
LAMINAR MATROIDS

TARA FIFE AND JAMES OXLEY

Abstract. A laminar family is a collection A of subsets of a set
E such that, for any two intersecting sets, one is contained in the
other. For a capacity function c on A, let I be {I : |I ∩ A| ≤
c(A) for all A ∈ A}. Then I is the collection of independent sets
of a (laminar) matroid on E. We present a method of compacting
laminar presentations, characterize the class of laminar matroids
by their excluded minors, present a way to construct all laminar
matroids using basic operations, and compare the class of laminar
matroids to other well-known classes of matroids.

1. Introduction

The matroid terminology used here will follow Oxley [17]. We start
with some definitions not found in [17]. Given a set E, a family A

of subsets of E is laminar if, for every two sets A and B in A with
A ∩ B 6= ∅, either A ⊆ B or B ⊆ A. Let A be a laminar family
of subsets of a finite set E. Let c be a function from A into the set
of real numbers. Define I to be the set of subsets I of E such that
|I ∩ A| ≤ c(A) for all A in A. It is well known (see, for example,
[10, 11, 13, 15]) and easily checked that I is the set of independent
sets of a matroid on E. We call c a capacity function for the matroid
(E, I) and write this matroid as M(E,A, c). A matroid M is laminar
if it is isomorphic to M(E,A, c) for some set E, laminar family A, and
capacity function c. We call (E,A, c) a presentation for M .

Laminar matroids have appeared quite frequently in the literature
during the last fifteen years. Interest in them has focused on how cer-
tain optimization problems, particularly the matroid secretary prob-
lem, behave for such matroids [2, 5, 9, 13, 14, 21]. Huynh [12] gave
an overview of this work. With the exception of the thesis of Finkel-
stein [10], where it is shown, for example, that every laminar matroid
is a gammoid, there appears to have been little work done on exploring
the matroid properties of the class of laminar matroids. Here we do
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just that. In particular, we give three characterizations of this class of
matroids beginning with the following.

Theorem 1.1. A matroid is laminar if and only if, for all circuits C1

and C2 with C1 ∩ C2 6= ∅, either cl(C1) ⊆ cl(C2), or cl(C2) ⊆ cl(C1).

As we shall see, it is not difficult to show that the class of laminar
matroids is minor-closed. For each r ≥ 3, let Yr be the matroid that
is obtained by truncating, to rank r, the parallel connection of two r-
element circuits. Observe that the deletion from Yr of the basepoint of
the parallel connection is isomorphic to Ur,2r−2. From the last result,
Yr is not laminar. Indeed, the collection of such matroids is the set of
excluded minors for the class of laminar matroids.

Theorem 1.2. A matroid is laminar if and only if it has no minor
isomorphic to any member of {Yr : r ≥ 3}.

A transversal matroid is nested if it has a nested presentation, that is,
a transversal presentation (B1, B2, . . . Bn) such that B1 ⊆ B2 ⊆ · · · ⊆
Bn. These matroids were introduced by Crapo [6] and have appeared
under a variety of names including freedom matroids [7], generalized
Catalan matroids [4], shifted matroids [1] and Schubert matroids [20]
(see [3]). As we shall show, all nested matroids are laminar. Oxley,
Prendergast, and Row [18] showed that the class of nested matroids is
minor-closed and they determined the excluded minors for this class.
As the reader will observe, these excluded minors are strikingly similar
to the excluded minors for the class of laminar matroids.

Theorem 1.3. A matroid is nested if and only if, for all r ≥ 2, it has
no minor isomorphic to the matroid that is obtained by truncating, to
rank r, the direct sum of two r-element circuits.

Crapo [6] showed that nested matroids coincide with the class of
matroids that can be obtained from the empty matroid by applying
the operations of adding a coloop and taking a free extension (see also
[4, Theorem 3.14]). A straightforward modification of this result yields
the following characterization of nested matroids.

Theorem 1.4. The class of nested matroids coincides with the class of
matroids that can be obtained from the empty matroid by adding coloops
and truncating.

Our third characterization of the class of laminar matroids is a con-
structive one that reveals how nested matroids and laminar matroids
differ.
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Theorem 1.5. The class of laminar matroids coincides with the class
of matroids that can be constructed by beginning with the empty matroid
and using the following operations.

(i) Adding a coloop to a previously constructed matroid.
(ii) Truncating a previously constructed matroid.

(iii) Taking the direct sum of two previously constructed matroids.

In the next section, we prove Theorem 1.1 and show that every lami-
nar matroid has a unique presentation with no superfluous information.
In Section 3, we prove Theorem 1.2, while, in Section 4, we prove The-
orem 1.5 and determine all of the laminar matroids whose duals are
also laminar. Finkelstein [10] showed that all laminar matroids are
gammoids. Hence, by a result of [19], all laminar matroids are repre-
sentable over all sufficiently large fields. In Section 5, we characterize
binary laminar matroids and ternary laminar matroids.

2. Canonical Presentation

In this section, we obtain a presentation for a laminar matroid that
has no redundant information. It is clear that, for a capacity function c
of a laminar matroid, we lose no generality in assuming that the range
of c is the set of non-negative integers. The following lemma is an
immediate consequence of the definition of laminar matroids.

