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On Crapo’s Beta Invariant for Matroids

By James G. Oxley

In this paper we characterize the matroids for which Crapo’s beta invariant does
not exceed 4. In addition, we relate the beta invariant of a matroid to its
chromatic number and to its connectivity.

1. Introduction

The terminology used here for matroids and graphs will, in general, follow Welsh
[13] and Bendy and Murty [1], respectively. The ground set of a matroid M will
be denoted E(M), and if T C E(M), we denote the rank and closure of T byrk T
and T, respectively. The rank of M will be written rk M.

For a matroid M, the invariant (M), which was introduced by Crapo [5], is
defined as follows:

(1.1) BM)=(—1)*" T (—1)"rk4

ACE(M)
This invariant is related to the chromatic polynomial P(M; ) [13, p. 262] of M
by the identity

(12 par) = (e 2GR

A=1

From this and the well-known deletion-contraction formula for the chromatic
polynomial of a matroid [13, p. 263), it follows that

(1.3) B(M) = B(M )+ B(M/e) -

for any element e which is neither a loop nor a coloop of M [35, Theorem IJ.
From (1.1) we. get immediately that

(1.4) B(M)=0 if  Misaloop,
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and

(1.5) , B(M)=1 if Misacoloop.

Using these results and (1.3), an induction argument gives that
(1.6) B(M)=0  for all matroids M.

In fact, as Crapo [, Theore;m II] has shown, provided | E(M)|=2,

(1.7) B(M) >0 ifandonlyif M isconnected.

Two further fundamental properties of 8 are as follows:

(1.8) [5, Theorem IV]. B(M)=pB(M*) for all matroids M having at least two
elements.

(1.9) [3, Corollary 69). If N is a minor of the connected matroid M, then
B(N)=<B(M).

For r=1, the matroid M is n-connected [11, p. 1303] provided that, for
all positive integers k <n, there is no subset T of E(M) such that |T|=k%,
|E(MNWT | =k and rk T+ k[ E(QM WT]—r1k M = k —1. Thus a matroid is 2-con-
nected precisely when it is connected [13, p. 69). Moreover,

(1.10) M is n-connected if and only if M* is n-connected.

If M is n-connected for all positive integers n, then the connectivity k(M) of M is
0o; otherwise k(M )=max{k: M is k-connected).

We shall assume that the reader is familiar with the operations of series
connection and parallel connection for matroids, these operations having been
discussed in detail in [2]. For matroids M, and M, such that E(M )N E(M,)={p},
we shall denote the parallel connection of M, and M, with respect to the
basepoint p as P((M,, p),(M,, p)), or sometimes as just P(M,, M,). Brylawski [2,
Theorem 6.16(vi)] has shown that, provided p is neither a loop nor a coloop of M,
or M,,

(1.11) ﬁ.(P(M:,Mz)) = B(M\)B(M,).

The following link between 3-connection and parallel connection was proved
by Seymour and will be a fundamental tool in this paper.

(1.12) THEOREM [10, (2.5)). A connected matroid M is not 3-connected if and only if
_there are matroids M| and M, each having at least three elements such that
M=P((M,, p).(M,, p)\p, where p is not a loop or a coloop of M, or M,.

When M decomposes as in the preceding theorem, we call M the 2-sum of M |
and M,. It is routine to check, using the properties of parallel connection, that

(1.13) if |E(M))[=2 for i=1,2, then P{(M,, p),(M,, p)\p is connected if and
only if both M| and M, are connected. Hence, in particular, the 2-sum of
M, and M, is connected if and only if both M| and M, are connected.
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If {x, y} is a cocircuit of the matroid M, we say that x and y are in series in M.
If, instead, {x, y} is a circuit, then x and y are in parallel. A series class of M is a
maximal subset 4 of E(M) such that if a and b are distinct elements of 4, then a
and b are in series. Parallel classes are defined analogously. We call a series or
parallel class nontrivial if it contains at least two elements. The matroid M’ if a
series extension of M if M'= M /x, and x is in series with some element y of M’.
If, instead, M'= M \x and x is in paralle] with y, then M’ is a parallel extension of
M. We call M” a series-parallel extension of M if M" can be obtained from M by
repeated application of the operations of series and parallel extension. The next
two statements are straightforward to check,

(1.14) [5, Propositions 4 and 5]. If M, is a series-parallel extension of the loopless
matroid M, then S(M,) =B(M). .

