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Abstract. Nested matroids were introduced by Crapo in 1965 and have ap-

peared frequently in the literature since then. A flat of a matroid M is Hamil-

tonian if it has a spanning circuit. A matroid M is nested if and only if its
Hamiltonian flats form a chain under inclusion; M is laminar if and only if, for

every 1-element independent set X, the Hamiltonian flats of M containing X

form a chain under inclusion. We generalize these notions to define the classes
of k-closure-laminar and k-laminar matroids. This paper focuses on structural

properties of these classes noting that, while the second class is always minor-

closed, the first is if and only if k ≤ 3. The main results are excluded-minor
characterizations of the classes of 2-laminar and 2-closure-laminar matroids.

1. Introduction

Our matroid terminology follows Oxley [18]. A transversal matroid is nested
if it has a nested presentation, that is, a transversal presentation (B1, B2, . . . Bn)
such that B1 ⊆ B2 ⊆ · · · ⊆ Bn. These matroids were introduced by Crapo [7] and
have appeared under a variety of names including freedom matroids [8], generalized
Catalan matroids [4], shifted matroids [1], and Schubert matroids [21]

A family A of subsets of a set E is laminar if, for every two intersecting sets
A and B in A, either A ⊆ B or B ⊆ A. Let A be a laminar family of subsets
of a finite set E and c be a function from A into the set of non-negative integers.
Define I to be the set of subsets I of E such that |I ∩A| ≤ c(A) for all A in A. It
is well known (see, for example, [11, 12, 14, 17]) and easily checked that I is the
set of independent sets of a matroid on E. We write this matroid as M(E,A, c).
A matroid M is laminar if it is isomorphic to M(E,A, c) for some set E, laminar
family A, and function c.

Laminar matroids have appeared often during the last fifteen years particularly in
relation to their behavior for the matroid secretary problem and other optimization
problems [2, 5, 9, 14, 16, 22]. Huynh [13] reviewed this work, while Finkelstein [11]
investigated some of the structural properties of laminar matroids. In [10], we char-
acterized laminar matroids both constructively and via excluded minors. We also
showed that all nested matroids are laminar and noted a number of similarities
between the classes of nested and laminar matroids. Here we exploit some of these
similarities to define two natural infinite families of classes of matroids, each hav-
ing the classes of nested and laminar matroids as their smallest members. Every
matroid belongs to a member of each of these families.

We say that a flat in a matroid is Hamiltonian if it has a spanning circuit. In [19],
it was shown that a matroid is nested if and only if its Hamiltonian flats form a
chain under inclusion. This immediately yields the following result.

Date: December 20, 2018.
1991 Mathematics Subject Classification. 05B35.

1



2 TARA FIFE AND JAMES OXLEY

Proposition 1.1. A matroid is nested if and only if, for all circuits C1 and C2,
either C1 ⊆ cl(C2), or C2 ⊆ cl(C1).

This parallels the following characterization of laminar matroids found in [10].

Theorem 1.2. A matroid is laminar if and only if, for all circuits C1 and C2 with
|C1 ∩ C2| ≥ 1, either C1 ⊆ cl(C2), or C2 ⊆ cl(C1).

Using circuit elimination, it can quickly be shown that we get a similar descrip-
tion in terms of Hamiltonian flats.

Corollary 1.3. A matroid is laminar if and only if, for every 1-element indepen-
dent set X, the Hamiltonian flats containing X form a chain under inclusion.

In light of these results, for any non-negative integer k, we define a matroid M
to be k-closure-laminar if, for any k-element independent subset X of E(M), the
Hamiltonian flats of M containing X form a chain under inclusion. We say that
M is k-laminar if, for any two circuits C1 and C2 of M with |C1 ∩ C2| ≥ k, either
C1 ⊆ cl(C2) or C1 ⊆ cl(C2). The following observation is straightforward.

Lemma 1.4. A matroid M is k-closure-laminar if and only if, whenever C1 and C2

are circuits of M with r
(
cl(C1) ∩ cl(C2)

)
≥ k, either C1 ⊆ cl(C2), or C2 ⊆ cl(C1).

Observe that the class of nested matroids coincides with the classes of 0-laminar
matroids and 0-closure-laminar matroids, while the class of laminar matroids coin-
cides with the classes of 1-laminar matroids and 1-closure-laminar matroids. It is
easy to see that k-closure-laminar matroids are also k-laminar. For k ≥ 2, consider
the matroid that is obtained from a (k + 1)-element circuit C by attaching, via
parallel connection, a single triangle at each of two different elements of C. This
matroid is k-laminar, but not k-closure-laminar. Thus, for all k ≥ 2, the class of
k-laminar matroids strictly contains the class of k-closure-laminar matroids. Our
hope is that, for small values of k, the classes of k-laminar and k-closure-laminar
matroids will enjoy some of the computational advantages of laminar matroids.

It is not hard to show that the class of k-laminar matroids is minor-closed. This
implies the previously known fact that the class of k-closure-laminar matroids is
minor-closed for k ∈ {0, 1}. We show that the latter class is also minor-closed for
k ∈ {2, 3}. Somewhat surprisingly, for all k ≥ 4, the class of k-closure-laminar ma-
troids is not minor-closed. This is shown in Section 2. In Section 3, we prove our
main results, excluded-minor characterizations of the classes of 2-laminar matroids
and 2-closure-laminar matroids. In Section 4, we consider the intersection of the
classes of k-laminar and k-closure-laminar matroids with other well-known classes
of matroids. In particular, we show that these intersections with the class of paving
matroids coincide. Moreover, although all nested and laminar matroids are repre-
sentable, we note that, for all k ≥ 2, the classes of k-laminar and k-closure-laminar
matroids both contain members that are not representable.

2. Preliminaries

In this section, we establish some basic properties of k-laminar and k-closure-
laminar matroids. The first result summarizes some of these properties. Its straight-
forward proof is omitted.

Proposition 2.1. Let M be a matroid and k be a non-negative integer.
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(i) If M is k-closure-laminar, then M is k-laminar.
(ii) If M is k-closure-laminar, then M is (k + 1)-closure-laminar.

