GENERALIZED LAMINAR MATROIDS

TARA FIFE AND JAMES OXLEY

Abstract. Nested matroids were introduced by Crapo in 1965 and have appeared frequently in the literature since then. A flat of a matroid \(M \) is Hamiltonian if it has a spanning circuit. A matroid \(M \) is nested if and only if its Hamiltonian flats form a chain under inclusion; \(M \) is laminar if and only if, for every 1-element independent set \(X \), the Hamiltonian flats of \(M \) containing \(X \) form a chain under inclusion. We generalize these notions to define the classes of \(k \)-closure-laminar and \(k \)-laminar matroids. This paper focuses on structural properties of these classes noting that, while the second class is always minor-closed, the first is if and only if \(k \leq 3 \). The main results are excluded-minor characterizations for the classes of 2-laminar and 2-closure-laminar matroids.

1. Introduction

Our matroid terminology follows Oxley [18]. A transversal matroid is nested if it has a nested presentation, that is, a transversal presentation \((B_1, B_2, \ldots, B_n)\) such that \(B_1 \subseteq B_2 \subseteq \cdots \subseteq B_n \). These matroids were introduced by Crapo [7] and have appeared under a variety of names including freedom matroids [8], generalized Catalan matroids [4], shifted matroids [1], and Schubert matroids [21].

A family \(\mathcal{A} \) of subsets of a set \(E \) is laminar if, for every two intersecting sets \(A \) and \(B \) in \(\mathcal{A} \), either \(A \subseteq B \) or \(B \subseteq A \). Let \(\mathcal{A} \) be a laminar family of subsets of a finite set \(E \) and \(c \) be a function from \(\mathcal{A} \) into the set of non-negative integers. Define \(\mathcal{I} \) to be the set of subsets \(I \) of \(E \) such that \(|I \cap A| \leq c(A) \) for all \(A \) in \(\mathcal{A} \). It is well known (see, for example, [11, 12, 14, 17]) and easily checked that \(\mathcal{I} \) is the set of independent sets of a matroid on \(E \). We write the matroid as \(M(E, \mathcal{A}, c) \). A matroid \(M \) is laminar if it is isomorphic to \(M(E, \mathcal{A}, c) \) for some set \(E \), laminar family \(\mathcal{A} \), and function \(c \).

Laminar matroids have appeared often during the last fifteen years particularly in relation to their behavior for the matroid secretary problem and other optimization problems [2, 5, 6, 9, 14, 16, 22], Huynh [13] reviewed this work while Finkelstein [11] investigated some of the structural properties of laminar matroids. In [10], we characterized laminar matroids both constructively and via excluded minors.

In [10], we showed that all nested matroids are laminar and noted a number of similarities between the classes of nested and laminar matroids. Here we exploit some of these similarities to define two natural infinite families of classes of matroids, each having the classes of nested and laminar matroids as their smallest members. Every matroid belongs to a member of each of these families. We say that a flat in a matroid is Hamiltonian if it has a spanning circuit. In [19], it was shown that a matroid is nested if and only if its Hamiltonian flats form a chain under inclusion. This immediately yields the following result.

Date: January 21, 2018.
1991 Mathematics Subject Classification. 05B35.
Proposition 1.1. A matroid is nested if and only if, for all circuits C_1 and C_2, either $C_1 \subseteq \text{cl}(C_2)$, or $C_2 \subseteq \text{cl}(C_1)$.

This parallels the following characterization of laminar matroids found in [10].

Theorem 1.2. A matroid is laminar if and only if, for all circuits C_1 and C_2 with $|C_1 \cap C_2| \geq 1$, either $C_1 \subseteq \text{cl}(C_2)$, or $C_2 \subseteq \text{cl}(C_1)$.

Using circuit elimination, it can quickly be shown that we get a similar description in terms of Hamiltonian flats.

Corollary 1.3. A matroid is laminar if and only if, for every 1-element independent set X, the Hamiltonian flats containing X form a chain under inclusion.

In light of these results, for any non-negative integer k, we define a matroid M to be k-closure-laminar if, for any k-element independent subset X of $E(M)$, the Hamiltonian flats of M containing X form a chain under inclusion. We say that M is k-laminar if, for any two circuits C_1 and C_2 of M with $|C_1 \cap C_2| \geq k$, either $C_1 \subseteq \text{cl}(C_2)$ or $C_1 \subseteq \text{cl}(C_2)$. The following observation is straightforward.

Lemma 1.4. A matroid M is k-closure-laminar if and only if, whenever C_1 and C_2 are circuits of M with $r(\text{cl}(C_1) \cap \text{cl}(C_2)) \geq k$, either $C_1 \subseteq \text{cl}(C_2)$, or $C_2 \subseteq \text{cl}(C_1)$.

Observe that the class of nested matroids coincides with the classes of 0-laminar matroids and 0-closure-laminar matroids, while the class of laminar matroids coincides with the classes of 1-laminar matroids and 1-closure-laminar matroids. It is easy to see that k-closure-laminar matroids are also k-laminar. For $k \geq 2$, consider the matroid that is obtained by taking the parallel connection of a $(k + 1)$-element circuit C and a triangle and then taking the parallel connection of the resulting matroid with a triangle along a different element of C. The resulting matroid is k-laminar, but not k-closure-laminar. Thus, for all $k \geq 2$, the class of k-laminar matroids strictly contains the class of k-closure-laminar matroids. Our hope is that, for small values of k, the classes of k-laminar and k-closure laminar matroids will enjoy some of the computational advantages of laminar matroids.

It is not hard to show that the class of k-laminar matroids is minor-closed. This implies the previously known fact that the class of k-closure-laminar matroids is minor-closed for $k \in \{0, 1\}$. We show that it is also minor-closed for $k \in \{2, 3\}$. Somewhat surprisingly, for all $k \geq 4$, the class of k-closure-laminar matroids is not minor-closed. This is shown in Section 2. In Section 3, we prove our main results, excluded-minor characterizations of the classes of 2-laminar matroids and 2-closure-laminar matroids. In Section 4, we consider the intersection of the classes of k-laminar and k-closure laminar matroids with other well-known classes of matroids. In particular, we show that these intersections with the class of paving matroids coincide. Moreover, although all nested and laminar matroids are representable, we note that, for all $k \geq 2$, neither of the classes of k-laminar and k-closure-laminar matroids is contained in the class of representable matroids.

