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Abstract. A result of Ding, Oporowski, Oxley, and Vertigan reveals that a large 3-connected
matroid M has unavoidable structure. For every n > 2, there is an integer f(n) so that if |E(M)| >

f(n), then M has a minor isomorphic to the rank-n wheel or whirl, a rank-n spike, the cycle or
bond matroid of K3,n, or U2,n or Un−2,n. In this paper, we build on this result to determine what
can be said about a large structure using a specified element e of M . In particular, we prove that,
for every integer n exceeding two, there is an integer g(n) so that if |E(M)| > g(n), then e is an
element of a minor of M isomorphic to the rank-n wheel or whirl, a rank-n spike, the cycle or bond
matroid of K1,1,1,n, a specific single-element extension of M(K3,n) or the dual of this extension, or
U2,n or Un−2,n.

1. Introduction

In 1993, Oporowski, Oxley, and Thomas [9] showed that any sufficiently large 3-connected graph
has a large wheel or a large K3,n as a minor. Ding, Oporowski, Oxley, and Vertigan generalized
this graph result to find unavoidable minors of large 3-connected matroids, first in the binary case
[4] and later in the general case [5]. The latter result is stated in the next theorem. The matroid
terminology used here will follow Oxley [10]. In particular, we use Wk and M(Wk) to denote the
rank-k whirl and the cycle matroid of the k-spoked wheel. We refer to the latter as the rank-k
wheel.

Theorem 1.1. For every integer n > 2, there is an integer f(n) so that every 3-connected matroid

with more than f(n) elements has a minor isomorphic to M(Wn), Wn, a tipless rank-n spike,

M(K3,n), M∗(K3,n), or U2,n or Un−2,n.

Figure 1. Geometric illustrations of three of the unavoidable minors: the rank-n
whirl, Wn; the rank-n tipless free spike; and M(K3,n), which has rank n + 2.

In this paper, we extend this theorem to show that, by slightly modifying the list of unavoidable
minors, we can ensure that we capture any specified single element of a large 3-connected matroid
in such an unavoidable minor.

Date: January 23, 2012.
1991 Mathematics Subject Classification. 05B35.

1



Let r be an integer exceeding two. A matroid M is a rank-r spike with tip t if and only if M has
the following properties [10, p.41]:

(1) E(M) is the union of r lines L1, L2, . . . , Lr each of which is a 3-element circuit containing
the point t;

(2) for all k in {1, 2, . . . , r − 1}, the union of any k of L1, L2, . . . , Lr has rank k + 1; and
(3) r(L1 ∪ L2 ∪ · · · ∪ Lr) = r.

The circuits of such a matroid include L1, L2, . . . , Lr together with all sets of the form (Li ∪Lj)− t
for i 6= j. If the matroid has no other non-spanning circuits, it is a rank-r free spike with a tip.
Evidently, both the Fano and non-Fano matroids are rank-3 spikes with a tip, although neither is a
free spike. If we delete the tip t from a spike M , then we obtain a rank-r tipless spike. If, instead,
we delete an element x from M other then the tip, we get a rank-r spike with a tip and a cotip, the
tip being the element t and the cotip being the third element on the line of M spanned by {t, x}.
We denote by Tr the set of all rank-r spikes having a tip and a cotip. It is easy to see that if N is
a member of Tr, then N∗ is also in Tr. Moreover, if N has tip t and cotip c, by freely adding an
element y on the line {t, c} of N , we obtain a rank-r spike with tip t. It is well-known that, for all
r ≥ 3, there is a unique rank-r binary spike with a tip, and there is a unique rank-r binary spike
with a tip and a cotip.

Let n be an integer greater than 2. The matroid M(K1,1,1,n) has n copies of M(K4) as restrictions,
with one 3-point line common to all these restrictions. We call this common line the spine of
M(K1,1,1,n). We shall denote by M(K3,n)+ the matroid obtained by freely adding an element p to
the spine of M(K1,1,1,n) and deleting every other element from the spine. Notice that deleting p
from M(K3,n)+ produces M(K3,n) (see Figure 2). The following is the main result of the paper.

Theorem 1.2. Let M be a 3-connected matroid, and let e be an element of M . For every integer

n > 2, there is an integer g(n) so that if |E(M)| ≥ g(n), then e is an element of a minor of M that

is isomorphic to M(Wn), Wn, M(K1,1,1,n), M∗(K1,1,1,n), M(K3,n)+, (M(K3,n)+)∗, U2,n, Un−2,n,

or a member of Tn.

Figure 2. Geometric illustrations of three matroids: Tn is the rank-n free spike
with a tip and a cotip; M(K1,1,1,n) and M(K3,n)+ have rank n + 2 with the white
dots representing points that are not present in the matroid.

This theorem shows that not only does every huge 3-connected matroid M contain a large highly
structured minor, but a slight modification of such a minor can be chosen to contain any specified
element of M . The next two corollaries specialize the main result to the classes of binary and
graphic matroids.

Corollary 1.3. Let M be a 3-connected binary matroid, and let e be an element of M . For every

integer n > 2, there is an integer h(n) so that if |E(M)| ≥ h(n), then e is an element of a minor
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of M that is isomorphic to M(Wn), the rank-n binary spike with a tip and a cotip, M(K1,1,1,n), or

M∗(K1,1,1,n).

Corollary 1.4. Let G be a simple 3-connected graph, and let e be an edge of G. For every integer

n > 2, there is an integer k(n) so that if |E(G)| ≥ k(n), then e is an edge of a minor of G that is

isomorphic to Wn or K1,1,1,n.

