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We show that, for every integer n greater than two, there is a number N such that
every 3-connected binary matroid with at least N elements has a minor that is
isomorphic to the cycle matroid of K3, n , its dual, the cycle matroid of the wheel
with n spokes, or the vector matroid of the binary matrix (In | Jn&In), where Jn is
the n_n matrix of all ones. � 1996 Academic Press, Inc.

1. Introduction

The general theme of Ramsey theory may be stated as follows: A class
A of objects contains a subclass B of ``more structured'' objects so that
every sufficiently large element of A ``dominates'' a large element of B. The
classical result of this type is the following.

(1.1) Theorem. There is a function R (the Ramsey function) such that,
whenever the edges of a complete graph K on at least R(x, y) vertices are
colored with y colors, there is an induced subgraph of K on x vertices all of
whose edges have the same color.

The following is another well-known graph result of this type.

(1.2) Theorem. For every integer n greater than one, there is an integer
N(n) such that every 2-connected simple graph with more than N(n) vertices
contains a subdivision of the circuit on n edges or a subdivision of K2, n .

This result has been generalized to matroids by Lova� sz, Schrijver, and
Seymour (see [6]). They proved the following result, which was
strengthened in [8].

(1.3) Theorem. Let n be an integer greater than one. If M is a connected
matroid with more than 4n elements, then M contains a circuit or cocircuit
with more than n elements.
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Two of the authors, in collaboration with Thomas, proved analogs of
(1.2) for 3- and 4-connected graphs [5]. The following is the result for
3-connected graphs. Let Wn denote a wheel with n spokes. Observe that,
for every integer n greater than two, each of Wn and K3, n is 3-connected.

(1.4) Theorem. For every integer n greater than two, there is an integer
N(n) such that every 3-connected graph with more than N(n) vertices con-
tains a minor isomorphic to Wn or K3, n .

The next theorem, the main result of the paper, generalizes (1.4) to binary
matroids. For an integer n greater than one, let Sn denote the matroid whose
binary representation is of the form (In | Jn&In), where In is the rank-n
identity matrix and Jn is the matrix with n rows and n columns, all of whose
entries equal 1. It is easy to show that Sn is 3-connected for every integer n
greater than two.

(1.5) Theorem. For every integer n greater than two, there is an integer
N(n) such that every 3-connected binary matroid with more than N(n) elements
contains a minor isomorphic to one of M(K3, n), M*(K3, n), M(Wn), and Sn .

Both Theorems 1.4 and 1.5 are existence results and we believe that the
bounds on N that are obtained in their proofs are far from best-possible.

It is not surprising that (1.4) and (1.5) feature wheels, which arise
frequently as minors of 3-connected binary matroids. Indeed, it is
impossible to have a 3-connected binary matroid on more than three
elements without a minor isomorphic to M(W3). One of the authors [7]
investigated the class of 3-connected binary matroids with no minor
isomorphic to M(W4). He proved that even though the members of this
class may be arbitrarily large, every such member is a minor of some Sn .
An even more striking property of wheels is stated in the following conse-
quence of (1.4).

(1.6) Corollary. Let n be an integer greater than two, and let G be a
class of 3-connected simple planar graphs none of which has a Wn-minor.
Then G contains only finitely many pairwise nonisomorphic elements.

Similarly, Theorem 1.5 can be reformulated as follows.

(1.7) Corollary. Let n be an integer greater than two, and let M be a
class of 3-connected binary matroids none of which has a minor isomorphic
to M(K3, n), M*(K3, n), M(Wn), or Sn . Then M has only finitely many
pairwise nonisomorphic elements.

The main tools in proving (1.5) are Ramsey-type results on matrices which
we state and prove in Section 2. We believe that these results are interesting
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in their own right. Section 3 contains a result showing that it is sufficient to
prove (1.5) for matroids that have a spanning circuit. The result of Section 4
relates 3-connectivity of matroids representable over finite fields to a
property of matrix representations of such matroids. Section 5 contains the
proof of (1.5). We note that in proving (1.5) we do not invoke (1.4), and
hence the proof presented here may be viewed as an alternative proof of (1.4).

For all n�4, the matroid Sn has the Fano matroid as a minor. This
observation, together with (1.5), clearly implies the following.

(1.8) Corollary. For every integer n greater than two, there is an
integer N such that every 3-connected regular matroid with more than N
elements contains a minor isomorphic to one of M(K3, n), M*(K3, n), and
M(Wn).

The last corollary can also be derived independently of (1.5) by using
(1.4) and Seymour's decomposition of regular matroids [9]. However, the
details of this argument seem to require almost as much effort as we needed
to prove the more general result (1.5).

In the remainder of this section, we establish some terminology and
notation. We shall assume familiarity with basic matroid theory and follow
[6] for notation.

A matrix having all of its entries in a set F will be called an F-matrix.
If F is a set containing zero, A=(ai, j) is an F-matrix, and l is a column of
A, then sA(l ), or simply s(l ), will denote the set of rows k of A for which
ak, l {0. The rank function of a matroid M will be denoted rM , or simply r
if the matroid M can be inferred from the context. A matroid M is hamiltonian
if M has a circuit with r(M)+1 elements. Suppose M is a hamiltonian
matroid of rank at least one and corank at least two that is representable over
a finite field F. It is well known that M can be represented by an F-matrix of
the form:

\ Ir

1
1
b

1

A + .

Such a matrix will be called a normal F-representation of M. Observe
that if M is the cycle matroid of a graph G, then the columns outside A
correspond to a hamiltonian cycle C of G, and the columns of A
correspond to the chords of C in G. For this reason, the matrix A in a nor-
mal representation of any hamiltonian matroid will be called a chordal
matrix. The set [1, 2, ..., n] will be written as [n], and [0] will denote the
empty set.
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2. Ramsey-Type Theorems for Matrices

Throughout this section, F will be a set containing 0 together with
exactly q&1 other elements for some integer q�2. We remark that to
prove the main result of this paper, we need only consider F=[0, 1].
However, allowing F to have more than two elements does not substan-
tially increase the difficulty of the proofs of the results of this section, and
hence we present these results in full generality.

Suppose A is an F-matrix. A matrix B obtained from A by deleting rows
and columns is a submatrix of A. A matrix that is obtained from a sub-
matrix of A by permuting its rows is a row-permuted submatrix of A. In this
section, we prove several results that identify unavoidable row-permuted
submatrices of large F-matrices whose columns are ``sufficiently diverse.''
The major results of this section will be used in Section 5.

We begin with a definition and two lemmas. Let n and p be nonnegative
integers not both zero. An F-matrix A=(ai, j) is [n, p]-semidiagonal if A
has exactly n+p columns and at least n rows, and, for every row i # [n]&
[n+p], we have ai, i {ai, i+1 and ai, i+1=ai, j for all j # [n+p]&[i].

(2.1) Lemma. For an integer n greater than one, let g1(n, q)=3(q+1)n.
Let C be an F-matrix with at least g1(n, q) columns no two of which are iden-
tical. Then there is an [n, 0]-semidiagonal matrix D obtained from C by
deleting columns and permuting rows.

Proof. Without loss of generality, we may assume that C has exactly
g1(n, q) columns. We shall inductively construct a sequence of matrices
C=C0 , C1 , ..., Cn=D where, for each m # [0] _ [n], the matrix Cm is
[m, g1(n&m, q)]-semidiagonal and has been obtained from C by deleting
columns and permuting rows.