2. Preliminaries

In this section, we establish some basic properties of k-laminar and k-closure-laminar matroids. The first result summarizes some of these properties. Its straightforward proof is omitted.

Proposition 2.1. Let M be a matroid and k be a non-negative integer.
Lemma 2.2. The class of k-laminar matroids is minor-closed.

As we will see, the class of k-closure-laminar matroids is not closed under contraction when k ≥ 4. The next lemma will be useful in proving that the classes of 2-closure-laminar and 3-closure-laminar matroids are minor-closed.

Lemma 2.3. Let C be a circuit of a k-laminar matroid M such that |C| ≥ 2k − 1. If e ∈ E(M) − cl(C) and r(cl(C ∪ e) − cl(C)) ≥ 2, then cl(C ∪ e) is a Hamiltonian flat of M.

Proof. Take an element f of cl(C ∪ e) − (cl(C) ∪ cl(\{e\})). Then M has a circuit D such that \{e, f\} ⊆ D ⊆ C ∪ \{e, f\}. As f ∉ cl(\{e\}), we may choose an element d in D−\{e, f\}. By circuit elimination, M has a circuit D′ such that f ∈ D′ ⊆ (C ∪ D)−d. Then e ∈ D′ as f ∉ cl(C). Applying circuit elimination again gives a circuit C′ contained in (D∪D′)−e. As f ∉ cl(C), it follows that C′ = C. Hence D′ ⊇ C−D. As |C| ≥ 2k−1, either |D ∩ C| or |D′ ∩ C| is at least k. Since neither D nor D′ is contained in cl(C), it follows that C is contained in cl(D) or cl(D′). Thus D or D′ is a spanning circuit of cl(C ∪ e), so this flat is Hamiltonian.

Theorem 2.4. The classes of 2-closure-laminar and 3-closure-laminar matroids are minor-closed.

Proof. For some k in \{2, 3\}, let e be an element of a k-closure-laminar matroid M, and let C1 and C2 be distinct circuits in M/e with rM/e(clM/e(C1)∩clM/e(C2)) ≥ k. We aim to show that clM/e(C1) ⊆ clM/e(C2) or clM/e(C2) ⊆ clM/e(C1). This is certainly true if rM(C1) = k or rM(C2) = k, so assume each of |C1| and |C2| is at least k + 2. As k ∈ \{2, 3\}, it follows that |C1| ≥ 2k − 1 for each i.

2.4.1. For each i in \{1, 2\}, there is a circuit Di of M such that clM(C1 ∪ e) − clM(e) = clM(Di) − clM(e).

To see this, first note that C1 or C2 ∪ e is a circuit of M. In the latter case, we take Di = C1 ∪ e. In the former case, by Lemma 2.3 the result is immediate unless clM(C1) = e = clM(Di) − clM(e), in which case we can take Di = C1. Thus 2.4.1 holds.

Now rM/(clM(C1 ∪ e) ∩ clM(C2 ∪ e)) ≥ k + 1 as rM/(clM/e(C1) ∩ clM/e(C2)) ≥ k. Hence, by 2.4.1, rM/(clM(D1) ∩ clM(D2)) ≥ k. Thus, for some \{i, j\} = \{1, 2\}, we see that clM(Di) ⊆ clM(Dj). Hence clM(C1 ∪ e) − clM(\{e\}) ⊆ clM(C1 ∪ e) − clM(\{e\}), so clM/e(C1) − clM(\{e\}) ⊆ clM/e(Cj) − clM(\{e\}). As each element of clM(\{e\}) − e is a loop in M/e, we deduce that clM/e(C1) ⊆ clM/e(Cj). Thus the theorem holds.
Theorem 2.5. For all \(k \geq 4 \), the class of \(k \)-closure-laminar matroids is not minor-closed.

The proof of this theorem will use Bonin and de Mier’s characterization of matroids in terms of their collections of cyclic flats [3 Theorem 3.2].

Theorem 2.6. Let \(Z \) be a collection of subsets of a set \(E \) and let \(r \) be an integer-valued function on \(Z \). There is a matroid for which \(Z \) is the collection of cyclic flats and \(r \) is the rank function restricted to the sets in \(Z \) if and only if

\[
\begin{align*}
(Z0) & \: Z \text{ is a lattice under inclusion;} \\
(Z1) & \: r(\emptyset) = 0; \\
(Z2) & \: 0 < r(Y) - r(X) < |Y - X| \text{ for all sets } X, Y \text{ in } Z \text{ with } X \subseteq Y; \text{ and} \\
(Z3) & \: \text{for all sets } X, Y \text{ in } Z, \\
& \quad r(X) + r(Y) \geq r(X \lor Y) + r(X \land Y) + |(X \land Y) - (X \lor Y)|.
\end{align*}
\]

Proof of Theorem 2.6. Let \(A = \{a_1, a_2, \ldots, a_{k-1}\} \), \(B = \{b_1, b_2, \ldots, b_{k-1}\} \), \(C = \{c_1, c_2, \ldots, c_{k-1}\} \), \(D = \{e, a_1, b_1, c_1\} \), \(C_a = A \cup C \), and \(C_b = B \cup C \). Let \(E = A \cup B \cup C \cup D \) and let \(Z \) be the following collection of subsets of \(E \) having the specified ranks:

<table>
<thead>
<tr>
<th>Rank t</th>
<th>Members of (Z) of rank t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0)</td>
</tr>
<tr>
<td>(k)</td>
<td>(C \Delta D, A \Delta D, \text{ and } B \Delta D)</td>
</tr>
<tr>
<td>(2k - 3)</td>
<td>(C_a) and (C_b)</td>
</tr>
<tr>
<td>(2k - 2)</td>
<td>(C_a \cup D) and (C_b \cup D)</td>
</tr>
<tr>
<td>(2k - 1)</td>
<td>(E)</td>
</tr>
</tbody>
</table>

We will show that \(Z \) is the collection of cyclic flats of a matroid \(M \) on \(E \). We then show that \(M \) is \(k \)-closure-laminar but that \(M/e \) is not.