(iii) If M is k-laminar, then M is (k + 1)-laminar.
(iv) M is k-closure-laminar if and only if, whenever C1 and C2 are non-spanning

circuits of M with r
(
cl(C1) ∩ cl(C2)

)
≥ k, either C1 ⊆ cl(C2), or C2 ⊆

cl(C1).
(v) M is k-laminar if and only if, whenever C1 and C2 are non-spanning cir-

cuits of M with |C1 ∩ C2| ≥ k, either C1 ⊆ cl(C2) or C2 ⊆ cl(C1).
(vi) If M has at most one non-spanning circuit, then M is k-laminar and k-

closure-laminar.

Clearly, for all k, the classes of k-laminar and k-closure-laminar matroids are
closed under deletion. Next, we investigate contractions of members of these classes.
We omit the routine proof of the following.

Lemma 2.2. The class of k-laminar matroids is minor-closed.

As we will see, the class of k-closure-laminar matroids is not closed under con-
traction when k ≥ 4. The next lemma will be useful in proving that the classes of
2-closure-laminar and 3-closure-laminar matroids are minor-closed.

Lemma 2.3. Let C be a circuit of a k-laminar matroid M such that |C| ≥ 2k− 1.
If e ∈ E(M)− cl(C) and r(cl(C ∪ e)− cl(C)) ≥ 2, then cl(C ∪ e) is a Hamiltonian
flat of M .

Proof. Take an element f of cl(C ∪ e)− (cl(C)∪ cl({e})). Then M has a circuit D
such that {e, f} ⊆ D ⊆ C ∪ {e, f}. As f 6∈ cl({e}), we may choose an element d in
D−{e, f}. By circuit elimination, M has a circuit D′ such that f ∈ D′ ⊆ (C∪D)−d.
Then e ∈ D′ as f 6∈ cl(C). Applying circuit elimination again gives a circuit C ′

contained in (D∪D′)−e. As f 6∈ cl(C), it follows that C ′ = C. Hence D′ ⊇ C−D.
As |C| ≥ 2k − 1, either |D ∩C| or |D′ ∩C| is at least k. Since neither D nor D′ is
contained in cl(C), it follows that C is contained in cl(D) or cl(D′). Thus D or D′

is a spanning circuit of cl(C ∪ e), so this flat is Hamiltonian. �

Theorem 2.4. The classes of 2-closure-laminar and 3-closure-laminar matroids
are minor-closed.

Proof. For some k in {2, 3}, let e be an element of a k-closure-laminar matroid M ,
and let C1 and C2 be distinct circuits in M/e with rM/e(clM/e(C1)∩clM/e(C2)) ≥ k.
We aim to show that clM/e(C1) ⊆ clM/e(C2) or clM/e(C2) ⊆ clM/e(C1). This is
certainly true if rM (C1) = k or rM (C2) = k, so assume each of |C1| and |C2| is at
least k + 2. As k ∈ {2, 3}, it follows that |Ci| ≥ 2k − 1 for each i.

2.4.1. For each i in {1, 2}, there is a circuit Di of M such that clM (Ci ∪ e) −
cl({e}) = clM (Di)− cl({e}).

To see this, first note that Ci or Ci ∪ e is a circuit of M . In the latter case, we
take Di = Ci ∪ e. In the former case, by Lemma 2.3, the result is immediate unless
cl(Ci ∪ e) = cl(Ci) ∪ cl({e}), in which case we can take Di = Ci. Thus 2.4.1 holds.

Now r((clM (C1 ∪ e) ∩ clM (C2 ∪ e))) ≥ k + 1 as r(clM/e(C1) ∩ clM/e(C2)) ≥
k. Hence, by 2.4.1, r(clM (D1) ∩ clM (D2)) ≥ k. Thus clM (Di) ⊆ clM (Dj) for
some {i, j} = {1, 2}. Hence clM (Ci ∪ e) − clM ({e}) ⊆ clM (Cj ∪ e) − clM ({e}), so
clM/e(Ci)− clM ({e}) ⊆ clM/e(Cj)− clM ({e}). As each element of clM ({e})− e is a
loop in M/e, we deduce that clM/e(Ci) ⊆ clM/e(Cj). Thus the theorem holds. �
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Theorem 2.5. For all k ≥ 4, the class of k-closure-laminar matroids is not minor-
closed.

The proof of this theorem will use Bonin and De Mier’s characterization of
matroids in terms of their collections of cyclic flats [3, Theorem 3.2].

Theorem 2.6. Let Z be a collection of subsets of a set E and let r be an integer-
valued function on Z. There is a matroid for which Z is the collection of cyclic flats
and r is the rank function restricted to the sets in Z if and only if

(Z0) Z is a lattice under inclusion;
(Z1) r(0Z) = 0;
(Z2) 0 < r(Y )− r(X) < |Y −X| for all sets X,Y in Z with X $ Y ; and
(Z3) for all sets X,Y in Z,

r(X) + r(Y ) ≥ r(X ∨ Y ) + r(X ∧ Y ) + |(X ∩ Y )− (X ∧ Y )|.

Proof of Theorem 2.5. Let A,B, and C be disjoint sets with A = {a1, a2, . . . , ak−1},
B = {b1, b2, . . . , bk−1}, and C = {c1, c2, . . . , ck−1}. Let D = {e, a1, b1, c1} where
e 6∈ A ∪ B ∪ C. Let E = A ∪ B ∪ C ∪ D and let Z be the following collection of
subsets of E having the specified ranks and cardinalities.