Trivially, C0 , which equals C, is [0, g1(n, q)]-semidiagonal. Now
suppose that m is an integer in [n] and that Cm&1=(ci, j) is [m&1,
g1(n&m+1, q)]-semidiagonal and has been obtained from C by deleting
columns and permuting rows. Since g1(x, q)�3 for all nonnegative integers
x, the matrix Cm&1 has at least m+2 columns. As the columns m and
m+1 of Cm&1 are not identical, yet they agree in the first m&1 rows, there
is a row i of Cm&1 such that i�m and ci, m{ci, m+1. Let J=[m&1+
g1(n&m+1, q)]&[m+1]. Consider the entries of the form ci, t for t # J.
The cardinality of J is at least

m&1+g1(n&m+1, q)&(m+1)=g1(n&m+1, q)&2

=3(q+1)n&m+1&2

=3(q+1)n&m (q+1)&2

>g1(n&m, q) q.
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Thus, by the pigeon-hole principle, there is a subset J$ of J and an element
: of F such that |J$|=g1(n&m, q) and ci, t=: for all t # J$. Moreover, since
ci, m {ci, m+1 , there is an m$ # [m, m+1] such that ci, m$ {:. Construct Cm

from Cm&1 by deleting all columns except those in [m&1] _ [m$] _ J$
and swapping rows i and m. Clearly, Cm is [m, g1(n&m, q)]-semidiagonal
and has been obtained from C by deleting columns and permuting rows.
By induction, the lemma follows. K

Suppose :, ;, and # are elements of F that are not all equal. A square
F-matrix A=(ai, j) is (:, ;, #)-diagonal if

:, if i< j;
ai, j={;, if i= j;

#, if i> j.

Suppose a matrix B has m rows and n columns. A submatrix C of B is prin-
cipal if there is a subset I of [m] & [n] such that C is obtained from B by
deleting all rows except those in I, and deleting all columns except those
in I.

(2.2) Lemma. For an integer n greater than one, let g2(n, q)=R(n, q) q2,
where R is the Ramsey function. Suppose D=(di, j) is a [ g2(n, q), p]-
semidiagonal matrix for some nonnegative integer p. Then D has a principal
submatrix E that has n columns and is (:, ;, #)-diagonal for some :{;.

Proof. Let m=g2(n, q) and consider d1, 1 , d2, 2 , ..., dm, m . Since m>
(R(n, q) q&1) q, by the pigeon-hole principle, there is a subset J of [m]
that has R(n, q) q elements and such that all di, i for i # J are identical.
Construct a principal submatrix D$=(d $i, j) of D by deleting all columns
except those in J, and deleting all rows except those in J. Observe that all
elements on the main diagonal of D$ are identical.

Now consider all entries of D$ of the form d $i, i+1 . The number of entries
of this form is R(n, q) q&1>(R(n, q)&1)(q&1). As each of them differs
from the entries on the main diagonal of D$, they may only take on values
from F&[d $1, 1]. By the pigeon-hole principle, there is a subset J$ of
[R(n, q) q&1] that has R(n, q) elements and for which all entries d $i, j , for
i # J$ and j>i, are identical. Construct a matrix D"=(d"i, j) from D$ by
deleting all columns except those in J$ and by deleting all rows except
those in J$. Observe that D" is a principal submatrix of D$ and, hence, also
of D.

Now consider a q-coloring of the edges of a complete graph K on the
vertex set [R(n, q)] in which the edge (i, j), where i>j, is colored by d"i, j .
From the definition of R(n, q), there is a subset J" of [R(n, q)] such that
the subgraph of K induced by J" has all its edges colored identically.
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Construct E from D" by deleting all columns except those in J" and by
deleting all rows except those in J". It is straightforward to verify that E
satisfies the conclusion of (2.2). K

The following result describes the unavoidable row-permuted sub-
matrices of large F-matrices no two columns of which are identical. It is the
first of the main results of this section and it is a slight strengthening of
(3.2) from [2].

(2.3) Theorem. There is a function g3 with the following property: If n
is an integer greater than one and A is an F-matrix with at least g3(n, q)
columns no two of which are identical, then A contains a row-permuted sub-
matrix B that has n columns and is (:, ;, #)-diagonal for some :{;.

Proof. Let g1 denote the function from (2.1), let g2 denote the function
from (2.2), and let g3(n, q)=g1(g2(n, q), q). The conclusion follows
immediately from (2.1) and (2.2). K

We remark that the theorems of this section can be stated in the
language of bipartite graphs instead of the language of matrices. We shall
give an example of this by, essentially, restating the special case of (2.3)
when F=[0, 1] as a theorem on unavoidable induced subgraphs of large
bipartite graphs. The general version of (2.3) can be restated in terms of
unavoidable monochromatic induced subgraphs of edge-colored complete
bipartite graphs. We leave it to the reader to translate the theorems of this
section, including the general version of (2.3), into the language of bipartite
graphs.

(2.4) Corollary. For every positive integer n, there is an integer N with
the following property: Suppose G is a bipartite graph with a bipartition U
and V such that |U|=m�N and the neighbor sets of the vertices in U are
all distinct. Then U and V have n-element subsets U$ and V$, respectively,
such that the subgraph G$ of G induced by U$ _ V$ satisfies one of the
following:

(i) G$ is a matching;

(ii) G$ is the bipartite complement of a matching; or

(iii) the vertices of U$ and V$ can be labelled u1 , u2 , ..., un and
v1 , v2 , ..., vn so that the neighbor set of ui is [vj : j # [i]] for all i # [n].

We return to matrices. The next is an easy lemma.

(2.5) Lemma. Let n be a positive integer, let :, ;, # be elements of F such
that :{#, and suppose that C is an (:, ;, #)-diagonal matrix with 2n
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columns. Then C contains submatrices C$ and C", each with n columns, such
that C$ is (:, #, #)-diagonal, and C" is (:, :, #)-diagonal.

Proof. Construct C$ from C by deleting all odd-numbered rows and all
even-numbered columns. The construction of C" is very similar. K

By imposing a stronger condition than merely that the columns be
distinct, we are able to sharpen the conclusion of Theorem 2.3. A column
j of an F-matrix A=(ai, j) dominates a column k if the columns j and k are
identical or if there is an element : in F&[0] such that ai, j=: whenever
ai, k {0.

(2.6) Theorem. There is a function g4 with the following property: If n
is a positive integer and A is an F-matrix with at least g4(n, q) columns such
that no column of A dominates another, then A contains a row-permuted sub-
matrix B that has n columns and satisfies one of the following conditions:

(i) B has n rows and is an (:, ;, #)-diagonal matrix where :{;, and
:=0 if and only if #=0.

(ii) B has n+1 rows the first n of which form an (:, :, 0)-diagonal
matrix and the last of which has all its entries equal to ; for some ; # F&
[0, :].

(iii) B has n+1 rows the first n of which form a (0, :, :)-diagonal
matrix and the last of which has all its entries equal to ; for some ; # F&
[0, :].

(iv) B has 2n rows the first n of which form a (0, :, :)-diagonal matrix
and the last n of which form an (:, :, 0)-diagonal matrix.

Proof. We begin by proving the following.

(1) Let m be an integer greater than n, let p=g3(m, q), and let
h(m, q)=R( p, 2)+1, where g3 is the function from (2.3) and R is the
Ramsey function. Let E=(ei, j) be an F-matrix with h(m, q) columns none of
which dominates another. Suppose that the first h(m, q) rows of E form a
(0, :, :)-diagonal matrix for some : # F&[0], and that all row-permuted
submatrices B of E fail all of (i)�(iii). Then there is a row iE of E, and a sub-
set JE of [h(m, q)]&[1] with m elements such that diE , 1 {: and diE , j=:
for all j # JE .

Let I denote the set of rows i of E for which ei, 1 {:. Since column 1 of
E does not dominate column 2, the set I is nonempty. Let E$ denote the
matrix obtained from E by deleting all rows except those in I. Consider the
complete graph K on the vertex set [h(m, q)]&[1]. Color the edge ( j $, j")
with color 0 if the columns j $ and j" of E$ differ, and with color 1
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otherwise. Then K contains an induced subgraph K$ on g3(m, q) vertices all
of whose edges are colored the same.

