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Abstract. A graph is chordal if every cycle of length at least
four has a chord. In 1961, Dirac characterized chordal graphs as
those graphs that can be built from complete graphs by repeated
clique-sums. Generalizing this, we consider the class of simple
GF (q)-representable matroids that can be built from projective
geometries overGF (q) by repeated generalized parallel connections
across projective geometries. We show that this class of matroids
is closed under induced minors. We characterize the class by its
forbidden induced minors; the case when q = 2 is distinctive.

1. Introduction

The notation and terminology in this paper will follow [7] for graphs
and [12] for matroids. Unless stated otherwise, all graphs and matroids
considered here are simple. Thus every contraction of a set from a
matroid is immediately followed by the simplification of the resulting
matroid. A chord of a cycle C in a graph G is an edge e of G that
is not in C such that both vertices of e are vertices of C. A graph is
chordal if every cycle of length at least four has a chord. Such graphs
were called rigid circuit graphs by Dirac [8] and triangulated graphs
by Berge [2]. Let G1 and G2 be graphs and V (G1) ∩ V (G2) = V ,
say. Assume that G1[V ] is a complete graph H and G2[V ] has edge
set E(H). The clique-sum of G1 and G2 is the graph with vertex set
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). Loosely speaking, the
clique-sum is obtained by gluing G1 and G2 together across the clique
H. While there are several characterizations of chordal graphs (see, for
example, [13]), we choose to focus on the following one of Dirac [8].

Theorem 1.1. A graph G is chordal if and only if G can be constructed
from complete graphs by repeated clique-sums.

Let M1 and M2 be matroids whose ground sets intersect in a set T
such that T is a modular flat of M1, and M1|T = M2|T = N . The
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generalized parallel connection of M1 and M2 across N is the matroid
with ground set E(M1) ∪ E(M2) whose flats are those subsets X of
E(M1)∪E(M2) such that X ∩E(M1) is a flat of M1, and X ∩E(M2) is
a flat of M2. We denote this matroid by PN(M1,M2) or PT (M1,M2).
Note that T may be empty, in which case, PT (M1,M2) = M1 ⊕M2.

For a prime power q, we will denote the projective geometry PG(r−
1, q) by Pr when context makes the field clear. Let Mq be the class of
matroids that can be built from projective geometries over GF (q) by
a sequence of generalized parallel connections across projective geome-
tries over GF (q). A matroid M is GF (q)-chordal if M is a member of
Mq. By [5], each member of Mq is GF (q)-representable.

An induced minor of a graph G is a graph H that can be obtained
from G by a sequence of vertex deletions and edge contractions. Sim-
ilarly, an induced minor of a matroid M is a matroid N that can be
obtained from M by a sequence of restrictions to flats and contractions,
where each such contraction is followed by a simplification. Evidently,
the class of chordal graphs is closed under vertex deletions, that is, it
is closed under taking induced subgraphs. The analogous property for
the class Mq is highlighted by the following result.

Theorem 1.2. For all q, the class Mq is closed under taking induced
minors.

Our main results are the following characterizations of the forbidden
induced minors for the class Mq, first for q = 2 and then for q > 2.

Theorem 1.3. The set of forbidden induced minors for the class M2

is {M(K4), U3,4}.
Theorem 1.4. For each q > 2, the set of forbidden induced minors
for the class Mq is {U2,k : 2 < k ≤ q} ∪ {U3,q+2}.

Several different notions of chordal matroids have been given over
the last forty years [1, 3, 6, 10, 17]. Each of these papers, with the
exception of [6, 10], focuses primarily on binary matroids. Following
Cordovil, Forge, and Klein [6], we define a simple or non-simple matroid
M to be chordal if, for each circuit C that has at least four elements,
there are circuits C1 and C2 and an element e such that C1 ∩C2 = {e}
and C = (C1 ∪ C2)− e.