Following [4] and [5], we make no attempt to find sharp estimates for the functions g(n), h(n),
and k(n) in Theorem 1.2, Corollary 1.3, and Corollary 1.4. By contrast, Lemos and Oxley [8] did
find sharp bounds for the functions in the corresponding results for connected matroids.

Theorem 1.5. Let M be a connected matroid having n elements. Then

(i) M has a minor isomorphic to U1,m or Um−1,m for some m ≥
√

2n; and

(ii) for each element e of M , there is a minor of M that uses e and is isomorphic to U1,p or

Up−1,p for some p ≥
√

n − 1 + 1.

In [3], the first two authors have extended Theorem 1.2 for binary matroids by showing that, for
every sufficiently large 3-connected such matroid M , one can capture any two elements of M in
the rank-n wheel, the rank-n binary spike with a tip and a cotip, or the cycle or bond matroid of
K1,1,1,n, these four matroids being the binary members of the list given in Theorem 1.2. It remains
open to extend this two-element result to the case when M need not be binary.

2. Background

In this paper, we will rely heavily on the following result of Brylawski [2] and Seymour [12] (see
also [10, p.129]).

Theorem 2.1. Let N be a connected minor of a connected matroid M , and suppose that e ∈
E(M) − E(N). Then at least one of M\e and M/e is connected and contains N as a minor.

By Theorem 1.1, a sufficiently large 3-connected matroid has, as a minor, one of the following
five matroids:

(i) an n-element line or its dual;
(ii) a rank-n spike;
(iii) a wheel or whirl of rank n;
(iv) M(K3,n); or
(v) M∗(K3,n).

In each of the next five sections, we treat one of these cases identifying an unavoidable minor using
the special element. That identification is made possible by using Theorem 2.1. The main theorem
is proved in the last section by combining the results from these five sections.

The reader familiar with the matroid concept of roundedness may be reminded of it by the main
theorem of this paper. Roundedness was introduced by Seymour [14] (see, for example, [10, p.481])
to encompass certain results relating particular minors of a matroid to specific elements of the
matroid. For example, Bixby [1] proved that if x is an element of a connected non-binary matroid
M , then M has a U2,4-minor using x; and Seymour [15] extended this showing that if x and y are
distinct elements of a non-binary 3-connected matroid M , then M has a U2,4-minor using x and y.
The results of this paper were motivated in part by the idea of roundedness and by the usefulness
of the results that relate to it.

In Section 7, we use the following result of Kung [7], which gives an upper bound on the number
of elements in a simple matroid that does not contain a long-line minor.

Theorem 2.2. If M is a simple, rank-r matroid with no U2,q+2-minor, then M has at most qr−1

q−1

elements.
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Flowers were introduced by Oxley, Semple, and Whittle [11] to describe crossing 3-separations in
3-connected matroids. We will not require a detailed knowledge of flowers here, but the following
definitions will be useful. For a positive integer n, we write [n] for {1, 2, . . . , n}. Let M be a
matroid with rank function r. Its connectivity function, λM , is defined for all subsets X of E(M)
by λM (X) = r(X)+ r(E −X)− r(M); its local connectivity function, ⊓M , is defined for all subsets
Y and Z of E(M) by ⊓M (Y,Z) = r(Y )+r(Z)−r(Y ∪Z). A detailed discussion of the properties of
these two functions can be found in [10, Sections 8.1 and 8.2]. Now suppose that M is 3-connected.
Let (P1, P2, . . . , Pn) be an ordered partition Φ of E(M). Consider the following properties.

(1) |Pi| ≥ 2 for all i in [n].
(2) λM (Pi) = 2 for all i in [n].
(3) λM (Pi ∪ Pi+1) = 2 for all i in [n] where the indices are considered modulo n.
(4) λM (∪i∈SPi) = 2 for all proper non-empty subsets S of [n].
(5) ⊓M(Pi, Pj) = 2 for all distinct i and j in [n].

If the first three properties hold, then Φ is a flower with every set Pi being a petal. When the first
four properties hold, this flower is an anemone. Should all five properties hold, this anemone is a
paddle.

3. Long Lines

In this section, we examine the case where a connected matroid with an identified element has
a long line or its dual as a minor.

Theorem 3.1. Let M be a connected matroid with a U2,n-minor for some n ≥ 3. If e ∈ E(M),
then e is an element of a connected minor of M that is isomorphic to U2,m for some m >

√
n.

Proof. The result is immediate if n = 3. Thus we may assume that n ≥ 4. By Theorem 2.1, there
is a connected minor N of M so that N\e ∼= U2,n or N/e ∼= U2,n. If N\e ∼= U2,n, then, as N is
connected, r(N) = r(N\e) = 2. Thus N ∼= U2,n+1, or N is obtained from U2,n by adding e parallel
to some other element. In either case, we easily identify a U2,n-minor of M using e.

Now assume N/e ∼= U2,n. Thus r(N) = 3 and N is as shown in Figure 3 where the possible
non-trivial lines through subsets of {1, 2, . . . , n} have not been depicted. Let f be an element of

Figure 3. Geometric illustration of N in rank 3. Possible lines containing subsets
of [n] have not been shown.