Lemma 2.1. If I is independent in M(E,A, c) and A ∈ A, then I is
independent in M(E,A− {A}, c|A−{A}).

Throughout this section, we shall assume that M is the laminar
matroid M(E,A, c). Here and throughout the paper, whenever we
write c(A), it will be implicit that A ∈ A. We say that a set A ∈ A

is essential if M(E,A, c) 6= M(E,A− {A}, c|A−{A}). When M has no
loops, we say that (E,A, c) is a canonical presentation for M if every
A ∈ A is essential. When M has a loop, we say that a presentation of
M is canonical if it can be written as (E,A∪{A0}, c), where A0 = cl(∅)
and (E − A0,A, c|A) is a canonical presentation of M\A0.

We omit the proof of the following well-known observation (see, for
example, [15, Section 2.4]).

Lemma 2.2. Suppose A and B are members of A such that B $ A
and c(B) ≥ c(A). Then B is not essential.

Let A and H be members of a laminar family A and suppose that
A $ H. If there is no G ∈ A such that A $ G $ H, then we say that
A is a child of H. For A in A, denote by χ(A) the set of children of A,
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and let S(A) = {e : e ∈ A− ∪F∈χ(A)F}. Observe that, in M |A, either
all of the elements of S(A) are coloops or all such elements are free.

We define b(A) = |S(A)| +
∑

F∈χ(A) c(F ). When A is essential, we

now bound the capacity of A in terms of b(A).

Lemma 2.3. If c(A) ≥ b(A), then A is not essential.

Proof. Let I be independent in M(E,A−{A}, c|A−{A}). Then |I∩F | ≤
c(F ) for all F ∈ χ(A), and |I ∩ S(A)| ≤ |S(A)|. Since the set S(A)
together with children of A partitions A, we see that

|I∩A| = |I∩S(A)| +
∑

F∈χ(A)

|I∩F | ≤ |S(A)| +
∑

F∈χ(A)

c(F ) = b(A).

Hence A is not essential. �

The last lemma generalizes the following elementary fact about canon-
ical presentations. We omit the proof.

Corollary 2.4. If (E,A, c) is a canonical presentation for M , then
|A| > c(A) for all A in A.

With the goal of showing the uniqueness of canonical presentations,
next we exhibit some relationships between circuits and canonical pre-
sentations. In particular, the next lemma will show that if M has no
loops, then cl(C) ∈ A for each circuit C and c (cl(C)) = |C| − 1.

Lemma 2.5. Let C be a circuit of M . Assume that (E,A, c) is canon-
ical. Then

(i) A contains a member AC of capacity |C|−1 such that C ⊆ AC;
and

(ii) if |C| ≥ 2, then AC = cl(C)− cl(∅).

Proof. Part (i) holds if |C| = 1. Assume that |C| ≥ 2, and that
e ∈ C. Then, since C is dependent, but C − e is independent, we
must have e ∈ A for some A ∈ A where |(C − e) ∩ A| ≤ c(A), but
|C ∩A| > c(A). Then c(A) = |(C − e)∩A|. Now, C ∩A is dependent,
since |C ∩A| > c(A). Thus C ∩A = C, so C ⊆ A and c(A) = |C| − 1.
Hence (i) holds.

To prove (ii), assume that |C| ≥ 2. Let f be an element of cl(C) −
cl(∅). By (i), C ⊆ AC . Suppose f ∈ cl(C) − C. Then there is some
circuit D with f ∈ D ⊆ C ∪ f . Then, by (i), D ⊆ AD ∈ A and
|D| − 1 = c(AD). Since f is not a loop, C ∩ D, and hence AC ∩ AD,
is non-empty. As A is a laminar family, this implies that AC ⊆ AD, or
AD ⊆ AC . But, since c(AD) = |D| − 1 ≤ |C| − 1 = c(AC), we deduce,
from Lemma 2.2, that AD ⊆ AC . Thus f ∈ AC as desired. Hence
cl(C)− cl(∅) ⊆ AC .
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Now, suppose that f ∈ AC − C. Since f ∈ AC , by the definition of
a canonical presentation, f 6∈ cl(∅). Arbitrarily choose an element e of
C. Then, since |(C − e) ∪ f | = |C| > c(AC) and (C − e) ∪ f ⊆ AC , we
have that (C − e) ∪ f is dependent, so f ∈ cl(C). �

This lemma has the following consequence.

Corollary 2.6. If C and D are intersecting circuits of an arbitrary
matroid N such that cl(C) 6⊆ cl(D) and cl(D) 6⊆ cl(C), then N is not
laminar.

Proof. Clearly neither C nor D is a loop. Assume that N is laminar
and let (E,A, c) be a canonical presentation of N . Since C meets D,
we deduce that AC meets AD. But neither is a subset of the other. �

Theorem 2.7. A laminar matroid M has a unique canonical presen-
tation. Indeed, when M is loopless, A = {cl(C) : C is a circuit of M}
and c(cl(C)) = r(C) = |C| − 1.

The core of the proof of this theorem is contained in the next result.