Suppose first that all of the edges of K$ are colored 0. Upon applying
(2.3) to the submatrix of E$ obtained by deleting those columns not in K$,
we conclude that E$ contains a row-permuted submatrix E" that has m
columns and is (;, #, $)-diagonal with ;{#. Since m>n, if ; � [0, :] or
$ � [0, :], then the matrix obtained from E by deleting all columns except
those corresponding to the columns of E" has a row-permuted submatrix
B that satisfies (iii); a contradiction. If ;=$, then E" has a row-permuted
submatrix B that satisfies (i); again, a contradiction. Hence [;, $]=[0, :].
Now let iE be the row of E that corresponds to the first or the last row of
E" depending on whether ;=: or $=:, respectively, and let JE be the set
of columns of E that correspond to the columns of E".

Now we may assume that all of the edges of K$ are colored 1. Let E" be
the matrix obtained from E$ by deleting the columns not in K$. Since the
column 1 of E dominates no other column of E, it follows that no column
of E" has all entries equal to zero. Since all columns of E" are identical, E"
has a row consisting of g3(m, q) identical nonzero entries equal to #. Since
n<m�g3(m, q), and since (iii) fails for all row-permuted submatrices B of
E, it follows that #=:. This proves (1).

Let g2 be the function from (2.2), and let g=g2(2n, q). We define the
sequence of integers kg , kg&1, ..., k0 by letting kg=n+1 and, inductively,
kl&1=h(kl , q) for l # [ g]. Finally, let g4(n, q)=g3(2k0 , q), where g3 is the
function from (2.3). Suppose that all row-permuted submatrices B of A fail
all of (i)�(iii). Clearly, no two columns of A are identical, and hence, by
(2.3), A contains a row-permuted submatrix C with 2k0 columns that is
(#, ;, :)-diagonal with #{;. Since (i) fails with B=C, exactly one of : and
# is zero. We shall assume that #=0; the proof in the other case is very
similar. Now apply (2.5) to C to obtain a matrix C$ that has k0 columns
and is (0, :, :)-diagonal. Let D be a matrix obtained from A by deleting
columns and permuting rows so that the first k0 rows of D form C$.

We shall define a sequence of matrices D0 , D1 , ..., Dg such that Dl , for
l # [ g], has the form

D$l

\Dl"+Dl$$$

where D$l is (0, :, :)-diagonal and D"l=(d"i, j) is [l, kl]-semidiagonal with
d"i, j=: whenever i<j. Let D0=D. Suppose l is a nonnegative integer
smaller than g and suppose Dl has been defined so that the submatrix El

obtained from Dl by deleting the first l rows and deleting the first l columns
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satisfies the hypotheses of (1) with m=kl+1. Let iEl and a subset JEl of [kl]
be as in the conclusion of (1). Note that |JEl |=kl+1 . Let KEl=[l+kl]&
([l] _ [l+j: j # [1] _ JEl]). Now construct the matrix Dl+1 from Dl by
deleting all columns in KEl , deleting all rows in KEl , and swapping two
rows so that the row of Dl+1 corresponding to the row iEl of El is at
position kl+1+l+1 in Dl+1. It is clear that if l+1<g, then the matrix
El+1 obtained from Dl+1 by deleting the first l+1 rows and the first l+1
columns satisfies the hypotheses of (1) with m=kl+2.

Now consider the matrix E obtained from Dg by removing the first g
rows. It is clear that E is [ g2(2n, q), n+1]-semidiagonal. Therefore, by
(2.2), it has a principal submatrix E$ that has 2n rows and is (;, $, =)-
diagonal for some ;{$. It is clear from the construction that ;=:. Since
(i) fails with B=E$, we conclude that ==0. Upon applying (2.5) to E$ , we
obtain a matrix E" that has n columns and is (:, :, 0)-diagonal. Let I and
J be, respectively, the sets of rows and columns of E deleted in the process
of obtaining E". Construct B from Dg by deleting all rows in I, and deleting
all columns in J. It is clear that, after permuting the rows of B if necessary,
B satisfies (iv). The result follows. K

In the next result, we study a binary relation on the columns of an
F-matrix that is even stronger than nondomination. Two columns j and k
of an F-matrix A=(ai, j) cross if neither of these columns dominates the
other, and there is a row i of A for which both ai, j and ai, k are nonzero.

Suppose : and ; are elements of F&[0]. An F-matrix A=(ai, j) is (:, ;)-
complete if the number of rows of A is ( n

2), where n is the number of
columns of A, and, for every two distinct columns j $ and j" of A, there is
exactly one row i of A such that ai, min[ j $, j"] and ai, max[ j $, j"] are : and ;,
respectively, and ai, j=0 for all j � [ j $, j"].

(2.7) Theorem. There is a function g5 with the following property: If n
is an integer greater than one and A is an F-matrix with at least g5(n, q)
columns such that every two columns of A cross, then A contains a row-per-
muted submatrix B that has n columns and satisfies one of the following
conditions:

(i) B has n rows and is (:, ;, #)-diagonal with :{;, :{0, and #{0.

(ii) B has n+1 rows the first n of which form an (:, :, 0)-diagonal
matrix and the last of which has all its entries equal to ; for some
; # F&[0, :].

(iii) B has n+1 rows the first n of which form a (0, :, :)-diagonal
matrix and the last of which has all its entries equal to ; for some
; # F&[0, :].
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(iv) B has 2n rows the first n of which form a (0, :, :)-diagonal matrix
and the last n of which form an (:, :, 0)-diagonal matrix.

(v) B has n+1 rows the first n which form a (0, :, 0)-diagonal matrix
and the last of which has all its entries equal to some nonzero ;.

(vi) B is (:, ;)-complete for some nonzero elements : and ; of F.

Note that condition (i) above is a strengthening of condition (i) of (2.6),
and conditions (ii)�(iv) are exactly the same as in (2.6).

Proof. Let m=g4(n, q) and *0=R(n, (q&1)2), where g4 is the function
from (2.6) and R is the Ramsey function. Let {0=11*2

0(*0+4)(*0+1)2. Let
g5(n, q)=(q&1)(m&1) {0 and suppose A=(ai, j) has g5(n, q) columns
such that every two columns cross and every row-permuted submatrix B of
A fails all of (i)�(iv). Let i0 denote the row of A with the maximal number
of nonzero elements, and let l denote the number of nonzero elements in this
row. We shall divide the proof into two cases, depending on the value of l.

Suppose first that l>(q&1)(m&1). By the pigeon-hole principle, there
is an m-element set J of columns of A such that all ai0 , j , for j # J, equal the
same element, say ;, of F&[0]. Let A$ be the matrix obtained from A by
deleting all columns except those in J. Since the columns of A$ pairwise
cross, A$ has a row-permuted submatrix C that satisfies one of conditions
(i)�(iv) of (2.6). Since conditions (i)�(iv) of (2.7) fail with B=C, it follows
from the note immediately preceding the proof that C is (0, :, 0)-diagonal
for some nonzero :. Note that all entries of row i0 of A$ equal ;, and so
this row was not used in constructing C. Let I denote the set of columns
of A that were used in C. We can now obtain a matrix B that satisfies (v)
by deleting all columns of A except those in I, deleting all rows except
those in I _ [i0], and finally permuting rows of the resulting matrix.