N/e. Then N/f has rank 2 and has {e} as a rank-1 flat. Simplify N/f without deleting e to
produce a minor isomorphic to U2,k, for some k. If k >

√
n, then we have identified a desired

minor.
Assume k ≤ √

n. Since N has n+1 elements, a largest parallel class X of N/f has p elements for
some p ≥ n

k ≥ √
n ≥ 2. As N has no parallel elements, the elements of X are collinear in N , and

the matroid N |(X ∪ f) ∼= U2,p+1, so N |(X ∪ f) is connected. By Theorem 2.1, N has a connected
minor N ′ with ground set X ∪ {e, f} such that N |(X ∪ f) is a minor of N ′. Now r(N ′) is 2 or 3.
In the latter case, e is a coloop of N ′, a contradiction. Thus r(N ′) = 2, so N ′ ∼= U2,p+2, or N is
obtained from U2,p+1 by adding e parallel to some other element. In either case, we easily identify
a U2,p+1-minor of M using e. Since p + 1 ≥ √

n + 1, the lemma holds. �
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4. Spike Minors

In this section, we examine the case where a connected matroid with an identified element has a
large spike as a minor. It is not hard to show that if a non-tip element is contracted from a rank-r
spike with a tip and no cotip, the resulting matroid is a rank-(r− 1) spike with a tip, no cotip, and
an extra element parallel to the tip.

It is easy to see that M(K1,1,n) is the parallel connection of n 3-point lines, L1, L2, . . . , Ln, across
a common basepoint (see Figure 4). Extending this, we have the following.

Figure 4. The graph of K1,1,n and the geometry of M(K1,1,n) in rank n + 1.

Lemma 4.1. Let M be a connected matroid so that M\x ∼= M(K1,1,n) for some n ≥ 3. Then M\x
is the parallel connection of n 3-point lines, L1, L2, . . . , Ln, across a common basepoint, t. If x is

not contained in the closure of any proper subset of these lines, then M is a rank-(n+1) spike with

a tip and a cotip.

Proof. We can freely add a point y on the line of M containing t and x. Let Ln+1 be the line
{t, x, y}. By the definition of a spike given above, the result is a rank-(n + 1) tipped spike. Hence,
without y, the matroid is a rank-(n + 1) spike with a tip and a cotip. �

Using this characterization, we prove the main theorem of this section.

Theorem 4.2. Let M be a connected matroid with an element e so that M\e is isomorphic to a

matroid in Tn for some n ≥ 6. Then e is an element of a minor of M that is isomorphic to a

matroid in Tm for some m ≥ n
2
≥ 3.

Proof. Let t and c be the tip and cotip of M\e. If e lies on the line joining c and t, then we can
easily find the desired minor. If not, M/c is connected, and M/c\e is a rank-(n − 1) spike with a
tip t and no cotip. By definition, this matroid is the union of n − 1 lines L1, L2, . . . , Ln−1, each of
which is a 3-element circuit containing the point t so that, for all j in [n − 2], the union of any j
of L1, L2, . . . , Ln−1 has rank j + 1, and r(L1 ∪ L2 ∪ · · · ∪ Ln−1) = n − 1. Let {L1, L2, . . . , Lk} be a
smallest set of these lines for which e ∈ clM (L1 ∪ L2 ∪ · · · ∪ Lk).

Suppose k ≤ n
2
. Let {s1, s2, . . . , sk} be a transversal of {L1, L2, . . . , Lk} avoiding t. The matroid

M\e/{c, s1, s2, . . . , sk−1} is a spike with a tip, no cotip, and k − 1 extra elements parallel to t. In
the loopless matroid M/{c, s1, s2, . . . , sk−1}, the element e is in the closure of (L1 ∪L2 ∪ · · · ∪Lk)−
{s1, s2, . . . , sk−1}, so e is in the closure of Lk. Without deleting e, simplify the last matroid. From
this simplification, we can remove some set consisting of all but two elements of the closure of Lk

to produce a member of Tm with e as the tip or cotip and with m = n − 1 − (k − 1) ≥ n
2
.

We may now assume that k > n
2
. Notice that k ≤ n − 2, since the union of any n − 2 lines has

rank n − 1, which is the rank of M/c\e. Moreover, the restriction (M/c)|(L1 ∪ L2 ∪ · · · ∪ Lk) is
isomorphic to M(K1,1,k). By Lemma 4.1, (M/c)|(L1 ∪ L2 ∪ · · · ∪ Lk ∪ e) is a rank-m spike with a
tip t and a cotip x and with m = k + 1 > n

2
+ 1. �
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5. Wheels and Whirls

In this section, we consider the case where a connected matroid with an identified element has a
large wheel or a large whirl as a minor. First, we define a fan, which can be thought of as a partial
wheel or whirl. In a simple, cosimple matroid M , consider a sequence (s0, r1, s1, . . . , sn−1, rn, sn) of
distinct elements of M so that every set {si−1, ri, si} with 0 < i ≤ n is a triangle of M and every
set {rj , sj, rj+1} with 0 < j < n is a triad of M . Here we call such a sequence a fan, noting that
this specializes the terminology used in [10], where two other related structures are also called fans.
The following result of Seymour shows how closely related fans are to wheels and whirls [13] (see
also [10, p. 339]).

Theorem 5.1. Let M be a connected, simple, cosimple matroid having (s0, r1, s1, . . . , sn−1, rn, sn)
as a fan and having another element r0 so that {r0, s0, r1} and {rn, sn, r0} are triads and {s0, r0, sn}
is a triangle. Then M is a wheel or whirl of rank n + 1.

Viewing a fan as a substructure of a wheel makes it natural to refer to each si as a spoke element
and each ri as a rim element. The following is a technical lemma.

