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Abstract. Subject to announced results by Geelen, Gerards, and Whittle,
we completely characterize the highly connected members of the classes of
dyadic, near-regular, and sixth-root-of-unity matroids.

1. Introduction

We give the de�nitions of the classes of dyadic, signed-graphic, near-regular,
and 6
√

1-matroids in Section 2; however, unexplained notation and terminology
in this paper will generally follow Oxley [15]. One exception is that we denote
the vector matroid of a matrix A by M(A) rather than M [A]. A matroid M
is vertically k-connected if, for every set X ⊆ E(M) with r(X) + r(E −X)−
r(M) < k, either X or E − X is spanning. If M is vertically k-connected,
then its dual M∗ is cyclically k-connected. The matroid Ur is obtained from
M(Kr+1) by adding three speci�c points to a rank-3 �at; we give the precise
de�nition in Section 4.
Due to the technical nature of Hypotheses 3.1 and 3.2, we delay their state-

ments to Section 3. Subject to these hypotheses, we characterize the highly
connected dyadic matroids by proving the following.

Theorem 1.1. Suppose Hypothesis 3.1 holds. Then there exists k ∈ Z+ such
that, if M is a k-connected dyadic matroid with at least 2k elements, then one
of the following holds.

(1) Either M or M∗ is a signed-graphic matroid.
(2) Either M or M∗ is a matroid of rank r that is a restriction of Ur.

Moreover, suppose Hypothesis 3.2 holds. There exist k, n ∈ Z+ such that, if
M is a simple, vertically k-connected, dyadic matroid with an M(Kn)-minor,
then either M is a signed-graphic matroid or M is a restriction of Ur(M).
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Let AG(2, 3)\e be the matroid resulting from AG(2, 3) by deleting one point;
this matroid is unique up to isomorphism. We prove the following excluded-
minor characterization of the highly connected dyadic matroids.

Theorem 1.2. Suppose Hypothesis 3.1 holds. There exists k ∈ Z+ such that,
for a k-connected matroidM with at least 2k elements, M is dyadic if and only
if M is a ternary matroid with no minor isomorphic to either AG(2, 3)\e or
(AG(2, 3)\e)∗. Moreover, suppose Hypothesis 3.2 holds. There exist k, n ∈ Z+

such that, for a vertically k-connected matroid M with an M(Kn)-minor, M
is dyadic if and only if M is a ternary matroid with no minor isomorphic to
AG(2, 3)\e.

Our �nal main result characterizes the highly connected near-regular and
6
√

1-matroids. The matroid T 1
r is obtained from the complete graphic matroid

M(Kr+2) by adding a point freely to a triangle, contracting that point, and
simplifying. We denote the non-Fano matroid by F−7 .

Theorem 1.3. Suppose Hypothesis 3.1 holds. There exists k ∈ Z+ such that,
if M is a k-connected matroid with at least 2k elements, the following are
equivalent.

(1) M is a near-regular matroid,
(2) M is a 6

√
1-matroid,

(3) M or M∗ is a matroid of rank r that is a restriction of T 1
r , and

(4) M is a ternary matroid that has no minor isomorphic to F−7 or (F−7 )∗.

Moreover, suppose Hypothesis 3.2 holds. There exist k, n ∈ Z+ such that, if
M is a simple, vertically k-connected matroid with an M(Kn)-minor, then (1)
and (2) are equivalent to each other and also to the following conditions.

(3') M is a restriction of T 1
r(M), and

(4') M is a ternary matroid that has no minor isomorphic to F−7 .

Theorem 1.3 leads to the following result.

Corollary 1.4. Suppose Hypothesis 3.1 holds. There exists k ∈ Z+ such that,
if M is a ternary k-connected matroid with at least 2k elements, then M is
representable over some �eld of characteristic other than 3 if and only if M
is dyadic. Moreover, suppose Hypothesis 3.2 holds. There exist k, n ∈ Z+

such that, if M is a simple, ternary, vertically k-connected matroid with an
M(Kn)-minor, then M is representable over some �eld of characteristic other
than 3 if and only if M is dyadic.

