v) of Lemma 7.2 does not hold. 
Suppose (iii) of Lemma 7.2 holds in M∗. Then {a0, b0, z, cn} is a 4-circuit of M for some z
in {an, bn}. Taking the symmetric difference of this circuit with {7, 8, a0, b0}, we see that 
{7, 8, z, cn} is a circuit of M . But M/5\6/8, cn has an N -minor and has 7 in a 2-circuit. 
Hence M/5\6/8, cn\7 has an N -minor, a contradiction to 7.3.6. We deduce that 7.3.15
holds.

Suppose M∗ contains the structure in Fig. 18 where d1 ∈ Y and either d0 ∈ X

or M ′\c0, c1, d0 has an N∗-minor. Then d1 = 6, and {d0, a1, c1, 6} is a circuit in M . 
By orthogonality with {4, 6, 7, 8}, we know that d0 ∈ {4, 7, 8}. But {b0, d0, a1} is a triad 
of M , so it avoids {4, 7}. Thus d0 = 8. The symmetric difference {4, 5, 6} 
{6, 8, a1, c1} is 
{4, 5, 8, a1, c1}, which must be a circuit in M . Now M/5\6/8/c0/c1 has {4, a1} as a circuit. 
Hence M/5\6/8/c0, c1\a1 has an N -minor and (v) of Lemma 7.2 holds, a contradiction. 
Thus M∗ does not contain the structure in Fig. 18.

Suppose M∗ contains the structure in Fig. 17(a). Then M has {p, t, a0}, {a0, b0, c0}, 
and {b0, b1, q} as distinct cocircuits. By orthogonality with the circuit {7, 8, a0, b0}, each 
of q and {p, t} meets {7, 8} in a unique element. As 7 is in no triad of M , we deduce that 
q = 8 and 8 ∈ {p, t}. Hence q ∈ {p, t}, a contradiction. Suppose next that M∗ contains the 
structure in Fig. 17(b). Then {b0, b1, q} and {s1, s2, s3} are disjoint cocircuits of M and 
{b1, c1, q, s2, s3} is a circuit of M . By orthogonality with the circuit {7, 8, a0, b0}, it follows 
that q = 8. By orthogonality with the cocircuit {4, 6, 7, 8}, we see that {b1, c1, s2, s3}
meets {4, 6, 7}, a contradiction. We conclude that M∗ contains neither of the structures 
in Fig. 17.

By Lemma 7.2, it follows that M∗ contains the structure in Fig. 12 and {dn−1, dn}
is not contained in a triangle of M∗. By [1, Lemma 6.4], as a0 �= cn and {dn−1, dn}
is not contained in a triangle, we know that the elements in this figure are all distinct 
with the possible exception that α and β may be repeated elements. Thus {α, β, a0} is 
a triangle of M∗ distinct from T0, and {α, a0, c0, d0} or {α, a0, c0, a1, c1} is a cocircuit 
of M∗ for some elements α, β, and d0. Furthermore, {c0, d0, a1} is a triangle of M∗. 
Since M∗ has {7, 8, a0, b0} as a cocircuit, orthogonality implies that {α, β} meets {7, 8}. 
Clearly 7 avoids {α, β}, so 8 ∈ {α, β}.
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7.3.16. β = 8.

To show this, suppose that α = 8. Then orthogonality implies that {4, 6, 7} meets 
{a0, c0, d0} or {a0, c0, a1, c1}. Thus M∗ is not internally 4-connected, a contradiction. 
Thus 7.3.16 holds.

We relabel 7 as γ to see that M∗ contains the structure in Fig. 11, where the elements 
are all distinct with the possible exception that α, β, and γ may be repeated elements.

In preparation for applying Lemma 4.1, we now show the following.

7.3.17. The elements in Fig. 11 are distinct except that γ and dn may be equal.

As γ is in a triad of M∗, we know that γ avoids all of the other elements in Fig. 11
with the possible exception of dn. By orthogonality between the triangles in this figure 
and the cocircuits {β, γ, a0, b0} and {α, a0, c0, d0}, we deduce that β and α avoid all of 
the elements with the possible exception of dn. Thus the elements are all distinct except 
that dn may be in {α, β, γ}. But orthogonality between {dn−1, an, cn, dn} and {α, β, a0}
implies that dn /∈ {α, β}. Thus 7.3.17 holds.

By 7.3.15 and Lemma 7.2, M∗ has no triangle Tn+1 such that {x, cn, an+1, bn+1} is a 
4-cocircuit for any x in {an, bn}. Then Lemma 3.4 implies that M∗\cn is (4, 4, S)-con-
nected.