Lemma 5.2. Let M be a 3-connected matroid with an element e so that M\e is 3-connected having

a fan F = (s0, r1, s1, . . . , sn−1, rn, sn) with n ≥ 3. Let E(M) − (F ∪ e) be a set A having at least

two elements. If no triad of F is a triad in M , and M has no Uq−2,q-minor, then there is a set X
of at least n

q−1
elements of {r1, r2, . . . , rn} so that e ∈ cl(A ∪ ({r1, r2, . . . rn} − X)).

Proof. We begin by establishing the following.

5.2.1. {s0, sn} ⊆ clM (A).

Suppose s0 /∈ cl(A). Then, as the disjoint union of A and F − s0 is E(M\e) − s0, it follows that
s0 ∈ cl∗M\e(F−s0). Thus, in (M\e)∗, the set F is spanned by {r1, r2, . . . , rn, sn}, so r∗M\e(F ) ≤ n+1.

But rM\e(F ) ≤ n + 1, so rM\e(F ) + r∗M\e(F ) − |F | ≤ 1. Hence (F,A) is a 2-separation of M\e.
This contradiction and symmetry imply that (5.2.1) holds.

Let N = M\{e, s1, s2, . . . , sn−1} and R = {r1, r2, . . . , rn}. Next we show that

5.2.2. R ∪ {s0, sn} is a circuit of M and r∗N (R) = 1.

In M\e, every set {ri, si, ri+1} with i in [n − 1] is a triad. In M\{e, si}, then, {ri, ri+1} is a
series pair, and so has corank 1. In N , it follows that every set {ri, ri+1} has corank at most 1. A
straightforward induction argument establishes that the set R∪ {s0, sn} is a circuit of M and so is
a circuit of M\{e, s1, s2, . . . , sn−1}. Hence, by orthogonality, no element of R∪{s0, sn} is a coloop.
Thus r∗N ({r1}) = 1 and r∗N ({ri, ri+1}) = 1 for all i in [n − 1]. Hence clN∗({r1}) = R and (5.2.2)
follows.

Suppose i ∈ [n− 1]. By hypothesis, {ri, si, ri+1} is not a triad of M , so M has {e, ri, si, ri+1} as
a cocircuit. Let M1 = M\{s1, s2, . . . , sn−1}. We will show next that

5.2.3. {e, ri, ri+1} is a triad of M1.

Every set {e, ri, ri+1} with i in [n − 1] is a union of cocircuits of M1. By orthogonality with the
circuit R ∪ {s0, sn}, it follows that a cocircuit contained in {e, ri, ri+1} contains ri if and only if it
contains ri+1. Thus {e, ri, ri+1} is a triad of M1 unless e is a coloop of M1. In the exceptional case,
{e, s1, s2, . . . , sn−1} contains a cocircuit of M containing e. This contradicts orthogonality with the
triangles of F .

In M1, the set R ∪ e has corank at least 2, since it contains a triad. Now N = M1\e so, by
(5.2.2), r∗M1\e

(R) = 1. Therefore, r∗M1
(R) ≤ 2, so

5.2.4. r∗M1
(R ∪ e) = 2.
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Consider M∗
1 . In this matroid, R ∪ e has rank 2 and, by (5.2.3), every set {e, ri, ri+1} with i in

[n − 1] is a triangle. Since M∗
1 has no U2,q-minor, M∗

1 has fewer than q parallel classes. As one of
these classes is {e}, and since the n elements of R are contained in the other parallel classes, there
is a parallel class X with at least n

q−1
elements. In M∗

1 |(R ∪ e), the set X is a hyperplane, and

its complement, (R ∪ e) − X, is a cocircuit. Moreover, R − X 6= ∅. Thus, in M1, the element e is
contained in the closure of E(M1)−e−X. Hence e ∈ cl(E(M)−{s1, s2, . . . , sn−1}−e−X). Recall
that A = E(M)− (F ∪ e) = E(M)−{s0, s1, s2, . . . , sn−1, sn}− e−R. By (5.2.1), {s0, sn} ⊆ cl(A),
so e ∈ cl(E(M) − {s0, s1, s2, . . . , sn−1, sn} − e − X) = cl(A ∪ (R − X)). �

We are now ready to prove the main theorem of this section.

Theorem 5.3. Let M be a connected matroid with no Uq−2,q-minor and no U2,q-minor for some

q ≥ 4. If M has an element e and a minor isomorphic to M(Wq3) or Wq3

, then M has a minor

containing e isomorphic to M(Wq) or Wq.

Proof. Let n = q3. By Theorem 2.1 and by switching to the dual if necessary, we may assume
M\e = N where N is a rank-n wheel or whirl. Let {s0, s1, . . . , sn−1} be the set S of spokes of N ,
and {r1, r2, . . . , rn} be the set R of rim elements of N , where every set {si−1, ri, si} is a triangle of
N and every set {rj , sj , rj+1} is a triad of N with all subscripts being interpreted modulo n.

The matroid M is connected, and M\e is 3-connected. If e is parallel to another element x in M ,
then M\x is a minor of the desired type. Hence we may assume that e is not parallel to another
element. Thus M is 3-connected.

The set S is a basis of M , so S ∪ e contains a unique circuit C containing e. Let X be a largest
set of consecutive spokes avoiding C. Without loss of generality, when X is non-empty, we may
assume that X = {s1, s2, . . . , sk}. Every set {si−1, ri, si} with i in [k + 1] is a triangle in M\e
and so is a triangle in M . Now suppose i ∈ [k]. Then either {ri, si, ri+1} or {e, ri, si, ri+1} is a
cocircuit of M . Since the circuit C is a subset of (S − X) ∪ e, the spoke si /∈ C. By orthogonality,
{e, ri, si, ri+1} is not a cocircuit of M . Thus {ri, si, ri+1} is a triad of M , and M contains the fan
F = (s0, r1, s1, r2, s2, . . . , rk, sk).

