# CHORDAL MATROIDS ARISING FROM GENERALIZED PARALLEL CONNECTIONS 

JAMES DYLAN DOUTHITT AND JAMES OXLEY


#### Abstract

A graph is chordal if every cycle of length at least four has a chord. In 1961, Dirac characterized chordal graphs as those graphs that can be built from complete graphs by repeated clique-sums. Generalizing this, we consider the class of simple $G F(q)$-representable matroids that can be built from projective geometries over $G F(q)$ by repeated generalized parallel connections across projective geometries. We show that this class of matroids is closed under induced minors. We characterize the class by its forbidden induced minors; the case when $q=2$ is distinctive.


## 1. Introduction

The notation and terminology in this paper will follow [7] for graphs and [12] for matroids. Unless stated otherwise, all graphs and matroids considered here are simple. Thus every contraction of a set from a matroid is immediately followed by the simplification of the resulting matroid. A chord of a cycle $C$ in a graph $G$ is an edge $e$ of $G$ that is not in $C$ such that both vertices of $e$ are vertices of $C$. A graph is chordal if every cycle of length at least four has a chord. Such graphs were called rigid circuit graphs by Dirac [8] and triangulated graphs by Berge [2]. Let $G_{1}$ and $G_{2}$ be graphs and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=V$, say. Assume that $G_{1}[V]$ is a complete graph $H$ and $G_{2}[V]$ has edge set $E(H)$. The clique-sum of $G_{1}$ and $G_{2}$ is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Loosely speaking, the clique-sum is obtained by gluing $G_{1}$ and $G_{2}$ together across the clique $H$. While there are several characterizations of chordal graphs (see, for example, [13]), we choose to focus on the following one of Dirac [8].

Theorem 1.1. A graph $G$ is chordal if and only if $G$ can be constructed from complete graphs by repeated clique-sums.

Let $M_{1}$ and $M_{2}$ be matroids whose ground sets intersect in a set $T$ such that $T$ is a modular flat of $M_{1}$, and $M_{1}\left|T=M_{2}\right| T=N$. The

[^0]2020 Mathematics Subject Classification. 05B35, 05C75.
generalized parallel connection of $M_{1}$ and $M_{2}$ across $N$ is the matroid with ground set $E\left(M_{1}\right) \cup E\left(M_{2}\right)$ whose flats are those subsets $X$ of $E\left(M_{1}\right) \cup E\left(M_{2}\right)$ such that $X \cap E\left(M_{1}\right)$ is a flat of $M_{1}$, and $X \cap E\left(M_{2}\right)$ is a flat of $M_{2}$. We denote this matroid by $P_{N}\left(M_{1}, M_{2}\right)$ or $P_{T}\left(M_{1}, M_{2}\right)$. Note that $T$ may be empty, in which case, $P_{T}\left(M_{1}, M_{2}\right)=M_{1} \oplus M_{2}$.

For a prime power $q$, we will denote the projective geometry $P G(r-$ $1, q)$ by $P_{r}$ when context makes the field clear. Let $\mathcal{M}_{q}$ be the class of matroids that can be built from projective geometries over $G F(q)$ by a sequence of generalized parallel connections across projective geometries over $G F(q)$. A matroid $M$ is $G F(q)$-chordal if $M$ is a member of $\mathcal{M}_{q}$. By [5], each member of $\mathcal{M}_{q}$ is $G F(q)$-representable.

An induced minor of a graph $G$ is a graph $H$ that can be obtained from $G$ by a sequence of vertex deletions and edge contractions. Similarly, an induced minor of a matroid $M$ is a matroid $N$ that can be obtained from $M$ by a sequence of restrictions to flats and contractions, where each such contraction is followed by a simplification. Evidently, the class of chordal graphs is closed under vertex deletions, that is, it is closed under taking induced subgraphs. The analogous property for the class $\mathcal{M}_{q}$ is highlighted by the following result.

Theorem 1.2. For all $q$, the class $\mathcal{M}_{q}$ is closed under taking induced minors.

Our main results are the following characterizations of the forbidden induced minors for the class $\mathcal{M}_{q}$, first for $q=2$ and then for $q>2$.
Theorem 1.3. The set of forbidden induced minors for the class $\mathcal{M}_{2}$ is $\left\{M\left(K_{4}\right), U_{3,4}\right\}$.
Theorem 1.4. For each $q>2$, the set of forbidden induced minors for the class $\mathcal{M}_{q}$ is $\left\{U_{2, k}: 2<k \leq q\right\} \cup\left\{U_{3, q+2}\right\}$.

Several different notions of chordal matroids have been given over the last forty years $[1,3,6,10,17]$. Each of these papers, with the exception of $[6,10]$, focuses primarily on binary matroids. Following Cordovil, Forge, and Klein [6], we define a simple or non-simple matroid $M$ to be chordal if, for each circuit $C$ that has at least four elements, there are circuits $C_{1}$ and $C_{2}$ and an element $e$ such that $C_{1} \cap C_{2}=\{e\}$ and $C=\left(C_{1} \cup C_{2}\right)-e$.