By 7.3.14, M∗\β, c0, c1, . . . , cn has an N -minor. By 7.3.17, we are now in a position to 
apply Lemma 4.1 to get that M∗\β, c0, c1, . . . , cn is (4, 4, S)-connected and every 4-fan 
of this matroid is either a 4-fan in M∗\cn with bn as its coguts element, or is a 4-fan in 
M∗\β with α as its coguts element. Let (u, v, w, x) be such a 4-fan. Suppose first that 
x = bn and this 4-fan is a 4-fan in M∗\cn. Then {v, w, bn, cn} is a 4-cocircuit of M∗ and, 
taking Tn+1 = {u, v, w}, we get a contradiction to the previous paragraph. It follows 
that (u, v, w, α) is a 4-fan in M∗\β. By 7.3.16, we know that β = 8. Thus (α, w, v, u) is 
a 4-fan in M/8, a contradiction to 7.3.3. We conclude that M∗\β, c0, c1, . . . , cn has no 
4-fans and so is internally 4-connected. Thus (ii) holds, a contradiction. �

This completes our analysis of the case when M contains configuration (A) in Fig. 13.

8. Configuration (B)

In this section, we deal with the case when M contains configuration (B) in Fig. 13. 
The results from the last two sections mean that if we find that M contains configura-
tion (C) or (A) from Fig. 13, then we are guaranteed to get one of the desired outcomes 
from the main theorem.

Lemma 8.1. Suppose M and N are internally 4-connected binary matroids, |E(M)| ≥ 13
and |E(N)| ≥ 7, and M contains structure (B) in Fig. 13 where all of the elements are 
distinct except that 1 may be a. Suppose M\4 is (4, 4, S)-connected with an N -minor but 
M\1, 4 does not have an N -minor. Then
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Fig. 26. All of the elements are distinct except that u may be 1.

(i) M has a triangle {7, 8, 9} where {4, 6, 7, 8} is a cocircuit and the elements in 
{1, 2, . . . , 9} are distinct except that 1 may be 9; or

(ii) M contains the configuration in Fig. 26, where all of the elements are distinct except 
that u may be 1, and M\6 is (4, 4, S)-connected with an N -minor; or

(iii) M\6 is internally 4-connected with an N -minor.

Proof. Suppose that the lemma fails. As N �� M\1, 4, it follows by Lemma 3.1 that 
N � M\4/5, and M\4/5 is (4, 4, S)-connected. Since M/5\4 ∼= M/5\6, we deduce that 
N � M\6.

8.1.1. M\6 is (4, 4, S)-connected with an N -minor.

Assume that 8.1.1 fails. Then, by Lemma 3.4, {4, 5, 6} is the central triangle of a 
quasi rotor. Moreover, since M\4 is (4, 4, S)-connected, the central element of this quasi 
rotor is 4, and Lemma 3.4 specifies that this quasi rotor is ({1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{2, 3, 4, 5}, {4, 6, 7, 8}, {x, 4, 7}) for some x in {2, 3}, so (i) holds, a contradiction. We 
conclude that 8.1.1 holds.

Since M\6 is not internally 4-connected, it has a 4-fan (u, v, w, x). Thus M has 
{v, w, x, 6} as a cocircuit. Hence {v, w, x} meets {4, 5} and {a, c}. Clearly {u, v, w} �=
{4, 5, 6}, so Lemma 5.1 implies that 5 /∈ {u, v, w}. Suppose 4 ∈ {u, v, w}. Then orthogo-
nality between {u, v, w} and {4, 6, c, d} implies that {c, d} meets {u, v, w}. If {4, c} is in a 
triangle, then the symmetric difference of this triangle with {4, 5, a, c} is a triangle other 
than {4, 5, 6} that contains 5, a contradiction to Lemma 5.1. Thus {4, d} ⊆ {u, v, w}, so 
M\6/5 has a 5-fan, a contradiction. We conclude that 4 /∈ {u, v, w}, so x ∈ {4, 5} and, 
without loss of generality, w is in {a, c}.

8.1.2. Either {1, 2, 3} avoids {u, v, w}, or {1, 2, 3} ∩ {u, v, w} = {1} = {u}.

To see this, observe that, as ({u, v, w}, {4, 5, 6}, {v, w, x, 6}) is a bowtie, Lemma 3.3
implies that the cocircuit {2, 3, 4, 5} avoids {u, v, w}. Furthermore, Lemma 3.3 applied 
to the bowtie ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) implies that {v, w, x, 6} avoids {1, 2, 3}. It 
follows that 8.1.2 holds.
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By 8.1.2, if x = 4, then (i) of the lemma holds, a contradiction. Thus we may assume 
that x = 5. Suppose w = c. Then {c, d} is not in a triangle, as (i) does not hold, so 
orthogonality implies that 4 ∈ {u, v}, which we have already shown does not occur. We 
conclude that a = w. Then {v, a, 5, 6} is a cocircuit of M , so M contains the configuration 
in Fig. 26.