Cordovil, Forge, and Klein [6] and Mayhew and Probert [10] study
the relation between chordal graphs and supersolvable matroids. Such
matroids were originally introduced by Stanley [15]. A rank-r matroid
is supersolvable if there is a chain of modular flats F1 ⊆ F2 ⊆ · · · ⊆ Fr

in M where the rank of Fi is i for each i in [r]. The class Mq is
given in [10] as an example of a class of matroids whose members are
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supersolvable and form a saturated class of matroids, where a matroid
M is saturated if, for every modular flat F , the restriction M |F has no
two disjoint cocircuits.

2. Preliminaries

Before beginning the discussions of forbidden induced minors for the
classMq, we show that this class is closed under taking induced minors.
We shall use the following well-known property of generalized parallel
connections (see, for example, [12, 11.23]).

Lemma 2.1. For every flat F of PN(M1,M2),

r(F ) = r(F ∩ E(M1)) + r(F ∩ E(M2))− r(F ∩ E(N)).

Lemma 2.2. The class Mq of GF (q)-chordal matroids is closed under
induced restrictions.

Proof. It is enough to show that the classMq is closed under restricting
to a hyperplane. Let M be a minimum-rank matroid in Mq such that
M |H ̸∈ Mq for some hyperplane H of M . Then M is not a projective
geometry, so M = PN(M1,M2) where M1 and M2 are in Mq, and N
is a projective geometry over GF (q). Let Hi = H ∩ E(Mi) for each i
in {1, 2} and let HN = H ∩ E(N). Then, since H is a both flat of a
generalized parallel connection and a hyperplane of M ,

r(M1) + r(M2)− r(N)− 1 = r(H) = r(H1) + r(H2)− r(HN). (2.1)

Suppose H contains all of E(N). Then r(HN) = r(N), so, from
(2.1), we have

r(M1) + r(M2)− 1 = r(H1) + r(H2).

This implies that, for some i and j such that {i, j} = {1, 2}, the hy-
perplane H contains E(Mi), and Hj is a hyperplane of Mj. It follows
by the minimality of M that M |H is in Mq, a contradiction.

We now assume that H does not contain E(N). Hence H does
not contain E(M1) or E(M2). By [5], E(M1) is a modular flat of
PN(M1,M2), so

r(H) = r(H ∪ E(M1)) + r(H1)− r(M1). (2.2)

As E(M1) ̸⊆ H, we deduce that r(H ∪ E(M1)) > r(H), so r(H ∪
E(M1)) = r(H) + 1. It follows from (2.2) that r(H1) = r(M1)− 1. By
symmetry, r(H2) = r(M2)−1. Hence Hi is a hyperplane of Mi for each
i in {1, 2}. Therefore, by (2.1) and (2.2),

r(M1) + r(M2)− r(N)− 1 = r(M1)− 1 + r(M2)− 1− r(HN).
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Thus r(HN) = r(N)−1. Hence HN is a hyperplane of N , so M |HN is a
projective geometry. By [5] (see also [12, Proposition 11.4.15]), M |H =
PM |HN

(M |H1,M |H2), so M |H is a generalized parallel connection of
members of Mq along a projective geometry and is therefore a member
of Mq, a contradiction. □

In the next result, where we show that Mq is closed under contrac-
tions, we shall make repeated use of the fact that every contraction
is followed by a simplification. We observe that a consequence of this
result is that Mq is closed under parallel minors.

Lemma 2.3. The class Mq of GF (q)-chordal matroids is closed under
taking contractions.