Rank t Cardinality Members of Z of rank t
0 0 ∅
k k + 1 A4D, B4D, C4D

2k − 3 2k − 2 A ∪B, A ∪ C, B ∪ C
2k − 2 2k A ∪B ∪D, A ∪ C ∪D, B ∪ C ∪D
2k − 1 3k + 1 E

We will show that Z is the collection of cyclic flats of a matroid M on E. We
then show that M is k-closure-laminar but that M/e is not. Observe that A4D,
B4D, C4D, A ∪B, A ∪ C, and B ∪ C form an antichain, and that, for example,
A∪B∪D contains exactly three members of this antichain, A∪B,A4D, and B4D.
It is straightforward to see that Z is a lattice obeying (Z1) (see Figure 1). We can
quickly check that Z obeys (Z2). To check that Z obeys (Z3), we see by symmetry
that we need only check (Z3) when (X,Y ) is one of (A∪C,A4D), (A∪C,B4D),
(A∪C,B∪C∪D), (A∪C,B∪C), (A4D,B4D), (A4D,B∪C∪D), and (A∪B∪
D,A∪C∪D). Calculating r(X)+r(Y )−r(X∨Y )−r(X∧Y )−|(X∩Y )−(X∧Y )|
for each of these pairs, we find that the first and fifth give 0, and the other five
give k − 4. Hence Z obeys (Z3) for all k ≥ 4, so M is a matroid. As noted in
[3], its circuits are the minimal subsets S of E such that Z contains an element Z
containing S with |S| = r(Z) + 1.

To show that M is k-closure-laminar, we first note that A ∪ C ∪ D is non-
Hamiltonian for 2 = |A ∪ C ∪ D| − r(A ∪ C ∪ D), yet there is no element of
A∪C∪D that is in all three non-spanning circuits of M |(A∪C∪D). By symmetry,
A ∪B ∪D and B ∪ C ∪D are non-Hamiltonian. All of the other cyclic flats of M
are Hamiltonian. By symmetry, if (X,Y ) is a pair of incomparable Hamiltonian
flats of M , then we may assume that (X,Y ) is (A ∪ C,A4D), (A ∪ C,B4D),
(A ∪ C,B ∪ C), or (A4D,B4D). For each such pair, we need to check that
r(X ∩Y ) ≤ k− 1. For the first and third pairs, |X ∩Y | = k− 1; for the second and
fourth pairs, |X ∩ Y | = 2. Hence M is indeed k-closure-laminar. To see that M/e
is not k-closure-laminar, note that A ∪ C and B ∪ C are circuits of this matroid.
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E

A ∪B A ∪ C B ∪ C

A4D B4D C4D

A ∪B ∪D A ∪ C ∪D B ∪ C ∪D

∅

Figure 1. The lattice Z of cyclic flats of the matroid in the proof
of Theorem 2.5.

Moreover, clM/e(A ∪ C) = A ∪ C ∪ b1 and clM/e(B ∪ C) = B ∪ C ∪ a1. Then
clM/e(A ∪ C) ∩ clM/e(B ∪ C) = C ∪ {a1, b1}. The last set has rank k in M/e as
(C4D)− e is the only circuit of M/e contained in it. Thus M/e is not k-closure-
laminar as neither clM/e(A ∪ C) nor clM/e(B ∪ C) is contained in the other. �

3. Excluded Minors

We now note some excluded minors for the classes of k-laminar and k-closure-
laminar matroids. For n ≥ k+2, let Mn(k) be the truncation to rank n of the cycle
matroid of the graph consisting of two vertices that are joined by three internally
disjoint paths P , X1, and X2 of lengths k, n − k, and n − k, respectively. In
particular, M4(2) ∼= M(K2,3). Observe that, when k = 0, the path P has length
0 so its endpoints are equal. Thus Mn(0) is the truncation to rank n of the direct
sum of two n-circuits. Let M−(K2,3) be the unique matroid that is obtained by
relaxing a circuit-hyperplane of M(K2,3). For n ≥ k + 3 ≥ 5, let Nn(k) be the
truncation to rank n of the graphic matroid that is obtained by attaching two
(n − k)-circuits to distinct elements of a (k + 2)-circuit via parallel connection.
For n ≥ k + 2 ≥ 4, let Pn(k) be the truncation to rank n of the graphic matroid
that is obtained by attaching two (n − k + 1)-circuits to distinct elements of a
(k + 1)-circuit via parallel connection. Thus Pn(k) is a single-element contraction
of Nn+1(k). Moreover, P4(2) is isomorphic to the matroid that is obtained by
deleting a rim element from a rank-4 wheel.

Lemma 3.1. For all n ≥ k + 2, the matroid Mn(k) is an excluded minor for the
classes of k-laminar matroids and k-closure-laminar matroids.
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Proof. We may assume that k ≥ 2, as the lemma holds for k = 0 and for k = 1 by
results in [19] and [10]. Clearly Mn(k) is not k-laminar so is not k-closure-laminar.
If we delete an element of Mn(k), then we get a matroid with at most one non-
spanning circuit. By Proposition 2.1(vi), such a matroid is k-closure-laminar and
hence is k-laminar. If we contract an element of P from Mn(k), we get a matroid
that is k-closure-laminar since in it the closures of the only two non-spanning circuits
meet in k − 1 elements. Instead, if we contract an element of X1 or X2, we again
get a matroid with exactly one non-spanning circuit. Thus the lemma holds. �

Similar arguments give the following result.

Lemma 3.2.

(i) The matroid M−(K2,3) is an excluded minor for the classes of 2-laminar
and 2-closure-laminar matroids.

(ii) For all n ≥ k+3 ≥ 5, the matroid Nn(k) is an excluded minor for the class
of k-laminar matroids.

(iii) For all n ≥ k+ 2 ≥ 4, the matroid Pn(k) is an excluded minor for the class
of k-closure-laminar matroids.

The main results of this paper show that we have now identified all of the ex-
cluded minors for the classes of 2-laminar and 2-closure-laminar matroids. We will
use the following basic results. We omit the elementary proof of the second one.

Lemma 3.3. Let C be a circuit of a matroid M . If there is a partition {C1, C2}
of C and distinct elements x and y for which C1 ∪ x, C2 ∪ x, C1 ∪ y, and C2 ∪ y
are all circuits, then x and y are parallel.

Proof. By submodularity and the fact that C is a circuit,

r
(
cl(C1) ∩ cl(C2)

)
≤ |C1|+ |C2| − (|C| − 1) = 1.