We note that \(C \Delta D, A \Delta D, B \Delta D, C_a, \) and \(C_b \) form an antichain, that \(C_a \cup D \) contains \(C \Delta D, A \Delta D, \text{ and } C_a \), but not \(B \Delta D \) or \(C_b \), and that \(C_b \cup D \) contains \(C \Delta D, B \Delta D, \) and \(C_b \), but not \(A \Delta D \) or \(C_a \). This gives us that \(Z \) is a lattice obeying \((Z1)\) and which we can quickly check obeys \((Z2)\). There are fifteen incomparable pairs of members of \(Z \), seven of which satisfy \(r(X) + r(Y) = r(X \lor Y) + r(X \land Y) + |(X \land Y) - (X \lor Y)| \). For the remaining eight, the inequality \(r(X) + r(Y) \geq r(X \lor Y) + r(X \land Y) + |(X \land Y) - (X \lor Y)| \) reduces to the inequality \(k \geq 4 \). Hence \(Z \) obeys \((Z3)\) for all \(k \geq 4 \), so \(M \) is a matroid. As noted in [3], its circuits are the minimal subsets \(S \) of \(E \) such that \(Z \) contains an element \(Z \) containing \(S \) with \(|S| = r(Z) + 1 \).

To show that \(M \) is \(k \)-closure-laminar, we note that \(C_a \cup D \) is non-Hamiltonian for \(2 = |C_a \cup D| - r(C_a \cup D) \), yet there is no element of \(C_a \cup D \) that is in all three non-spanning circuits of \(M/(C_a \cup D) \). By symmetry, \(C_b \cup D \) is non-Hamiltonian. All of the other cyclic flats of \(M \) are Hamiltonian. This gives us ten pairs \((X, Y)\) of incomparable Hamiltonian flats for which to check that \(r(X \land Y) \leq k - 1 \). For all such pairs either \(|X \land Y| = 2 \) or \(|X \land Y| = k - 1 \), so \(M \) is indeed \(k \)-closure-laminar.

To see that \(M/e \) is not \(k \)-closure-laminar, we note that \(CL_{M/e}(C_a) = C_a \cup b_1 \) and \(CL_{M/e}(C_b) = C_b \cup a_1 \). Then \(CL_{M/e}(C_a) \cap CL_{M/e}(C_b) = C \cup \{a_1, b_1\} \), which has rank \(k \) in \(M/e \) as \((C \Delta D) - e \) is the only circuit of \(M/e \) contained in it. Therefore \(M/e \) is not \(k \)-closure-laminar as neither \(CL_{M/e}(C_a) \) nor \(CL_{M/e}(C_b) \) is contained in the other. \(\square \)
3. Excluded Minors

We now note some excluded minors for the classes of k-laminar and k-closure-laminar matroids. For $n \geq k + 2$, let $M_n(k)$ be the truncation to rank n of the cycle matroid of the graph consisting of two vertices that are joined by three internally disjoint paths P, X_1, and X_2 of lengths k, $n - k$, and $n - k$, respectively. In particular, $M_4(2) \cong M(K_{2,3})$. Observe that, when $k = 0$, the path P has length 0 so its endpoints are equal. Thus $M_n(0)$ is the truncation to rank n of the direct sum of two n-circuits. Let $M^-(K_{2,3})$ be the unique matroid that is obtained by relaxing a circuit-hyperplane of $M(K_{2,3})$. For $n \geq k + 3 \geq 5$, let $N_n(k)$ be the truncation to rank n of the graphic matroid that is obtained by attaching two $(n - k)$-circuits to distinct elements of a $(k + 2)$-circuit via parallel connection. For $n \geq k + 2 \geq 4$, let $P_n(k)$ be the truncation to rank n of the graphic matroid that is obtained by attaching two $(n - k + 1)$-circuits to distinct elements of a $(k + 1)$-circuit via parallel connection. Thus $P_n(k)$ is a single-element contraction of $N_{n+1}(k)$. Moreover, $P_4(2)$ is isomorphic to the matroid that is obtained by deleting a rim element from a rank-4 wheel.

Lemma 3.1. For all $n \geq 4$, the matroid $M_n(k)$ is an excluded minor for the classes of k-laminar matroids and k-closure-laminar matroids.

Proof. We may assume that $k \geq 2$, as the lemma holds for $k = 0$ and for $k = 1$ by results in [19] and [10]. Clearly $M_n(k)$ is not k-laminar so is not k-closure-laminar.

If we delete an element of $M_n(k)$, then we get a matroid with at most one non-spanning circuit. By Proposition 2.1(vi), such a matroid is k-closure-laminar and hence is k-laminar. If we contract an element of P from $M_n(k)$, we get a matroid that is k-closure-laminar since in it the closures of the only two non-spanning circuits meet in $k - 1$ elements. Instead, if we contract an element of X_1 or X_2, we again get a matroid with exactly one non-spanning circuit. Thus the lemma holds. □

Similar arguments give the following result.

Lemma 3.2.

(i) The matroid $M^-(K_{2,3})$ is an excluded minor for the classes of 2-laminar and 2-closure-laminar matroids.

(ii) For all $n \geq k + 3 \geq 5$, the matroid $N_n(k)$ is an excluded minor for the class of k-laminar matroids.

(iii) For all $n \geq k + 2 \geq 4$, the matroid $P_n(k)$ is an excluded minor for the class of k-closure-laminar matroids.

The main result of this paper is that we have now identified all of the excluded minors for the classes of 2-laminar and 2-closure-laminar matroids. We will use the following basic results. We omit the elementary proof of the second one.

Lemma 3.3. Let C be a circuit in a matroid M and let x and y be non-loop elements of $\text{cl}(C) - C$. Suppose that C_x, C'_x, C_y, and C'_y are circuits such that $C_x \cup C'_x = C \cup x$ and $C_y \cup C'_y = C \cup y$, where $C_x \cap C'_x = \{x\}$, and $C_y \cap C'_y = \{y\}$, while $C_x \triangle \{x, y\} = C_y$. Then x and y are parallel.