(1.15) {14, Lemma 3.1]. If |E(M)|>4 and M has a nontrivial series or parallel
class, then M is not 3-connected.

2. The matroids with 3 <4

The problem of characterizing the matroids for which 8 =1 was solved by
Brylawski,

(2.1) THEOREM [2, Theorem 7.6). For a connected matroid M on a set of at least
two elements, the following statements are equivalent:

i B(M)=1
(i) M is a series-parallel extension of U, ,.
(il)) M has no minor isomorphic to U, , or M(K,).

A connected matroid having at least two elements and satisfying one, and
hence all, of the above conditions is called a series-parallel network.

In this section we shall prove the following two results. The wheel on r +1
vertices, the whirl of rank r, and the Fano matroid will be denoted U, 9", and
F,, respectively.

(2.2) THEOREM. For a matroid M, B(M)=2 if and only if M is a series-parallel
extension of U, 4, or M(K,).

2.3 THEOREM. For a matroid M, B(M)=3 if and only if M is a series-parallel
extension of U, s, U, 5, Fy, F¥, M(°U,), or Q15°.

The proofs of these results will require several preliminaries. We note first that
(2.4) [5, Proposition 10]. B(M(W N=r—1 and BUW" ) =r.

(2.5) PROPOSITION. Let M be a matroid and suppose that B(M)=k >1. Then
either

() M is a series-parallel extension of a 3-connected matroid N such that
B(NY=F, or
(i)} M is the 2-sum of two matroids each having B < k.

Proof: We argue by induction on | E(M)|. If M has a nontrivial parallel class X
and ¢ € K, then B(M)=B(Me). Now, by the induction assumption, (i} or (ii)
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holds for M \e. Hence, as M is a parallel extension of M e, (i) or (ii) holds for M.
It follows that we may assume that M has no nontrivial parallel classes, and
similarly, that M has no nontrivial series classes.

We now suppose that (ii) does not occur and show that {i) must hold. If M is
3-connected, the result is immediate. Thus suppose that M is not 3-connected.
Then, as B(M)>0, we have by (1.7) that M is connected. Therefore, by Theorem
112, M= P((M,, p),(M,, p)\p, where | E(M,)|>=3 for i =1,2. Thus, by (1.3),

ﬁ(M) = B(P(MI’M2)) _B(P((Mlx P)a(‘Mz, p))/P)

But P((M,, p),(M,, p))/p is disconnected (2, Proposition 5.8] and so has 8 =0.
Therefore, by (1.11) and (1.13), B(M )= B(M,)B(M,). Since (ii) does not occur,
we may assume that S(M,)=4% and B(M,)=1. Thus, M, is a series-parallel
network having at least three elements. But now a routine induction argument,
using the properties of series-parallel networks [2,§7], shows that M, has a
2-element circuit or cocircuit not containing p. Thus M has a 2-element circuit or
cocircuit, and hence M has a nontrivial series or parallel class. This contradiction
completes the proof. [J

(2.6) COROLLARY. Suppose that B(M) is prime. Then M is a series-parallel
extension of a 3-connected matroid N for which B(N )= B(M).

(2.7) LEMMA. Let N be a minor of the matroid M, and suppose that B(N)= B(M)
>0. If N is 3-connected, then M is a series-parallel extension of N.

Proof: 1f B(N) =1, then, as N is 3-connected, N=U, |, U, ,, U, 3, or U, , and
the result is casy to check. Now suppose that 8(N)=2. By Theorem 2.1 and
(1.15), | E(N)| = 4 and N has no nontrivial series or parallel classes, We argue by
induction on |E(M)|, noting that the result holds trivially for |[E(M)} =4
Suppose then that the result holds for | E(M)| <k and let |[E(M)|=k=4.1f M
has a nontrivial series or parallel class, then the required result follows, as in the
proof of Proposition 2.5. We may therefore assume that M has no nontrivial
series or parallel classes. Thus, by Proposition 2.5, either M is 3-connected, in
which case M =N, or M= P((M,, p),(M,, p)\p where |E(M)| =3 fori=1,2
and B(N) exceeds both B(M,) and B(M,). If both |E(N)NE(Mjp)| and
|E(N)NE(Mxp)| exceed 1, then as the operation of parallel connection com-
mutes with the operations of deletion and contraction of elements other than the
basepoint [2, Proposition 5.6] it follows that N can be expressed as a 2-sum. Thus,
by Theorem 1.12, we obtain the contradiction that & is not 3-connected. There-
fore, we may assume, without loss of generality, that |E(NYNE(Mpp)|=1.