From this, the lemma is immediate. �

Lemma 3.4. Let C and D be distinct circuits of a matroid M .

(i) If D 6⊆ cl(C), then |D − cl(C)| ≥ 2.
(ii) If |D − C| = 1 and D′ is a circuit contained in C ∪D other than C or D,

then C −D ⊆ D′.

Lemma 3.5. Let M be an excluded minor for M where M is the class of 2-laminar
or 2-closure-laminar matroids. Let C1 and C2 be circuits of M neither of which is
contained in the closure of the other such that |C1 ∩ C2| ≥ 2 when M is the class
of 2-laminar matroids while r(cl(C1) ∩ cl(C2)) ≥ 2 otherwise. Then

(i) E(M) = C1 ∪ C2 if M is the class of 2-laminar matroids;
(ii) E(M) = C1 ∪ C2 ∪ (cl(C1) ∩ cl(C2)) if M is the class of 2-closure-laminar

matroids;
(iii) M has cl(C1) and cl(C2) as hyperplanes, so |C1| = |C2|; and
(iv) if C is a circuit of M that meets both C1 − cl(C2) and C2 − cl(C1), then

either C is spanning, or C contains C1 4 C2.

Proof. For (ii), if f ∈ E(M)−(C1∪C2∪(cl(C1)∩cl(C2))), then Ci ⊆ clM\f (Cj) for
some {i, j} = {1, 2}. Thus Ci ⊆ clM (Cj), a contradiction. Hence (ii) holds. Part (i)
follows similarly. Certainly C2 − cl(C1) contains an element e. As e 6∈ cl(C1), if
{x, y} is an independent subset of cl(C1)∩cl(C2), then {x, y} is independent in M/e.
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It follows, since M/e ∈ M, that either clM/e(C2 − e) ⊇ C1 or clM/e(C1) ⊇ C2 − e.
The former yields a contradiction. Hence clM (C1∪e) ⊇ C2, so clM (C1∪e) = E(M).
Thus cl(C1) is a hyperplane of M . By symmetry, so is cl(C2). Hence |C1| = |C2|,
so (iii) holds.

Now let C be a circuit of M that meets both C1 − cl(C2) and C2 − cl(C1).
As C − cl(C2) is non-empty, |C − cl(C2)| ≥ 2, so |C ∩ C1| ≥ 2. Suppose C is
non-spanning. As cl(C1) is a hyperplane and C meets C2 − cl(C1), it follows that
cl(C1) 6⊇ cl(C) and cl(C) 6⊇ cl(C1). Since |C ∩C1| ≥ 2, if E(M)− (C ∪C1) contains
an element e, then, as M\e ∈M, we get a contradiction. Therefore E(M) = C∪C1.
By symmetry, E(M) = C ∪ C2. Thus C contains C1 4 C2, so (iv) holds. �

Theorem 3.6. The excluded minors for the class of 2-laminar matroids are
M−(K2,3), Mn(2) for all n ≥ 4, and Nn(2) for all n ≥ 5.

Proof. Suppose that M is an excluded minor for the class of 2-laminar matroids.
Then M has circuits C1 and C2 with |C1 ∩ C2| ≥ 2 such that neither C1 nor C2

is contained in the closure of the other. Thus each of C1 − cl(C2) and C2 − cl(C1)
contains at least two elements. By Lemma 3.5(i), E(M) = C1 ∪ C2. Moreover,
|C1 ∩ C2| = 2, otherwise we could contract an element of C1 ∩ C2 and still get a
matroid that is not 2-laminar. Let {a, b} = C1 ∩ C2.

Suppose g ∈ cl(C1) − C1. Leading up to 3.6.5, we shall prove four preliminary
results.

3.6.1. Suppose D is a circuit contained in C1 ∪ g and containing {g, a, b}. Then
D ⊆ cl(C2).

To see this, note that, as {a, b, g} ⊆ D ∩ C2, we deduce, since M/g is 2-laminar
having D − g and C2 − g as circuits, that D − g ⊆ clM/g(C2 − g) or C2 − g ⊆
clM/g(D − g). The latter implies that C2 ⊆ cl(D). But cl(D) ⊆ cl(C1), so this
yields a contradiction. Hence 3.6.1 holds.

3.6.2. If D1 and D2 are circuits contained in C1 ∪ g and containing {g, a, b}, then
D1 = D2.

Suppose D1 6= D2. By Lemma 3.4(ii), D1 ∪D2 = C1 ∪ g. By 3.6.1, Di ⊆ cl(C2)
for each i in {1, 2}. Thus C1 ⊆ cl(C2). This contradiction implies that 3.6.2 holds.

3.6.3. If D1 and D2 are distinct circuits contained in C1 ∪ g and each contains g,
then D1 or D2 contains {a, b}.

Assume that this fails. By Lemma 3.4(ii), D1 ∪D2 = C1 ∪ g. We may suppose
that D1 ∩ {a, b} = {a} and D2 ∩ {a, b} = {b}. For each i in {1, 2}, assume that Di

avoids some element di of C1−C2. Now cl(Di) ⊆ cl(C1), so C2 6⊆ cl(Di). As M\di is
2-laminar, it follows that Di ⊆ cl(C2) for each i. Thus C1 ⊆ cl(C2), a contradiction.
It follows that we may assume that C1 − C2 ⊆ D1, so D1 = (C1 − b) ∪ g.