Proof. Let M be a GF (q)-chordal matroid. We argue by induction on
|E(M)| that M/e is a GF (q)-chordal matroid for all e in E(M). The
result is certainly true if |E(M)| ≤ 2. Suppose the result holds when
|E(M)| < k and let |E(M)| = k. The result holds if M is a projective
geometry, so we may assume that M = PN(M1,M2), where M1 and M2

are in Mq, and N is a projective geometry over GF (q). Suppose that
e ∈ E(M1)−E(N). Then M1/e is in Mq by the induction hypothesis
and M1/e has N as a restriction. As M/e = PN(M1/e,M2), we deduce
that M/e is in Mq. We may now assume that e ∈ E(N). This implies
that e is in both E(M1) and E(M2), and, by the induction hypothesis,
M1/e and M2/e are in Mq and contain the projective geometry N/e
as a restriction. By [5], M/e = PN/e(M1/e,M2/e), and we again get
that M/e is in Mq. □

Proof of Theorem 1.2. This is an immediate consequence of combining
Lemmas 2.2 and 2.3. □

3. Characterizing GF (q)-chordal matroids

In this section, we prove Theorems 1.3 and 1.4. An induced-minor-
minimal non-GF (q)-chordal matroid is a GF (q)-representable matroid
that is not a GF (q)-chordal matroid such that every proper induced
minor of M is a GF (q)-chordal matroid. When q = 2, the only rank-2
binary matroids are U2,2 and U2,3 both of which are GF (2)-chordal.
Clearly, neither M(K4) nor U3,4 is GF (2)-chordal. It follows that each
is an induced-minor-minimal non-GF (2)-chordal matroid. When q >
2, the matroids in {U2,3, U2,4, . . . , U2,q} are induced-minor-minimal non-
GF (q)-chordal matroids.

For the remainder of this paper, it will be convenient to view a
GF (q)-representable matroid M of rank r as a restriction of Pr by
coloring the elements of E(M) green and coloring the other elements
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red. Note that when we contract an element e from M , we can obtain
M/e as follows. Take a hyperplane H of Pr that avoids e. Then project
from e onto H. Because e is green, an element z of H is green in the
contraction precisely when there are at least two green points on the
line clPr({e, z}) of Pr.

For a positive integer k, a partition (X, Y ) of the ground set of a
matroid M is a vertical k-separation of M if r(X) + r(Y ) − r(M) ≤
k − 1 and min{r(X), r(Y )} ≥ k. This vertical k-separation is exact if
r(X) + r(Y )− r(M) = k − 1.

Lemma 3.1. Let (X, Y ) be a vertical 2-separation in a matroid M
such that each of M |cl(X) and M |cl(Y ) is in Mq. Then either

(i) |cl(X) ∩ cl(Y )| = 1 and M ∈ Mq; or
(ii) |cl(X)∩ cl(Y )| = 0 and M has U3,4 and U2,3 as induced minors.

Proof. Observe that if |cl(X) ∩ cl(Y )| = 1, then M is the parallel
connection of M |cl(X) and M |cl(Y ), so M ∈ Mq. Now suppose that
cl(X) ∩ cl(Y ) = ∅. Let C and D be circuits of M each of which meets
bothX and Y such that |C∩X| is a minimum and |D∩Y | is a minimum.
Because M can be written as a 2-sum with basepoint b of matroids
with ground sets X ∪ b and Y ∪ b, it follows that (C ∩ X) ∪ (D ∩ Y )
is a circuit of M . Clearly both M |cl(C ∩ X) and M |cl(D ∩ Y ) are
in Mq. Let X1 and Y1 be subsets of C ∩ X and D ∩ Y , respectively,
such that |X1| = |C ∩ X| − 2 and |Y1| = |D ∩ Y | − 2. Then each of
(M |cl(C ∩X))/X1 and (M |cl(D ∩ Y ))/Y1 is a rank-2 matroid in Mq.
Moreover, in M/X1, there is no element x of X that is in the closure
of Y otherwise (X1∪x)∪ (D∩Y ) contains a circuit of M that contains
x ∪ (D ∩ Y ) and violates the choice of C. Hence the rank-2 matroid
(M |cl(C∩X))/X1, which is in Mq, is not isomorphic to U2,q+1. Thus it
is isomorphic to U2,2. By symmetry, (M |cl(D ∩ Y ))/Y1

∼= U2,2. Hence
(M |cl((C ∩X) ∪ (D ∩ Y )))/(X1 ∪ Y1) ∼= U3,4. Thus both U3,4 and U2,3

are induced minors of M . □

In the next result, we denote by Pr+1\Pr−i the matroid that is ob-
tained from Pr+1 by deleting the elements of a rank-(r− i) flat. Clearly
this matroid does not depend on the choice of the rank-(r − i) flat.