Lemma 2.8. Let (E,A, c) be a canonical presentation for a loopless
laminar matroid M . If A ∈ A, then A is dependent. Moreover, if C is a
maximum-sized circuit contained in A, then AC = A so c(A) = |C|−1.

Proof. By Corollary 2.4, c(A) < |A|. Thus A is dependent. Now
choose A to be a minimal counterexample to 2.8. As A ∩ AC ⊇ C,
either A $ AC or AC $ A. In the first case, by Lemma 2.2, c(A) ≤
c(AC) − 1 = |C| − 2. Hence A cannot contain an independent set of
size |C| − 1. This is a contradiction since C ⊆ A. Thus AC $ A. Now
A has a child A′ such that AC ⊆ A′ $ A. The choice of A implies that
A′ = AC .

Let A1, A2, . . . , An be the children of A other than AC and write A0

for AC . Then, for each i, our choice of A means that c(Ai) = |Ci| − 1,
where Ci is a maximum-sized circuit contained in Ai. Arbitrarily choose
ei in Ci. Then Ci− ei is a basis for Ai. Clearly S(A) = A− (A0 ∪A1 ∪
· · · ∪ An).

By Lemma 2.3, |S(A)| +
∑n

i=0 c(Ai) = b(A) ≥ c(A) + 1. Now
|
⋃n
i=0(Ci − ei) ∪ S(A)| = b(A) so

⋃n
i=0(Ci − ei) ∪ S(A) contains a

subset X such that |X| = c(A) + 1. As |X ∩ A| = |X| > c(A), we see
that X is dependent. Thus X contains a circuit Z and cl(Z) = AZ .
Then c(AZ) = |Z| − 1 ≤ |X| − 1 = c(A). As AZ and A meet, it follows
by Lemma 2.2 that AZ ⊆ A. Now Z 6⊆ S(A), otherwise AZ is a proper
subset of A that is in A but is not contained in a child of A. Thus
either Z meets Ci and Cj for some distinct i and j, or Z meets Ci and
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S(A). In each case, by Corollary 2.6, cl(Ci) ⊆ cl(Z), or cl(Z) ⊆ cl(Ci).
If Z meets S(A), then Z 6⊆ cl(Ci) so cl(Ci) $ cl(Z). The last inclusion
also holds if Z meets Cj since cl(Ci) and cl(Cj) are disjoint. As cl(Ci)
is a child of A, and cl(Ci) ⊆ cl(Z) $ A, it follows that cl(Z) = cl(Ci);
a contradiction. �

Proof of Theorem 2.7. It suffices to prove the result for loopless ma-
troids. Suppose that (E,A, c) is a canonical presentation for M , and
let M be loopless. Then A ⊇ {AC : C is a circuit of M}. Now take
A in A. Then, by Lemma 2.8, A = AC where C is a maximum-sized
circuit contained in A. Thus the theorem holds. �

We omit the proof of the following elementary result (see, for exam-
ple, [17, Exercise 1.1.5]).

Lemma 2.9. Let N be a matroid, C be a circuit of N , and e be a
non-loop element of cl(C) − C. Then N has circuits D and D′ such
that e ∈ D ∩D′ and (D ∪D′)− e = C.

Next we prove our first main result.

Proof of Theorem 1.1. By Corollary 2.6, if C and D are intersecting
circuits in a laminar matroid, then cl(D) ⊆ cl(C) or cl(C) ⊆ cl(D).
To prove the converse, let N be a matroid in which, for every two
intersecting circuits, the closure of one is contained in the closure of
the other. We may assume that N is loopless. Let A′ = {cl(C) : C ∈
C(N)}.

Suppose A1, A2 ∈ A′ and A1 ∩A2 6= ∅. Let C1 and C2 be circuits so
that cl(Ci) = Ai for each i in {1, 2}. If C1 ∩C2 6= ∅, then, by the given
condition, A1 ⊆ A2 or A2 ⊆ A1. Now suppose that C1 ∩ C2 = ∅ and
e ∈ cl(C1) ∩ cl(C2). Since e is not a loop, Lemma 2.9 implies that, for
each i in {1, 2}, there are circuits Di and D′i of M such that e ∈ Di∩D′i
and Di ∪ D′i = Ci ∪ e. Now e ∈ D1 ∩ D2 so our hypothesis implies,
without loss of generality, that cl(D1) ⊆ cl(D2).

If cl(D′1) is contained in either cl(D2) or cl(D′2), then C1 and hence
cl(C1) is contained in cl(C2). But otherwise, both cl(D2) and cl(D′2)
are subsets of cl(D′1), so cl(C2) ⊆ cl(C1). We conclude that A′ is a
laminar family.

For each A in A′, let c′(A) = rN(A), and let N ′ = M(E,A′, c′). We
shall show that every circuit of N is dependent in N ′, and every circuit
of N ′ is dependent in N . From this, it will follow immediately that
N = N ′ (see, for example, [17, Lemma 2.1.22]). Suppose C is a circuit
of N . Then |C ∩ cl(C)| = |C| > rN(C) = c′(cl(C)), so C is dependent
in N ′. Now let D be a circuit of N ′. Then A′ contains a set A′ such that
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c′(A′) < |D ∩ A′|. But, for all d in D, as D − d is independent in N ′,
it follows that |(D− d)∩A′| ≤ c′(A′). Hence D ⊆ A′ and c′(A′) < |D|.
But c′(A′) = rN(cl(C ′)) for some circuit C ′ of N . Thus D is dependent
in N otherwise c′(A′) ≥ |D|; a contradiction.