Now {b, g} ⊆ D2. As {a, b, g} $ C2, we see that D2 contains an element w of
C1 − {a, b}. Then w ∈ D1 ∩ D2 and b ∈ D2 − D1. Hence there is a circuit D3

contained in (D1 ∪ D2) − w and containing b. As g must be in D3, it follows by
Lemma 3.4(ii) that D3 ∪ D2 = C1 ∪ g. Thus a ∈ D3, so {a, g} ⊆ D3. Hence, by
3.6.1, D3 ⊆ cl(C2). As {g, b} ⊆ D2 ∩D3 and M\e is 2-laminar for e in C2− cl(C1),
we deduce that D3 ⊆ cl(D2) otherwise D2 ⊆ cl(D3) ⊆ cl(C2), so C1 ⊆ cl(C2),
a contradiction. We conclude that D2 spans C1. As a 6∈ D2, we see that D2 =
(C1 − a) ∪ g.
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Next take an element v of D3−{g, a, b}. Then v ∈ D1 and b ∈ D3−D1. Thus M
has a circuit D4 that contains b and is contained in (D1 ∪D3)− v. Clearly g ∈ D4

and D4 6= D3. Thus, by 3.6.2, {a, b} 6⊆ D4. Hence D4 ∩ {a, b} = {b}. But D2 and
D4 are distinct circuits contained in C1∪g and each contains g. Yet D2∪D4 avoids
a, which contradicts Lemma 3.4(ii). Thus 3.6.3 holds.

3.6.4. Suppose D1 and D2 are distinct circuits contained in C1∪g and each contains
g. If {a, b} ⊆ D1, then D1 ∩D2 = {g}, so D2 = C1 4D1.

By 3.6.1, D1 ⊆ cl(C2). Now suppose that {a, b} ∩ D2 6= ∅. Then, by 3.6.2, we
may assume that {a, b}∩D2 = {b}. As D1∪D2 = C1∪ g, we see that D2 6⊆ cl(C2),
otherwise C1 ⊆ cl(C2). If D2 does not contain C1−C2, then, for f in (C1−C2)−D2,
the matroid M\f is 2-laminar and so C2 ⊆ cl(D2) ⊆ cl(C1), a contradiction. Thus
C1 − C2 ⊆ D2, so D2 = (C1 − a) ∪ g. Take x in (D1 ∩D2) − {g, b}. Then M has
a circuit D3 contained in (D1 ∪D2) − x and containing a. Clearly g ∈ D3, so D3

and D2 are distinct circuits contained in C1 ∪ g and each contains g. It follows by
3.6.3 that D3 or D2 contains {a, b}. Thus, by 3.6.2, D3 or D2 is D1. But D3 6= D1

as x ∈ D1 −D3; and D2 6= D1 by assumption. We conclude that {a, b} ∩D2 = ∅.
Finally, suppose that h ∈ (D1 ∩ D2) − g. Then, as M\e is 2-laminar for e in

C2 − cl(C1), we deduce that D1 ⊆ cl(D2) or D2 ⊆ cl(D1). As D1 ⊆ cl(C2) and
C1 6⊆ cl(C2), it follows that D1 ⊆ cl(D2), so D2 spans C1. But D2 avoids {a, b}, so
r(D2) ≤ |C1| − 2, a contradiction. Thus 3.6.4 holds.

On combining 3.6.1–3.6.4, we obtain the following.

3.6.5. If g ∈ cl(C1) − C1, then there are circuits G and G′ that meet in {g} such
that G∪G′ = C1 ∪ g and {a, b} ⊆ G ⊆ cl(C2). Furthermore, G, G′, and C1 are the
only circuits contained in C1 ∪ g, so cl(G)− C2 = G− C2.

As there are at least two elements in each of C2−cl(C1), C1−cl(C2), and C1∩C2,
it follows that r(M) ≥ 4. Next we show

3.6.6. |cl(C1)− C1| = |cl(C2)− C2| ≤ 1.

Suppose that cl(C1)−C1 = {g1, g2, . . . , gt} where t ≥ 2. For each i in {1, 2, . . . , t},
let Gi and G′i be the associated circuits given by 3.6.5 whose union is C1∪gi, where
{a, b, gi} ⊆ Gi and G′i = C14Gi. By 3.6.1, Gi ⊆ cl(C2). For distinct i and j in
{1, 2, . . . , t}, as Gi and Gj are distinct circuits contained in the 2-laminar matroid
M |cl(C1), and |Gi ∩ Gj | ≥ 2, the closures of G1, G2, . . . , Gt form a chain under
inclusion. Say cl(G1) ⊇ cl(G2) ⊇ · · · ⊇ cl(Gt). Since cl(Gi) − C2 = Gi − C2,
it follows that G1 − C2 ⊇ G2 − C2 ⊇ · · · ⊇ Gt − C2. Now let {f1, f2, . . . , fs} =
cl(C2)− C2. For each fi, there are circuits Fi and F ′i whose union is C2 ∪ fi such
that {a, b} ⊆ Fi and F ′i = C24Fi. Moreover, we may assume that cl(F1) ⊇ cl(Fi)
for all i.

By 3.6.5, for all i,

Fi − {a, b, fi} ⊆ cl(C1)− C1 = {g1, g2, . . . , gt} ⊆ cl(G1).

Thus Fi − fi ⊆ cl(G1) so fi ∈ cl(G1). Hence, by 3.6.5, fi ∈ G1. Moreover, as
Fi ⊆ {fi, a, b, g1, g2, . . . , gt} and {a, b, g1, g2, . . . , gt} ⊆ cl(G1), we see that cl(Fi) ⊆
cl(G1). Since {f1, f2, . . . , fs} ⊆ G1, we deduce, since G1 ⊆ cl(C2), that G1 =
{g1, a, b, f1, f2, . . . , fs}. As cl(F1) ⊆ cl(G1), it follows by symmetry that cl(F1) =
cl(G1). Moreover, symmetry also gives that F1 = {f1, a, b, g1, g2, . . . , gt}. Since G1
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and F1 are both circuits spanning the same set, they have the same cardinality, so
t = s; that is,

|cl(C1)− C1| = |cl(C2)− C2|.
By Lemma 3.3, since {g1, g2, . . . , gt} is independent, we get that Gi − gi 6= Gj − gj
for distinct i and j. Thus

t + 3 = |G1| > |G2| > · · · > |Gt| ≥ 4

where the last inequality follows because Gt is not a proper subset of C2.
Now suppose that |G2| = |G1| − 1 where (G1 − g1)− (G2 − g2) = {fi}. Choose

e ∈ C1 − cl(C2). As fi ∈ G′2 − G′1, strong circuit elimination on G′1 and G′2,
both of which contain e, yields a circuit D containing fi and avoiding e. Since
D avoids {a, b}, it follows that {g1, g2} ⊆ D. As e 6∈ C2 ∪ D, we deduce that
D ⊆ cl(C2), otherwise we obtain the contradiction that C2 ⊆ cl(D) ⊆ cl(C1). But
(G′2−g2)−(G′1−g1) = {fi}, so D ⊆ G′2∪g1, and (G′2∪g1)∩cl(C2) = {fi, g1, g2}. As
D ⊆ cl(C2), it follows that D ⊆ {fi, g1, g2}. This is a contradiction to 3.6.5 because
D 6∈ {Fi, F

′
i}. We deduce that |G2| ≤ |G1| − 2. Thus |G2| ≤ t + 3 − 2 = t + 1.