We may now assume that l�(q&1)(m&1). Let { denote the minimum
k such that there is a k-element subset of the rows of A that meets s( j) for
all columns j of A. Since each row of A has at most l nonzero entries, it
follows that {�{0 . Let * be the maximum k�2 for which there is a set J
of k columns of A such that, for every two distinct elements j $, j" of J, there
is a row i( j $, j") for which [ j # J: ai( j $, j"), j {0]=[ j $, j"]. Since every two
columns of A cross, it follows from [3, (1.1)] that {�11*2(*+4)(*+1)2.
Hence *�*0 and A has a submatrix C=(ci, j) with *0 columns such that,
for every two columns j $ and j" of C, there is exactly one row i( j $, j") in
C for which ci( j $, j"), j $ and ci( j $, j"), j" are the only nonzero entries in row
i( j $, j"). Consider the complete graph K whose vertex set is the set of
columns of C. In K, color each edge [ j $, j"], where j $<j", by the ordered
pair (ci( j $, j"), j $ , ci( j $, j"), j"). Since there are (q&1)2 possible colors and *0=
R(n, (q&1)2), it follows that K contains an induced subgraph L with
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n vertices all of whose edges have the same color. Construct a matrix B
from C by deleting all columns and rows except those corresponding to the
vertices and edges of L. Clearly, B satisfies (vi). K

Suppose n is an integer greater than two. We define three classes of
F-matrices B$n , B"n , and Bn$$$ as follows. Typical matrices in these classes are
illustrated in Fig. 1.

(1) Every matrix in B$n can be obtained from an (:, :, 0)-diagonal
matrix with n columns by replacing its first column by a column of the
form (;, $, $, ..., $)T for some ;{$, and then adjoining, to the bottom of
the matrix, a new row of the form (#, 0, 0, ..., 0) for some #{0.

(2) Every matrix in B"n can be obtained from a (0, :, :)-diagonal
matrix with n columns by deleting its last column, adjoining to the begin-
ning of the matrix a new column of the form ($, $, ..., $, ;)T, for some ;{$,
and then adjoining, to the bottom of the matrix, a new row of the form
(#, 0, 0, ..., 0) for some #{0.

(3) Every matrix in Bn$$$ can be obtained by putting a (0, :, 0)-
diagonal matrix with n columns above a (0, ;, 0)-diagonal matrix with n
columns and then adjoining, to the beginning of the matrix, a new column
in which the first n entries all equal some non-zero $ and the last n entries
all equal some #{$.

Observe that if B # B$n _ B"n _ Bn$$$ , then

(4) two distinct columns j $ and j" of B cross if and only if 1 # [ j $, j"].

The last result of this section states that every sufficiently large matrix B
satisfying (4) has a row-permuted submatrix in B$n _ B"n _ Bn$$$ . More
precisely, we have the following.

Figure 1
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(2.8) Theorem. There is a function g6 with the following property:
Suppose n is an integer greater than two and A is an F-matrix with at least
g6(n, q) columns such that no two columns of A are identical, and two distinct
columns j $ and j" cross if and only if 1 # [ j $, j"]. Then A has a row-permuted
submatrix B that is in B$n _ B"n _ Bn$$$ .

Proof. Let g3 be the function from (2.3). The following numbers will
appear in the proof:

n1=g3(nq, q)

n2=g3(n1 q, q)

g6(n, q)=4n2q5n2 .

Let A$ denote the matrix obtained from A by removing the first column.
Two columns j $ and j" of A$ are similar if j $ dominates j", and j"
dominates j $. Clearly, similarity is an equivalence relation on the set of
columns of A$. If two of the columns j $ and j" of A$ are similar, then
s( j $)=s( j"), all nonzero entries of j $ are identical, and all nonzero entries
of j" are identical. Hence, it follows that each equivalence class of columns
contains at most q&1 elements. Since the number of columns of A$ is at
least 4n2q5n2 , which is greater than (4n2q4n2&1)(q&1), it follows that
there are at least 4n2q4n2 equivalence classes of columns of A$. Let A" be
the matrix obtained from A$ by deleting all but one column from each of
the first 4n2q4n2 equivalence classes and by deleting all columns of all the
remaining equivalence classes. Then the relation of domination on the
columns of A" is a partial order D.

Suppose first that D has an antichain J with n2 elements. Let C=(ci, j)
be the matrix obtained from A" by deleting all columns except those in J.
Observe that no column of C dominates another, and no two columns of
C cross. Hence we conclude that

(1) if j $ and j" are columns of C with j ${j", then s( j $) & s( j")=<.

Let C$ be a submatrix of C obtained by deleting the rows except those
in sA(1). Note that if a column of C$ consists of all zeros, then the corre-
sponding column of A fails to cross the first column of A; a contradiction.
This fact and (1) imply that no two columns of C$ are identical. Hence,
upon applying (2.3) to C$, we conclude that C$ contains a row-permuted
submatrix C" that has n1q columns and is (:1 , :, :2)-diagonal, where
:1 {:. But, as n1q�n>2, it follows from (1) that :1=:2=0. Hence C"
is (0, :, 0)-diagonal.

Now consider the set K of rows of A that correspond to the rows of C".
Since K�sA(1) and |K|=n1q>(n1&1)(q&1), it follows that there is an
n1 -element subset K$ of K, and a $ in F&[0] such that ai, 1=$ for all
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i # K$. Let C$$$ be the matrix obtained from C" by deleting all columns that
are not in K$ and deleting all rows that are not in K$. It is clear that C$$$
is (0, :, 0)-diagonal and, for every row of C$$$, the corresponding entry in
the first column of A is $.

Now let I be the set of rows i of A for which ai, 1 {$. Let D be a matrix
obtained from C by deleting all rows that are not in I and by deleting all
columns except those corresponding to the columns of C$$$. First, observe
that if some column j of D contains only zeros, then the corresponding
column of C is dominated by the first column of A; a contradiction. Using
this fact and (1), we conclude that no two columns of D are identical. We
apply (2.3) again and argue as before to conclude that D has a row-per-
muted submatrix D$ that has nq columns and is (0, ;, 0)-diagonal. Let L be
the set of rows of A that correspond to the rows of D$. Since L�F&[$]
and |L|=nq>(n&1)(q&1), it follows that there is a subset L$ of L with
n elements, and a # in F&[0] such that ai, 1=# for all i # L$.

Construct the matrix B$ from C by deleting all columns except those
corresponding to the elements of L$, and then adjoining the first column of
A as the first column of B$. Now delete from B$ all rows except those in
K$ _ L$ to obtain a matrix B. It is clear that, after permuting the rows of
B if necessary, we obtain a matrix in Bn$$$ .

We may now assume that every antichain of D has fewer than n2

elements. Then, by Dilworth's chain decomposition theorem, the smallest
number of chains whose union is D is also smaller than n2 . As the number
of elements of D is 4n2q4n2 , and thus is greater than 4n2q4(n2&1), the
partial order D contains a chain J$ of at least 4n2q4 elements. It is a simple
exercise to show that J$ contains a subset J" with 2nq2 elements for which
one of the following holds:

(2) For all elements j $ and j" of J" with j $<j", column j" dominates
column j $.

(3) For all elements j $ and j" of J" with j $<j", column j $ dominates
column j".

We shall assume that (2) holds; the proof when (3) holds is very similar.
Let C be the matrix obtained from A" by deleting all columns except those
in J". Since every column of C dominates all the preceding columns, but
no two columns are similar, the sets s( j), for j # [2nq2], form an ascending
sequence. It follows that, by permuting rows of C if necessary, we may
assume that every column j of C satisfies s( j)=[|s( j)|]; that is, all the
nonzero entries occupy the top portion of each column. Since, for all j #
[2nq2]&[1], column j of C dominates column j&1, there is an :j # F&
[0] such that ci, j=:j for all i # s( j&1). Observe that the set [2nq2&1]&
[1] has 2nq2&2 elements, and that 2nq2&2>(2nq&1)(q&1). Hence, by
the pigeon-hole principle, there is a subset K of [2nq2&1]&[1] that has

346 DING ET AL.



File: 582B 167814 . By:BV . Date:27:01:00 . Time:11:03 LOP8M. V8.0. Page 01:01
Codes: 3198 Signs: 2636 . Length: 45 pic 0 pts, 190 mm

nq members no two of which are consecutive and is such that, for some : #
F&[0], we have :j=: for all j # K. Let D=(di, j) be the matrix obtained
from C by deleting all columns except those in K, and then adjoining the
first column of A as the first column of D.