Cordovil, Forge, and Klein [6] and Mayhew and Probert [10] study the relation between chordal graphs and supersolvable matroids. Such matroids were originally introduced by Stanley [15]. A rank- $r$ matroid is supersolvable if there is a chain of modular flats $F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{r}$ in $M$ where the rank of $F_{i}$ is $i$ for each $i$ in $[r]$. The class $\mathcal{M}_{q}$ is given in [10] as an example of a class of matroids whose members are
supersolvable and form a saturated class of matroids, where a matroid $M$ is saturated if, for every modular flat $F$, the restriction $M \mid F$ has no two disjoint cocircuits.

## 2. Preliminaries

Before beginning the discussions of forbidden induced minors for the class $\mathcal{M}_{q}$, we show that this class is closed under taking induced minors. We shall use the following well-known property of generalized parallel connections (see, for example, [12, 11.23]).

Lemma 2.1. For every flat $F$ of $P_{N}\left(M_{1}, M_{2}\right)$,

$$
r(F)=r\left(F \cap E\left(M_{1}\right)\right)+r\left(F \cap E\left(M_{2}\right)\right)-r(F \cap E(N))
$$

Lemma 2.2. The class $\mathcal{M}_{q}$ of $G F(q)$-chordal matroids is closed under induced restrictions.

Proof. It is enough to show that the class $\mathcal{M}_{q}$ is closed under restricting to a hyperplane. Let $M$ be a minimum-rank matroid in $\mathcal{M}_{q}$ such that $M \mid H \notin \mathcal{M}_{q}$ for some hyperplane $H$ of $M$. Then $M$ is not a projective geometry, so $M=P_{N}\left(M_{1}, M_{2}\right)$ where $M_{1}$ and $M_{2}$ are in $\mathcal{M}_{q}$, and $N$ is a projective geometry over $G F(q)$. Let $H_{i}=H \cap E\left(M_{i}\right)$ for each $i$ in $\{1,2\}$ and let $H_{N}=H \cap E(N)$. Then, since $H$ is a both flat of a generalized parallel connection and a hyperplane of $M$,

$$
\begin{equation*}
r\left(M_{1}\right)+r\left(M_{2}\right)-r(N)-1=r(H)=r\left(H_{1}\right)+r\left(H_{2}\right)-r\left(H_{N}\right) \tag{2.1}
\end{equation*}
$$

Suppose $H$ contains all of $E(N)$. Then $r\left(H_{N}\right)=r(N)$, so, from (2.1), we have

$$
r\left(M_{1}\right)+r\left(M_{2}\right)-1=r\left(H_{1}\right)+r\left(H_{2}\right) .
$$

This implies that, for some $i$ and $j$ such that $\{i, j\}=\{1,2\}$, the hyperplane $H$ contains $E\left(M_{i}\right)$, and $H_{j}$ is a hyperplane of $M_{j}$. It follows by the minimality of $M$ that $M \mid H$ is in $\mathcal{M}_{q}$, a contradiction.

We now assume that $H$ does not contain $E(N)$. Hence $H$ does not contain $E\left(M_{1}\right)$ or $E\left(M_{2}\right)$. By [5], $E\left(M_{1}\right)$ is a modular flat of $P_{N}\left(M_{1}, M_{2}\right)$, so

$$
\begin{equation*}
r(H)=r\left(H \cup E\left(M_{1}\right)\right)+r\left(H_{1}\right)-r\left(M_{1}\right) \tag{2.2}
\end{equation*}
$$

As $E\left(M_{1}\right) \nsubseteq H$, we deduce that $r\left(H \cup E\left(M_{1}\right)\right)>r(H)$, so $r(H \cup$ $\left.E\left(M_{1}\right)\right)=r(H)+1$. It follows from (2.2) that $r\left(H_{1}\right)=r\left(M_{1}\right)-1$. By symmetry, $r\left(H_{2}\right)=r\left(M_{2}\right)-1$. Hence $H_{i}$ is a hyperplane of $M_{i}$ for each $i$ in $\{1,2\}$. Therefore, by (2.1) and (2.2),

$$
r\left(M_{1}\right)+r\left(M_{2}\right)-r(N)-1=r\left(M_{1}\right)-1+r\left(M_{2}\right)-1-r\left(H_{N}\right) .
$$

Thus $r\left(H_{N}\right)=r(N)-1$. Hence $H_{N}$ is a hyperplane of $N$, so $M \mid H_{N}$ is a projective geometry. By [5] (see also [12, Proposition 11.4.15]), $M \mid H=$ $P_{M \mid H_{N}}\left(M\left|H_{1}, M\right| H_{2}\right)$, so $M \mid H$ is a generalized parallel connection of members of $\mathcal{M}_{q}$ along a projective geometry and is therefore a member of $\mathcal{M}_{q}$, a contradiction.

In the next result, where we show that $\mathcal{M}_{q}$ is closed under contractions, we shall make repeated use of the fact that every contraction is followed by a simplification. We observe that a consequence of this result is that $\mathcal{M}_{q}$ is closed under parallel minors.
Lemma 2.3. The class $\mathcal{M}_{q}$ of $G F(q)$-chordal matroids is closed under taking contractions.