We conclude that N = N ′, so N is laminar and the theorem holds.
�

The next two results are immediate consequences of Theorem 1.1.

Corollary 2.10. A matroid is laminar if and only if, for every pair
C1, C2 of non-spanning circuits with C1∩C2 6= ∅, either cl(C1) ⊆ cl(C2)
or cl(C2) ⊆ cl(C1).

Corollary 2.11. Every matroid with at most one non-spanning circuit
is laminar.

Our third corollary of Theorem 1.1 requires some more proof.

Corollary 2.12. Let M be a loopless laminar matroid and (E,A, c)
be its canonical presentation. Suppose |E| ≥ 2. Then the following are
equivalent.

(i) M is connected;
(ii) E ∈ A; and

(iii) M has a spanning circuit.

Proof. Since M is loopless, clearly (iii) implies (i). Suppose E ∈ A.
Then, by Lemmas 2.5 and 2.8, as M is loopless, E = AC = cl(C)
where C is a maximum-sized circuit of M . Hence (ii) implies (iii).

Finally, suppose M is connected but E 6∈ A. If M has an element e
that is in no member of A, then e is a coloop of M ; a contradiction.
Thus, if F1, F2, . . . , Fk are the maximal members of A, then F1 ∪ F2 ∪
· · · ∪ Fk = E. We shall show that k = 1. Assume k > 1. For each
i in {1, 2, . . . , k}, let Ci be a maximum-sized circuit contained in Fi.
Then, by Lemmas 2.5 and 2.8, Fi = cl(Ci). As M is connected, it has
a circuit D meeting C1 and C2. By Corollary 2.6, either cl(D) ⊆ cl(Ci)
for some i in {1, 2}, or cl(D) contains both F1 and F2. Since F1 and
F2 are disjoint, the latter holds. By Theorem 2.7, AD ∈ A, and AD
contains Fi and F2; a contradiction. Hence E ∈ A. We conclude that
(i) implies (ii), so the corollary holds. �

The next result follows immediately from the last result and Theo-
rem 2.7.

Corollary 2.13. Let M be a loopless laminar matroid and (E,A, c) be
its canonical presentation. Then the members of A are connected flats
of M .
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Corollary 2.14. In a laminar matroid with (E,A, c) as its canonical
presentation, if F is a connected flat of M with |F | ≥ 2, then F ∈ A.

Proof. Since F is a connected flat of M , by Corollary 2.12 M |F has
a spanning circuit C in M |F . But C is also a circuit of M , so F =
cl(C) ∈ A. �

3. Excluded Minors

In this section, we show that the class of laminar matroids is a minor-
closed, and we prove our excluded-minor characterization.

Lemma 3.1. Every minor of a laminar matroid is laminar.

Proof. Let M be a laminar matroid and (E,A, c) be its canonical pre-
sentation. Suppose e ∈ E. Clearly {A−e : A ∈ A} is a laminar family;
we denote it by A−e. Observe that, if A and A′ are members of A with
A $ A′, then |A′ −A| ≥ 2. To see this, note that, by Lemmas 2.2 and
2.3 and Corollary 2.4, c(A) + 2 ≤ c(A′) + 1 ≤ b(A′) ≤ c(A) + |A′ −A|.

For each A′ ∈ A− e, choose the unique A ∈ A with A− e = A′, and
let c′(A′) = c(A). We shall show that

3.1.1. M\e = M(E − e,A− e, c′).

Suppose that I is independent in M\e. Then |I ∩ A| ≤ c(A) for all
A in A. As e /∈ I, it follows that |I ∩ (A− e)| ≤ c′(A− e) for all A− e
in A− e. Thus I is independent in M(E − e,A− e, c′).

Now, suppose that J is independent in M(E − e,A − e, c′). Then
|J ∩ (A−e)| ≤ c′(A−e) for all A−e ∈ A−e. Now, for each A ∈ A, we
have |J ∩A| = |J ∩ (A− e)| ≤ c′(A− e) = c(A), so J is independent in
M and, hence, is independent in M\e. We conclude that 3.1.1 holds.

To show that M/e is laminar, we may assume that e is not a loop as
otherwise the result holds by 3.1.1. Now, define c′′ on A− e by

c′′(A− e) =

{
c(A)− 1 if e ∈ A;

c(A) if e 6∈ A.

We will show that

3.1.2. M/e = M(E − e,A− e, c′′).
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Suppose that I is independent in M/e. Then I ∪ e is independent in
M . Thus, |(I ∪ e) ∩ A| ≤ c(A) for all A ∈ A. Now

|I ∩ (A− e)| = |(I ∪ e) ∩ (A− e)| =

{
|(I ∪ e) ∩ A| − 1 if e ∈ A;

|(I ∪ e) ∩ A| if e 6∈ A;

≤

{
c(A)− 1 if e ∈ A;

c(A) if e 6∈ A;

= c′′(A− e).
Thus I is independent in M(E − e,A′, c′′).