By 8.1.2, since a = w, we see that a �= 1. Thus the elements in Fig. 13(B) are distinct. 
Lemma 3.3 implies that {u, v} avoids {2, 3, 4, 5} and {4, 6, c, d}. Hence the elements in 
Fig. 26 are distinct with the possible exception that 1 ∈ {u, v}. By 8.1.2, 1 �= v. Thus 
(ii) holds. �

If (i) of the last lemma holds, then, possibly after a minor relabelling, we see that M
contains structure (C) from Fig. 13. Since this case has already been treated, it remains 
for us to consider the structure in Fig. 26.

Lemma 8.2. Suppose M and N are internally 4-connected binary matroids, |E(M)| ≥ 16
and |E(N)| ≥ 7, and M contains the structure in Fig. 26 where all of the ele-
ments are distinct except that u may be 1. Suppose Hypothesis VII holds. If M\6 is 
(4, 4, S)-connected with an N -minor but M\6, u has no N -minor, then

(i) M has a quick win; or
(ii) M∗ has an open-rotor-chain win, a ladder win, or an enhanced-ladder win; or
(iii) deleting the central cocircuit of an augmented 4-wheel in M∗ gives an internally 

4-connected matroid with an N∗-minor.

Proof. As M\6, u has no N -minor, we relabel the elements 1, 2, 3, 4, 5, 6, a, v, u, c, and 
d in Fig. 26, as x, y, z, 6, 5, 4, 2, 3, 1, c, and d. We then restrict our attention to the con-
figuration in M that is the same as that in Fig. 13(A). Now M\1, 4 has no N -minor. 
Lemma 7.3 implies that the result holds. �

We may now assume that M contains the structure in Fig. 26 and M\6, u has an 
N -minor. Recall that M\4/5 has an N -minor. As this matroid has (a, 6, c, d) as a 4-fan, 
we may delete a or contract d keeping an N -minor. In the next lemma, we consider the 
second possibility.

Lemma 8.3. Suppose M is an internally 4-connected binary matroid containing at least 
thirteen elements, and M has the structure in Fig. 26 where all of the elements are 
distinct except that u may be 1. Suppose that both M\4 and M\6 are (4, 4, S)-connected. 
Then

(i) M/d is (4, 4, S)-connected and every (4, 3)-violator of M/d is a 4-fan with c as its 
guts element; or

(ii) M contains the structure in Fig. 13(A).
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Proof. Assume that (ii) does not hold. First we show that

8.3.1. M has no triangle containing d.

Assume that M has a triangle T containing d. Then, by orthogonality, T con-
tains c, 6, or 4. In the first two cases, we obtain the contradiction that M\4 is not 
(4, 4, S)-connected. We conclude that 4 ∈ T . Then, by orthogonality and symmetry, we 
may assume that 2 ∈ T , so (ii) holds. This contradiction implies that 8.3.1 holds.

8.3.2. M/d is sequentially 4-connected.

By 8.3.1, M/d is 3-connected. Suppose that M/d has a non-sequential 3-separation 
(U, V ). Then, by [5, Lemma 3.3], we may assume that {4, 5, 6, a, u, v, c} ⊆ U . Then 
(U ∪ d, V ) is a non-sequential 3-separation of M , a contradiction. Thus 8.3.2 holds.

Now suppose that M/d has a 4-fan (α, β, γ, δ). Then M has {α, β, γ, d} as a circuit. 
By orthogonality, {α, β, γ} meets {4, 6, c}. Since M has no 4-fan, {β, γ} avoids the tri-
angles of M . Thus α ∈ {4, 6, c}. By orthogonality between {α, β, γ, d} and the cocircuits 
{2, 3, 4, 5} and {5, 6, a, v}, we see that α /∈ {4, 6}. Thus α = c.

We now know that every 4-fan in M/d has c as its guts element. It follows easily that 
M has no 5-fan and no 5-cofan, so M/d is (4, 4, S)-connected as required. �

We have not eliminated the case that M contains the structure in Fig. 26 and M/d

has an N -minor, but we have built up more structure, which will assist us in our later 
analysis.

Lemma 8.4. Suppose M and N are internally 4-connected binary matroids, |E(M)| ≥ 13
and |E(N)| ≥ 7, and M contains the structure in Fig. 26 where all of the elements are 
distinct except that u may be 1. Suppose that Hypothesis VII holds. Suppose that M\4
and M\6 are each (4, 4, S)-connected with an N -minor, and M\1, 4 has no N -minor. 
Then

(i) {4, 5, 6} is the only triangle of M containing 4, and M contains the structure in 
Fig. 27 where all of the elements are distinct except that u2 may be the same as 1, 
or {1, 2, 3} may equal {a2, u2, v2}; or

(ii) M has a quick win; or
(iii) M has a ladder win.