Proof. Let $M$ be a $G F(q)$-chordal matroid. We argue by induction on $|E(M)|$ that $M / e$ is a $G F(q)$-chordal matroid for all $e$ in $E(M)$. The result is certainly true if $|E(M)| \leq 2$. Suppose the result holds when $|E(M)|<k$ and let $|E(M)|=k$. The result holds if $M$ is a projective geometry, so we may assume that $M=P_{N}\left(M_{1}, M_{2}\right)$, where $M_{1}$ and $M_{2}$ are in $\mathcal{M}_{q}$, and $N$ is a projective geometry over $G F(q)$. Suppose that $e \in E\left(M_{1}\right)-E(N)$. Then $M_{1} / e$ is in $\mathcal{M}_{q}$ by the induction hypothesis and $M_{1} / e$ has $N$ as a restriction. As $M / e=P_{N}\left(M_{1} / e, M_{2}\right)$, we deduce that $M / e$ is in $\mathcal{M}_{q}$. We may now assume that $e \in E(N)$. This implies that $e$ is in both $E\left(M_{1}\right)$ and $E\left(M_{2}\right)$, and, by the induction hypothesis, $M_{1} / e$ and $M_{2} / e$ are in $\mathcal{M}_{q}$ and contain the projective geometry $N / e$ as a restriction. By [5], $M / e=P_{N / e}\left(M_{1} / e, M_{2} / e\right)$, and we again get that $M / e$ is in $\mathcal{M}_{q}$.
Proof of Theorem 1.2. This is an immediate consequence of combining Lemmas 2.2 and 2.3.

## 3. Characterizing $G F(q)$-chordal matroids

In this section, we prove Theorems 1.3 and 1.4. An induced-minorminimal non- $G F(q)$-chordal matroid is a $G F(q)$-representable matroid that is not a $G F(q)$-chordal matroid such that every proper induced minor of $M$ is a $G F(q)$-chordal matroid. When $q=2$, the only rank- 2 binary matroids are $U_{2,2}$ and $U_{2,3}$ both of which are $G F(2)$-chordal. Clearly, neither $M\left(K_{4}\right)$ nor $U_{3,4}$ is $G F(2)$-chordal. It follows that each is an induced-minor-minimal non- $G F(2)$-chordal matroid. When $q>$ 2 , the matroids in $\left\{U_{2,3}, U_{2,4}, \ldots, U_{2, q}\right\}$ are induced-minor-minimal non$G F(q)$-chordal matroids.

For the remainder of this paper, it will be convenient to view a $G F(q)$-representable matroid $M$ of rank $r$ as a restriction of $P_{r}$ by coloring the elements of $E(M)$ green and coloring the other elements
red. Note that when we contract an element $e$ from $M$, we can obtain $M / e$ as follows. Take a hyperplane $H$ of $P_{r}$ that avoids $e$. Then project from $e$ onto $H$. Because $e$ is green, an element $z$ of $H$ is green in the contraction precisely when there are at least two green points on the line $\mathrm{cl}_{P_{r}}(\{e, z\})$ of $P_{r}$.

For a positive integer $k$, a partition $(X, Y)$ of the ground set of a matroid $M$ is a vertical $k$-separation of $M$ if $r(X)+r(Y)-r(M) \leq$ $k-1$ and $\min \{r(X), r(Y)\} \geq k$. This vertical $k$-separation is exact if $r(X)+r(Y)-r(M)=k-1$.
Lemma 3.1. Let $(X, Y)$ be a vertical 2-separation in a matroid $M$ such that each of $M \mid \operatorname{cl}(X)$ and $M \mid \operatorname{cl}(Y)$ is in $\mathcal{M}_{q}$. Then either
(i) $|\operatorname{cl}(X) \cap \operatorname{cl}(Y)|=1$ and $M \in \mathcal{M}_{q}$; or
(ii) $|\operatorname{cl}(X) \cap \operatorname{cl}(Y)|=0$ and $M$ has $U_{3,4}$ and $U_{2,3}$ as induced minors.

Proof. Observe that if $|\operatorname{cl}(X) \cap \operatorname{cl}(Y)|=1$, then $M$ is the parallel connection of $M \mid \mathrm{cl}(X)$ and $M \mid \mathrm{cl}(Y)$, so $M \in \mathcal{M}_{q}$. Now suppose that $\operatorname{cl}(X) \cap \operatorname{cl}(Y)=\emptyset$. Let $C$ and $D$ be circuits of $M$ each of which meets both $X$ and $Y$ such that $|C \cap X|$ is a minimum and $|D \cap Y|$ is a minimum. Because $M$ can be written as a 2-sum with basepoint $b$ of matroids with ground sets $X \cup b$ and $Y \cup b$, it follows that $(C \cap X) \cup(D \cap Y)$ is a circuit of $M$. Clearly both $M \mid \operatorname{cl}(C \cap X)$ and $M \mid \operatorname{cl}(D \cap Y)$ are in $\mathcal{M}_{q}$. Let $X_{1}$ and $Y_{1}$ be subsets of $C \cap X$ and $D \cap Y$, respectively, such that $\left|X_{1}\right|=|C \cap X|-2$ and $\left|Y_{1}\right|=|D \cap Y|-2$. Then each of $(M \mid \operatorname{cl}(C \cap X)) / X_{1}$ and $(M \mid \operatorname{cl}(D \cap Y)) / Y_{1}$ is a rank-2 matroid in $\mathcal{M}_{q}$. Moreover, in $M / X_{1}$, there is no element $x$ of $X$ that is in the closure of $Y$ otherwise $\left(X_{1} \cup x\right) \cup(D \cap Y)$ contains a circuit of $M$ that contains $x \cup(D \cap Y)$ and violates the choice of $C$. Hence the rank-2 matroid $(M \mid \operatorname{cl}(C \cap X)) / X_{1}$, which is in $\mathcal{M}_{q}$, is not isomorphic to $U_{2, q+1}$. Thus it is isomorphic to $U_{2,2}$. By symmetry, $(M \mid \operatorname{cl}(D \cap Y)) / Y_{1} \cong U_{2,2}$. Hence $(M \mid \operatorname{cl}((C \cap X) \cup(D \cap Y))) /\left(X_{1} \cup Y_{1}\right) \cong U_{3,4}$. Thus both $U_{3,4}$ and $U_{2,3}$ are induced minors of $M$.