We now show that N is a minor of M,. This is certainly true if | E(N)YNE(Ma
PY =0.If {E(N)NE(Mpp)| =1, then N can be obtained by deleting p from the
parallel connection of (M}, p) and (Mj;, p), where M/ is a minor of M, for i =1,2,
and | E(M;)| =2. Now N is connected, so by (1.13), M} is connected and hence
M;=U, ,. We conclude that N is a minor of M,. But, by (1.13) again, M, is
connected and so, by (1.9), B(N)<B(M,). This contradiction to the fact that
B(N)= B(M)) completes the proof. O

We now prove the two main results of this section.

-3
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Proof of Theorem 2.2: As B(U ,)=2=B(M(K,)), if M is a series-parallel
extension of U, , or M(K,), then, by (1.14), B(M)H)=2.

Now suppose that 8(M)=2. Then M is a connected matroid having at least
two elements. Thus, by Theorem 2.1, M has a minor isomorphic to U, 4 or
M(K,). Since each of these matroids is 3-connected having 8=2, the result
follows by Lemma 2.7. O

Proof of Theorem 2.3: 1t is not difficult to check that B, 5)=B(F))=
B(M(W, )= B(AU>)=3. 1t follows, by (1.8) and (1.14), that if Mis a series-parallel
extension of one of the six matroids listed in (2.3), then B(M)=3.

Now assume that S(M)=3. Then, by Corollary 2.6, M is a series-parallel
extension of a 3-connected matroid N such that B(N)=3. By Theorems 2.1 and
2.2, |E(N)|=5. Suppose that for all elements e of N, neither Ne nor N/e is
3-connected. Then, by [11, 8.3], N is isomorphic to a whirl or the cycle matroid of
a wheel. Hence, by (2.4), N = M(9U,) or Uf>.

We may now assume that for some element e of N, either Nie or Nfe is
3-connected. Suppose the former. Then as {E(N\e)|=4, we have by Theorem 2.1
that (N \e)=2. But N/e is connected, so B(N/e)=1. Thus, by (1.3), B(N\e)=2
and B(N/e)=1. Hence, by Theorem 2.2 and (1.15), N \e =0, or M(K,), and, as
B(N)=3 and N is 3-connected, it is straightforward to check that N = U, s or F,.

If N/e is 3-connected for some element e of N, then, by (1.10), N*e is
3-connected. By (1.8), we may argue as above to deduce that N* = U, 5 or £y, and
therefore N=U, ;or F}. 0O

3. The matroids with § =4

The characterization of the matroids having 8 = 4 resembles in part the proof of
Theorem 2.3. However, an additional complication arises here because 4 is not
prime. ‘

Let N, and N, be the rank-three matroids for which affine representations are
given in Figure 1(a,b). In addition, let N, be the non-Fano matroid [see Figure
1(c)] and X be the graph obtained by deleting an edge from K. Finally, let N,
be the dependence matroid of the following binary matrix:

o—o0 O
-_0 0O
—_ S
[ e

e e I
cCOoO—=C
.n—lan-d._lc
bt it

Then it is straightforward to check that both N, and N, are isomorphic to their
duals and that each of N, N;, N;, N, and M(K3 ) has B=4.

(3.1) THEOREM. Let M be a matroid. Then B(M)=4 if and only if either

() M is a series-parallel extension of one of the matroids Uy Uy, WH,
M), Ny, Ny, NE, Ny, N3, Ny, M(K3 ), or M*(K; ); or

(i) M is a 2-sum of matroids M 1 and M, each of which is a series-paralle!
extension of M(K,) or U, ,.
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(a) ' (b) (c)

Figure 1. {a) N, (b} Ny, {c) N;.