Proof. We assume that neither (ii) nor (iii) holds. We show first that

8.4.1. {4, 5, 6} is the only triangle that meets {4, 5}.

Lemma 5.1 implies that {4, 5, 6} is the only triangle that contains 5. Let T be a 
triangle that contains 4 but differs from {4, 5, 6}. Then orthogonality implies that T
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Fig. 27. All of the elements are distinct except that u2 may be the same as 1, or {1, 2, 3} may be {a2, u2, v2}.

meets {2, 3, 5} and {6, c, d}, so, up to switching the labels on 2 and 3, the triangle is 
{2, 4, d} or {2, 4, c}, so M\4/5 has a 5-fan, a contradiction to Lemma 3.1. We deduce 
that 8.4.1 holds.

Lemma 8.2 implies that M\6, u has an N -minor. From Lemma 3.5, we know that 
M\u is (4, 4, S)-connected and, as M\4 is not internally 4-connected, either

(I) M has a triangle {a2, u2, v2} and a cocircuit {x, u, a2, v2} where x ∈ {a, v} and 
|{4, 5, 6, a, u, v, a2, u2, v2}| = 9, or

(II) every (4, 3)-violator of M\u is a 4-fan of the form (6, y2, y3, y4) where y2 ∈ {a, v}.

Suppose (II) holds. Since y2 ∈ {a, v}, orthogonality implies that (y1, y2, y3) is (6, v, d)
or (6, a, c). If {6, v, d} is a triangle, then λ({4, 5, 6, a, v, u, c, d}) ≤ 2, a contradiction. 
Thus y2 = a and y3 = c. We now consider M\6, u. By [1, Lemma 6.1], since M\6, u is 
not internally 4-connected, one of the following occurs: {c, y4} is contained in a triangle; 
or {5, v} is contained in a triangle; or M has a triangle that contains 4 but avoids 
{5, 6, a, c, u, v}; or M\6, u is (4, 4, S)-connected and v is the coguts element of every 4-fan 
in it. If {c, y4} is contained in a triangle, then orthogonality implies that the third element 
of this triangle is in {4, 6, d} and so λ({4, 5, 6, a, u, v, c, d, y4}) ≤ 2, a contradiction. By 
8.4.1, {5, v} is not contained in a triangle and M has no triangle that contains 4 but 
avoids {5, 6}. We deduce that M\6, u has a 4-fan of the form (z1, z2, z3, v). As every 4-fan 
of M\u contains 6, we see that (z1, z2, z3, v) is not a 4-fan of M\u. Hence {6, z2, z3, v} or 
{6, u, z2, z3, v} is a cocircuit of M . Then orthogonality implies that {z2, z3} meets {4, 5}, 
a contradiction to 8.4.1. We conclude that (II) does not hold. Therefore (I) holds.

If the triangle {a2, u2, v2} meets {c, d}, then orthogonality with the cocircuit {4, 6, c, d}
implies that {c, d} ⊆ {a2, u2, v2}, so M\4 has a 5-fan, a contradiction. Thus the elements 
in {4, 5, 6, a, u, v, a2, u2, v2, c, d} are distinct. Now consider the cocircuit {x, u, a2, v2} re-
calling that x ∈ {a, v}. If x = a, then orthogonality implies that {u, a2, v2} meets 
{6, c}, a contradiction. Thus x = v. By hypothesis, {2, 3} avoids {4, 5, 6, a, c, d, u, v}. 
Suppose {2, 3} meets {a2, u2, v2}. Then orthogonality with {2, 3, 4, 5} implies that 
{2, 3} ⊆ {a2, u2, v2}, so {1, 2, 3} = {a2, u2, v2}, and (i) holds. Now suppose that {2, 3}
avoids {a2, u2, v2}. Then the elements in {2, 3, 4, 5, 6, a, u, v, a2, u2, v2, c, d} are distinct. 
Finally, orthogonality implies that 1 can only be in the last set if it equals u2. Thus 
(i) holds. �
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When M contains the configuration in Fig. 27 and M\4 is (4, 4, S)-connected with an 
N -minor but M\1, 4 does not have an N -minor, we know, by Lemma 3.1, that M\6/5
is (4, 4, S)-connected with an N -minor. Since M\6/5 has (a, 4, c, d) as a 4-fan, it follows 
that either

(i) N � M\6/5\a; or
(ii) N � M\6/5/d.