In the next result, we denote by $P_{r+1} \backslash P_{r-i}$ the matroid that is obtained from $P_{r+1}$ by deleting the elements of a rank- $(r-i)$ flat. Clearly this matroid does not depend on the choice of the rank- $(r-i)$ flat.
Lemma 3.2. Let $M$ be a binary rank- $(r+1)$ matroid. Then $M / e \cong$ $P_{r}$ for all $e$ in $E(M)$ if and only if $M \cong P_{r+1} \backslash P_{r-i}$ for some $i$ in $\{0,1, \ldots, r\}$.
Proof. If $M \cong P_{r+1} \backslash P_{r-i}$ for some $i$ in $\{0,1, \ldots, r\}$, then, by, for example, [12, Corollary 6.2.6], $M / e \cong P_{r}$ for all $e$ in $E(M)$.

Now suppose $E(M) \cong P_{r}$ for each $e$ in $E(M)$. We may assume that $\left|E\left(P_{r+1}\right)-E(M)\right| \geq 2$ otherwise the result certainly holds. Let
$x$ and $y$ be distinct elements of $E\left(P_{r+1}\right)-E(M)$. Then the third element $z$ on the line of $P_{r+1}$ that is spanned by $\{x, y\}$ must also be in $E\left(P_{r+1}\right)-E(M)$ otherwise $M / z$ is not isomorphic to $P_{r}$. It follows that, for a basis $X$ of $P_{r+1} \backslash E(M)$, by [11, Theorem 1], $\mathrm{cl}_{P_{r+1}}(X)=$ $E\left(P_{r+1}\right)-E(M)$. Since $M$ has rank $r+1$, we deduce that $\mathrm{cl}_{P_{r+1}}(X)$ is a projective geometry of rank at most $r$. The lemma follows.

We omit the straightforward proof of the next result.
Lemma 3.3. For $r \geq 3$, if $M$ is the binary matroid $P_{r} \backslash P_{r-i}$ for some $i$ in the set $\{1,2, \ldots, r-1\}$, then $M$ has a flat isomorphic to either $M\left(K_{4}\right)$ or $U_{3,4}$.

For all $q>2$, the only rank- 2 members of $\mathcal{M}_{q}$ are $U_{2,2}$ and $U_{2, q+1}$. Natural obstructions to membership of $\mathcal{M}_{q}$ are the lines that contain more than two but fewer than $q+1$ points, that is, the collection $\left\{U_{2, i}: 3 \leq i \leq q\right\}$. In rank three, the only matroid that is not in $\mathcal{M}_{q}$ and has no member of $\left\{U_{2, i}: 3 \leq i \leq q\right\}$ as an induced minor is $U_{3, q+2}$. By Bose [4], we note that $U_{3, q+2}$ is representable over $G F(q)$ if and only if $q$ is even. Therefore, the collection $\mathcal{N}=\left\{U_{2,3}, U_{2,4}, \ldots, U_{2, q}, U_{3, q+2}\right\}$ is contained in the collection of forbidden induced minors for the class $\mathcal{M}_{q}$. The next result highlights some structure in matroids that have members of $\mathcal{N}$ as induced minors.

Lemma 3.4. For some $q>2$, let $M$ be a $G F(q)$-representable matroid having rank at least three. Suppose that $M \not \approx P_{r}$ but that $M / e \cong P_{r-1}$ for all e in $E(M)$. Then $M$ has a member of $\mathcal{N}$ as an induced minor.