Proof: 1t is not difficult to show that if (i) or (ii} holds, then B(M)=4. Now
assume that B(M)=4. Then, by Proposition 2.5, either M is a series-parallel
extension of a 3-connected matroid N having 8 =4, or M = P((M,, p).(M,, pII\p,
where each of M, and M, has 8 < 4. In the latter case, since M is connected, we
have by (1.13) that both M, and M, are connected. It follows, by (1.11) and
Theorem 2.2, that (i) holds. We may now assume that M is a series-parallel
extension of a 3-connected matroid N having 8 = 4. If for every element e of N,
neither Ne nor N/e is 3-connected, then N is a whirl or the cycle matroid of a
wheel [11, 8.3], and so, by (2.4), N = or M(U,). ’

Now suppose that N has an element e such that N \e is 3-connected. As N/e is
connected, B(N/e) =1, and so, by (1.3), B(Ne) = 3. But N\e is 3-connected and
Theorems 2.1 and 2.2 imply that | E(N\e)| > 4. Hence, by Theorems 2.2 and 2.3,
N e is isomorphic to one of Uy 4, Us 5, Us 5, W>, M(K,), Fy, F¥, and M(%,). We
now check each of these possibilities. Firstly, we note that N\e 3£U, 4, for U, 4 has
no single-element extension with B8 equal to 4. If Nxe=U, , then, as N 1s
3-connected, N=U, ;. If Nxe=U, s, then it is straightforward to check that
N=N,. Every 3-connccted single-element extension of I, has § exceeding four,
hence Ne # F;. If N\e = >, then N=N,, while if N\e = M(K,), then N=N,
or N,. :
 The two remaining possibilities are that N e = F* or N\e = M(°W,). We shall
show in each case that N is isomorphic to one of the matroids listed in (i).
Suppose that Nxe = M(9(,). In the affine representation for M(4,) shown in
Figure 2, the efements 1, 2, 3, and 4 are the vertices of a tetrahedron. By (1.3),
B(N\e)=1. Now assume that in N, ¢ €{1,2,3}. Then N/e has a minor isomor-
phic to N[{1,2,3,5,6} and N|{1,2,3,5,6} = P(U, ;,U; ;). Thus, as B(N/e)=1, it

is not difficult to check that the simple matroid associated with N/e is isomorphic

to P(U, 3, U, 5). Hence, for each of the points 4, 7, and 8, there is a line containing
e and one of the points in {1,2,3,5,6}. It is straightforward to show that the only
possibility here is that e€ (1,4} N {5,8) 1 {6,7}. It then follows that N = M(K; ).

Clearly e avoids one of the planes {1,2,3}, {1,2,4}, {1,3,4} and {2,3,4}. By
symmetry, we may apply the above argument in each case. We conclude that if
Nie = M(W,), then N = M(K7).

Finally, suppose that N\e = F¥. We shall first show that N is binary. Suppose
not. Then N has U, , as an upper minor and hence there is an element x of N such
that U, 4 is a minor of N/x. We shall show that x =e. As N is 3-connected, for all
elements f of N, both N\f and N/f are connected; hence 8 is positive for each.

T
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Figure 2.

Thus B(N/f)=<3.1f f + e, then consider N/f\e=Nre/f. As N\e = F¥, we have
N/fe=M(K,), and so B(N/f)=2. Thus N/f has rank 3 and B(N/f)=2or3.
In the latter case, by Theorem 2.3, N/f = F;, while in the former, as M(K,) is a
minor of N/f, Lemma 2.7 implies that N/f is a parallel extension of M(K,). Thus
N/f is binary for all elements f # e. Hence x = e, and so, by (1.9), B(N/e)=2.
But S(N\e)=3. Thus B(N)=3, a contradiction. It follows that we may assume
that N is binary. Then as N\e=F¥, N is obtained by deleting a point from
AG(3,2). Therefore, N\e is the complement in PG(3,2) of the direct sum of F;
and a coloop. By a result of Brylawski and Lucas [4, pp. 93-94], it follows that
N=AG(3,2) or N,. But B(AG(3,2))=6; hence N = N,.

We may now assume that N has an element e such that N /e 1s 3-connected.
Then, as (N/e)*= N*\e, we have, by (1.8), that B(N*\e)= B(N/e). On applying
the above argument with N* in place of N, we obtain that N* is isomorphic to
one of U, ¢, Ny, N, N;, N,, and M(K7 ). Hence N is isomorphic to Uy 60 My, N,
N, N, or M*(K7 ), and so N is included in the list under . O

The technique that was used above to determine the 3-connected matroids with
B =4 may be applied to find those 3-connected matroids with B =5. Then, by
Corollary 2.6, every matroid with B equal to 5 is a series-parallel extension of one
of these 3-connected matroids. Evidently, one can continue to apply this tech-
nique to determine the matroids with 8 equal to 6, 7, and so on. However, even
for 8 equal to 5, the technique is rather cumbersome.