Hence |Gt| ≤ 3, a contradiction. We conclude that 3.6.6 holds.
By Lemma 3.5(iii), cl(C1) and cl(C2) are hyperplanes of M , and |C1| = |C2|.

Suppose that cl(C1) = C1. Then, by 3.6.6, cl(C2) = C2. As E(M) = C1∪C2, every
circuit of M other than C1 or C2 must meet both C1−C2 and C2−C1. Assume M
has such a circuit C that is non-spanning. Then, by Lemma 3.5(iii), C14C2 ⊆ C.
As |C1 ∩ C2| = 2 but C is non-spanning, it follows that C = C1 4 C2. Thus
r(C) = r(M)− 1, so r(M)− 1 = |C1|+ |C2| − 5. But r(M)− 1 = r(C1) = |C1| − 1.
Hence |C2| = 4, so |C1| = 4. It follows easily that M ∼= M(K2,3) ∼= M4(2). Now
suppose that every circuit other than C1 or C2 is spanning. Then, letting |C1| = n,
we see that |C2| = n and r(M) = r(C1) + 1 = n. It follows that M ∼= M(K−2,3)

when n = 4, while M ∼= Mn(2) when n ≥ 5.
By 3.6.6, we may now suppose that cl(C1)−C1 = {g}. Then cl(C2)−C2 = {f},

say. By 3.6.5, {a, b, g, f} is a circuit of M as are both G′ = (C1−{a, b, f})∪{g} and
F ′ = (C2−{a, b, g})∪ {f}. All circuits of M other than C1, C2, {a, b, g, f}, G′, and
F ′ must meet both C1 − cl(C2) and C2 − cl(C1). Hence, by Lemma 3.5(iv), every
such circuit is spanning as C1 4 C2 properly contains G′. Again letting |C1| = n,
we see that |C2| = n and r(M) = n. Thus M ∼= Nn(2) for some n ≥ 5. �

Theorem 3.7. The excluded minors for the class of 2-closure-laminar matroids
are M−(K2,3), Mn(2) for all n ≥ 4, and Pn(2) for all n ≥ 4.

Proof. Let M be an excluded minor for the class of 2-closure-laminar matroids.
Clearly M is simple. Now M has two circuits C1 and C2 with r(cl(C1)∩cl(C2)) ≥ 2
such that neither is a subset of the closure of the other. By Lemma 3.5(ii),

3.7.1. E(M) = C1 ∪ C2 ∪ (cl(C1) ∩ cl(C2)).

Clearly |C1 ∩ C2| ≤ 2, otherwise we could contract an element of C1 ∩ C2 and
still have a matroid that is not 2-closure-laminar. We break the rest of the proof
into three cases based on the size of C1 ∩ C2.

3.7.2. C1 ∩ C2 6= ∅.

Assume the contrary. Let {x, y} be a subset of cl(C1) ∩ cl(C2). To show 3.7.2,
we first establish that
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3.7.3. {x, y} 6⊆ C2.

Suppose {x, y} ⊆ C2. As M |(C1 ∪ {x, y}) is connected, there is a circuit D1

with {x, y} ⊆ D1 ⊆ C1 ∪ {x, y}. Then, for c in C1 − D1, the matroid M\c is
2-closure-laminar. Now C2 6⊆ cl(D1) since cl(D1) ⊆ cl(C1). Thus D1 ⊆ cl(C2), so
C1 ∩ cl(C2) is non-empty. Choose an element z in C1 ∩ cl(C2). Now M has circuits
Cx and C ′x, with x ∈ Cx ∩ C ′x, and Cx ∪ C ′x = C1 ∪ x. It also has circuits Cy, and
C ′y with y ∈ Cy ∩ C ′y and Cy ∪ C ′y = C1 ∪ y. We may assume that z ∈ Cx ∩ Cy.
Then {x, z} ⊆ cl(Cx) ∩ cl(C2). As C1 − (Cx ∪ C2) is non-empty, this implies that
Cx ⊆ cl(C2) since C2 6⊆ cl(Cx) because cl(Cx) ⊆ cl(C1). Similarly, Cy ⊆ cl(C2).

Suppose (Cx − x) ∩ (C ′x − x) is non-empty and choose e in this set. Then,
as {e, x} ⊆ Cx ∩ C ′x and y 6∈ Cx ∪ C ′x, either Cx ⊆ cl(C ′x) or C ′x ⊆ cl(Cx). In
the latter case, C ′x ⊆ cl(Cx) ⊆ cl(C2), so C1 ⊆ cl(C2), a contradiction. Thus
Cx ⊆ cl(C ′x). But then C1 and C ′x have the same rank, and hence the same size.
Then C ′x = C14{x, c} for some c ∈ C1. Now consider the 2-closure-laminar matroid
M\c. In it, C ′x and C2 are circuits as c 6∈ C2. Then rM\c(clM\c(C

′
x)∩clM\c(C2)) ≥ 2

so C ′x ⊆ clM\c(C2) or C2 ⊆ clM\c(C
′
x). As Cx ⊆ clM (C2) and clM\c(C

′
x) ⊆ clM (C1),

we obtain the contradiction that C1 ⊆ cl(C2) or C2 ⊆ cl(C1). We conclude that
Cx ∩ C ′x = {x}. Likewise Cy ∩ C ′y = {y}.