Since no two consecutive columns of C appear in D, for each j #
[nq+1]&[1, 2], there is a row ij for which dij , j&1=0 and dij , j=:. Note
that the number of elements of [nq+1]&[1, 2] is nq&1, which is greater
than (n&2) q. Thus, by the pigeon-hole principle, there is a subset K$ of
[ij : j # [nq+1]&[1, 2]] with n&1 elements and a $ # F such that di, 1=$
for all i # K$. Observe that, as the first column of D crosses the first column
of C, there are rows i $ and i" of D such that [i $, i"]�sC(1) and
di $, 1 {di", 1 . Let i1 be an element from [i $, i"] for which di1 , 1 {$. Since the
second column of D dominates, but differs from, the first column of C, it
follows that di1 , 2=:. Also, note that the last column of C was not used in
D, but it crosses the first column of D and dominates all other columns of
D. Hence there is a row i $$$ of D such that di $$$, j=0 if and only if j{1. Now
construct the matrix B from D by deleting all the rows except those in
K$ _ [i1 , i $$$]. It is clear that, after interchanging the first two rows of B if
necessary, B # B$n . K

3. A Result for 3-Connected Matroids

Recall Theorem 1.3. It implies that every large 3-connected matroid M
contains a large circuit or a large cocircuit. In the proof of (1.5) in Section
5, we shall use duality to allow us to assume that M has a large circuit. In
this section, we prove a result implying that M has a large 3-connected
minor M1 that is hamiltonian. We begin with some terminology.

For a matroid M, the simple matroid associated with M will be denoted
by M� , and the cosimple matroid associated with M will be denoted by M

�
.

If [e, f ] is a cocircuit of M, then e and f are said to be in series in M. A
series class of M is a maximal subset A of E(M) such that A contains no
coloops of M and if x and y are in A, then x and y are in series. Let N be
a matroid such that M�T=N, where every element of T is in series with an
element of M not in T. Then M is a series extension of N, and N is a series
contraction of M. The matroid M$ is a series minor of M if M$ can be
obtained from M by a sequence of deletions and series contractions.

The following is the main result of this section.

(3.1) Theorem. Let M be a 3-connected matroid and N be a coloop-free
series minor of M. Then M has a 3-connected minor M1 that has a restriction
N1 such that r(N1)=r(M1) and N1 is isomorphic to a series extension of N.
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The proof of this will use the following result of Lemos [4].

(3.2) Lemma. Let M be a 3-connected matroid with at least four
elements and let C* be a cocircuit of M such that, for all e in C*, the
matroid M�e is not 3-connected. Then C* meets at least two distinct triangles
of M.

Proof of (3.1). As N is a series minor of M, there are subsets X and Y
of E(M) such that N=M"X�Y, where every element of Y is in series with
an element of M"X not in Y (see, for example, [6, Proposition 5.4.2]).
Thus M"X is a series extension of N. Since N is coloop-free, so too is
M"X. Thus it suffices to prove the theorem in the case when N is a coloop-
free restriction of M. In that case, since M is certainly simple, so too is N.

Assume that the theorem fails. Take a counterexample in which
|E(M)&E(N)| is as small as possible. We may certainly assume that E(N)
does not span M. Take a cocircuit C* of M that avoids E(N). Choose
e # C* and suppose that M�e

t
is 3-connected. Then, as N is a simple

restriction of M�e, we may assume that N is a restriction of M�e
t

. Then the
choice of M and N implies that M�e

t
has a 3-connected minor M1 having

a restriction N1 such that r(N1)=r(M1) and N1 is isomorphic to a series
extension of N. As M1 is a minor of M, we obtain the contradiction that
the theorem holds for M. Hence, for all e in C*, the simplification M�e

t

is not 3-connected. Thus, by [1], for all such e, the cosimplification M"e
t

is 3-connected. If such a matroid M"e
t

has N as a restriction, then the
choice of M and N leads to a contradiction. Thus, for all e in C*, the
matroid M"e

t
does not have N as a restriction. Now, either (i) for some

e in C*, every nontrivial series class of M"e avoids E(N), or (ii) for all e
in C*, some element of N is in a 2-cocircuit of M"e.

In case (i), let S1 , S2 , ..., Sk be the nontrivial series classes of M"e and
let xi be an element of Si for all i. Then N is a restriction of
M"(e _ S1 _ S2 _ } } } _ Sk) and we may assume that

M"e
t

=(M"e)<.
k

i=1

(Si&xi).

But M"e"xi has Si&xi as a set of coloops. Thus M"e"xi�(Si&xi)=M"e"

xi "(Si&xi). Hence ( M"e
t

)"[x1 , x2 , ..., xk]=M"e"(S1 _ S2 _ } } } _ Sk)
and so M"e

t
has N as a restriction; a contradiction. We conclude that (i)

does not occur.
In case (ii), every element of C* is in a triad of M which meets E(N).

But every element of N is in a circuit of N, so, by orthogonality, every
such triad must contain two elements of N. Now, for all e in C*, the
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matroid M�e
t

is not 3-connected, and hence, for all such elements e, the
matroid M�e is not 3-connected. But |C*|�2 and |E(N)|�2, so
|E(M)|�4. Thus, by Lemma 3.2, M has a triangle T that meets C*.
Clearly, |T & C*|�2. Let T & C*$[u, v]. As u is in a triad T* of M that
has just one element of C* in it and |T* & T |{1, the triangle T must con-
tain an element, say w, of E(N). Consider N$=M | (E(N) _ [u, v]). It has
[u, v] as a cocircuit and [u, v, w] as a circuit. Thus N$ is the parallel con-
nection of N and M | T with respect to the basepoint w. Moreover, N$"w
is a restriction of M that is isomorphic to a series extension of N. Hence,
by the choice of M and N, there is a 3-connected minor M1 of M having
a restriction N1 such that r(N1)=r(M1) and N1 is isomorphic to a series
extension of N$"w. Since N$"w is isomorphic to a series extension of N, we
get a contradiction. K

Since Theorem 3.1 is interesting in itself, we present its analog for graphs.
A graph H is a topological minor of G if H can be obtained from G by a
sequence of operations each of which is one of the following: deletion of an
edge, contraction of an edge incident with a vertex of degree two, and
deletion of an isolated vertex. A topological minor is the graph analog of
a series minor for matroids, but this analogy is not exact: if H is a topologi-
cal minor of G, then M(H) is a series minor of M(G), but the reverse
implication does not hold in general. Thus the following theorem for
graphs, which appears to be new, is not a direct consequence of (3.1), but
it can be shown using similar ideas. The proof of this graph result is not
given explicitly here as it is not needed to derive other results of this
paper.

(3.3) Theorem. Let G be a simple 3-connected graph and H be a
topological minor of G without isolated vertices and without isthmuses. Then
G has a simple 3-connected minor G1 that has a subgraph H1 that is
isomorphic to a subdivision of H and has the same vertex set as G1 .

4. The Crossing Graph of a Matrix

For this entire section we assume that F is a finite field. Let A=(ai, j) be
an F-matrix. We shall define a graph GA as follows. The set of vertices of
GA is the set of columns of A. Two vertices of GA are joined by an edge
if and only if they cross as columns of A. The main result of this section
states that if A arises as a chordal matrix in a normal F-representation of
a 3-connected hamiltonian matroid, then GA is connected.