As we showed in Lemma 8.3, we are able to find a new triad in the case that (ii) holds. 
In the following lemma, we dispense with the case that (i) holds.

Lemma 8.5. Suppose M and N are internally 4-connected binary matroids, |E(M)| ≥ 15
and |E(N)| ≥ 7, and M contains the structure in Fig. 27 where all of the elements 
are distinct except that u2 may be 1, or {1, 2, 3} may equal {a2, u2, v2}. Suppose that 
Hypothesis VII holds and that {4, 5, 6} is the only triangle that contains 4. Suppose 
that M\4 and M\6 are each (4, 4, S)-connected with an N -minor and M\6/5\a has an 
N -minor but M\1, 4 has no N -minor. Then

(i) M has a quick win; or
(ii) M has a ladder win; or
(iii) M has a mixed ladder win.

Proof. Assume that the lemma does not hold. We relabel the elements 4, 5, 6, a, v, u, d, 
and c in Fig. 27 as a0, v0, u0, a1, v1, u1, t0, and t1, respectively. Since M\u0/v0\a1

is isomorphic to M\u0, u1/v1, the second matroid has an N -minor. We take a 
right-maximal bowtie string {a0, v0, u0}, {v0, u0, a1, v1}, {a1, v1, u1}, {v1, u1, a2, v2}, . . . ,
{an, vn, un}. Let X be the set of elements in this bowtie string.

8.5.1. Suppose M contains the structure in Fig. 28, where i ≥ 2, all of the elements 
are distinct, and {t0, t1, . . . , ti−1} avoids X. Suppose M\u0, u1, . . . , ui−1/vi−1 has an 
N -minor. Then M has an element ti that is not in {t0, t1, . . . , ti−1} ∪ X such that 
{ti−1, ai−1, ui−1, ti} is a cocircuit, {ui−1, ti, ai} is a triangle, and M\u0, u1, . . . , ui/vi
has an N -minor. Moreover, if {1, 2, 3} meets (∪i

j=0{aj , uj , vj}) ∪ {t0, t1, . . . , ti}, then 
either 1 = ui, or {1, 2, 3} = {ai, ui, vi}.

Since M/vi−1\ui−1 has an N -minor, Lemma 3.8 implies that {ai−1, ui−1} is con-
tained in a 4-cocircuit. Orthogonality implies that this cocircuit meets {ui−2, ti−1}, and 
Lemma 3.3 implies that it avoids {ai−2, ui−2, vi−2}, hence it contains ti−1. Let ti be 
the fourth element in this cocircuit. Orthogonality implies that ti avoids the triangles in 
Fig. 28 and also avoids X. Thus ti is a new element unless ti = t0. In the exceptional 
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Fig. 28. All of the elements shown are distinct.

case, {t0, a0, u0, t1} 
{ti−1, ai−1, ui−1, t0}, which equals {a0, u0, t1, ti−1, ai−1, ui−1}, is a 
cocircuit. Hence the elements in Fig. 28, excluding {t0, ai, ui, vi}, comprise a 3-separating 
set in M , a contradiction. Thus ti �= t0.

Next we establish the last part of 8.5.1. Suppose that {1, 2, 3} meets (∪i
j=0{aj , uj ,

vj}) ∪ {t0, t1, . . . , ti}. If {1, 2, 3} avoids X, then orthogonality with the cocircuits in 
Fig. 28 implies that {1, 2, 3} contains {t0, t1, . . . , ti}. Hence i = 2, and λ({a0, u0, v0, a1,

u1, v1, t0, t1, t2}) ≤ 2, a contradiction. We deduce that {1, 2, 3} meets X. By [1, 
Lemma 5.4], we see that 1 = ui, as desired, or {1, 2, 3} = {ak, uk, vk} for some k in 
{2, 3, . . . , i}. We assume the latter. By orthogonality with the cocircuit {2, 3, a0, v0}, we 
see that {2, 3} avoids {uk−1, tk, ak}, so 1 = ak and {2, 3} = {uk, vk}. Now orthogonality 
with {2, 3, a0, v0} implies that {uk, tk+1, ak+1} is not a triangle. Hence k = i. Thus the 
last part of 8.5.1 holds.

We can now apply Lemma 6.3 to our structure noting that, by assumption, (ii)(c) 
of that lemma cannot hold. Since {a0, u0, v0} is the unique triangle of M containing 
a0, it follows that {a0, t0} is not in a triangle of M . Thus M has a triangle containing 
{ui−1, ti}. By orthogonality, this triangle meets {vi−1, ai, vi}. If i < n, then orthogonality 
with {vi, ui, ai+1, vi+1} implies that the third element of this triangle is ai. If i = n, then, 
up to switching the labels on an and vn, we may assume that the third element of this 
triangle is ai.