Proof. Note that the hypotheses imply that C_y, C'_y, and C are the only circuits contained in $C \cup y$, as any other such circuit must contain both $C - C_y$ and $C - C'_y$. Clearly $C_x - x = C_y - y$ and $C'_x - x = C'_y - y$. Choose elements e and e' with...
e ∈ C_2 − x and e′ ∈ C_2′ − x. We use circuit elimination to get circuits D and D′ with D ⊆ (C_2 ∪ C_2) − e and D′ ⊆ (C_2′ ∪ C_2′) − e′. Of necessity, \{x, y\} is contained in both D and D′. We also note that D ∩ D′ is contained in
\[(C_x ∪ C_y) − e) \cap (C_x' ∪ C_y') − e′ = (C_x \triangle \{e, y\}) \cap (C_x' \triangle \{e', y\}) = \{x, y\}.
\]
If D ≠ D′, then elimination gives a circuit D″ ⊆ (D ∪ D′) − \{x\} ⊆ (C ∪ y) − \{e, e′\}. But then D″ is not equal to C, C_2, or C_2′, which are the only circuits contained in C ∪ y. Thus D = D′ = \{x, y\}. □

Lemma 3.4. Let C and D be distinct circuits of a matroid M.
(i) If D ⊆ cl(C), then |D − cl(C)| ≥ 2.
(ii) If |D − C| = 1 and D′ is a circuit contained in C ∪ D other than C or D, then D′ ⊇ C − D.

Lemma 3.5. Let M be an excluded minor for M where M is the class of 2-laminar or 2-closure-laminar matroids. Let C_1 and C_2 be circuits of M neither of which is contained in the closure of the other such that |C_1 ∩ C_2| ≥ 2 when M is the class of 2-laminar matroids while r(cl(C_1) ∩ cl(C_2)) ≥ 2 otherwise. Then

(i) E(M) = cl(C_1) ∪ cl(C_2);
(ii) M has cl(C_1) and cl(C_2) as hyperplanes so |C_1| = |C_2|; and
(iii) if C is a circuit of M that meets both C_1 − cl(C_2) and C_2 − cl(C_1), then either C is spanning, or C contains C_1 ∆ C_2.

Proof. If f ∈ E(M) − (cl(C_1) ∪ cl(C_2)), then C_i ⊆ cl_M\f(C_j) for some \{i, j\} = \{1, 2\}. Thus C_i ⊆ cl_M(C_j); a contradiction. Hence (i) holds. Certainly C_2 − cl(C_1) contains an element e. As e ∉ cl(C_1), if \{x, y\} is an independent subset of cl(C_1) ∩ cl(C_2), then \{x, y\} is independent in M/e. It follows without difficulty that M/e ∩ M so either cl_M\e(C_2 − e) ⊇ C_1 or cl_M\e(C_1) ⊇ C_2 − e. The former yields a contradiction. Hence cl_M(C_1 ∪ e) ⊇ C_2, so cl_M(C_1 ∪ e) = E(M). Thus cl(C_1) is a hyperplane of M. By symmetry, so is cl(C_2). Hence |C_1| = |C_2|, so (ii) holds.

Now let C be a circuit of M that meets both C_1 − cl(C_2) and C_2 − cl(C_1). As C − cl(C_2) is non-empty, |C − cl(C_2)| ≥ 2, so |C ∩ C_1| ≥ 2. Suppose C is non-spanning. As cl(C_1) is a hyperplane and C meets C_2 − cl(C_1), it follows that cl(C_1) ⊇ cl(C) and cl(C) ⊇ cl(C_1). Since |C ∩ C_1| ≥ 2, if E(M) − (C ∪ C_1) contains an element e, then, as M/e ∈ M, we get a contradiction. Therefore E(M) = C ∪ C_1.

By symmetry, E(M) = C ∪ C_2. Thus C contains C_1 ∆ C_2, so (iii) holds. □

Theorem 3.6. The excluded minors for the class of 2-laminar matroids are M−(K_{2,3}), M_n(2) for all n ≥ 4, and N_n(2) for all n ≥ 5.

Proof. Suppose that M is an excluded minor for the class of 2-laminar matroids. Then M has circuits C_1 and C_2 with |C_1 ∩ C_2| ≥ 2 such that neither C_1 nor C_2 is contained in the closure of the other. Moreover, E(M) = C_1 ∪ C_2 and |C_1 ∩ C_2| = 2, otherwise we could delete an element of E(M) = C_1 ∪ C_2 or contract an element of C_1 ∩ C_2 and still get a non-2-laminar matroid. Let \{a, b\} = C_1 ∩ C_2. Next we show the following.

3.6.1. If g ∈ cl(C_1) − C_1, then there are circuits G and G′ that meet in \{g\} such that G ∪ G′ = C_1 ∪ g and \{a, b\} ⊆ G ⊆ cl(C_2). Furthermore, G, G′, and C_1 are the only circuits contained in C_1 ∪ g so cl(G) − C_2 = G − C_2.
As $g \in \text{cl}(C_1) - C_1$, there are circuits G and G' with $g \in G \cap G'$ and $G \cup G' = C_1 \cup g$. As $E(M) = C_1 \cup C_2$, we see that $g \in C_2 - C_1$. Since $C_2 \not\subseteq \text{cl}(C_1)$, there is an element e in $C_2 - \text{cl}(C_1)$. Then $M \setminus e$ is 2-laminar. Suppose that both G and G' meet $\{a, b\}$. Then $|G \cap C_2| \geq 2$ and $|G' \cap C_2| \geq 2$. Thus either $\text{cl}(C_2)$ contains both G and G', or C_2 is contained in $\text{cl}(G)$ or $\text{cl}(G')$. In the former case, $C_1 \subseteq \text{cl}(C_2)$, while, in the latter case, $C_2 \subseteq \text{cl}(C_1)$. We deduce that we may assume that $\{a, b\} \subseteq G$ and neither a nor b is in G'. Now $C_2 \cap G = \{a, b, g\}$. Then deleting an element of $C_1 - G$ shows that one of G and C_2 is contained in the closure of the other. As $C_2 \not\subseteq \text{cl}(C_1)$, it follows that $G \subseteq \text{cl}(C_2)$.