We begin by presenting an auxiliary lemma.
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(4.1) Lemma. Suppose that G0 is a connected component of GA and that
k0 is an element of V(GA)&V(G0) that dominates at least one element of
V(G0). Then k0 dominates every element of V(G0).

Proof. Recall that if k is a column of an F-matrix B=(bi, j), then sB(k),
or s(k), denotes the set of rows h of B for which bh, k {0. If column k$ of
B dominates column k", we shall write k"Ok$. Let

X=[k # V(G0): kOk0],

Y=[k # V(G0): k0 Ok],

Z=[k # V(G0) : s(k) & s(k0)=<].

Since k0 is not in V(G0), it follows that V(G0)=X _ Y _ Z, and, by
assumption, X is nonempty. Since the relation O is transitive, we have
k$Ok" for all k$ # X and k" # Y. Thus no pair of vertices k$ and k" with
k$ # X and k" # Y is joined by an edge of G0 . It is clear from the definitions
of X and Z that s(k$) & s(k")=< for every k$ # X and k" # Z and, hence,
no edge of G0 joins a vertex of X to a vertex of Z. Therefore, every edge
of G0 having one endpoint in X has its other endpoint in X. Thus, as G0

is connected, V(G0)=X. The conclusion follows. K

The following is the main result of this section. The proof of Theorem
1.5, which appears in the next section, will be based on an examination of
the graph GA.

(4.2) Theorem. Let M be a 3-connected hamiltonian matroid that is
representable over F and has rank and corank at least two, and let A=(ai, j)
be a chordal matrix of some normal F-representation of M. Then GA is con-
nected.

Proof. Let H be a normal F-representation of M that has A as its
chordal matrix, let I denote the set of elements of M that correspond to the
identity submatrix of H, and let 1 denote the column of H consisting of all
ones. If J is a nonempty set of columns of A, then let s(J)=�j # J s( j), and
let t(J) be the number of elements : of F for which ai, j=: for some row
i of A and some j # J. Suppose that GA is disconnected. From among all
components of GA, pick G1 according to the following rules:

(1) If G is a component of GA, then s(V(G)) is not a proper subset
of s(V(G1)).

(2) If G is a component of GA with s(V(G))=s(V(G1)), then
|V(G)|�|V(G1)|.

(3) If G is a component of GA with s(V(G))=s(V(G1)) and
|V(G)|=|V(G1)|, then t(V(G))�t(V(G1)).
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Observe that, since M is 3-connected,

(4) the columns of A are distinct.

We now prove that

(5) if j0 and j1 are elements of V(GA)&V(G1) and V(G1), respectively,
such that s( j0) & s( j1){<, then j0 dominates j1 .

Since j0 is not a vertex of G1 , it does not cross j1 . This fact, together with
the assumption that s( j0) & s( j1){< implies that either j0 O j1 or j1 O j0 .
To prove (5), we need only show that j0 O j1 does not hold. Suppose that
j1 dominates j0 . Then, by (4.1), j1 dominates all elements of V(G0), where
G0 is the connected component of GA containing j0 . Thus s(V(G0))�
s( j1)�s(V(G1)), which by (1) implies that s(V(G0))=s( j1)=s(V(G1)).
Therefore, as j1 dominates all elements of V(G0) and (4) holds, the entries
of j1 take exactly one nonzero value. But then j1 dominates all elements of
V(G1), and, as G1 is connected, V(G1)=[ j1]. From (2) it follows that
V(G0)=[ j0]. Thus s( j0)=s( j1), and, by (3), all nonzero entries of j0 are
equal. Thus [ j0 , j1] is a two-element circuit of M. This contradiction to the
assumption that M is 3-connected shows that j1 fails to dominate j0 and,
hence, (5) holds.

Next we show that

(6) if j # V(GA)&V(G1), then there is an element : in F such that
ai, j=: for all i # s(V(G1)).

Suppose j0 is a counterexample to (6). Then clearly s( j0) & s(V(G1)){<
and hence s( j0) & s( j1){< for some j1 # V(G1). It follows from (5) that
j1 O j0 . Thus, by (4.1), j0 dominates all elements of V(G1). This fact
together with (4) contradicts the choice of j0 and establishes (6).

Now observe that s(V(G1)) is a subset of the set of rows of A, and hence
it may be viewed as a subset of I. We define the subset X of E(M) as the
union of V(G1) with s(V(G1)). Note that as neither V(G1) nor s(V(G1)) is
empty, |X|�2. Also, |E(M)&X|�2 as E(M)&X contains an element of
V(GA)&V(G1) as well as the element 1. Now r(X)=|s(V(G1))|, and, by
(6), every element of V(GA)&V(G1) is spanned by (I&s(V(G1))) _ [1].
Thus,

r(E(M)&X)�r((I&s(V(G1))) _ [1])�|I |&|s(V(G1))|+1

=r(M)&r(X)+1.

Hence (X, E(M)&X) is a 2-separation of M, contrary to the assumption
that M is 3-connected. K
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5. Proof of the Main Result

The goal of this section is to prove the main theorem of the paper. Before
embarking on this proof, we present three auxiliary results. The first of
these is a result of Tucker [10], and the other two are results for graphs.
For a positive integer n, let each of C$n , C"n , and Cn$$$ be a [0, 1]-matrix
with, respectively, n+2, n+3, and n+2 columns of the form depicted in
Fig. 2. The same figure shows two other matrices, C (4) and C (5).

The following is a result of Tucker [10].

(5.1) Theorem. Let A be a [0, 1]-matrix. Then the following are
equivalent:

(i) the rows of A may be permuted so that the ones in each column
appear consecutively;

Figure 2.
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(ii) no matrix obtained from a submatrix of A by permuting rows and
permuting columns is in �p�1 [C$p , Cp$$$, Cp$$$] _ [C (4), C (5)].

Recall from Section 4 that, for a matrix C, the graph GC has vertex set
equal to the set of columns of C with two of its vertices being joined by an
edge if and only if the columns cross in A. Observe the following.

(5.2) Corollary. If a matrix C is in [C$p , Cp$$$] for some positive
integer p, then GC is isomorphic to a cycle on p+2 vertices; if C=C"p , then
GC is isomorphic to a cycle on p+3 vertices; and if C is in [C (4), C (5)], then
GC is isomorphic to K1, 3 .

The next result describes unavoidable induced subgraphs of large simple
connected graphs. Recall the Ramsey function R from Theorem 1.1, and,
for a positive integer n, let Pn denote a path on n vertices.

(5.3) Theorem. Let n be a positive integer, and let G be a simple
connected graph on (R(n, 2))n vertices. Then G has an induced subgraph
isomorphic to Kn , K1, n , or Pn .

Proof. Suppose first that G has a vertex v and a set K of R(n, 2) vertices
each of which is adjacent to v. Upon applying Ramsey's Theorem to K, we
conclude that there is an n-element subset K$ of K such that either every
pair of vertices in K$ is adjacent in G, or no pair of vertices of K$ is
adjacent in G. In the first case, K$ induces a subgraph isomorphic to Kn ;
in the second case, K$ _ [v] induces a subgraph isomorphic to K1, n .

Let 2 denote the maximum vertex degree in G. From the argument in
the previous paragraph, we may assume that 2<R(n, 2). Let v be a vertex
of G, and, for all nonnegative integers i, let Vi be the set of vertices x of
G such that the shortest path between v and x has exactly i+1 vertices. Let
p be the largest integer such that Vp {<, and let w be an element of Vp .
Then a shortest path in G that joins v to w is an induced subgraph of G
that is isomorphic to a path on p+1 vertices.