If there is some element f in Cx ∩ C ′y, then, as f ∈ Cx, we have f ∈ cl(C2).
But then {f, y} ⊆ cl(C ′y) ∩ cl(C2) Thus either C ′y ⊆ cl(C2) or C2 ⊆ cl(C ′y). The
former cannot occur as Cy ⊆ cl(C2); nor can the latter as cl(C ′y) ⊆ cl(C1). Hence
Cx ∩ C ′y = ∅. Likewise, Cy ∩ C ′x = ∅. But then Cx4{x, y} = Cy and C ′x4{x, y} =
C ′y. Hence, by Lemma 3.3, x and y are parallel, a contradiction. Thus 3.7.3 holds.

Next we suppose that x ∈ C2 and y 6∈ C2. Choose a circuit D with {x, y} ⊆
D ⊆ C2 ∪ y. Then D ⊆ cl(C1), since C2 − (D ∪ C1) 6= ∅ and cl(D) ∩ cl(C1) has
rank at least two, while cl(D) ⊆ cl(C2). Now (D ∩C2)− x certainly contains some
element d. Then {x, d} ⊆ cl(C1) ∩ cl(C2). Applying 3.7.3 gives a contradiction.

We may now assume that {x, y} ∩ C2 = ∅. Let D be a circuit with {x, y} ⊆
D ⊆ C2 ∪ {x, y}. Then D ⊆ cl(C1) as C2 − (D ∪ C1) 6= ∅. By replacing y by an
element of D ∩ C2, we revert to the case eliminated in the last paragraph. Hence
3.7.2 holds.

Now, we consider the case when |C1 ∩C2| = 1. Let C1 ∩C2 = {x} and choose y
in (cl(C1)∩ cl(C2))− (C1∩C2). Suppose y 6∈ C1∪C2. Then M has circuits D1 and
D2 containing {x, y} and contained in C1∪y and C2∪y, respectively. Without loss
of generality, as E(M)−(D1∪D2) is non-empty, we may assume that D1 ⊆ cl(D2).
Since |D1| ≥ 3, there is an element z of D1 − {x, y}. Then z is in cl(D2) and so is
in cl(C2). Thus {x, z} ⊆ C1 ∩ clM\y(C2) and we obtain a contradiction. It follows,
by 3.7.1, that C1 ∪ C2 = E(M).

We may now assume that y ∈ C1 ∩ cl(C2). Then M has a circuit D such
that {x, y} ⊆ D ⊆ C2 ∪ y. Clearly D ⊆ cl(C2). To see that D ⊆ cl(C1), we
note that C2 − (D ∪ C1) 6= ∅, and C1 6⊆ cl(D) as D ⊆ cl(C2). We now have
D − x ⊆ clM/x(C1 − x) ∩ clM/x(C2 − x). Thus rM/x(D − x) ≤ 1, otherwise, for
some {i, j} = {1, 2}, we have clM/x(Ci − x) ⊆ clM/x(Cj − x), a contradiction. As
y ∈ D − x, we see that rM (D) = 2, so D = {x, y, y′} for some y′. We deduce that

3.7.4. {x, y, y′} is the only circuit of M |(C2 ∪ y) containing {x, y}.
We show next that

3.7.5. (C2 − {x, y′}) ∪ y is the only circuit of M |(C2 ∪ y) containing y but not x.
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By Lemma 3.4(ii), every circuit D′ of M that contains y, avoids x, and is con-
tained in C2 ∪ y must contain (C2−{x, y′})∪ y. If y′ ∈ D′, then D′ = (C2 ∪ y)−x.
Using D′ and D, we find a circuit D′′ containing x and contained in (C2 ∪ y)− y′.
As D′′ must also contain y, we see that {x, y} ⊆ D′′ and we showed in 3.7.4 that
M has no such circuit. We conclude that 3.7.5 holds.

By 3.7.5 and symmetry, M has (C1−{x, y})∪ y′ as a circuit, say C ′1. Let C ′2 be
the circuit (C2 − {x, y′}) ∪ y. Next we note that

3.7.6. cl(C2)− C2 = {y} and cl(C1)− C1 = {y′}.

Assume there is an element y1 in (cl(C2) − C2) − y. Then {y, y1} is a subset
of clM/x(C1 − x) ∩ clM/x(C2 − x) that is independent in M/x. Thus Ci − x ⊆
clM/x(Cj − x) for some {i, j} = {1, 2}, so Ci ⊆ clM (Cj), a contradiction. It follows
that cl(C2)− C2 = {y}. By symmetry, cl(C1)− C1 = {y′}.

By Lemma 3.5(iii), M has cl(C1) and cl(C2) as hyperplanes, and |C1| = |C2|.
Let C be a circuit of M that is not C1, C2, C ′1, C ′2, or D. If y ∈ C ⊆ C2 ∪ y, then,
by 3.7.4 and 3.7.5, C is D or C ′2. We deduce that C meets both C1 − cl(C2) and
C2− cl(C1). Then, by Lemma 3.5(iii), either C is spanning, or C contains C14C2.
But |C1 ∩ C2| = 1 so C is spanning. We conclude that C1, C2, C ′1, C ′2, and D are
the only non-spanning circuits of M . Hence M ∼= Pn(2) for some n ≥ 4.

Finally, suppose |C1 ∩ C2| = 2. Then M is not 2-laminar so it has as a minor
one of the matroids identified in Theorem 3.6. But M cannot have a Nn(2)-minor
for any n ≥ 5 as this matroid has Pn−1(2), an excluded minor for the class of
2-closure-laminar matroids, as a proper minor. Thus M has as a minor M−(K2,3)
or Mn(2) for some n ≥ 4. The result follows by Lemmas 3.1 and 3.2. �

Our methods for finding the excluded minors for the classes of k-laminar and
k-closure-laminar matroids for k = 2 do not seem to extend to larger values of k.