Since $C_1 \not\subseteq \text{cl}(C_2)$, we have at least two elements of C_1 that are not in $\text{cl}(C_2)$ so $G' - G$ has at least two elements. Thus $\text{cl}(G) \not\supseteq G'$. By Lemma 3.6.1(iii), as G' avoids $\{a, b\}$, it follows that $a \not\in \text{cl}(G')$. Hence $G \not\subseteq \text{cl}(G')$. Since $g \in C_2 - \text{cl}(C_1)$ and $M \setminus e$ is 2-laminar, we deduce that $G \cap G' = \{g\}$, and 3.6.1 holds.

As there are at least two elements in each of $C_2 - \text{cl}(C_1)$, $C_1 - \text{cl}(C_2)$, and $C_1 \cap C_2$, it follows that $r(M) \geq 4$. Next we show

3.6.2. $|\text{cl}(C_1) - C_1| = |\text{cl}(C_2) - C_2| \leq 1$.

Suppose that $|\text{cl}(C_1) - C_1| = |\text{cl}(C_2) - C_2| = 1$. For each i in $\{1, 2, \ldots, t\}$, let G_i and G_i' be the associated circuits given by 3.6.1 whose union is $C_i \cup g_i$ where $\{a, b, g_i\} \subseteq G_i$ and $G_i' = C_i \triangle G_i$. As G_i and G_j meet in at least two elements for distinct i and j in $\{1, 2, \ldots, t\}$, the closures of G_1, G_2, \ldots, G_t form a chain under inclusion. Say $\text{cl}(G_1) \supseteq \text{cl}(G_2) \supseteq \cdots \supseteq \text{cl}(G_t)$. Since $\text{cl}(G_1) - C_1 = G_1 - C_1$, it follows that $G_1 - C_1 \subseteq G_2 - C_1 \subseteq \cdots \subseteq G_t - C_1$. Now let $\{f_1, f_2, \ldots, f_s\} = \text{cl}(C_2) - C_2$. For each f_i, there are circuits F_i and F_i' whose union is $C_2 \cup f_i$ such that $\{a, b\} \subseteq F_i$ and $F_i' = C_2 \triangle F_i$. Moreover, we may assume that $\text{cl}(F_i) \supseteq \text{cl}(F_i')$ for all i.

Thus $F_i - f_i \subseteq \text{cl}(G_i)$ so $f_i \in \text{cl}(G_i)$. Hence, by 3.6.1 $f_i \in G_i$. Moreover, as $F_i \subseteq \{f_i, a, b, g_i, g_1, g_2, \ldots, g_t\}$ and $\{a, b, g_i, g_1, g_2, \ldots, g_t\} \subseteq \text{cl}(G_i)$, we see that $\text{cl}(F_i) \subseteq \text{cl}(G_i)$. Since $\{f_1, f_2, \ldots, f_s\} \subseteq G_1$, we deduce that $G_1 = \{g_1, a, b, f_1, f_2, \ldots, f_s\}$. As $\text{cl}(F_1) \subseteq \text{cl}(G_1)$, it follows by symmetry that $\text{cl}(F_1') = \text{cl}(G_1)$. Moreover, symmetry also gives that $F_1 = \{g_1, a, b, f_1, f_2, \ldots, f_s\}$. Since G_1 and F_1 are both circuits spanning the same set, they have the same cardinality, so $t = s$; that is,

$$|\text{cl}(C_1) - C_1| = |\text{cl}(C_2) - C_2|.$$

By Lemma 3.3 since $\{g_1, g_2, \ldots, g_t\}$ is independent, we get that $G_i - g_i \neq G_j - g_j$ for distinct i and j. Thus $t + 3 = |G_1| > |G_2| > \cdots > |G_t| \geq 4$ where the last inequality follows because G_i is not a proper subset of C_2.

Now suppose that $|G_2| = |G_1| - 1$ where $(G_1 - g_1) - (G_2 - g_2) = \{f_i\}$. Choose $e \in C_1 - \text{cl}(C_2)$. As $f_i \in G_2 - G_1'$, strong circuit elimination on G_1' and G_2'', both of which contain e, yields a circuit D containing f_i and avoiding e. Since D avoids $\{a, b\}$, it follows that $\{g_1, g_2\} \subseteq D$. As $e \not\in C_2 \cup D$, we deduce that $D \subseteq \text{cl}(C_2)$, otherwise we obtain the contradiction that $C_2 \subseteq \text{cl}(D) \subseteq \text{cl}(C_1)$. But $(G' - g_2) - (G_1' - g_1) = \{f_i\}$, so $D \subseteq G_2' \cup g_1$, and $(G_2' \cup g_1) \cap \text{cl}(C_2) = \{f_i, g_1, g_2\}$. As $D \subseteq \text{cl}(C_2)$, it follows that $D \subseteq \{f_i, g_1, g_2\}$. This is a contradiction to 3.6.1 because $D \not\subseteq \{F_i, F_i'\}$. We deduce that $|G_2| \leq |G_1| - 2$. Thus $|G_2| \leq t + 3 - 2 = t + 1$. Hence $|G_1| \leq 3$; a contradiction. We conclude that 3.6.2 holds.
By Lemma 3.5, cl(C₁) and cl(C₂) are hyperplanes of M, so |C₁| = |C₂|. Suppose that |cl(C₁) - C₁| = 0. Then, by 3.6.2, |cl(C₂) - C₂| = 0. Thus every circuit of M other than C₁ or C₂ must meet both C₁ - C₂ and C₂ - C₁. Assume M has such a circuit C that is non-spanning. Then, by Lemma 3.5(iii), C₁ ∪ C₂ ⊆ C. As |C₁ ∩ C₂| = 2 but C is non-spanning, it follows that C = C₁ ∪ C₂. Thus r(C) = r(M) - 1, so r(M) - 1 = |C₁| + |C₂| - 1. But r(M) - 1 = r(C₁) = |C₁| - 1. Hence |C₂| = 4 and, by symmetry, |C₁| = 4. It follows easily that M ≅ M(K₂,₃) = M₄(2). Now suppose that every circuit other than C₁ or C₂ is spanning. Then, letting |C₁| = n, we see that |C₂| = n and r(M) = r(C₁) + 1 = n. It follows that M ≅ M(K₂,₃) when n = 4, while M ≅ Mₙ(2) when n ≥ 5.