To complete the proof of 8.5.1, it remains only to show that M\u0, u1, . . . , ui/vi
has an N -minor. Suppose not. Since M\u0, u1, . . . , ui−1/vi−1 has an N -minor and has 
(ai, ti, ai−1, ti−1) as a 4-fan, we know that M\u0, u1, . . . , ui−1/vi−1\ai or M\u0, u1, . . . ,
ui−1/vi−1/ti−1 has an N -minor. Since the first matroid is isomorphic to M\u0, u1, . . . ,
ui−1/vi\ui by Lemma 3.6, we may assume that the second matroid has an N -minor. 
Now Lemma 3.6 implies that M\u0, u1, . . . , ui−1/vi−1/ti−1 is isomorphic to M\a0, a1,

. . . , ai−1/v0/ti−1. Applying Lemma 3.6 again, this time focusing on the bowtie string 
at the top of the diagram, we get that the last matroid is isomorphic to M\a0, u0, u1,

. . . , ui−2/v0/t1. Thus M\a0, u0 has an N -minor. As this matroid has {t0, t1} as a cocir-
cuit, we deduce that M/t0 has an N -minor. Because {a0, u0, v0} is the unique triangle 
containing a0, it follows that M does not contain the structure in Fig. 13(A). Thus 
Lemma 8.3 implies that M/t0 has a 4-fan of the form (t1, β, γ, δ). Hence {t0, t1, β, γ} is 
a circuit of M , and {β, γ, δ} is a triad of M . Orthogonality with {t1, a1, u1, t2} implies 
that {β, γ} meets a triangle of M , a contradiction. Thus 8.5.1 holds.
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Fig. 29. n ≥ 2 and all of the elements shown are distinct except that 1 may be the same as un.

By repeatedly applying 8.5.1 on our bowtie string, we deduce that M contains the 
structure in Fig. 29 and M\u0, u1, . . . , un/vn has an N -minor. By Lemma 3.6, we see 
that

8.5.2. M\u0, u1, . . . , un/vn ∼= M\a0, a1, . . . , an/v0.

We also get from 8.5.1 that {1, 2, 3} avoids the other elements in Fig. 29 except that 1
may be un, or {1, 2, 3} may be {an, un, vn}. If {1, 2, 3} = {an, un, vn}, then orthogonality 
implies that {2, 3} = {un, vn}, so 1 = an. By 8.5.2, we deduce, since a0 = 4, that M\1, 4
has an N -minor, a contradiction. We conclude that all the elements in Fig. 29 are distinct, 
except that 1 may be un.

Next we show that

8.5.3. M\un has no 4-fan with vn as its coguts element.

Suppose that M\un has (7, 8, 9, vn) as a 4-fan. Then ({an, un, vn}, {7, 8, 9}, {8, 9,
vn, un}) is a bowtie, and [1, Lemma 5.4] implies that {7, 8, 9} = {aj , uj , vj} for 
some j in {0, 1, . . . , n − 2}. Then λ(X ∪ {t1, t2, . . . , tn}) ≤ 2. Since {1, 2, 3, t0} avoids 
X ∪ {t1, t2, . . . , tn}, to avoid a contradiction, we must have that 1 = un. Hence {1, 2, 3}
meets {8, 9, vn, un} in a single element, a contradiction. Thus 8.5.3 holds.

Next we show that

8.5.4. {an, un} is contained in a 4-cocircuit.

Since M\u0, u1, . . . , un/vn ∼= M\a0, a1, . . . , an/v0 by 8.5.2, we deduce that the second 
matroid has an N -minor. Thus both M\un and M\an−1 have N -minors. Moreover, by 
Hypothesis VII, M\un is (4, 4, S)-connected. As M has no quick win, Lemma 3.4 and 
8.5.3 imply that 8.5.4 holds unless vn is in a triangle T with un−1 or vn−1. In the 
exceptional case, orthogonality with the vertex cocircuits in Fig. 29 implies that T is 
{vn, un−1, tn}, a contradiction. Thus 8.5.4 holds.