Now suppose that J is independent in M(E − e,A − e, c′′). Then
|J ∩ A′| ≤ c′′(A′) for all A′ ∈ A′. Let A ∈ A be such that A′ = A− e.
Then

|(J ∪ e) ∩ A| =

{
|J ∩ (A− e)|+ 1 if e ∈ A;

|J ∩ (A− e)| if e 6∈ A;

≤

{
c′′(A− e) + 1 if e ∈ A;

c′′(A− e) if e 6∈ A;

= c(A).

We conclude that J ∪ e is independent in M , so J is independent in
M/e. Thus 3.1.2 holds and, hence, so does the theorem. �

We note that, from the well-known matroid P6, one can see that the
presentations in 3.1.1 and 3.1.2 need not be canonical.

We now prove our second main result.

Proof of Theorem 1.2. Recall that, for each r ≥ 3, the matroid Yr is
obtained from the parallel connection of two r-element circuits C1 and
C2 across the basepoint p by truncating this parallel connection to rank
r. Since the only new circuits created by truncation are spanning, it
follows that C1 and C2 are the only non-spanning circuits of Yr.

3.2.1. Yr is an excluded minor for the class of laminar matroids for all
r ≥ 3.

To see this, first observe that, by Corollary 2.10, Yr is not laminar.
Let e ∈ E. Without loss of generality, we may assume that e ∈ C1.
The only potential non-spanning circuit of M\e is C2. Thus M\e is
laminar by Corollary 2.11.

The contraction M/p has C1−p and C2−p as its only non-spanning
circuits. Since these circuits are disjoint, it follows by Corollary 2.10
that M/p is laminar. Now assume that e 6= p and e ∈ C1. Then M/e
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has C1 − e as its only non-spanning circuit. Thus M/e is laminar by
Corollary 2.11. We conclude that 3.2.1 holds.

Now let N be an excluded minor for the class of laminar matroids.
Since N is not laminar, by Theorem 1.1, N contains two intersecting
circuits C1 and C2 such that C1 ∩ C2 6= ∅ and neither cl(C1) ⊆ cl(C2)
nor cl(C2) ⊆ cl(C1). Choose such a pair of circuits {C1, C2} such that
|C1 ∪ C2| is minimal.

SinceN is an excluded minor, |C1∩C2| = 1 otherwise, for e in C1∩C2,
the matroid N/e has C1 − e and C2 − e as intersecting circuits with
the closure of neither containing the other, so N/e is not laminar; a
contadiction. Similarly, E(N) = C1∪C2 otherwise deleting an element
of E(N)− (C1 ∪ C2) would yield a non-laminar matroid.

3.2.2. Let C be a circuit of N such that C meets C1 − cl(C2) and
C2 − cl(C1). Then C is spanning.

To see this, note that, as C 6⊆ cl(C1) and C 6⊆ cl(C2), Theorem 1.1
implies that C1 ⊆ cl(C) and C2 ⊆ cl(C). Hence C is spanning.

3.2.3. cl(Ci) = Ci for each i in {1, 2}.

It suffices to prove this assertion for i = 1. Suppose e ∈ cl(C1)−C1.
By Lemma 2.9, N has circuits D and D′ with e ∈ D∩D′ and C1 ∪ e =
D ∪D′. Both C1−D and C1−D′ are non-empty so |C1 ∪C2| exceeds
both |C2 ∪ D| and |C2 ∪ D′|. Hence, by the minimality assumption,
either cl(C2) is contained in one of cl(D) or cl(D′); or cl(C2) contains
both cl(D) and cl(D′). This gives a contradiction since, in the first
case, cl(C2) ⊆ cl(C1) while, in the second, cl(C1) ⊆ cl(C2). Thus
cl(C1) = C1.

3.2.4. |C1| = r(N) = |C2|.

Take e in C1 − C2. As cl(C2) = C2, it follows that C1 − e and C2

are intersecting circuits of N/e. Hence, by Theorem 1.1, clN/e(C1 −
e) ⊇ clN/e(C2), or clN/e(C2) ⊇ clN/e(C1 − e). The first possibility
gives the contradiction that clN(C1) ⊇ clN(C2 ∪ e) ⊇ clN(C2). Hence
cl(C2 ∪ e) ⊇ cl(C1), so cl(C2 ∪ e) = E(N). Thus C2 ∪ e spans N while
the circuit C2 does not, so r(N) = |C2|. By symmetry, 3.2.4 holds.

3.2.5. The only non-spanning circuits of N are C1 and C2.

Let D be a non-spanning circuit of N that differs from C1 and C2.
Then D meets each of C1 − C2 and C2 − C1. As cl(C2) = C2 and
cl(C1) = C1, we deduce by 3.2.2 that D is spanning. Thus 3.2.5 holds.