It remains to show that p+1�n. It is clear that we need only consider
the case n�2. Then the graph G has more than two vertices, and thus
2�2. Notice that V(G) is the disjoint union of V0 , V1 , ..., Vp , and, clearly,
|V0 |=1, and |Vi |�2(2&1)i&1 for i # [ p]. Hence,

2n<|V(G)|�1+2+2(2&1)+ } } } +2(2&1) p&1

�1+2+22+ } } } +2 p

�2 p+1,

and n�p+1, as desired. K
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Let G be a simple graph and let C be a hamiltonian cycle of G. The edges
of G not in C are chords of C. A chord e$ crosses another chord e" if e$
meets both components obtained upon deleting the endvertices of e" from
C. Clearly, the binary relation of crossing on the set of chords of C is
symmetric. The chord graph of G with respect to C, denoted by 0(G, C),
has the set of chords of C as its vertex set with two of its vertices joined
by an edge if and only if the chords cross.

(5.4) Theorem. Let n be an integer greater than two, let G be a simple
graph and let C be a hamiltonian cycle of G. If 0(G, C) is a path on at least
6n vertices, then G has a minor isomorphic to Wn .

Proof. Evidently, we may assume that

(1) G and C are such that, for every nonempty subset X of E(C), the
graph 0(G�X, C�X) fails to be a path on at least 6n vertices.

The proof of (5.4) begins by introducing some new terminology, then
proceeds with presenting properties of G and 0(G, C) numbered (2)�(6),
and finishes by applying these properties to derive the conclusion.

A chord e is confined to a subgraph D of C if both endvertices of e are
in D. It is clear that, for every chord e, the graph C _ [e] has exactly two
cycles distinct from C. Denote these two cycles by Z$(e) and Z"(e). Denote
the path 0(G, C) by P.

(2) If e, e$, and e" are distinct chords of C such that e$ is confined to
Z$(e), and e" is confined to Z"(e), then e$ and e" belong to distinct connected
components of P"e.

To see (2), let D denote the set of chords that cross e. Then neither e$
nor e" is in D. Moreover, as no edge confined to Z$(e) can cross an edge
confined to Z"(e), it follows that e$ and e" are in distinct connected com-
ponents of P"D. Now (2) follows easily since P is a path.

(3) No vertex of G is incident with more than two chords.

Suppose that a vertex v is incident with three distinct chords ex , ey , and
ez whose endvertices distinct from v are, respectively, x, y, and z. Without
loss of generality, we may assume that v, x, y, and z appear on C in the
(cyclic) order listed. By (2), the chords ex and ez are in distinct connected
components of P"ey . Consequently, ey is not an endvertex of P. Let e$x and
e$z be the chords crossing ey that belong to the connected components of
P"ey containing, respectively, ex and ez . Let Z(e$x) denote the element of
[Z$(e$x), Z"(e$x)] whose vertex set contains v. Similarly, let Z(e$z) denote the
element of [Z$(e$z), Z"(e$z)] whose vertex set contains v. Since e$x and e$z do
not cross, either v # V(Z(e$x))�V(Z(e$z)) or v # V(Z(e$z))�V(Z(e$x)). By
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symmetry, we may assume that the former holds. Then e$z is confined to the
element of [Z$(e$x), Z"(e$x)] other than Z(e$x), whereas, since ez and e$x do
not cross and ez is incident with v, the chord ez is confined to Z(e$x). But
by letting e, e$, and e" be e$x , ez , and e$z , respectively, we obtain a contradic-
tion to (2). Hence, (3) follows.

Let e1 , e2 , ..., em be the chords of C listed here in the order they appear
on P. Since e1 and em do not cross, we may assume that e1 is confined to
Z"(em), and em is confined to Z"(e1). Since e2 is the only chord crossing
e1 , and em&1 is the only chord crossing em , we conclude from (1) and (2)
that Z$(e1) and Z$(em) are triangles. Let s denote the vertex of Z$(e1) not
incident with e1 , and let t denote the vertex of Z$(em) not incident with em .

(4) Every vertex in V(G)&[s, t] has degree four in G.

By (1), every vertex of G has degree at least three, and, by (3), every
vertex has degree at most four. Suppose v is a vertex of degree three. Let
u and w be the vertices that are adjacent to v in C, and let v$ be the
remaining neighbor of v. By (1), if G$ and C$ are obtained by contracting
the edge [v, u] in, respectively, G and C, then 0(G$, C$){P. Hence the
chord [v, v$] crosses a chord incident with u, say [u, u$]. Similarly, [v, v$]
crosses some chord [w, w$]. Since the chords [v, v$], [u, u$], and [w, w$]
do not pairwise cross, as P is a path, at least one of [u, u$] and [w, w$]
is [u, w]. It is clear that the chord [u, w] is an endvertex of P, as it crosses
only [v, v$]. Thus v # [s, t], and (4) follows.

For each i # [m], let Vi be the set of vertices incident with at least one
of the edges e1 , e2 , ..., ei .

(5) For every i # [3, 4, ..., m&2], the chord ei is incident with exactly
one vertex in Vi&1 .

Let i # [3, 4, ..., m&2] and let u and v be the endvertices of ei . Since each
of ei&1 and ei+1 crosses ei , neither is incident with v. Let Z(ei&1) denote
the element of [Z$(ei&1), Z"(ei&1)] whose vertex set contains v. Similarly,
let Z(ei+1) denote the element of [Z$(ei+1), Z"(ei+1)] whose vertex set
contains v. As ei&1 and ei+1 do not cross, either Z(ei&1)�Z(ei+1) or
Z(ei+1)�Z(ei&1). By symmetry, we may assume that the latter holds.
Then v � Vi&1 , as otherwise ej would be incident with v for some j<i&1,
thereby contradicting (2) when e, e$, and e" are ei+1 , ei&1 , and ej . To see
that u # Vi&1 , note that, from the choice of i, it follows that u � [s, t], and
thus, by (4), u is incident with some chord ej . Upon applying (2) with e, e$,
and e" equal to ej , ei&1, and ei+1 , respectively, we conclude that j<i&1,
as required. Hence (5) has been proved.

(6) Let i, j, and k be distinct elements of [3, 4, ..., m&2] such that ej

is adjacent in G to both ei and ek . Then min[i, k]<j<max[i, k].
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Observe first that, by (4), ei and ek are incident with distinct endvertices
of ej . Clearly, j<max[i, k] as otherwise ej is incident with two vertices in
Vj&1 contradicting (5). Similarly, j>min[i, k] as otherwise ej is incident
with no vertices of Vj&1 , also contradicting (5). Thus (6) holds.

To prove (5.4), consider the graph G$ obtained from G by deleting the
edges of C and deleting the edges e1 and em . From (6), it follows that G$
has no cycles. Observe from (4) that the graph obtained from G by deleting
the edges of C and deleting e1 has exactly four vertices of degree one. Thus
G$ has either six vertices of degree one, or four vertices of degree one and
one vertex of degree zero. It follows that G$ consists of three disjoint paths
P1 , P2 , and P3 , at most one of which has just a single vertex, and each of
which has its endvertices in V(Z$(e)) _ V(Z$(em)). Let E$ be the set of
edges of C that are not in Z$(e1) _ Z$(em). By (1), each element e of E$
must be adjacent to two chords that cross each other. But, by (6), no two
chords from the same Pi , for i # [1, 2, 3], cross each other, and so e joins
a vertex of Pi to a vertex of Pj for some i{j. By (4), we have |E$|=
|E(C)| & 4 = |V(P)| & 3 � 6n & 3. From the choice of E$, it contains a
matching E" with at least 3n&1 edges. Thus, using the pigeon-hole
principle, i and j can be chosen so that E" has an n-element subset E$$$ all
of whose elements join a vertex of Pi to a vertex of Pj . Now it is
straightforward to verify that the edges in E$$$ together with
Z$(e1), Z$(em), P1 , P2 , and P3 form a graph having a Wn minor. K

In the next five easy lemmas, we examine hamiltonian matroids whose
normal binary representations have chordal matrices of the form described
in the conclusions of some results from Section 2. For all these lemmas,
assume that m is an integer greater than two, and that M is a hamiltonian
matroid whose normal binary representation H has a chordal matrix A
with m columns. Let 1 denote the all-ones column of H.