Assume that k ≥ q. The circuit C is contained in the complement of F , so we will remove this
complement to produce a wheel or whirl minor. It is clear that we may contract rim elements of
a wheel or whirl and simplify to produce a smaller wheel or whirl. Let R′ = {rk+1, rk+2, . . . , rn}.
The matroid N/R′ has {sk, sk+1, . . . , sn−1, s0} as a parallel class, and the elements of C − e are
contained in this parallel class. The matroid M/R′ has e in the closure of the set C − e and so
e ∈ cl({sk, sk+1, . . . , sn−1, s0}). Either M/R′ has {e, sk, sk+1, . . . , sn−1, s0} as a parallel class or has
e as a loop. In the latter case, contract the elements of R′ from M one at a time until e becomes
parallel to some remaining element of R′. In both cases, by simplifying the resulting matroid
without removing e, we obtain a wheel or whirl minor with at least q spokes.

Now assume that k ≤ q − 1, noting that this includes the case when X is empty. Then every

set of q consecutive spokes of N contains an element of C. Let |C − e| = m. Then m ≥ q3

q = q2.

Suppose si ∈ S − C. The set {ri, si, ri+1} is a triad of M\e. By orthogonality with the circuit C
of M , it follows that {ri, si, ri+1} is a cocircuit of M . In M , the complement of {ri, si, ri+1} is a
hyperplane Hi containing C (see Figure 5). The element si /∈ cl(C), so M\si/ri has C as a circuit.
Notice that (M\si/ri)\e is a wheel or whirl of rank n − 1. In this way, we may remove si and ri

for all si in S − C to produce a matroid M1 in which C is a circuit and M1\e is a wheel or whirl
of rank m having C − e as its set of spokes.

Reindex both the set of spokes and the set of rim elements of M1\e so that M1\e has {si−1, ri, si}
as a triangle and {ri, si, ri+1} as a triad for all i in [m], where sm = s0 and rm+1 = r1. By orthogonal-
ity with C, it follows that each {e, ri, si, ri+1} is a cocircuit of M1. Now (s0, r1, s1, . . . , rm−2, sm−2)
is a fan F1 of M1\e and no triad of F1 is a triad of M1. Let A1 = E(M1\e) − F1. Then

7



Figure 5. The triad T ∗
i = {ri, si, ri+1} and the complementary hyperplane Hi.

A1 = {rm−1, sm−1, rm}. Thus |A1| ≥ 2 and we may apply Lemma 5.2 to get a subset Y of
{r1, r2, . . . , rm−2} having at least m−2

q−1
elements so that e ∈ cl(A1 ∪ ({r1, r2, . . . , rm−2} − Y )). Ob-

serve that

|Y | ≥ q2 − 2

q − 1
=

q2 − 1

q − 1
− 1

q − 1
= q + 1 − 1

q − 1
.

As q ≥ 4, it follows that |Y | ≥ q + 1.
Let M2 = M1/({r1, r2, . . . , rm−2} − Y ). In this matroid, e is in the closure of A1. Suppose e

is a loop of M2. Then contracting some proper subset of {r1, r2, . . . , rm−2} − Y from M1 makes
e parallel to some other element of the set. On the other hand, when e is not a loop of M2, it
is spanned by the set A1, which equals {rm−1, sm−1, rm}. In this case, contracting some subset
of {rm−1, rm} from M2 makes e parallel to some element of {rm−1, sm−1, rm}. In either case, by
simplifying the resulting matroid without deleting e, we obtain a wheel or whirl that uses e and
has rank at least |Y |. We conclude that the theorem holds. �

6. M(K3,n)

In this section, we consider the case where a connected matroid with an identified element has
a minor isomorphic to a large M(K3,n). We give a lower bound on the rank of a similar minor
containing the identified element. It is easy to show that the elements of the matroid M(K3,n)
can be partitioned into a rank-(n + 2) paddle with n petals of rank 3 (see Figure 6). Two related
matroids are M(K1,1,1,n) and M(K3,n)+ (see Figure 7). If a matroid has an M(K3,n)-minor, then,
by contracting a set of two elements from this minor and simplifying, we obtain a minor isomorphic
to M(K1,1,1,n−2). The matroid M(K3,n)+ was formally defined in the introduction. Recall that Tn

denotes the set of rank-n spikes with a tip and a cotip.

Figure 6. The graph K3,n and the geometry of M(K3,n) with white dots repre-
senting points that are not present in the matroid.
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Figure 7. Geometric representations of M(K1,1,1,n) and M(K3,n)+.

Theorem 6.1. Let M be a connected matroid with M\e = N ∼= M(K1,1,1,n) for some n ≥ 3. Then

e is an element of a minor of M isomorphic to M(K1,1,1,m), M(K3,m)+, or some member of Tm

for some m ≥ n
2
.

Proof. The matroid N has exactly n triads {P1, P2, P3, . . . , Pn}. These sets are disjoint and their
union is E(N) − S, where S is the spine of N . Moreover, (P1, P2, P3, . . . , Pn) is a rank-(n + 2)
paddle Φ in N\S. After possibly relabelling, we may assume that {P1, P2, P3, . . . , Pk} is a minimal
set P of petals of Φ whose closure contains e in M .