Lemma 3.2. Let M be a binary rank-(r + 1) matroid. Then M/e ∼=
Pr for all e in E(M) if and only if M ∼= Pr+1\Pr−i for some i in
{0, 1, . . . , r}.
Proof. If M ∼= Pr+1\Pr−i for some i in {0, 1, . . . , r}, then, by, for ex-
ample, [12, Corollary 6.2.6], M/e ∼= Pr for all e in E(M).

Now suppose E(M) ∼= Pr for each e in E(M). We may assume
that |E(Pr+1) − E(M)| ≥ 2 otherwise the result certainly holds. Let
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x and y be distinct elements of E(Pr+1) − E(M). Then the third
element z on the line of Pr+1 that is spanned by {x, y} must also be
in E(Pr+1)− E(M) otherwise M/z is not isomorphic to Pr. It follows
that, for a basis X of Pr+1\E(M), by [11, Theorem 1], clPr+1(X) =
E(Pr+1) − E(M). Since M has rank r + 1, we deduce that clPr+1(X)
is a projective geometry of rank at most r. The lemma follows. □

We omit the straightforward proof of the next result.

Lemma 3.3. For r ≥ 3, if M is the binary matroid Pr\Pr−i for some
i in the set {1, 2, . . . , r − 1}, then M has a flat isomorphic to either
M(K4) or U3,4.

For all q > 2, the only rank-2 members of Mq are U2,2 and U2,q+1.
Natural obstructions to membership of Mq are the lines that contain
more than two but fewer than q + 1 points, that is, the collection
{U2,i : 3 ≤ i ≤ q}. In rank three, the only matroid that is not in Mq

and has no member of {U2,i : 3 ≤ i ≤ q} as an induced minor is U3,q+2.
By Bose [4], we note that U3,q+2 is representable over GF (q) if and only
if q is even. Therefore, the collection N = {U2,3, U2,4, . . . , U2,q, U3,q+2}
is contained in the collection of forbidden induced minors for the class
Mq. The next result highlights some structure in matroids that have
members of N as induced minors.

Lemma 3.4. For some q > 2, let M be a GF (q)-representable matroid
having rank at least three. Suppose that M ̸∼= Pr but that M/e ∼= Pr−1

for all e in E(M). Then M has a member of N as an induced minor.

Proof. Suppose M has no member of N as an induced minor. Suppose
r(M) = 3. Since the contraction of any element would result in a (q+1)-
point line, E(M) must have at least q+2 elements. Moreover, since M
is not U3,q+2, we deduce that M contains a triangle {p1, p2, p3}. This
triangle must be contained in a full (q + 1)-point line of M , otherwise
M would contain a member of N as an induced restriction. Label this
line {p1, p2, . . . , pq+1}. Since |E(M)| ≥ q+2, we may choose an element
e in E(M)−{p1, p2, . . . , pq+1}. If e is unique, then M/p1 is isomorphic
to U2,2, a contradiction. Without loss of generality, suppose there is a
third point on the line cl({e, p1}). Then this line is a full (q + 1)-point
line. Therefore, there are two full lines meeting at p1. If this were the
entire matroid, then M/p1 consists of only two points. Hence there
is an additional element f in M not on either of the lines cl({e, p1})
or {p1, p2, . . . , pq+1}. Each point of the line cl({e, p1}) together with f
defines a line that meets the line {p1, p2, . . . , pq+1} in a distinct point
and so each of these lines is also full. This gives that every line is
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full except possibly the line cl({p1, f}). If any of the points on the
line cl({p1, f}) is absent, then, for some i in [q + 1], the line cl({e, pi})
contains only q points, a contradiction. Therefore, every line of M is
full and M must be a projective geometry, a contradiction. Thus the
result holds when r(M) = 3.