Since cl(C1) = C1, we deduce that r(N) ≥ 3. Recalling that a ma-
troid of given rank is uniquely determined by a list of its non-spanning
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circuits (see, for example, [17, Proposition 1.4.14]), we deduce that
N ∼= Yr for some r ≥ 3. �

The following is an immediate consequence of Theorem 1.2.

Corollary 3.3. Every matroid of rank at most two is laminar.

4. Constructing Laminar Matroids

In this section, we begin by proving our third characterization of
laminar matroids, Theorem 1.5. We then show that all nested matroids
are laminar and we determine precisely which laminar matroids have
duals that are also laminar.

Proof of Theorem 1.5. We first show that the class of laminar matroids
is closed under adding coloops, truncating, and taking direct sums. If
M(E,A, c) is a laminar matroid, then we see that M(E,A, c)⊕U1,1 =
M(E ∪ e,A, c). Further, when r(M(E,A, c)) > 0, one easily checks
that T (M(E,A, c)) = M(E,A′, c′) where A′ = A∪{E}, while c′(E) =
rM(E) − 1, and c′(A) = c(A), for all A in A′ − {E}. Finally, let
(E1,A1, c1) and (E2,A2, c2) be canonical presentations for laminar ma-
troids on disjoint sets E1 and E2. Then M(E1,A1, c1)⊕M(E2,A2, c2) =
M(E1 ∪ E2,A1 ∪ A2, c), where c coincides with c1 when restricted to
A1 and with c2 when restricted to A2.

Let M be a laminar matroid having (E,A, c) as its canonical presen-
tation. To prove that every laminar matroid can be constructed from
the empty matroid in the manner described, we proceed by induction
on |E(M)|. The result is immediate if |E(M)| ≤ 1. Assume it holds
if |E(M)| < k and let |E(M)| = k ≥ 2. If M(E,A, c) is disconnected,
then M(E,A, c) is the direct sum of its components, each of which can
be constructed. Hence we may assume that M is connected. Thus M
is loopless. Moreover, by Corollary 2.12, E ∈ A. Let A1, A2, . . . , An be
the children of E in A. Then, by Theorem 2.7, each Ai is a flat of M
and c(Ai) = r(Ai).

Suppose first that E − ∪ni=1Ai is non-empty and let e be in this set.
Then e is free in M . Now M\e can be constructed in the manner
described. Since M can be obtained from M\e by adjoining e as a
coloop and then trucating the resulting matroid, we deduce that M
can be constructed in the desired manner. We may now assume that
E = ∪ni=1Ai.

For each i in {1, 2, . . . , n}, let Mi be M(Ai,Ai, ci), where Ai = A ∩
2Ai , and ci is the restriction of c to Ai. Evidently

Mi = M |Ai. (4.1)
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Since E = ∪ni=1Ai, it follows that n ≥ 2.
We show next that, for all i in {1, 2, . . . , n},

r(Mi) < r(M) < r(M1) + r(M2) + · · ·+ r(Mn). (4.2)

The first inequality follows by Theorem 2.7, Lemma 2.2, and Corol-
lary 2.12 since r(Ai) = c(Ai) < c(E) = r(M). The second inequality
is an immediate consequence of the fact that M is connected. We
conclude that (4.2) holds.

Now let r = r(M) and let M ′ be the truncation of M1⊕M2⊕· · ·⊕Mn

to rank r. Then, by (4.1) and (4.2), for all i in {1, 2, . . . , n},

M |Ai = Mi = M ′|Ai. (4.3)

To complete the proof of the theorem, observe that the following are
equivalent for a subset X of E.

(i) X is a non-spanning circuit of M ′;
(ii) X is a non-spanning circuit of M1 ⊕M2 ⊕ · · · ⊕Mn;

(iii) X is a circuit of Mi for some i in {1, 2, . . . , n};
(iv) X is a non-spanning circuit of M .

Since r(M ′) = r(M), we deduce that M ′ = M . �

Now let M be a nested matroid having (B1, B2, . . . , Bn) as a presen-
tation with ∅ 6= B1 $ B2 $ · · · $ Bn. Let B0 = E(M)−Bn. Then one
easily checks that M = M(E,B, c) where B = {B0, B1, . . . , Bn} and
c(Bi) = i for all i. In fact, all nested matroids are laminar.

Lemma 4.1. Let N be a transversal matroid having a nested presenta-
tion (B1, B2, . . . Bn). Then N is laminar with the set A in its canonical
presentation consisting of cl(∅) together with the unique maximal subset
of {B1, B2, . . . , Bn} no two members of which are equal.

Proof. Clearly we may assume that each Bi is non-empty. As above, let
B0 = E(N)− Bn and take c(B0) = 0. The members of B1, B2, . . . , Bn

need not be distinct. Pass through this list of sets deleting each Bi

for which Bi = Bi+1. Let B be the resulting collection of distinct
sets Bi1 , Bi2 , . . . , Bik . Each of these sets is properly contained in its
successor. Define c(Bit) = rN(Bit). Then it is straightforward to check
that N = M(E(N),B ∪ {B0}, c). �

Corollary 4.2. A loopless laminar matroid M with canonical presen-
tation (E,A, c) is nested if and only if A is totally ordered under set
inclusion.