(5.5) Lemma. If A has the form depicted in (1) or (2) of Fig. 3, then M
is isomorphic to M(Wm+1).

Proof. If A has form (1), then consider the following sequence of
columns of H: the first column of Im+1 , followed by all but the first column
of A, followed by the last column of Im+1. It is easy to verify that this
sequence defines the circular order of the spokes of a Wm+1. If A has form
(2), then, upon pivoting in H on the last entry of 1, we obtain a matrix H$
whose chordal matrix has form (1). K

(5.6) Lemma. If A has the form depicted in (3) of Fig. 3, then M has a
minor isomorphic to M*(K3, m&1).

Proof. Let A$ be the matrix obtained from A by adjoining 1 at the end
and then transposing the resulting matrix. Let K be the graph obtained
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Figure 3

from K3, m&1 by adding two more edges so that the vertex class of K3, m&1

with three vertices induces a path P in K. Let u be an endvertex of P.
Define the spanning tree T of K to have as its edges all the edges of P and
all the edges of K3, m&1 incident with u. It is easy to check that M(K) can
be represented by the matrix (Im+1 |A$) by taking the edges of T to
correspond to the first m+1 columns. The lemma follows. K

(5.7) Lemma. Suppose A has 2m rows, the first m of which form a
(0, 1, 1)-diagonal matrix, and the last m of which form a (1, 1, 0)-diagonal
matrix. Then M has a minor isomorphic to M(Wm+1).

Proof. This follows from (5.5) since, upon deleting rows numbered
2, 3, ..., m from A, and then placing the first row at the bottom of the result-
ing matrix, we obtain a matrix of the form (1) in Fig. 3. K

(5.8) Lemma. Suppose A has m+1 rows, the first m of which form an
identity matrix and the last of which has all ones. Then M has a minor
isomorphic to Sm .

Proof. Let j denote the element of M corresponding to the all-ones
column of H. Pivot in H on the last entry of 1. From the resulting matrix,
delete columns j and m+1 and the last row to obtain the matrix
(Im | Jm&Im). K

(5.9) Lemma. If A is (1, 1)-complete, then M has a minor isomorphic to
M*(K3, m&2).

Proof. By the definition preceding Theorem 2.7, A is the vertex-edge
incidence matrix of a complete graph on m vertices. Hence, if e denotes the
element of M that corresponds to 1, then M"e is isomorphic to M*(Km+1).
As Km+1 certainly has K3, m&2 as a minor, the lemma follows. K

We are now ready to prove the main theorem.

357UNAVOIDABLE MINORS OF BINARY MATROIDS



File: 582B 167825 . By:BV . Date:27:01:00 . Time:11:03 LOP8M. V8.0. Page 01:01
Codes: 3078 Signs: 2513 . Length: 45 pic 0 pts, 190 mm

Proof of (1.5). Let g5 be the function from (2.7), let g6 be the function
from (2.8), and let R be the Ramsey function. Let m=max[g5(n+2, 2),
g6(n+1, 2), 6n], let k=(R(m, 2))m, let N=42k

, and let M be a 3-connected
binary matroid with more than N elements. By (1.3), M has a circuit or
cocircuit with at least 2k+1 elements. We may assume that the former
holds; otherwise we apply the argument that follows to the dual of M,
rather than to M itself, noting that [M(K3, n), M*(K3, n), M(Wn), Sn] is
closed under the taking of duals. Let C be a circuit of M of maximal
cardinality. Now, it follows by (3.1) that M has a 3-connected minor M1

that has a circuit of size |C|. Without loss of generality, we may assume
that C spans M1 . Choose a normal [0, 1]-representation of M1 , denote the
chordal matrix of this representation by A, and denote the all-ones column
by 1. Since |C|�2k+1, it follows that A has at least 2k rows, and, as M1

has no two-element cocircuits, no two rows of A are identical. Thus A has
at least k columns.

Recall that GA is the graph whose vertex set is the set of columns of A
with two of its vertices being joined by an edge if and only if the columns
cross in A. Then GA has at least (R(m, 2))m vertices, and, by (4.2), it is
connected. By (5.3), GA has an induced subgraph isomorphic to one of
Km , K1, m , and Pm . We shall consider these three cases separately.

Suppose first that GA has an induced subgraph K isomorphic to Km .
Upon deleting all columns of A, except those corresponding to the vertices
of K, we obtain a submatrix A$ of A with m columns that pairwise cross.
Upon applying (2.7) to A$ we conclude that A$ has a row-permuted sub-
matrix B that has n+2 columns and satisfies one of the following
conditions:

(i) B is (1, 0, 1)-diagonal;

(ii) B has 2n+4 rows, the first n+2 of which form a (0, 1, 1)-
diagonal matrix and the last n+2 of which form a (1, 1, 0)-diagonal
matrix;

(iii) B has n+3 rows, the first n+2 of which form the identity
matrix and the last of which has all entries equal to 1;

(iv) B is (1, 1)-complete.

It is immediate that if B satisfies (i), then M1"e is isomorphic to Sn+2

where e is the all-ones column; if B satisfies (ii), then, by (5.7), M1 has a
minor isomorphic to M(Wn+2); if B satisfies (iii), then, by (5.8), M1 has a
minor isomorphic to Sn+2; and if B satisfies (iv), then, by (5.9), M1 has a
minor isomorphic to M*(K3, n).

Suppose now that GA has an induced subgraph K that is isomorphic to
K1, m . Construct a matrix A$ from A by deleting all columns except those
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corresponding to the vertices of K, and permuting the columns, if
necessary, so that the first column crosses all the other columns. Then,
upon applying (2.8) to A$, we conclude that A$ has a row-permuted sub-
matrix B that has n+1 columns and, up to a permutation of columns, is
of one of the forms illustrated in Fig. 3.

From (5.5), we conclude that if B is of the form (1) or (2), then M1

contains a minor isomorphic to M(Wn+2); and, by (5.6), if B is of the form
(3), then M1 contains a minor isomorphic to M*(K3, n+1).

Suppose finally that GA has an induced subgraph K that is a path on m
vertices. Let A$ be the matrix obtained from A by deleting all columns
except those corresponding to the vertices of K. Observe that, for every
submatrix D of A$, the graph GD is a subgraph of K. Thus, by (5.2), no
submatrix of A$ is in �p�1 [C$p , C"p , Cp$$$] _ [C (4), C (5)], and hence, by
(5.1), we may assume that the ones in each column of A$ appear con-
secutively. Thus, for every column i of A$, there are integers xi and yi such
that s(i)=[ yi]&[xi&1], where 1�xi�yi�r, with r being the number of
rows of A$.

Define a graph G whose vertex set is [r+1] by arranging all of its
vertices on a cycle H in the natural order, and then, for each column i of
A$, joining the vertices xi and yi+1. It is clear that A$ is a chordal matrix
in a normal [0, 1]-representation of M(G), where the basis is formed by all
but one of the edges of H. Moreover, two edges in E(G)&E(H) cross if
and only if the corresponding columns of A$ cross. Hence 0(G, H) is
isomorphic to K, and, by (5.4), G contains a minor isomorphic to Wn .

K
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