Now suppose the result holds for r(M) < k and let r(M) = k ≥ 4.
Let e be an element of M . Since M/e ∼= Pr−1, each of the lines of
Pr that contains e must contain a second point of M . There must be
such a line, say L, that contains exactly two points of M otherwise
every such line has exactly q + 1 points and M ∼= Pr, a contradiction.
Let L = {e, f}. Take a point g in E(M) − L and consider the plane
Q = clM({e, f, g}). Since M/h ∼= Pr for every point h of this plane, it
follows that Q/h ∼= U2,q+1. It follows by the induction assumption that
Q ∼= P3. Hence L is a (q+1)-point line, a contradiction. We conclude,
by induction, that the lemma holds. □

Lemma 3.5. Let M be a GF (q)-representable matroid and let (X, Y )
be an exact vertical k-separation of M . Suppose that both M |clM(X)
and M |clM(Y ) are in Mq. Then either clM(X)∩clM(Y ) is a projective
geometry of rank k−1, or M has a member of N as an induced minor.

Proof. This is immediate if k = 1 and follows by Lemma 3.1 when k =
2, so we may assume that k ≥ 3. Let M be an induced-minor-minimal
counterexample and let r(M) = r. Suppose first that clM(X)∩ clM(Y )
is empty. Then in the green-red coloring of Pr corresponding to M , all
of the elements of clPr(X) ∩ clPr(Y ) are red. Take e in X and suppose
that r(X) > k. Then M/e has an exact vertical k-separation (X ′, Y ′)
corresponding to (X − e, Y ). By the minimality of M , we deduce that
clM/e(X

′) ∩ clM/e(Y
′) is a projective geometry of rank k − 1.

Since k ≥ 3, there is a projective line L contained in clPr(X)∩clPr(Y ).
In the green-red coloring of Pr, every element of L is red. But every
element of L is green in the coloring of Pr/e. Thus, in Pr, for each of the
points z1, z2, . . . , zq+1 of L, there is a green point on the line clPr({e, zi})
other than e. Thus, when q = 2, we see that the four green points in
clPr(L ∪ e) form a 4-circuit, a contradiction as M |clM(X) is GF (2)-
chordal. When q > 2, because all of the elements of L are red, the
set of points in clPr(L ∪ e) contains no line with more than q points.
Since M |clM(X) is in Mq, it follows that each line in clPr(L ∪ e) that
contains at least two green points contains exactly two green points. It
follows that M has U3,q+2 as an induced restriction, a contradiction.
We may now assume that r(X) = k = r(Y ). Since (X, Y ) is an exact

k-separation, r(X)+ r(Y )− r(M) = k−1, so r(M) = k+1. As M has
at least 2k elements, it has an element f that is not a coloop. Then the
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construction of members ofMq implies that f is on a (q+1)-point green
line of M . This line must meet clPr(X) ∩ clPr(Y ) so clPr(X) ∩ clPr(Y )
is not entirely red, a contradiction.

We conclude clM(X) ∩ clM(Y ) contains at least one point, say z.
In M/z, there is an exact vertical (k − 1)-separation (X ′′, Y ′′) corre-
sponding to (X − z, Y − z). We deduce, by the minimality of M , that
clPr/z(X

′′)∩ clPr/z(Y
′′) is a projective geometry of rank k−2. By Lem-

mas 3.3 and 3.4, we deduce that M | (clM(X) ∩ clM(Y )) must have, as
an induced minor, a matroid that is not in Mq. □

Corollary 3.6. For all k ≥ 1, an induced-minor-minimal non-GF (q)-
chordal matroid has no vertical k-separations.

A matroid M is round if M has no two disjoint cocircuits. Equiv-
alently, M is round if there is no k for which M has a vertical k-
separation (see, for example, [12, Lemma 8.6.2]). The following result
is immediate from the constructive definition of GF (q)-chordal ma-
troids.