Proof. If M is nested, then it is an immediate consequence of the
last lemma that A is indeed totally ordered. Conversely, let A =
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{A0, A1, . . . , An} where Ai $ Ai+1 for all i < n. Let B be the family of
sets consisting of cl(A1) copies of A1 along with c(Ai)− c(Ai−1) copies
of Ai for all i in S{2, 3, . . . , n}. The corollary now follows without
difficulty. �

The last result is reminiscent of the following result of [18], which
was elegantly restated by Bonin and de Mier [3]. Recall that a cyclic
flat of a matroid is a flat that is a union of circuits.

Lemma 4.3. A matroid is nested if and only if its collection of cyclic
flats is totally ordered under set inclusion.

The next result determines precisely which matroids have the prop-
erty that both M and M∗ are laminar, noting that nested matroids are
a fundamental class of such matroids.

Proposition 4.4. The following are equivalent for a matroid M .

(i) Both M and M∗ are laminar.
(ii) Each component of M is either a nested matroid or is a trun-

cation to some non-zero rank of the direct sum of two uniform
matroids of positive rank.

The proof of this proposition will use the following.

Lemma 4.5. Let (E,A, c) be the canonical presentation of a connected
laminar matroid M . If A ∈ A, then E − A is a connected flat of M∗.

Proof. Suppose e ∈ A and e ∈ cl∗(E − A). Then e 6∈ cl(A − e). This
gives a contradiction to Theorem 2.7 as A is the closure of a circuit of
M . We deduce that E − A is flat of M∗.

Now assume M∗|(E − A) is disconnected. Then so is M/A. Let X
and Y be distinct components of M/A. As M has no coloops, each
of X and Y has at least two elements. If both X ∪ A and Y ∪ A
are connected flats of M , then, by Corollary 2.13, both are in A and
we contradict the fact that A is laminar. Thus we may assume that
M |(X ∪A) is disconnected. Then the last matroid has X and A as its
components. Now M has a circuit C that meets both A and X. This
circuit must also meet E− (X ∪A) otherwise M |(X ∪A) is connected.
Now C − A is a union of circuits of M/A. Since no such circuit meets
both X and E − (X ∪ A), there is a circuit D of M/A contained in
C ∩ X. As r(A) + r(X) = r(A ∪ X), it follows that D is a circuit of
M that is properly contained in C; a contradiction. We conclude that
E − A is a connected flat in M∗. �

Proof of Proposition 4.4. Since, by Theorem 1.5, the class of laminar
matroids is closed under direct sums, it suffices to prove the proposition
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in the case that M is connected. If M is nested, then, by [18], so is M∗.
Now suppose that M is the truncation to some positive rank r of the
direct sum of uniform matroids M1 and M2 where r(M1) ≥ r(M2) > 0.
Since each uniform matroid is laminar and the class of laminar matroids
is closed under direct sums and truncation, M is laminar. To see that
M∗ is also laminar, suppose first that r = r(M1). Then M has E(M2)
as its unique proper non-empty cyclic flat. Hence M∗ has E(M1) as its
unique proper non-empty cyclic flat so, by Lemma 4.3, M∗ is nested
and hence is laminar. We may now assume that r > r(M1). For each
i in {1, 2}, let Ei = E(Mi). Then, by determining the hyperplanes of
M , it follows that the only non-spanning circuits of M∗ consist, for
each permutation (i, j) of {1, 2} of those subsets of Ei with exactly
|Ei| − r + rj + 1 elements. Thus M∗|Ei is uniform for each i, and M∗

is obtained by truncating the direct sum of M∗|E1 and M∗|E2 to rank
|E(M)| − r. We deduce, from above, that M∗ is laminar. We conclude
that if (ii) holds, then both M and M∗ are laminar.

To prove the converse, let M be a connected laminar matroid such
that M∗ is laminar but M is not nested. Let (E,A, c) be the canonical
presentation of M . Since M is not nested, A contains two disjoint
sets, A1 and A2. Without loss of generality, we may assume that A1

and A2 are minimal members of A. Let (E,A∗, c∗) be the canonical
presentation of M∗. By Lemmas 4.5 and 2.14, E −A1 and E −A2 are
in A∗. Thus E − A1 and E − A2 are disjoint. Hence E = A1 ∪ A2.
Since the only non-spanning circuits of M are contained in A1 or A2,
and M |Ai is uniform matroid for each i, the result follows. �

The last proof was inspired by the work of Bonin and de Mier [3]
on lattice path matroids. Elsewhere, we will describe the relationship
between the class of such matroids and the class of laminar matroids.

5. Which Laminar Matroids are Binary or Ternary?

In this section, we determine precisely which laminar matroids are
binary or ternary. We begin by showing that the class of laminar
matroids is closed under the operation of parallel extension.

Lemma 5.1. Every parallel extension of a laminar matroid is laminar.