By 3.6.2 we may now suppose that cl(C₁) - C₁ = {g}. Then cl(C₂) - C₂ = {f}, say. By 3.6.1, {a, b, g, f} is a circuit of M as are both G' = (C₁ - {a, b, f}) ∪ {g} and F' = (C₂ - {a, b, g}) ∪ {f}. All circuits of M other than C₁, C₂, {a, b, g, f}, G', and F' must meet both C₁ - cl(C₂) and C₂ - cl(C₁). Hence, by Lemma 3.5(iii), every such circuit is spanning as C₁ ∩ C₂ properly contains G'. Again letting |C₁| = n, we see that |C₂| = n and r(M) = n. Thus M ≅ Mₙ(2) for some n ≥ 5.

Theorem 3.7. The excluded minors for the class of 2-closure-laminar matroids are M − (K₂,₃), Mₙ(2) for all n ≥ 4, and Pₙ(2) for all n ≥ 5.

Proof. Let M be an excluded minor for the class of 2-closure-laminar matroids. Clearly M is simple. Now M has two circuits C₁ and C₂ with r(cl(C₁) ∩ cl(C₂)) ≥ 2 such that neither is a subset of the closure of the other. By Lemma 3.5(i), E(M) = cl(C₁) ∪ cl(C₂). Moreover, |C₁ ∩ C₂| ≤ 2, otherwise we could contract an element of C₁ ∩ C₂ and still have a matroid that is not 2-closure-laminar. Next we observe that

3.7.1. (cl(C₁) ∪ cl(C₂)) - (C₁ ∪ C₂) ⊆ cl(C₁) ∩ cl(C₂).

Assume the contrary. If e ∈ cl(C₁) - (cl(C₂) ∪ C₁), then, as M \ e is 2-closure-laminar, cl(C₁) - e ⊆ cl(C₂), so cl(C₁) ⊆ cl(C₂); a contradiction.

We break the rest of the proof into three cases based on the size of C₁ ∩ C₂.

3.7.2. C₁ ∩ C₂ ≠ ∅.

Assume the contrary. Let {x, y} be a subset of cl(C₁) ∩ cl(C₂). To show 3.7.2 we first establish that

3.7.3. {x, y} ∉ C₂.

Suppose {x, y} ⊆ C₂. As M[{C₁ ∪ {x, y}} is connected, there is a circuit D₁ with {x, y} ⊆ D₁ ⊆ C₁ ∪ {x, y}. Then, for c in C₁ - D₁, the matroid M \ c is 2-closure-laminar. Now C₂ ∉ cl(D₁) since cl(D₁) = cl(C₁). Thus D₁ ⊆ cl(C₂), so C₁ ∩ cl(C₂) is non-empty. Choose an element z ∈ C₁ ∩ cl(C₂). Now M has circuits Cₓ and Cₓ', with x ∈ Cₓ ∩ Cₓ', and Cₓ ∪ Cₓ' = C₁ ∪ x. It also has circuits Cᵧ and Cᵧ', with y ∈ Cᵧ ∩ Cᵧ' and Cᵧ ∪ Cᵧ' = C₁ ∪ y. We may assume that z ∈ Cₓ ∩ Cᵧ. Then {x, z} ⊆ cl(Cₓ) ∩ cl(Cᵧ). As C₁ = (Cₓ ∪ Cᵧ) is non-empty, this implies that Cₓ ⊆ cl(Cₓ) since Cₓ ∉ cl(Cₓ) because cl(Cₓ) ⊆ cl(C₁). Similarly, Cᵧ ⊆ cl(Cᵧ).

Suppose (Cₓ - x) ∩ (Cᵧ - y) is non-empty and choose e in Cₓ ∩ Cᵧ. Then, as {e, x} ⊆ Cₓ ∩ Cₓ', and y ∉ Cₓ ∩ Cₓ', either Cₓ ⊆ cl(Cₓ') or Cₓ' ⊆ cl(Cₓ). In the latter case, Cₓ' ⊆ cl(Cₓ) ⊆ cl(Cᵧ), so C₁ ∩ Cₓ ⊆ cl(Cₓ); a contradiction. Thus Cₓ ⊆ cl(Cₓ'). But then C₁ and Cₓ have the same rank, and hence the same size. Then Cₓ = C₁ ∪ {x, c} for some c ∈ C₁. Now consider the 2-closure-laminar matroid
$M \setminus c$. In it, C_x and C_2 are circuits as $c \notin C_2$. Then $r_{M \setminus c}(\cl(M \setminus c)(C_x) \cap \cl(M \setminus c)(C_2)) \geq 2$ so $C_x' \subseteq \cl(M \setminus c)(C_2)$ or $C_x' \subseteq \cl(M \setminus c)(C_x')$. As $C_x' \subseteq \cl(M)(C_2)$ and $\cl(M \setminus c)(C_x') \subseteq \cl(M)(C_1)$, we obtain the contradiction that $C_x \subseteq \cl(C_2)$ or $C_x \subseteq \cl(C_1)$. We conclude that $C_x \cap C_x' = \{x\}$. Likewise $C_y \cap C_y' = \{y\}$.

If there is some element f in $C_x \cap C_y'$, then, as $f \in C_x$, we have $f \in \cl(C_2)$. But then $\{f, y\} \subseteq \cl(C_y') \cap \cl(C_2)$. Thus either $C_y' \subseteq \cl(C_2)$ or $C_x \subseteq \cl(C_y')$. The former cannot occur as $C_y \subseteq \cl(C_2)$; nor can the latter as $\cl(C_y') \subseteq \cl(C_1)$. Hence $C_x \cap C_y = \emptyset$. Likewise, $C_x \cap C_y' = \emptyset$. But then $C_x \Delta \{x, y\} = C_y$ and $C_y' \Delta \{x, y\} = C_y'$, Hence, by Lemma 3.3, x and y are parallel; a contradiction. Thus 3.7.3 holds.

Next we suppose that $x \in C_2$ and $y \notin C_2$. Choose a circuit D with $\{x, y\} \subseteq D \subseteq C_2 \cup y$. Then $D \subseteq \cl(C_1)$, since $C_2 - (D \cup C_1) \neq \emptyset$ and $\cl(D) \cap \cl(C_1)$ has rank at least two, while $\cl(D) \subseteq \cl(C_2)$. Now $(D \cap C_2) - x$ certainly contains some element d. Then $\{x, d\} \subseteq \cl(C_1) \cap \cl(C_2)$. Applying 3.7.3 gives a contradiction.