Lemma 3.7. A rank-r matroid M in Mq is round if and only if M ∼=
Pr.

The following is a straightforward consequence of the definition.

Lemma 3.8. A simple binary matroid is chordal if and only if it does
not have U3,4 as an induced minor.

Lemma 3.9. All GF (2)-chordal matroids are chordal matroids.

Proof. Let M be a GF (2)-chordal matroid. Since the class of GF (2)-
chordal matroids is closed under induced minors, U3,4 is not an induced
minor of M , so M is a chordal matroid. □

Since M(K4) is chordal but not GF (2)-chordal, it is clear that the
class of binary matroids that are chordal properly contains the class of
GF (2)-chordal matroids.

We now give a common proof of the two main results of the paper.

Proof of Theorems 1.3 and 1.4. Let M be an induced-minor-minimal
non-GF (q)-chordal matroid. By Corollary 3.6, M is round. By Geelen,
Gerards, and Whittle [9], M/e is also round for all e in E(M). Thus
by Lemma 3.7, M/e ∼= Pr−1 where r(M) = r.

First, let q = 2. Then, by Lemma 3.2, M ∼= Pr\Pr−i for some i in
{1, 2, . . . , r − 1}. Moreover, since M is not a GF (2)-chordal matroid,
r ≥ 3. Then, by Lemma 3.3, M has M(K4) or U3,4 as an induced
restriction. As each of these matroids is an induced-minor-minimal
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non-GF (2)-chordal matroid, we deduce thatM is isomorphic toM(K4)
or U3,4.

Now assume that q > 2. Since each member of N is an induced-
minor-minimal non-GF (q)-chordal matroid, we may assume that M
has no member of N as an induced minor. Thus r(M) ≥ 3. By
Lemma 3.4, we get a contradiction. □

4. Dirac’s Other Characterization

In [8], another characterization is given of chordal graphs. In a graph
G, a vertex separator is a set of vertices whose deletion produces a graph
with more connected components than G.

Theorem 4.1. A graph is chordal if and only if every minimal vertex
separator induces a clique.

It is shown in Lemma 3.5 that, if M is a GF (q)-chordal matroid,
then, for every exact vertical k-separation (X, Y ) of M , the restriction
M |(cl(X) ∩ cl(Y )) ∼= Pk−1. However, the converse of this is not true.
For example, the matroid PU2,3(M(K4),M(K4)) is not GF (2)-chordal,
but the only exact vertical k-separation has k = 3 and has U2,3 as the
intersection of the closures of the two sides of the vertical 3-separation.
A divider in a matroid is an exact vertical k-separation for some k. A
divider (X, Y ) is minimal if there is no vertical k′-separation (X ′, Y ′)
such that cl(X ′) ∩ cl(Y ′) ⫋ cl(X) ∩ cl(Y ). Recall that, for sets X and
Y in a matroid M , the local connectivity between X and Y , denoted
⊓(X, Y ) or ⊓M(X, Y ), is given by ⊓(X, Y ) = r(X)+ r(Y )− r(X ∪ Y ).
Let Nq be the class of GF (q)-representable matroids N such that, for
every minimal divider (X, Y ) of N , the matroid N |(cl(X) ∩ cl(Y )) is
a projective geometry of rank ⊓(X, Y ). Since round matroids have no
vertical k-separations, all GF (q)-round matroids are in Nq.

Lemma 4.2. Let (X, Y ) be a minimal divider of a matroid N . Then
cl(X) ∩ cl(Y ) = cl(X) ∩ cl(Y − cl(X)).

Proof. Suppose y ∈ cl(X)∩Y . Then r(Y ) = r(Y −y); otherwise, y is a
coloop of N |Y and (X ∪y, Y −y) is a divider with cl(X ∪y)∩cl(Y −y)
properly contained in cl(X) ∩ cl(Y ), a contradiction. We deduce that
cl(Y ) = cl(Y − cl(X)). □

The next theorem is an analog of Theorem 4.1.