Proof. Let M be a laminar matroid having (E,A, c) as its canonical
presentation. By Theorem 1.5, it suffices to prove the result when M
is loopless. Let e be an element of M and let f be an element not in E.
Suppose first that e is in a 2-circuit C of M . Then AC ∈ A. Now add
f to every member of A that contains e leaving the capacity of each
such set unchanged. It is straightforward to check that this process
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yields a laminar matroid that is an extension of M and has {e, f} as
a circuit. If e is not in a 2-circuit of M , then add {e, f} to A as a set
of capacity 1, and add f to every member of A that contains e leaving
the capacity of each such set unchanged. Again, it is straightforward
to check that this gives a laminar matroid that is a parallel extension
of M . �

The characterizations of the laminar matroids that are binary or
ternary involve the matroid Yr. We recall that, for r ≥ 3, this matroid is
the truncation to rank r of the parallel connection, across the basepoint
p, of two r-element circuits. In particular, Y3 is isomorphic to a single-
element deletion of M(K4). Moreover, as noted in the introduction,
for all r,

Yr\p ∼= Ur,2r−2. (5.1)

Theorem 5.2. The following are equivalent for a matroid N .

(i) Each component of N has rank at most one or can be obtained
from a circuit by a sequence of parallel extensions.

(ii) N is graphic and laminar.
(iii) N is regular and laminar.
(iv) N is binary and laminar.
(v) N has no minor in {Y3, U2,4}

Proof. It is clear that each of (i)–(iv) implies its successor. We complete
this proof by showing that (v) implies (ii), and that (ii) implies (i). To
show that (v) implies (ii), suppose that N has no Y3- or U2,4-minor.
Then N has no minor in {U2,4, F7, F

∗
7 ,M

∗(K5),M
∗(K3,3)}. Thus N

is graphic. Moreover, by (5.1), Yr has a U2,4-minor for all r ≥ 4. It
follows, by Theorem 1.2, that N is laminar. Thus (v) implies (ii).

To show that (ii) implies (i), suppose that N is a graphic laminar
matroid. Then, by Theorem 1.5 and Lemma 5.1, we may assume that
N = M(G) for some simple 2-connected graph G having at least three
vertices. Now G does not have K4\e as a minor. Take a maximal-
length cycle C in G. Then either E(G) = E(C), or G\E(C) has a
path joining distinct non-consecutive vertices of C. In the latter case,
G has K4\e as a minor. This contradiction completes the proof. �

To prove the characterization of ternary laminar matroids, we shall
use a result of Cunningham and Edmonds (in [8]) that decomposes a 2-
connected matroid into circuits, cocircuits, and 3-connected matroids.
The terminology used here follows [17, Section 8.3].



16 TARA FIFE AND JAMES OXLEY

Theorem 5.3. Let M be a 2-connected matroid. Then M has a tree
decomposition T in which every vertex label is 3-connected, a circuit, or
a cocircuit, and there are no two adjacent vertices that are both labelled
by circuits or are both labelled by cocircuits. Moreover, T is unique to
within relabelling of its edges.

The tree decomposition of M whose uniqueness is guaranteed by the
last theorem is called the canonical tree decomposition of M .

Theorem 5.4. The following are equivalent for a matroid N .

(i) N is ternary and laminar.
(ii) N has no minor in {U2,5, U3,5, Y3}.

(iii) Each component of si(N) has rank at most one, is U2,4 or U2,4⊕2

U2,4, or can be obtained from an n-circuit for some n ≥ 3 by
2-summing on copies of U2,4 across k distinct elements of the
circuit for some k in {0, 1, . . . , n}.

Proof. It is clear that (i) implies (ii). Moreover, it follows from (5.1)
that (ii) implies (i).

To show that (ii) implies (iii), suppose that N has no minor in
{U2,5, U3,5, Y3}. Clearly, we may also assume that N is simple and
2-connected and r(N) ≥ 2. By Tutte’s Wheels-and-Whirls Theorem
(see, for example, [17, Theorem 8.8.4]), every 3-connected matroid with
at least four elements has a U2,4- or M(K4)-minor. As N has no minor
in {U2,5, U3,5, Y3}, the only possible 3-connected minor of N with at
least four elements is U2,4. Consider the canonical tree decomposition
T for N . By Theorem 5.2, we may assume that N is non-binary. Then
T has a vertex labelled by a copy of U2,4 and every other vertex of T
is labelled by a circuit, a cocircuit, or a copy of U2,4. Moreover, as N
is simple, no leaf of T is labelled by a cocircuit. If T has an interior
vertex labelled by a cocircuit, then this vertex has neighbors x and y
each of which is labelled by a circuit or a copy of U2,4. Thus N has
as a minor the parallel connection of two copies of U2,3, so N has a
Y3-minor; a contradiction. Now every U2,4-labelled vertex of T is a leaf
since if a U2,4-labelled vertex has two neighbors, then each is labelled
by a circuit or a copy of U2,4, so N has Y3 as a minor. It follows that
N is U2,4 or U2,4 ⊕2 U2,4, or N can be obtained from an n-circuit C by
2-summing on copies of U2,4 across k distinct elements of C for some k
with 0 ≤ k ≤ n. We deduce that (ii) implies (iii).

Finally, suppose (iii) holds. Then one easily checks that N has no
minor in {U2,5, U3,5, Y3}, so (iii) implies (ii), and the theorem holds. �
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