Orthogonality implies that the 4-cocircuit containing {an, un} meets {un−1, tn}, and 
Lemma 3.3 implies that the cocircuit avoids {an−1, un−1, vn−1}. Hence it contains tn. 
Let tn+1 be the fourth element in this cocircuit. Orthogonality with the triangles in 
Fig. 29 implies that tn+1 avoids all of the elements in the figure with the possible excep-
tion of t0. Now we apply [1, Lemma 6.5] and conclude that one of the following holds: 
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M\u0, u1, . . . , un is internally 4-connected; or M\u0, u1, . . . , un is (4, 4, S)-connected and 
every 4-fan in this matroid is also a 4-fan of M\un with vn as its coguts element or is 
a 4-fan of M\u0 with a0 in its triangle; or M is a quartic Möbius ladder with a0 in two 
triangles. Since {a0, u0, v0} is the only triangle of M containing a0, we deduce that either 
M has a ladder win, a contradiction; or M\un has a 4-fan with vn as its coguts element, 
which contradicts 8.5.3. We conclude that the lemma holds. �

We continue to consider the case when M contains the structure in Fig. 27, M\4
is (4, 4, S)-connected with an N -minor, M\1, 4 does not have an N -minor, and M\6/5
is (4, 4, S)-connected with an N -minor. Now M\6/5 has (a, 4, c, d) as a 4-fan, and the 
preceding lemma dealt with the case when M\6/5\a has an N -minor. Our final lemma 
deals with the case when the last matroid does not have an N -minor.

Lemma 8.6. Let M and N be internally 4-connected binary matroids with |E(M)| ≥ 16
and |E(N)| ≥ 7. Suppose that M contains the structure in Fig. 27, where the elements 
are all distinct except that u2 may be 1, or {a2, u2, v2} may be {1, 2, 3}. Suppose that 
M\4 and M\6 are (4, 4, S)-connected having N -minors, and that M\1, 4 does not have 
an N -minor. Suppose that Hypothesis VII holds, that {4, 5, 6} is the only triangle con-
taining 4, and that M\6/5\a does not have an N -minor. Then

(i) M has a quick win; or
(ii) M or M∗ has an open-rotor-chain win, a bowtie-ring win, or a ladder win; or
(iii) M or M∗ has an enhanced-ladder win; or
(iv) deleting the central cocircuit of an augmented 4-wheel in M∗ gives an internally 

4-connected matroid with an N∗-minor.

Proof. Assume that the lemma fails. Then, by Lemma 8.2, N � M\6, u. As before, 
we relabel 4, 5, 6, a, u, and v as a0, v0, u0, a1, u1, and v1, respectively. Let {a0, v0, u0},
{v0, u0, a1, v1}, {a1, v1, u1}, {v1, u1, a2, v2}, . . . , {an, vn, un} be a right-maximal bowtie 
string. We show next that

8.6.1. M\u0, u1, . . . , ui/vi has no N -minor for all i in {1, 2, . . . , n} and M\u0, u1, . . . ,

uj/aj has no N -minor for all j in {2, 3, . . . , n}, but M\u0, u1, . . . , un has an N -minor.

Since M\u0, u1/v1 ∼= M\6, a/5, the first matroid does not have an N -minor. It follows 
by Lemma 3.7 that 8.6.1 holds.

By 8.6.1 and Hypothesis VII, it follows that M\ui is (4, 4, S)-connected for all i in 
{0, 1, . . . , n}. Establishing the next assertion will occupy most of the rest of the proof of 
Lemma 8.6.

8.6.2. M has no bowtie of the form ({an, un, vn}, {a0, v0, u0}, {x, un, a0, v0}) with x in 
{an, vn}.
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Suppose that M does have such a bowtie. Then a0 �= un. By possibly interchanging 
the labels on an and vn, we may assume that x = vn. Next we show the following.

8.6.3. Either {2, 3} = {un, vn}; or {un, vn, 2, 3} is a cocircuit of M .

To see this, observe that both {un, vn, a0, v0} and {2, 3, a0, v0} are cocircuits of M . 
Taking their symmetric difference, we immediately get 8.6.3.

We now eliminate the first possibility in 8.6.3.

8.6.4. {2, 3} �= {un, vn}.

Suppose {2, 3} = {un, vn}. Then an = 1 and M has ({a0, u0, v0}, {u0, v0, a1, v1},
{a1, u1, v1}, . . . , {an, un, vn}, {un, vn, a0, v0}) as a ring of bowties. We now apply [1, 
Lemma 5.5] noting that, since M does not have a bowtie-ring win, part (i) of that 
lemma does not hold. Moreover, by 8.6.1, part (iii) of that lemma does not hold. Thus 
part (ii) of that lemma holds, that is, M\u0, u1, . . . , un is sequentially 4-connected but 
not internally 4-connected, and every 4-fan of it has the form (α, β, γ, δ) where {α, β, γ}
avoids {a0, u0, v0, a1, u1, v1, . . . , an, un, vn}, and M has a cocircuit {β, γ, δ, ui} for some 
i in {0, 1, . . . , n} and some δ in {ai, vi}.