For each positive integer n, there is a set §_ of matroids each of which is
irreducible with respect to series-parallel extensions and such that B(M)=n if
and only if M is a series-parallel extension of some member of $,_. Theorems 2.1,

Figure 3. G,
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2.2, and 2.3, respectively, assert that & = {U, ,}, §, ={U, 4, M(K,)}, and §, =
{Uy 5. Uy s, Fo, Fr, M(S,), A, By (3.1)(i), if G, is the graph in Figure 3, then
B(M(G,))= 4. Bvidently M(G,)ES,, and it is easy to generalize this example to
show that &, is infinite. The next result follows by extending the above observa-
tions and using the fact that, for n>2, a 3-connected member of , has at most
2n+2 elements. The latter is a consequence of an easy induction argument,

(3.2) PROPOSITION. &, is finite if and only if n=1 or n is prime.

4, The beta invariant, the chromatic number, and connectivity

If M is a loopless matroid, then as in [8, p. 15; 12], we define #( M )=min{k €
Z*:P(M;k+ j)=0 for all j=0,1,2,...}. Thus, if G is a loopless graph, then
7( M(G)) is the chromatic number of G.

(4.1) {2, Theorem 7.9]. If B(M)=1, then w(M)}<3.
The results of the last two sections may be used to extend this as follows.
(4.2) THEOREM. If B(M)=k, where 1< k=<4, then n(M)<k +2.

Since P(U, ;123 A)=(A —1)(A—k—1), we have B(L}, ; ,)=k and 7(U} 4,5)
= k +2. Therefore the bound in Theorem 4.2 is best possible, The author knows
of no example to contradict the statement of (4.2) when the restriction on k is
removed. Indeed, if M is regular, a stronger result holds for arbitrary %, since for
such matroids, #(M)=min{kEZ " : P(M; k)>0} (see, for example, [8, Theorem
2.9).

The proof of Theorem 4.2 requires the following preliminaries, the first of
which is a technical lemma.

(4.3) LeMMA. Ler M’ be a series-parallel extension of a matroid M. If x€ E(M"),
then there is an element y of M such that M’ / x is isomorphic to a series-parallel
extension of the direct sum of M or M/y with a matroid of rank zero.

Proof: We argue by induction on |E(M'NE(M)|, noting that the result is
immediate if this cardinality is zero. Now assume the result true for |E(Mn
E(M)|<k and let | E(M"WE(M)|=Fk. As M’ is a series-parallel extension of M,
we may assume, without loss of generality, that x € E(M). It will follow from this
assumption that we may take y = x. Now there is an element e of M’ such that
e & E(M) and either

() {e.f. fs-...1,} is a nontrivial parallel class of M’, or
(i) {e, fis fos..-f,} is a nontrivial series class of M.

In case (i), M"\e is a series-parallel extension of M, so, by the induction
assumption, M"\e/x has the required property. Now {f}, f,.....f,.} is contained
in a parallel class in M"\e/x unless x = f; for some i. In the former case, as
M’\e /x has the required property, so does M’ /x. In the latter case, e is a loop of
M’ /x, and again, as M'\e /x has the required property, so does M’ /x.

In case (ii), consider M’ /e. This is a series-parallel extension of M and so, by
the induction assumption, M’ /e /x has the required property. The result follows
easily unless {e, f;, f,....f,.} = {e, x}, but in that case, M'/e=M'/x and the
result again follows. [
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(4.4) LEMMA. Let M’ be a series-parallel extension of a loopless matroid M.
Suppose that w(N)=m for all loopless contractions N of M. Then a{MYy<m
unless m=2, in which case m(M"y<m+1.

Proof: We argue by induction on |E(M'W\E(M )|, noting that the result is
trivially true if | E(M')\E(M)|=0. Assume it true for [E(M'NE(M)|<k, and let
|E(QM"WE(M)|= k. Then there are elements e and fof M’ such that e & E(M)
and (e, f} is a 2-element circuit or a 2-element cocircuit of M’. In the former
case, it is clear that #(M")=m(M). In the latter case, we have P(M';A)=
P(M'"\e; A\)— P(M'\e; A) and hence, as fis a coloop of M"e,

P(M";X) = (A—=1)P(M"~e/f;A)— P(M'/e; A).

Now P(M™e/f; A)y=P(M'/f\e; \)=P(M'/f; \)+ P(M’ /e, f; \) and M’ /e =
M’ /f; thus

(4.5) P(M';N)=(A—2}P(M'/e; \) + (A=1)P(M’se, f; X).