4. Intersections with other classes of matroids

We now discuss how the classes of k-closure-laminar and k-laminar matroids
relate to some other well-known classes of matroids. Finkelstein [11] showed that
all laminar matroids are gammoids, so they are representable over all sufficiently
large fields [20, 15]. An immediate consequence of the following easy observation
is that, for all k ≥ 2, if M is a k-closure-laminar matroid or a k-laminar matroid,
then M need not be representable and hence M need not be a gammoid.

Proposition 4.1. If r(M) ≤ k + 1, then M is k-laminar and k-closure-laminar.

We use the next lemma to describe the intersection of the classes of 2-laminar
and 2-closure-laminar matroids with the classes of binary and ternary matroids.
Recall that M4(2) ∼= M(K2,3) and that the definitions of Pn(2) and Nn(2) require
that n ≥ 4 and n ≥ 5, respectively.

Lemma 4.2. The matroid M−(K2,3) is ternary and non-binary; Pn(2) has a
Un,2n−3-minor; Nn(2) has a Un,2n−4-minor; and Mn(2) has a Un,2n−3-minor when
n ≥ 5.

Proof. The first part follows because M−(K2,3) can be obtained from U2,4 by adding
elements in series to two elements of the latter. Next we note that we get Un,2n−3
from Pn(2) by deleting the basepoints of the parallel connections involved in its
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construction. Deleting the basepoints of the parallel connections involved in pro-
ducing Nn(2) gives Un,2n−4. Finally, when n ≥ 5, we get Un,2n−3 from Mn(2) by
deleting an element of the path P . �

The next two results follow without difficulty by combining the last lemma with
Theorems 3.6 and 3.7 as the set of excluded minors for M ∩N where M and N are
minor-closed classes of matroids consists of the minor-minimal matroids that are
excluded minors for M or N (see, for example, [18, Lemma 14.5.1]). Recall that
N5(2) and P4(2) are the matroids obtained by adjoining, via parallel connection,
two triangles across distinct elements of a 4-circuit and a triangle, respectively.

Corollary 4.3. A matroid M is binary and 2-laminar if and only if it has no
minor isomorphic to U2,4, M(K2,3), or N5(2).

Corollary 4.4. A matroid M is binary and 2-closure-laminar if and only if it has
no minor isomorphic to U2,4, M(K2,3), or P4(2).

Similarly, we find the excluded minors for the classes of ternary 2-laminar ma-
troids and ternary 2-closure-laminar matroids by noting that deleting an element
from F ∗7 produces M(K2,3), so F ∗7 is not 2-laminar.

Corollary 4.5. A matroid M is ternary and 2-laminar if and only if it has no
minor isomorphic to U2,5, U3,5, F7, M−(K2,3), M(K2,3), or N5(2).

Corollary 4.6. A matroid M is ternary and 2-closure-laminar if and only if it has
no minor isomorphic to U2,5, U3,5, F7, M−(K2,3), M(K2,3), or P4(2).

Next we describe the intersection of the class of graphic matroids with the classes
of 2-laminar and 2-closure-laminar matroids both constructively and via excluded
minors.

Corollary 4.7. A matroid M is graphic and 2-laminar if and only if it has no
minor isomorphic to U2,4, M(K2,3), F7, M∗(K3,3), or N5(2).

Corollary 4.8. A matroid M is graphic and 2-closure-laminar if and only if it has
no minor isomorphic to U2,4, M(K2,3), F7, or P4(2).

Lemma 4.9. Let M be a simple, connected, graphic matroid. Then M is 2-laminar
if and only if M is a coloop, M is isomorphic to M(K4), or M is the cycle matroid
of a graph consisting of a cycle with at most two chords such that, when there are
two chords, they are of the form (u, v1) and (u, v2) where v1 is adjacent to v2.

Proof. Clearly each of the specified matroids is 2-laminar. Now let G be a simple,
2-connected graph. Suppose first that G is not outerplanar. By a theorem of
Chartrand and Harary [6], either G is K4 or G has K2,3 as a minor. In the latter
case, M(G) is not 2-laminar. Now suppose that G is outerplanar. If G has two
chords that are not of the form (u, v1) and (u, v2) where v1 is adjacent to v2, then
M(G) has N4(2) as a minor, and so is not 2-laminar. �

Proposition 4.10. Let M be a simple, connected, graphic matroid. Then M is
2-closure-laminar if and only if M is a coloop, M is isomorphic to M(K4), or M
is the cycle matroid of a cycle with at most one chord.

Proof. This follows from Lemma 4.9 by noting that the cycle matroid of a cycle
with two chords of the form (u, v1) and (u, v2) where v1 is adjacent to v2 has P4(2)
as a minor. �
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We now show that the intersections of the classes of k-laminar and k-closure-
laminar matroids with the class of paving matroids coincide.

Theorem 4.11. Let M be a paving matroid, and k be a non-negative integer. Then
M is k-laminar if and only if M is k-closure-laminar.

Proof. By Proposition 2.1(i), it suffices to prove that if M is not k-closure-laminar,
then M is not k-laminar. We use the elementary observation that, since M is
paving, for every flat F , either F = E(M), or M |F is uniform. Suppose that C1

and C2 are circuits of M for which r(cl(C1) ∩ cl(C2)) ≥ k but neither cl(C1) nor
cl(C2) is contained in the other. Then neither cl(C1) nor cl(C2) is spanning. Hence
both M |cl(C1) and M |cl(C2) are uniform. Let X be a basis of cl(C1)∩cl(C2). Then
M has circuits C ′1 and C ′2 containing X such that cl(C ′i) = cl(Ci) for each i. Thus
M is not k-laminar. �

It is well known that the unique excluded minor for the class of paving matroids
is U0,1 ⊕ U2,2. Using this, in conjunction with Theorems 3.6 and 4.11, it is not
difficult to obtain the following.

Corollary 4.12. The following are equivalent for a matroid M .

(i) M is 2-laminar and paving;
(ii) M is 2-closure-laminar and paving;

(iii) M has no minor in {U0,1 ⊕ U2,2,M
−(K2,3)} ∪ {Mn(2) : n ≥ 4}.
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