Proof. Suppose $M$ has no member of $\mathcal{N}$ as an induced minor. Suppose $r(M)=3$. Since the contraction of any element would result in a $(q+1)-$ point line, $E(M)$ must have at least $q+2$ elements. Moreover, since $M$ is not $U_{3, q+2}$, we deduce that $M$ contains a triangle $\left\{p_{1}, p_{2}, p_{3}\right\}$. This triangle must be contained in a full $(q+1)$-point line of $M$, otherwise $M$ would contain a member of $\mathcal{N}$ as an induced restriction. Label this line $\left\{p_{1}, p_{2}, \ldots, p_{q+1}\right\}$. Since $|E(M)| \geq q+2$, we may choose an element $e$ in $E(M)-\left\{p_{1}, p_{2}, \ldots, p_{q+1}\right\}$. If $e$ is unique, then $M / p_{1}$ is isomorphic to $U_{2,2}$, a contradiction. Without loss of generality, suppose there is a third point on the line $\mathrm{cl}\left(\left\{e, p_{1}\right\}\right)$. Then this line is a full $(q+1)$-point line. Therefore, there are two full lines meeting at $p_{1}$. If this were the entire matroid, then $M / p_{1}$ consists of only two points. Hence there is an additional element $f$ in $M$ not on either of the lines $\operatorname{cl}\left(\left\{e, p_{1}\right\}\right)$ or $\left\{p_{1}, p_{2}, \ldots, p_{q+1}\right\}$. Each point of the line $\operatorname{cl}\left(\left\{e, p_{1}\right\}\right)$ together with $f$ defines a line that meets the line $\left\{p_{1}, p_{2}, \ldots, p_{q+1}\right\}$ in a distinct point and so each of these lines is also full. This gives that every line is
full except possibly the line $\operatorname{cl}\left(\left\{p_{1}, f\right\}\right)$. If any of the points on the line $\operatorname{cl}\left(\left\{p_{1}, f\right\}\right)$ is absent, then, for some $i$ in $[q+1]$, the line $\operatorname{cl}\left(\left\{e, p_{i}\right\}\right)$ contains only $q$ points, a contradiction. Therefore, every line of $M$ is full and $M$ must be a projective geometry, a contradiction. Thus the result holds when $r(M)=3$.

Now suppose the result holds for $r(M)<k$ and let $r(M)=k \geq 4$. Let $e$ be an element of $M$. Since $M / e \cong P_{r-1}$, each of the lines of $P_{r}$ that contains $e$ must contain a second point of $M$. There must be such a line, say $L$, that contains exactly two points of $M$ otherwise every such line has exactly $q+1$ points and $M \cong P_{r}$, a contradiction. Let $L=\{e, f\}$. Take a point $g$ in $E(M)-L$ and consider the plane $Q=\operatorname{cl}_{M}(\{e, f, g\})$. Since $M / h \cong P_{r}$ for every point $h$ of this plane, it follows that $Q / h \cong U_{2, q+1}$. It follows by the induction assumption that $Q \cong P_{3}$. Hence $L$ is a $(q+1)$-point line, a contradiction. We conclude, by induction, that the lemma holds.

Lemma 3.5. Let $M$ be a $G F(q)$-representable matroid and let $(X, Y)$ be an exact vertical $k$-separation of $M$. Suppose that both $M \mid \mathrm{cl}_{M}(X)$ and $M \mid \mathrm{cl}_{M}(Y)$ are in $\mathcal{M}_{q}$. Then either $\operatorname{cl}_{M}(X) \cap \mathrm{cl}_{M}(Y)$ is a projective geometry of rank $k-1$, or $M$ has a member of $\mathcal{N}$ as an induced minor.

Proof. This is immediate if $k=1$ and follows by Lemma 3.1 when $k=$ 2 , so we may assume that $k \geq 3$. Let $M$ be an induced-minor-minimal counterexample and let $r(M)=r$. Suppose first that $\mathrm{cl}_{M}(X) \cap \mathrm{cl}_{M}(Y)$ is empty. Then in the green-red coloring of $P_{r}$ corresponding to $M$, all of the elements of $\mathrm{cl}_{P_{r}}(X) \cap \mathrm{cl}_{P_{r}}(Y)$ are red. Take $e$ in $X$ and suppose that $r(X)>k$. Then $M / e$ has an exact vertical $k$-separation $\left(X^{\prime}, Y^{\prime}\right)$ corresponding to $(X-e, Y)$. By the minimality of $M$, we deduce that $\mathrm{cl}_{M / e}\left(X^{\prime}\right) \cap \mathrm{cl}_{M / e}\left(Y^{\prime}\right)$ is a projective geometry of rank $k-1$.

Since $k \geq 3$, there is a projective line $L$ contained in $\operatorname{cl}_{P_{r}}(X) \cap \operatorname{cl}_{P_{r}}(Y)$. In the green-red coloring of $P_{r}$, every element of $L$ is red. But every element of $L$ is green in the coloring of $P_{r} / e$. Thus, in $P_{r}$, for each of the points $z_{1}, z_{2}, \ldots, z_{q+1}$ of $L$, there is a green point on the line $\mathrm{cl}_{P_{r}}\left(\left\{e, z_{i}\right\}\right)$ other than $e$. Thus, when $q=2$, we see that the four green points in $\operatorname{cl}_{P_{r}}(L \cup e)$ form a 4-circuit, a contradiction as $M \mid \mathrm{cl}_{M}(X)$ is $G F(2)$ chordal. When $q>2$, because all of the elements of $L$ are red, the set of points in $\mathrm{cl}_{P_{r}}(L \cup e)$ contains no line with more than $q$ points. Since $M \mid \mathrm{cl}_{M}(X)$ is in $\mathcal{M}_{q}$, it follows that each line in $\mathrm{cl}_{P_{r}}(L \cup e)$ that contains at least two green points contains exactly two green points. It follows that $M$ has $U_{3, q+2}$ as an induced restriction, a contradiction.