With a view to applying Lemma 10.4 of [1], we show next that i �= 0. Assume the 
contrary. Then M has {β, γ, δ, u0} as a cocircuit and {u0, c, a1} as a triangle where 
δ ∈ {a0, v0}. By orthogonality, c ∈ {β, γ}. Then orthogonality between {α, β, γ} and 
{d, a0, u0, c} implies that d ∈ {α, β, γ}. Hence M\a0 has a 5-fan, a contradiction. We 
conclude that i �= 0.

We now apply [1, Lemma 10.4] noting that we get a contradiction using 8.6.1 un-
less i = 1 and δ = ai. In the exceptional case, orthogonality between {u0, c, a1} and 
{a1, u1, β, γ} implies that {u0, c} meets {β, γ}. By construction, u0 /∈ {α, β, γ}. Hence 
c ∈ {β, γ}. By orthogonality with {a0, v0, c, d}, the triangle {α, β, γ} contains {c, d}, so 
M\4 has a 5-fan, a contradiction. Thus 8.6.4 holds.

By 8.6.3, we now know that M has {2, 3, un, vn} as a cocircuit. If {1, 2, 3} avoids 
{a0, u0, v0, a1, u1, v1, . . . , an, un, vn}, then we can adjoin {2, 3, un, vn} and {1, 2, 3}
to our right-maximal bowtie string to get a contradiction. Thus {1, 2, 3} meets 
{a0, u0, v0, a1, u1, v1, . . . , an, un, vn}. By [1, Lemma 5.4], {1, 2, 3} = {aj , uj , vj} for some j
with 0 ≤ j ≤ n −2. Certainly j �= 0. Moreover, j �= 1 otherwise the cocircuit {2, 3, a0, v0}
contradicts Lemma 3.3. If uj ∈ {2, 3}, then M\u0, u1, . . . , un has vn in a 2-cocircuit, 
a contradiction to 8.6.1. Thus {2, 3} = {aj , vj} and {2, 3, un, vn} 
 {vj−1, uj−1, aj , vj}, 
which is {vj−1, uj−1, un, vn}, is a cocircuit in M . Again M\u0, u1, . . . , un has vn in a 
2-cocircuit, a contradiction. Thus 8.6.2 holds.

We can now apply [1, Lemma 10.1]. Since n ≥ 2, we conclude that either M\u0, u1/v1
has an N -minor, or M has a0 in a triangle other than {a0, u0, v0}. The former option 
gives a contradiction to 8.6.1, and the latter gives a contradiction to the assumptions of 
the lemma. �
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9. The proof of the main theorem

In this section, as we shall see, it is quite straightforward to assemble the parts from 
earlier sections to complete the proof of the main result.

Proof of Theorem 1.4. Assume that the theorem fails. Theorem 1.3 implies that Hy-
pothesis VII holds. Now M has a bowtie ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) where M\4 is 
(4, 4, S)-connected with an N -minor and M\1, 4 has no N -minor. Lemma 3.1 implies 
that M\4/5 is (4, 4, S)-connected with an N -minor. By Lemma 5.1, we know that M
contains (A), (B), or (C) in Fig. 13, that M\6 is (4, 4, S)-connected, and that {4, 5, 6} is 
the only triangle in M containing 5. Moreover, the elements in (A), (B), or (C) are all 
distinct except that a may equal 1 in (B) or (C).

Suppose that M contains the configuration in Fig. 13(C). Lemma 6.1 implies that 
M\4/5, 6 does not have an N -minor. Since M\4 is (4, 4, S)-connected with an N -minor 
and has (1, 2, 3, 5) and (a, b, c, 6) as 4-fans, and M\1, 4 does not have an N -minor, we 
deduce that M\4/5\a has an N -minor. Then Lemma 6.4 gives a contradiction. We 
conclude that M does not contain the configuration in Fig. 13(C).

If M contains the configuration in Fig. 13(A), then Lemma 7.3 gives a contradiction. 
Hence we may assume that M does not contain either of the configurations in Fig. 13(A) 
or Fig. 13(C). Thus M contains the configuration in Fig. 13(B). Lemma 8.1 implies that 
M contains the configuration in Fig. 26, where M\6 is (4, 4, S)-connected and all of 
the elements are distinct except that 1 may be u or {1, 2, 3} may equal {a2, u2, v2}. By 
Lemma 8.4, M contains the configuration in Fig. 27 where {4, 5, 6} is the only triangle 
containing 4, and all of the elements are distinct except that u2 may be 1. If M\6/5\a
has an N -minor, then Lemma 8.5 gives a contradiction. Thus we may assume that 
N �� M\6/5\a. Now M\4/5 ∼= M\6/5, so M\6/5 is (4, 4, S)-connected with an N -minor. 
Using Lemma 8.6, we get a contradiction that completes the proof of the theorem. �
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