As e € E(M), it is clear that M’ /e is a series-parallel extension of M. Therefore,
by the induction assumption, #( M’ /e)ysmax{3, m}. Moreover, by Lemma 4.3,
there is an element g of M such that M’ /e, f is isomorphic to a series-parallel
extension of the direct sum of M or M/g and a matroid of rank zero. By (4.1),
Theorem 2.1, and the induction assumption, it follows that either M’ /e, fhas a
loop, or w(M'/e, f )=max{m,3}. We conclude, from (4.5), that =(M)=<
max{m,3}. O

Proof of Theorem 4.2: By (4.1), the result is true for B(M)=1. The proof for
B(M)=2, 3, or 4 involves first checking the chromatic numbers of the loopless
contractions of the matroids in Theorems 2.2 and 2.3 and in (3.1Xi). In these
cases the result follows by Lemma 4.4. Having established the result when
B(M)=2, the case of the matroids in (3.1)(ii) follows by Lemma 4.3. The details
of this straightforward argument are omitted.

We now consider briefly the relationship between (M ) and the connectivity
of M. We shall concentrate on n-connected matroids having at least 2(n—1)
elements, as for such matroids every single-element deletion and contraction is
(n ~—1)-connected. The only n-connected matroids with fewer than 2(n—1) ele-
ments have infinite connectivity and hence are uniform matroids whose rank and
corank differ by at most 1 [9, Lemma 2; 6, Theorem 1}. The 8 invariant for such
matroids can be determined from Brylawski’s result [3, Corollary 7.14] that

_ k-2
B(U;-,k) - (r_] )
For each integer n =2, define
b(n) = min{B(M): M is n-connected and |E(M)}|=2(n—1)}.
An immediate consequence of this definition is that

(4.6) b(n+1)=2b(n) forall n =2,
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As b(2)=1, it follows that
4.7) b(ny=2""2 for n=2.

This bound is attained when » =2 and n =3, but, in general, seems rather weak.
Indeed, the author knows of no counterexample to the statement that

b(n)= (2nn_—24). The latter bound is attained by U,_,,,_, and, for example,
when n =3, by M(K,). '

We shall now use the results of the preceding sections to determine »(4) and
5(5) and thereby to sharpen (4.7) when n=35.

(4.8) ProposiTION. If M is a 4-connected matroid and | E(M )| =6, then B(M =10
unless M =U, 4. :

Proof: Since a 4-connected matroid with at least 6 elements has no circuits or
cocircuits with fewer than 4 elements [14, Lemma 3.1, it is not difficult to check
that the only 4-connected matroids with 6 or 7 elements are {4 ,, U; 5, and U, -
As B(U; ;) =10 = (U, ;), we may assume that | E(M)}=8. Hence if x& E(M),
then both M\x and M/x are 3-connected and both {E(M\x)| and |E(M/x}|
exceed 6. Therefore, by Theorems 2.2, 2.3, and 3.1, both 8(M\x) and B(M /x)
exceed 4 unless M \x or M/x is in {F,, F¥, M(9,), W4, M(UW,),
N,, N}, N, Nf, N;, M(K5 ), M*(K5 )}. Now Mx has no 3-element circuits and
M /x has no 3-element cocircuits. Thus (M \x)>>5 unless M \x € {Ff, Ny}, and
B(M/x)=5 unless M/xe{F, N;}. By (1.8) and (1.3), it follows that the
required result will be established if we can show that for M/xe&{F,, N},
B(M)=10. '

Suppose that M/x = F,. Then, as M is 4-connected and therefore has no
3-element circuits, one can check without difficulty that M is the free lift of £
(see, for example, |7, p. 150]). Hence (M )=13=10. ,

If M/x= N,, then again it is not difficult to check that M is either the free lift
N; of N,, or the matroid Ny’ for which an affine representation is shown in Figure
4. As B(N;)=14 and B(N;")=13, we conclude that B(M)=10. T

Figure 4. Ny
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As B(U; ¢)=6, an immediate consequence of the preceding result is that
(4.9) b{4) = 6.

Moreover, using (4.8) and its proof technique, it is straightforward to show that
6(5)=20. As B(U, 3)=20, it follows that

(4.10) b(5) = 20.
Thus, by (4.6), we have

(4.11) b(n)=5%x2""%  forall n=S5.
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