We may now assume that $r(X)=k=r(Y)$. Since $(X, Y)$ is an exact $k$-separation, $r(X)+r(Y)-r(M)=k-1$, so $r(M)=k+1$. As $M$ has at least $2 k$ elements, it has an element $f$ that is not a coloop. Then the
construction of members of $\mathcal{M}_{q}$ implies that $f$ is on a $(q+1)$-point green line of $M$. This line must meet $\mathrm{cl}_{P_{r}}(X) \cap \operatorname{cl}_{P_{r}}(Y)$ so $\operatorname{cl}_{P_{r}}(X) \cap \operatorname{cl}_{P_{r}}(Y)$ is not entirely red, a contradiction.

We conclude $\operatorname{cl}_{M}(X) \cap \mathrm{cl}_{M}(Y)$ contains at least one point, say $z$. In $M / z$, there is an exact vertical $(k-1)$-separation $\left(X^{\prime \prime}, Y^{\prime \prime}\right)$ corresponding to $(X-z, Y-z)$. We deduce, by the minimality of $M$, that $\operatorname{cl}_{P_{r} / z}\left(X^{\prime \prime}\right) \cap \operatorname{cl}_{P_{r} / z}\left(Y^{\prime \prime}\right)$ is a projective geometry of rank $k-2$. By Lemmas 3.3 and 3.4, we deduce that $M \mid\left(\mathrm{cl}_{M}(X) \cap \mathrm{cl}_{M}(Y)\right)$ must have, as an induced minor, a matroid that is not in $\mathcal{M}_{q}$.

Corollary 3.6. For all $k \geq 1$, an induced-minor-minimal non-GF(q)chordal matroid has no vertical $k$-separations.

A matroid $M$ is round if $M$ has no two disjoint cocircuits. Equivalently, $M$ is round if there is no $k$ for which $M$ has a vertical $k$ separation (see, for example, [12, Lemma 8.6.2]). The following result is immediate from the constructive definition of $G F(q)$-chordal matroids.

Lemma 3.7. A rank-r matroid $M$ in $\mathcal{M}_{q}$ is round if and only if $M \cong$ $P_{r}$.

The following is a straightforward consequence of the definition.
Lemma 3.8. A simple binary matroid is chordal if and only if it does not have $U_{3,4}$ as an induced minor.

Lemma 3.9. All $G F(2)$-chordal matroids are chordal matroids.
Proof. Let $M$ be a $G F(2)$-chordal matroid. Since the class of $G F(2)-$ chordal matroids is closed under induced minors, $U_{3,4}$ is not an induced minor of $M$, so $M$ is a chordal matroid.

Since $M\left(K_{4}\right)$ is chordal but not $G F(2)$-chordal, it is clear that the class of binary matroids that are chordal properly contains the class of $G F(2)$-chordal matroids.

We now give a common proof of the two main results of the paper.
Proof of Theorems 1.3 and 1.4. Let $M$ be an induced-minor-minimal non- $G F(q)$-chordal matroid. By Corollary 3.6, $M$ is round. By Geelen, Gerards, and Whittle [9], $M / e$ is also round for all $e$ in $E(M)$. Thus by Lemma 3.7, $M / e \cong P_{r-1}$ where $r(M)=r$.

First, let $q=2$. Then, by Lemma 3.2, $M \cong P_{r} \backslash P_{r-i}$ for some $i$ in $\{1,2, \ldots, r-1\}$. Moreover, since $M$ is not a $G F(2)$-chordal matroid, $r \geq 3$. Then, by Lemma 3.3, $M$ has $M\left(K_{4}\right)$ or $U_{3,4}$ as an induced restriction. As each of these matroids is an induced-minor-minimal
non- $G F(2)$-chordal matroid, we deduce that $M$ is isomorphic to $M\left(K_{4}\right)$ or $U_{3,4}$.

Now assume that $q>2$. Since each member of $\mathcal{N}$ is an induced-minor-minimal non- $G F(q)$-chordal matroid, we may assume that $M$ has no member of $\mathcal{N}$ as an induced minor. Thus $r(M) \geq 3$. By Lemma 3.4, we get a contradiction.

## 4. Dirac's Other Characterization

In [8], another characterization is given of chordal graphs. In a graph $G$, a vertex separator is a set of vertices whose deletion produces a graph with more connected components than $G$.

Theorem 4.1. A graph is chordal if and only if every minimal vertex separator induces a clique.