Suppose k ≤ n
2
. Let X be a transversal of P . Contract elements of X from M one at a time until

the first time that either e becomes parallel to an element of N , or e ∈ cl(S). Simplify the resulting
matroid without deleting e to form M ′. Either M ′ ∼= M(K1,1,1,m) for some m ≥ n − k ≥ n

2
, or

e ∈ cl(S) and this line has four elements. In the latter case, delete the elements other than e on
this line to form an M(K3,m)+-minor of M for some m ≥ n − k ≥ n

2
.

Now suppose k > n
2

and consider M |(P1 ∪ P2 ∪ · · · ∪ Pk ∪ S ∪ e). Let Y be a transversal of
P so that M\(Y ∪ e) is a set of k + 1 3-point lines all intersecting at some point a of S. Then
M\(Y ∪e) ∼= M(K1,1,k+1) (see Figure 8). For each j in [k], let Lj = Pj −Y . By the choice of P , the

Figure 8. Geometric representation of M(K1,1,k+1) in rank k + 1.

element e is in the closure of L1 ∪L2 ∪ · · · ∪Lk ∪S, but it is not in cl((L1 ∪L2 ∪ · · · ∪Lk ∪S)−Li)
for any i in [k]. This leaves the possibility that e ∈ cl(L1 ∪ L2 ∪ · · · ∪ Lk). Thus, for some m in
{k, k + 1}, there are m lines in {L1, L2, . . . , Lk, S} whose union spans e, and no proper subset of
these m lines spans e. By Lemma 4.1, the restriction of M to the union of e with the elements of
these m lines is a member of Tm+1 with a as the tip and e as the cotip. �
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7. M∗(K3,n)

In this section, we consider the case where a connected matroid with an identified element has
a minor isomorphic to a large M∗(K3,n). We give a lower bound on the rank of a similar minor,
M∗(K1,1,1,m), containing the identified element. This result relies on work of Geelen and Whittle.
In particular, we extend arguments in [6, Theorem 9.43 and 9.44] to prove the following theorem.
The dual of a paddle is a copaddle.

Theorem 7.1. Let M be a connected matroid with M\e = N ∼= M∗(K3,m5) for some m ≥ 4. If M
has no Um,m+2-minor, then e is an element of a minor of M that is isomorphic to M∗(K1,1,1,m−1).

Proof. The minor N has a copaddle Φ = {T1, T2, . . . , Tm5}, with each petal Ti being a triangle
{αi, βi, γi}. The set {α1, α2, . . . , αm5} is a transversal A of the petals. Let i be an element of [m5].
The matroid N has rank 2m5 − 2 and is spanned by E(N) − Ti. Since {βj , γj} spans Tj for all j
in [m5], the set E(N\A) − {βi, γi} is a basis Bi of N and is therefore a basis of M . Let Ci be the
fundamental circuit C(e,Bi) and let Qi be the set of petals of Φ that meet Ci.

We show next that

7.1.1. Qi is a minimal set of petals of Φ whose closure contains e.

Suppose that Tj ∈ Qi but that e ∈ cl(∪Tl∈Qi
Tl − Tj). Then e ∈ cl(∪Tl∈Qi

Tl − (Tj ∪ A)), so M
has a circuit that is contained in Bi ∪ e but differs from Ci; a contradiction. Thus (7.1.1) holds.

7.1.2. If Tj ∩ Ci = ∅, then Cj = Ci, so Qj = Qi.

To see this, observe that, since Tj ∩ Ci = ∅, we have Ci ⊆ Bj ∪ e. But Cj is the unique circuit
contained in Bj ∪ e. Hence Cj = Ci and (7.1.2) holds.

By relabelling if necessary, we may assume that the set Q of distinct sets Qi with i ∈ [m5] is
{Q1,Q2, . . . ,Qk}. Then Q is the set of all distinct minimal sets of petals whose closure contains e.

7.1.3. If i and j are distinct elements of [k], then every petal of Φ is in Qi or Qj .

Suppose that some petal Ts is in neither Qi nor Qj. Then Ts ∩ Ci = ∅ = Ts ∩ Cj so, by (7.1.2),
Qi = Qj; a contradiction. Thus (7.1.3) holds.

For each Qi in Q, let Xi be the set of petals of Φ that are not in Qi. By (7.1.3), if i 6= j, then
Xi ∩ Xj = ∅. By construction, for all s in [k], the petal Ts is not in Qs, so Ts ∈ Xs. It follows from
(7.1.2) that {X1,X2, . . . ,Xk} is a partition X of the petals of Φ.

Since Φ has m5 petals, it follows by the pigeonhole principle that either

(i) k ≥ m4, or
(ii) |Xi| ≥ m for some i.

First, assume that (ii) holds. Then, without loss of generality, |X1| ≥ m. Thus Q1 avoids at least
m petals of Φ. Now Q1 is a minimal set of petals of Φ whose closure contains e. Choose one petal
Tj in Q1. For each Ti in Q1 − Tj, delete αi and contract {βi, γi}. In the resulting matroid N ′, the
element e is in the closure of Tj. We observe that N ′\e ∼= M∗(K3,m′) for some m′ ≥ m + 1.