Theorem 4.3. A matroid M is in Nq if and only if M can be con-
structed from round GF (q)-representable matroids by a sequence of gen-
eralized parallel connections across projective geometries.
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Proof. Let Rq be the class of matroids that can be constructed from
round GF (q)-representable matroids by a sequence of generalized par-
allel connections across projective geometries. It suffices to prove that a
connected matroid M ∈ Nq if and only if it is in Rq. Suppose M ∈ Nq.
If M has no dividers, then M is round, so M ∈ Rq. Hence, we may as-
sumeM has a minimal divider (X, Y ). ThenM |(cl(X)∩cl(Y )) is a pro-
jective geometry N of rank ⊓(X, Y ), and M = PN(M |cl(X),M |cl(Y )).
Letting MX = M |cl(X), we see that MX is either round or has a mini-
mal divider (U, V ), where MX |(cl(U)∩ cl(V )) is a projective geometry,
N ′, of rank ⊓MX

(U, V ), and MX is equal to PN ′(MX |cl(U),MX |cl(V )).
Continuing in this way, we see that every matroid inNq can be obtained
in the manner prescribed. Hence Nq ⊆ Rq.

We will prove that Rq ⊆ Nq by induction on the number n of round
matroids used to construct a connected member M of Rq. If n = 1,
then M is round and so M is in Nq. Now suppose that the result holds
when n ≤ t − 1 and assume that M is constructed by using exactly t
round matroids. Then M ∼= PN(M1,M2), where M2 is a round matroid
and N is a projective geometry. Let (X, Y ) be a minimal divider of
M and let F = cl(X) ∩ cl(Y ). We need to show that M |F ∼= Pk

where r(F ) = k. Let XN = X ∩ E(N) and YN = Y ∩ E(N). Also let
Xi = (X∩E(Mi))−XN and Yi = (Y ∩E(Mi))−YN for each i in {1, 2}.
Since N is a projective geometry, we may suppose that XN spans YN .
Therefore cl(YN) ⊆ F . As M2 is round and has (XN ∪ YN ∪ X2, Y2)
as a partition, either XN ∪X2 spans Y2, or Y2 spans M2. In the latter
case, Y spans E(N), so E(N) ⊆ F . Now, (E(M1), E(M2) − E(N)) is
a divider of M and cl(E(M1)) ∩ cl(E(M2)− E(N)) = E(N). Because
(X, Y ) is a minimal divider, we have F = E(N), so M |F ∼= Pk where
r(F ) = k.

We deduce that XN ∪X2 spans Y2. Then cl(X) contains E(M2) and,
by Lemma 4.2, we may assume that Y ⊆ E(M1)− E(N). Thus

F = cl(X) ∩ cl(Y ) = clM1(X ∩ E(M1)) ∩ clM1(Y ). (4.1)

We show next that (X ∩E(M1), Y ) is a minimal divider of M1. It is
a divider of M1 unless X ∩ E(M1) or Y spans M1. In the exceptional
case, as X does not span M , we see that X ∩E(M1) does not span M1.
Thus Y spans M1, so E(N) ⊆ F . Hence E(N) = F , and M |F ∼= Pk

as desired. Thus (X ∩E(M1), Y ) is a divider of M1. Suppose it is not
minimal. Then, by (4.1), M1 has a minimal divider (X1, Y1) such that
clM1(X1)∩ clM1(Y1) ⫋ F . Now we may assume that clM1(X1) ⊇ E(N),
so (clM1(X1), Y1− clM1(X1)) is a minimal divider of M1. It follows that
(E(M2)∪ clM1(X1))∩ clM(Y1− clM1(X1)) = clM1(X1)∩ clM1(Y1) ⫋ F , a
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contradiction. Hence (X ∩ E(M1), Y ) is a minimal divider of M1. By
the induction assumption, M1|F ∼= Pk, so M |F ∼= Pk, as desired. □
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