It is shown in Lemma 3.5 that, if $M$ is a $G F(q)$-chordal matroid, then, for every exact vertical $k$-separation $(X, Y)$ of $M$, the restriction $M \mid(\operatorname{cl}(X) \cap \operatorname{cl}(Y)) \cong P_{k-1}$. However, the converse of this is not true. For example, the matroid $P_{U_{2,3}}\left(M\left(K_{4}\right), M\left(K_{4}\right)\right)$ is not $G F(2)$-chordal, but the only exact vertical $k$-separation has $k=3$ and has $U_{2,3}$ as the intersection of the closures of the two sides of the vertical 3 -separation. A divider in a matroid is an exact vertical $k$-separation for some $k$. A divider $(X, Y)$ is minimal if there is no vertical $k^{\prime}$-separation $\left(X^{\prime}, Y^{\prime}\right)$ such that $\operatorname{cl}\left(X^{\prime}\right) \cap \operatorname{cl}\left(Y^{\prime}\right) \varsubsetneqq \operatorname{cl}(X) \cap \operatorname{cl}(Y)$. Recall that, for sets $X$ and $Y$ in a matroid $M$, the local connectivity between $X$ and $Y$, denoted $\sqcap(X, Y)$ or $\sqcap_{M}(X, Y)$, is given by $\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y)$. Let $\mathcal{N}_{q}$ be the class of $G F(q)$-representable matroids $N$ such that, for every minimal divider $(X, Y)$ of $N$, the matroid $N \mid(\operatorname{cl}(X) \cap \operatorname{cl}(Y))$ is a projective geometry of $\operatorname{rank} \Pi(X, Y)$. Since round matroids have no vertical $k$-separations, all $G F(q)$-round matroids are in $\mathcal{N}_{q}$.

Lemma 4.2. Let $(X, Y)$ be a minimal divider of a matroid $N$. Then $\operatorname{cl}(X) \cap \operatorname{cl}(Y)=\operatorname{cl}(X) \cap \operatorname{cl}(Y-\operatorname{cl}(X))$.

Proof. Suppose $y \in \operatorname{cl}(X) \cap Y$. Then $r(Y)=r(Y-y)$; otherwise, $y$ is a coloop of $N \mid Y$ and $(X \cup y, Y-y)$ is a divider with $\operatorname{cl}(X \cup y) \cap \operatorname{cl}(Y-y)$ properly contained in $\operatorname{cl}(X) \cap \operatorname{cl}(Y)$, a contradiction. We deduce that $\operatorname{cl}(Y)=\operatorname{cl}(Y-\operatorname{cl}(X))$.

The next theorem is an analog of Theorem 4.1.
Theorem 4.3. A matroid $M$ is in $\mathcal{N}_{q}$ if and only if $M$ can be constructed from round $G F(q)$-representable matroids by a sequence of generalized parallel connections across projective geometries.

Proof. Let $\mathcal{R}_{q}$ be the class of matroids that can be constructed from round $G F(q)$-representable matroids by a sequence of generalized parallel connections across projective geometries. It suffices to prove that a connected matroid $M \in \mathcal{N}_{q}$ if and only if it is in $\mathcal{R}_{q}$. Suppose $M \in \mathcal{N}_{q}$. If $M$ has no dividers, then $M$ is round, so $M \in \mathcal{R}_{q}$. Hence, we may assume $M$ has a minimal divider $(X, Y)$. Then $M \mid(\operatorname{cl}(X) \cap \operatorname{cl}(Y))$ is a projective geometry $N$ of rank $\sqcap(X, Y)$, and $M=P_{N}(M|\operatorname{cl}(X), M| \operatorname{cl}(Y))$. Letting $M_{X}=M \mid \mathrm{cl}(X)$, we see that $M_{X}$ is either round or has a minimal divider $(U, V)$, where $M_{X} \mid(\operatorname{cl}(U) \cap \mathrm{cl}(V))$ is a projective geometry, $N^{\prime}$, of rank $\sqcap_{M_{X}}(U, V)$, and $M_{X}$ is equal to $P_{N^{\prime}}\left(M_{X}\left|\operatorname{cl}(U), M_{X}\right| \mathrm{cl}(V)\right)$. Continuing in this way, we see that every matroid in $\mathcal{N}_{q}$ can be obtained in the manner prescribed. Hence $\mathcal{N}_{q} \subseteq \mathcal{R}_{q}$.

We will prove that $\mathcal{R}_{q} \subseteq \mathcal{N}_{q}$ by induction on the number $n$ of round matroids used to construct a connected member $M$ of $\mathcal{R}_{q}$. If $n=1$, then $M$ is round and so $M$ is in $\mathcal{N}_{q}$. Now suppose that the result holds when $n \leq t-1$ and assume that $M$ is constructed by using exactly $t$ round matroids. Then $M \cong P_{N}\left(M_{1}, M_{2}\right)$, where $M_{2}$ is a round matroid and $N$ is a projective geometry. Let $(X, Y)$ be a minimal divider of $M$ and let $F=\operatorname{cl}(X) \cap \operatorname{cl}(Y)$. We need to show that $M \mid F \cong P_{k}$ where $r(F)=k$. Let $X_{N}=X \cap E(N)$ and $Y_{N}=Y \cap E(N)$. Also let $X_{i}=\left(X \cap E\left(M_{i}\right)\right)-X_{N}$ and $Y_{i}=\left(Y \cap E\left(M_{i}\right)\right)-Y_{N}$ for each $i$ in $\{1,2\}$. Since $N$ is a projective geometry, we may suppose that $X_{N}$ spans $Y_{N}$. Therefore $\operatorname{cl}\left(Y_{N}\right) \subseteq F$. As $M_{2}$ is round and has $\left(X_{N} \cup Y_{N} \cup X_{2}, Y_{2}\right)$ as a partition, either $X_{N} \cup X_{2}$ spans $Y_{2}$, or $Y_{2}$ spans $M_{2}$. In the latter case, $Y$ spans $E(N)$, so $E(N) \subseteq F$. Now, $\left(E\left(M_{1}\right), E\left(M_{2}\right)-E(N)\right)$ is a divider of $M$ and $\operatorname{cl}\left(E\left(M_{1}\right)\right) \cap \operatorname{cl}\left(E\left(M_{2}\right)-E(N)\right)=E(N)$. Because $(X, Y)$ is a minimal divider, we have $F=E(N)$, so $M \mid F \cong P_{k}$ where $r(F)=k$.