We may now assume that $\{x, y\} \cap C_2 = \emptyset$. Let D be a circuit with $\{x, y\} \subseteq D \subseteq C_2 \cup \{x, y\}$. Then $D \subseteq \cl(C_1)$ as $C_2 - (D \cup C_1) \neq \emptyset$. By replacing y by an element of $D \cap C_2$, we revert to the case eliminated in the last paragraph. Hence 3.7.2 holds.

Now, we consider the case when $C_1 \cap C_2 = 1$. Let $C_1 \cap C_2 = \{x\}$ and choose y in $(\cl(C_1 \cap \cl(C_2)) - (C_1 \cap C_2)$. Suppose $y \notin C_1 \cup C_2$. Then M has circuits D_1 and D_2 containing $\{x, y\}$ and contained in $C_1 \cup y$ and $C_2 \cup y$, respectively. Without loss of generality, as $E(M) - (D_1 \cup D_2)$ is non-empty, we may assume that $D_1 \subseteq \cl(D_2)$. Since $|D_1| \geq 3$, there is an element z of $D_1 - \{x, y\}$. Then z is in $\cl(D_2)$ and so is in $\cl(C_2)$. Thus $\{x, z\} \subseteq C_1 \cap \cl(M \setminus y')(C_2)$ and we obtain a contradiction. It follows, by 3.7.1, that $C_1 \cup C_2 = \cl(C_1) \cup \cl(C_2) = E(M)$.

We may now assume that $y \in C_1 \cap \cl(C_2)$. Then M has a circuit D such that $\{x, y\} \subseteq D \subseteq C_2 \cup y$. Clearly $D \subseteq \cl(C_2)$. To see that $D \subseteq \cl(C_1)$, we note that $C_2 - (D \cup C_1) \neq \emptyset$, and $C_1 \notin \cl(D)$ as $D \subseteq \cl(C_2)$. We now have $D - x \subseteq \cl(M \setminus x)(C_1 - x) \cap \cl(M \setminus x)(C_2 - x)$. Thus $r_{M \setminus x}(D - x) \leq 1$, otherwise, for some $\{i, j\} = \{1, 2\}$, we have $\cl(M \setminus x)(C_i - x) \subseteq \cl(M \setminus x)(C_i - x)$; a contradiction. As $y \in D - x$, we see that $r_{M \setminus x}(D) = 2$, so $D = \{x, y, y\}$ for some y'. We deduce that

3.7.4. \((x, y, y')\) is the only circuit of $M \cap (C_2 \cup y)$ containing $\{x, y\}$.

We show next that

3.7.5. \((C_2 - \{x, y\}) \cup y\) is the only circuit of $M \cap (C_2 \cup y)$ containing y but not x.

By Lemma 3.4(ii), every circuit D' of M that contains y, avoids x, and is contained in $C_2 \cup y$ must contain $(C_2 - \{x, y\}) \cup y$. If $y' \in D'$, then $D' = (C_2 \cup y) - x$. Using D' and D, we find a circuit D'' containing x and contained in $(C_2 \cup y')$. As D'' must also contain y, we see that $\{x, y\} \subseteq D''$ and we showed in 3.7.4 that M has no such circuit. We conclude that 3.7.5 holds.

By 3.7.5 and symmetry, M has $(C_1 - \{x, y\}) \cup y'$ as a circuit, say C_1'. Let C_2' be the circuit $(C_2 - \{x, y\}) \cup y$. Next we note that

3.7.6. \(\cl(C_2) - C_2 = \{y\}\) and \(\cl(C_1) - C_1 = \{y'\}\).

Assume there is an element y_1 in $\cl(C_2) - C_2 - y$. Then $\{y, y_1\}$ is a subset of $\cl(M \setminus x)(C_1 - x) \cap \cl(M \setminus x)(C_2 - x)$ that is independent in M / x. Thus $C_1 - x \subseteq \cl(M \setminus x)(C_2 - x)$ for some $\{i, j\} = \{1, 2\}$, so $C_i \subseteq \cl(M)(C_j)$; a contradiction. It follows that $\cl(C_2) - C_2 = \{y\}$. By symmetry, $\cl(C_1) - C_1 = \{y'\}$.

GENERALIZED LAMINAR MATROIDS 9
By Lemma 3.5, M has $\text{cl}(C_1)$ and $\text{cl}(C_2)$ as hyperplanes, so $|C_1| = |C_2|$. Let C be a circuit of M that is not C_1, C_2, C_1', C_2', or D. If $y \in C \subseteq C_2 \cup y$, then, by 3.7.4 and 3.7.5, C is D or C_2'. We deduce that C meets both $C_1 - \text{cl}(C_2)$ and $C_2 - \text{cl}(C_1)$. Then, by Lemma 3.5(iii), either C is spanning, or C contains $C_1 \triangle C_2$. But $|C_1 \cap C_2| = 1$ so C is spanning. We conclude that C_1, C_2, C_1', C_2', and D are the only non-spanning circuits of M. Hence $M \cong P_n(2)$ for some $n \geq 4$.

Finally, suppose $|C_1 \cap C_2| = 2$. Then M is not 2-laminar so it has as a minor one of the matroids identified in Theorem 3.6. But M cannot have a $N_n(2)$-minor for any $n \geq 5$ as this matroid has $P_{n-1}(2)$, an excluded minor for the class of 2-closure-laminar matroids, as a proper minor. Thus M has as a minor $M^-(K_{2,3})$ or $M_n(2)$ for some $n \geq 4$. The result follows by Lemmas 3.1 and 3.2.

Our methods for finding the excluded minors for the classes of k-laminar and k-closure-laminar matroids for $k = 2$ do not seem to extend to larger values of k.

4. INTERSECTIONS WITH OTHER CLASSES OF MATROIDS

We now discuss how the classes of k-closure-laminar and k-laminar matroids relate to some other well-known classes of matroids. Finkelstein [11] showed that all laminar matroids are gammoids, so they are representable over all sufficiently large fields [20, 15]. An immediate consequence of the following easy observation is that, for all $k \geq 2$, if M is a k-closure-laminar matroid or a k-laminar matroid, then M need not be representable and hence M need not be a gammoid.