Suppose that e is parallel to another element f of N ′. Then N ′\f contains e and is isomorphic
to M∗(K3,m′). The last matroid contains e in a minor isomorphic to M∗(K1,1,1,m′−2) and m′− 2 ≥
m − 1, so the theorem holds in this case. Thus we may assume that e is not parallel to any other
element of N ′. Then clN ′(Tj) is a 4-point line containing e. As N ′\e is cographic, N ′\e/αi is
cographic. Since N ′/αi has {e, βi, γi} as a parallel class, N ′/αi is cographic. Without deleting
e, take the simplification of N ′/αi. This matroid is isomorphic to M∗(K ′

3,m′−1
), where the graph

K ′
3,m′−1

is shown in Figure 9. Contracting the edge a3b1 in this graph produces a K1,1,1,m′−2-minor

using e. Hence N ′ has an M∗(K1,1,1,m′−2)-minor using e. As m′− 2 ≥ m− 1, we conclude that the
theorem holds in case (ii).
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We may now assume that (i) holds, that is, k ≥ m4. In addition, we assume that some |Xi| > 1.
In particular, we suppose that X1 contains Ti and at least one other petal. Consider the matroid
M/Ti = M ′. Observe that M ′ = M/{βi, γi}\αi as αi is a loop of M/{βi, γi}. Since e /∈ cl(Ti), the
matroid M ′ is connected. Notice that M ′\e ∼= M∗(K3,m5−1). Let X′ = {X1 − Ti,X2, . . . ,Xk}. It is

clear that X′ partitions the set of triangles of M∗(K3,m5−1), and these triangles are the petals of a
copaddle Φ′ in M ′\e.

In the partition X, the set X1 contains Ti. Hence Ti ∈ Qj for all j 6= 1. Now let Q′
t = Qt − {Ti}

for all t in [k]. We will show that the set Q′ = {Q′
1,Q′

2, . . . ,Q′
k} has the same properties in M ′ as

the set Q has in M .
Suppose 1 < j ≤ m5 − 1. The set E(N\A) − Tj is a basis Bj of M . Since Ti ∈ Qj , it

follows from (7.1.1) that the fundamental circuit Cj of e with respect to Bj contains βi or γi. Let
C ′

j = Cj − {βi, γi}. We show next that

7.1.4. C ′
j is a circuit of M/{βi, γi}\αi.

This is certainly true if {βi, γi} ⊆ Cj Thus, we may assume, by symmetry, that Cj contains
βi but not γi. Then M/βi has C ′

j as a circuit. Clearly C ′
j is contained in (Bj ∪ e) − {βi, γi}. In

M/βi, the set Bj − βi is a basis and (Bj ∪ e) − βi contains a unique circuit, namely C ′
j . Thus

γi /∈ clM/βi
(C ′

j), so M/{βi, γi} has C ′
j as a circuit. Hence so does M/{βi, γi}\αi. Thus (7.1.4)

holds.

7.1.5. In M ′, the set Q′ is precisely the set of minimal sets of petals of Φ whose closure contains

e.

To see this, observe that, in M ′, the set E(N ′\A)−Tj is a basis B′
j, and B′

j ∪e contains a unique

circuit. As B′
j ∪ e contains C ′

j, that circuit is C ′
j . The set of triangles intersecting this circuit is

exactly Q′
j , and (7.1.5) follows without difficulty.

7.1.6. The members of Q′ are distinct.

Suppose 1 < s < t ≤ k. As Qs 6= Qt, clearly Qs − {Ti} 6= Qt − {Ti}, that is, Q′
s 6= Q′

t. Now
suppose Q′

1 = Q′
s. Then Q1 is a proper subset of Qs, contradicting (7.1.1).

We have now shown that when Ti ∈ X1 and |X1| > 1, we can construct a new matroid M ′ from
M so that M ′\e has a copaddle Φ′ whose petals are all the petals of the copaddle Φ of M\e except
for Ti. In particular, M ′ = M/Ti. Moreover, (X1 − {Ti},X2, . . . ,Xk) partitions the set of petals of
M ′\e and (Q1 − {Ti},Q2 − {Ti}, . . . ,Qk − {Ti}) is a collection of distinct sets coinciding with the
set of minimal sets of petals of Φ′ whose union spans e. We may repeat this process of shrinking
the size of the matroid we are dealing with until each Xi is reduced to containing a single petal,
that is, |Xi| = 1 for all i in [k]. We now consider this case, letting the matroid in which it occurs
be M0. Then M0\e = N0

∼= M∗(K3,k). Thus N0 has a copaddle Φ0 whose petals are triangles. By
relabelling if necessary, we may assume that these triangles are T1, T2, . . . , Tk where Xi = {Ti} for
all i in [k].

Figure 9. The graph K ′
3,m′−1

.
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Let P0 be the set of petals of Φ0. By construction, the minimal sets of petals of Φ0 whose closure
contains e are precisely the k sets P0 − {Ti} for all i in [k]. As before, let Ti = {αi, βi, γi} for all i
in [k], and let A = {α1, α2, . . . , αk}.

Suppose i and j are distinct elements of [k]. We show next that

7.1.7. r∗M0\A
({βi, γi, βj , γj}) = 3.

Let Y = {βi, γi, βj , γj}. The set E(M0\A)− (Y ∪ e) is independent and does not span e. Hence
rM0\A(E(M0\A) − Y ) = 2(k − 2) + 1, so

r∗M0\A
(Y ) = |Y | + rM0\A(E(M0\A) − Y ) − r(M0\A)

= 4 + 2(k − 2) + 1 − 2(k − 1)

= 3.