We deduce that $X_{N} \cup X_{2}$ spans $Y_{2}$. Then $\operatorname{cl}(X)$ contains $E\left(M_{2}\right)$ and, by Lemma 4.2 , we may assume that $Y \subseteq E\left(M_{1}\right)-E(N)$. Thus

$$
\begin{equation*}
F=\operatorname{cl}(X) \cap \operatorname{cl}(Y)=\operatorname{cl}_{M_{1}}\left(X \cap E\left(M_{1}\right)\right) \cap \operatorname{cl}_{M_{1}}(Y) \tag{4.1}
\end{equation*}
$$

We show next that $\left(X \cap E\left(M_{1}\right), Y\right)$ is a minimal divider of $M_{1}$. It is a divider of $M_{1}$ unless $X \cap E\left(M_{1}\right)$ or $Y$ spans $M_{1}$. In the exceptional case, as $X$ does not span $M$, we see that $X \cap E\left(M_{1}\right)$ does not span $M_{1}$. Thus $Y$ spans $M_{1}$, so $E(N) \subseteq F$. Hence $E(N)=F$, and $M \mid F \cong P_{k}$ as desired. Thus $\left(X \cap E\left(M_{1}\right), Y\right)$ is a divider of $M_{1}$. Suppose it is not minimal. Then, by (4.1), $M_{1}$ has a minimal divider $\left(X_{1}, Y_{1}\right)$ such that $\operatorname{cl}_{M_{1}}\left(X_{1}\right) \cap \operatorname{cl}_{M_{1}}\left(Y_{1}\right) \varsubsetneqq F$. Now we may assume that $\mathrm{cl}_{M_{1}}\left(X_{1}\right) \supseteq E(N)$, so $\left(\operatorname{cl}_{M_{1}}\left(X_{1}\right), Y_{1}-\mathrm{cl}_{M_{1}}\left(X_{1}\right)\right)$ is a minimal divider of $M_{1}$. It follows that $\left(E\left(M_{2}\right) \cup \operatorname{cl}_{M_{1}}\left(X_{1}\right)\right) \cap \mathrm{cl}_{M}\left(Y_{1}-\operatorname{cl}_{M_{1}}\left(X_{1}\right)\right)=\operatorname{cl}_{M_{1}}\left(X_{1}\right) \cap \mathrm{cl}_{M_{1}}\left(Y_{1}\right) \varsubsetneqq F, \mathrm{a}$
contradiction. Hence $\left(X \cap E\left(M_{1}\right), Y\right)$ is a minimal divider of $M_{1}$. By the induction assumption, $M_{1} \mid F \cong P_{k}$, so $M \mid F \cong P_{k}$, as desired.

## References

[1] Barahona, F. and Grötschel, M., On the cycle polytope of a binary matroid, J. Combin. Theory Ser. B 40 (1986), 40-62.
[2] Berge, C., Some classes of perfect graphs, Graph Theory and Theoretical Physics, Academic Press, London, pp.155-165, 1967
[3] Bonin, J. and de Mier, A., $T$-uniqueness of some families of $k$-chordal matroids, Adv. in Appl. Math. 32 (2004), 10-30.
[4] Bose, R.C., Mathematical theory of the symmetrical factorial design, Sankyhā 8 (1947), 107-166.
[5] Brylawski, T.H., Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975), 1-44.
[6] Cordovil, R., Forge, D., and Klein, S., How is a chordal graph like a supersolvable binary matroid?, Discrete Math. 288 (2004), 167-172.
[7] Diestel, R., Graph Theory, Third Edition, Springer, Berlin, 2005.
[8] Dirac, G.A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76.
[9] Geelen, J., Gerards, B., and Whittle, G., Disjoint cocircuits in matroids with large rank, J. Combin. Theory Ser. B, 87 (2003), 270-279.
[10] Mayhew, D. and Probert, A., Supersolvable saturated matroids and chordal graphs, https://arxiv.org/abs/2301.03776.
[11] Murty, U.S.R., Matroids with Sylvester property, Aequationes Math. 4 (1970), 44-50.
[12] Oxley, J., Matroid Theory, Second Edition, Oxford University Press, New York, 2011.
[13] Rose, D.J., Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1970), 597-609.
[14] Seymour, P.D. and Weaver, R.W., A generalization of chordal graphs, J. Graph Theory 8 (1984), 241-251.
[15] Stanley, R.P., Supersolvable lattices, Algebra Univ. 2 (1972), 197-217.
[16] Tutte, W.T., Menger's Theorem for matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 49-53.
[17] Ziegler, G.M., Binary supersolvable matroids and modular constructions, Proc. Amer. Math. Soc. 113 (1991), 817-829.

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana

Email address: jdouth5@1su.edu
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana

Email address: oxley@math.lsu.edu


[^0]:    Date: October 14, 2023.