Proposition 4.1. If $r(M) \leq k + 1$, then M is k-laminar and k-closure-laminar.

We use the next lemma to describe the intersection of the classes of 2-laminar and 2-closure-laminar matroids with the classes of binary and ternary matroids.

Lemma 4.2. The matroid $M^-(K_{2,3})$ is ternary and non-binary; each of $M_n(2)$ and $P_n(2)$ has a $U_{n,2n-3}$-minor; and $N_n(2)$ has a $U_{n,2n-4}$-minor.

Proof. The first part follows because $M^-(K_{2,3})$ can be obtained from $U_{2,4}$ by adding elements in series to two elements of the latter. Next we note that we get $U_{n,2n-3}$ both from $M_n(2)$ by deleting an element of the path P and from $P_n(2)$ by deleting the basepoints of the parallel connections involved in its construction. Finally, deleting the basepoints of the parallel connections involved in producing $N_n(2)$ gives $U_{n,2n-4}$.

The next two results follow without difficulty by combining the last lemma with Theorems 3.6 and 3.7 as the set of excluded minors for $M \cap N$ where M and N are minor-closed classes of matroids consists of the minor-minimal matroids that are excluded minors for M or N (see, for example, [18 Lemma 14.5.1]). Recall that $N_5(2)$ and $P_4(2)$ are the matroids obtained by adjoining, via parallel connection, two triangles across distinct elements of a 4-circuit and a triangle, respectively.

Corollary 4.3. A matroid M is binary and 2-laminar if and only if it has no minor isomorphic to $U_{2,4}$, $M(K_{2,3})$, or $N_5(2)$.

Corollary 4.4. A matroid M is binary and 2-closure-laminar if and only if it has no minor isomorphic to $U_{2,4}$, $M(K_{2,3})$, or $P_4(2)$.

Similarly, we find the excluded minors for the classes of ternary 2-laminar matroids and ternary 2-closure-laminar matroids by noting that deleting an element from F_7^* produces $M(K_{2,3})$, so F_7^* is not 2-laminar.
Corollary 4.5. A matroid M is ternary and 2-laminar if and only if it has no minor isomorphic to $U_{2,5}$, $U_{3,5}$, F_7, $M^-(K_{2,3})$, $M(K_{2,3})$, or $N_5(2)$.

Corollary 4.6. A matroid M is ternary and 2-closure-laminar if and only if it has no minor isomorphic to $U_{2,5}$, $U_{3,5}$, F_7, $M^-(K_{2,3})$, $M(K_{2,3})$, or $P_4(2)$.

Next we describe the intersection of the class of graphic matroids with the classes of 2-laminar and 2-closure-laminar matroids both constructively and via excluded minors.

Corollary 4.7. A matroid M is graphic and 2-laminar if and only if it has no minor isomorphic to $U_{2,4}$, $M(K_{2,3})$, F_7, $M^*(K_{3,3})$, or $N_5(2)$.

Corollary 4.8. A matroid M is graphic and 2-closure-laminar if and only if it has no minor isomorphic to $U_{2,4}$, $M(K_{2,3})$, F_7, or $P_4(2)$.

Lemma 4.9. Let M be a simple, connected, graphic matroid. Then M is 2-laminar if and only if M is a coloop, M is isomorphic to $M(K_4)$, or M is the cycle matroid of a graph consisting of a cycle with at most two chords such that, when there are two chords, they are of the form (u,v_1) and (u,v_2) where v_1 is adjacent to v_2.

Proof. Clearly each of the specified matroids is 2-laminar. Now let G be a simple, 2-connected graph. Suppose first that G is not outerplanar. By a theorem of Chartrand and Harary [6], either G is K_4 or G has $K_{2,3}$ as a minor. In the latter case, $M(G)$ is not 2-laminar. Now suppose that G is outerplanar. If G has two chords that are not of the form (u,v_1) and (u,v_2) where v_1 is adjacent to v_2, then $M(G)$ has $N_4(2)$ as a minor, and so is not 2-laminar. □

Proposition 4.10. Let M be a simple, connected, graphic matroid. Then M is 2-closure-laminar if and only if M is a coloop, M is isomorphic to $M(K_4)$, or M is the cycle matroid of a cycle with at most one chord.

Proof. This follows from Lemma 4.9 by noting that the cycle matroid of a cycle with two chords of the form (u,v_1) and (u,v_2) where v_1 is adjacent to v_2 has $P_4(2)$ as a minor. □

We now show that the intersections of the classes of k-laminar and k-closure-laminar matroids with the class of paving matroids coincide.

Theorem 4.11. Let M be a paving matroid, and k be a non-negative integer. Then M is k-laminar if and only if M is k-closure-laminar.

Proof. By Proposition 2.1(i), it suffices to prove that if M is not k-closure-laminar, then M is not k-laminar. We use the elementary observation that, since M is paving, for every flat F, either $F = E(M)$, or $M[F]$ is uniform. Suppose that C_1 and C_2 are circuits of M for which $r(cl(C_1) \cap cl(C_2)) \geq k$ but neither $cl(C_1)$ nor $cl(C_2)$ is contained in the other. Then neither $cl(C_1)$ nor $cl(C_2)$ is spanning. Hence both $M[cl(C_1)]$ and $M[cl(C_2)]$ are uniform. Let X be a basis of $cl(C_1) \cap cl(C_2)$. Then M has circuits C'_1 and C'_2 containing X such that $cl(C'_i) = cl(C_i)$ for each i. Thus M is not k-laminar. □

It is well known that the unique excluded minor for the class of paving matroids is $U_{0,1} \oplus U_{2,2}$. Using this, in conjunction with Theorems 3.6 and 4.11, it is not difficult to obtain the following.
Corollary 4.12. The following are equivalent for a matroid M.

(i) M is 2-laminar and paving;
(ii) M is 2-closure-laminar and paving;
(iii) M has no minor in $\{U_{0,1} \oplus U_{2,2}, M^{-}(K_{2,3})\} \cup \{M_n(2) : n \geq 4\}$.

References

E-mail address: tife20@lsu.com

E-mail address: oxley@math.lsu.edu

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana, USA