Thus (7.1.7) holds.
Consider M∗

0 . It has rank k + 3 since M∗
0 /e = (M0\e)∗ ∼= M(K3,k). Now M(K3,k) has

T1, T2, . . . , Tk as triads and, by orthogonality, has A as an independent set. Thus rM∗

0
(A) = k,

so r(M∗
0 /A) = r(M∗

0 ) − k = 3.
By (7.1.7), the lines of M∗

0 /A spanned by {βi, γi} and {βj , γj} are distinct for all distinct i and
j in [k]. Thus the k lines spanned by {β1, γ1}, {β2, γ2}, . . . , {βk, γk} are all distinct.

Next observe that

7.1.8. M∗
0 /A has at least (2k)1/2 + 1

2
distinct parallel classes.

Suppose that there are exactly p points in the simplification of the rank-3 matroid M∗
0 /A. The

number of distinct lines determined by these points is at most
(p
2

)

, that is, 1

2
(p2 − p). But M∗

0 /A

has at least k distinct lines, so k ≤ 1

2
(p2 − p). Thus 2k + 1

4
≤ p2 − p + 1

4
. Hence 2k + 1

4
≤ (p − 1

2
)2,

and (7.1.8) holds.

By Theorem 2.2, as r(M∗
0 /A) = 3 and M∗

0 /A has no U2,m+2-minor, M∗
0 /A has at most m3−1

m−1

distinct parallel classes. Thus

(2k)1/2 + 1

2
≤ m3 − 1

m − 1
= m2 + m + 1,

so

(2k)1/2 ≤ m2 + m + 1

2
< (m + 2−1/2)2.

Hence

(2k)1/4 − 2−1/2 < m.

But k ≥ m4, so 21/4m − 2−1/2 < m and it follows that m < 2−1/2(2−1/4 − 1)−1 < 4. This
contradiction completes the proof of the theorem. �

8. The Main Theorem

In this section, we prove the main result. Recall that Tn denotes the set of rank-n spikes having
a tip and a cotip. We let Sn denote the set of rank-n spikes having neither a tip nor a cotip.

Theorem 8.1. Let M be a 3-connected matroid, and let e be an element of M . For every integer

n > 2, there is an integer g(n) so that if |E(M)| ≥ g(n), then e is an element of a minor of E(M)
that is isomorphic to the rank-n wheel or whirl, the cycle or bond matroid of K1,1,1,n, M(K3,n)+ or

its dual, U2,n or Un−2,n, or a member of Tn.
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Proof. By Theorem 1.1, there is a function f so that if |E(M)| ≥ f(n10), then

M has a minor isomorphic to a member of the set M = Sn10 ∪ {M(Wn10),Wn10

,
M(K3,n10),M∗(K3,n10), U2,n10 , Un10−2,n10}. By Theorem 2.1, M has a connected minor N using
e so that N/e or N\e is a member of M.

If N has a U2,n2-minor, then, by Theorem 3.1, as n2 ≥ 3 by assumption, there is an m ≥ n so that
N has a U2,m-minor containing e. Dually, if N has a Un2−2,n2-minor, then N has a Un−2,n-minor
containing e. Therefore, we will assume that M has no minor isomorphic to U2,n2 or Un2−2,n2.

Consider the case when N/e ∈ M. Then, since M is closed under duality, N∗\e ∈ M. In the
theorem statement, the list of potential minors of M containing e is also closed under duality, so
we may assume that N\e ∈ M. As N has no minor isomorphic to U2,n2 or Un2−2,n2 , we deduce

that N\e is a member of Sn10 ∪ {M(Wn10),Wn10

,M(K3,n10),M∗(K3,n10)}.
Suppose first that N\e ∈ Sn10 . Choose an element x of E(N) − e that is not parallel to e in N .

Then N/x\e is a rank-(n10 − 1) spike with a tip and no cotip. Hence N/x is connected. Let y be
an element of N/x\e other than the tip. Then N/x\y\e ∈ Tn10−1, and N/x\y is connected. By

Theorem 4.2, as n10 − 1 ≥ 6 by assumption, there is an m ≥ n10−1

2
so that N/x\y has a Tm-minor

containing e.

Next suppose that N\e ∈ {M(Wn10),Wn10}. Then, by Theorem 2.1 and duality, we may assume

that N has a connected minor N ′ containing e so that N ′\e ∈ {M(Wn6),Wn6}. We have assumed
that N has no minor isomorphic to U2,n2 or Un2−2,n2 . Thus, by Theorem 5.3, there is an m ≥ n2

so that N ′ and hence N has a minor that contains e and is isomorphic to M(Wm) or Wm.
Now let N\e = M(K3,n10). Then N\e is a paddle whose petals are triads. As n10 ≥ 4, we can

find petals P1, P2, and P3 of N\e none of whose elements is parallel to e in N . Moreover, there are
elements e1, e2, and e3 of P1, P2, and P3, respectively, such that si(N\e/e1, e2) ∼= M(K1,1,1,n10−2) ∼=
si(N\e/e1, e3). Thus N has a connected minor N ′ containing e so that N ′\e = M(K1,1,1,n10−2)
unless both {e1, e2, e} and {e1, e3, e} are circuits of N . The exceptional case cannot arise since it
implies the contradiction that {e1, e2, e3} is a circuit of N\e. Therefore we can apply Theorem 6.1

to N ′ to get that there is an m ≥ n10

2
so that N ′ and hence N has a minor that contains e and is

isomorphic to M(K1,1,1,m), M(K3,m)+, or some member of Tm.
Finally, suppose that N\e = M∗(K3,n10). Since N has no minor isomorphic to U2,n2 or Un2−2,n2

and n2 ≥ 4, it follows by Theorem 7.1 that there is an m ≥ n2 so that N has a minor that contains
e and is isomorphic to M∗(K1,1,1,m−1). �
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