Proof. Whittle [22, Theorem 5.1] showed that a 3-connected ternary matroid
that is representable over some �eld of characteristic other than 3 is either a
dyadic matroid or a 6

√
1-matroid. Therefore, since near-regular matroids are

dyadic, Theorem 1.3 immediately implies the �rst statement in the corollary.
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The second statement is proved similarly but also requires the fact that a
simple, vertically 3-connected matroid is 3-connected. �

Hypotheses 3.1 and 3.2 are believed to be true, but their proofs are still
forthcoming in future papers by Geelen, Gerards, and Whittle. They are
modi�ed versions of a hypothesis given by Geelen, Gerards, and Whittle in
[5]. The results announced in [5] rely on the Matroid Structure Theorem by
these same authors [4]. We refer the reader to [9] for more details.
Some proofs in this paper involved case checks aided by Version 8.6 of the

SageMath software system [18], in particular making use of the matroids com-
ponent [17]. The authors used the CoCalc (formerly SageMathCloud) online
interface.
In Section 2, we give some background information about the classes of

matroids studied in this paper. In Section 3, we recall results from [7] that
will be used to prove our main results. In Section 4, we prove Theorems 1.1
and 1.2, and in Section 5, we prove Theorem 1.3.

2. Preliminaries

We begin this section by clarifying some notation and terminology that
will be used throughout the rest of the paper. Let Dr be the r ×

(
r
2

)
matrix

such that each column is distinct and such that every column has exactly two
nonzero entries�the �rst a 1 and the second −1. For a �eld F, we denote by
Fp the prime sub�eld of F. IfM is a class of matroids, we will denote byM
the closure ofM under the taking of minors. The weight of a column or row
vector of a matrix is its number of nonzero entries. If A is an m × n matrix
and n′ ≤ n, then we call an m× n′ submatrix of A a column submatrix of A.
In the remainder of this section, we give some background information about
the classes of matroids studied in this paper.
The class of dyadic matroids consists of those matroids representable by

a matrix over Q such that every nonzero subdeterminant is ±2i for some
i ∈ Z. The class of sixth-root-of-unity matroids (or 6

√
1-matroids) consists

of those matroids that are representable by a matrix over C such that every
nonzero subdeterminant is a complex sixth root of unity. Let Q(α) be the �eld
obtained by extending the rationals Q by a transcendental α. A matroid is
near-regular if it can be represented by a matrix over Q(α) such that every
nonzero subdeterminant is contained in the set {±αi(α− 1)j : i, j ∈ Z}.
A matroid is signed-graphic if it can be represented by a matrix over GF(3)

each of whose columns has at most two nonzero entries. The rows and columns
of this matrix can be indexed by the set of vertices and edges, respectively,
of a signed graph. If the nonzero entries of the column are unequal, then
the corresponding edge is a positive edge joining the vertices indexing the
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rows containing the nonzero entries. If the column has two equal entries,
the edge is negative. If the column contains only one nonzero entry, then the
corresponding edge is a negative loop at the vertex indexing the row containing
the nonzero entry. Every signed-graphic matroid is dyadic. (See, for example,
[23, Lemma 8A.3]).
Whittle [22, Theorem 1.4] showed that the following statements are equiv-

alent for a matroid M :

• M is near-regular
• M is representable over GF(3), GF(4), and GF(5)
• M is representable over all �elds except possibly GF(2)

He also showed [22, Theorem 1.2] that the class of 6
√

1-matroids consists ex-
actly of those matroids representable over GF(3) and GF(4) and [22, Theorem
1.1] that the class of dyadic matroids consists exactly of those matroids rep-
resentable over GF(3) and GF(5). Thus, the class of near-regular matroids is
the intersection of the classes of 6

√
1-matroids and dyadic matroids.

A geometric representation of AG(2, 3)\e is given in Figure 1. It is fairly well

1 2

3

4

5

6

7

8

Figure 1. A Geometric Representation of AG(2, 3)\e

known that AG(2, 3)\e is an excluded minor for the class of dyadic matroids.
(See, for example, [15, Section 14.7].) We will use this fact in Section 4.
It is an open problem to determine the complete list of excluded minors

for the dyadic matroids; however, the excluded minors for the classes of 6
√

1-
matroids and near-regular matroids have been determined. Geelen, Gerards,
and Kapoor [3, Corollary 1.4] showed that the excluded minors for the class of
6
√

1-matroids are U2,5, U3,5, F7, F
∗
7 , F

−
7 , (F−7 )∗, and P8. (We refer the reader

to [3] or [15] for the de�nitions of these matroids.) Hall, Mayhew, and Van
Zwam [10, Theorem 1.2], based on unpublished work by Geelen, showed that
the excluded minors for the class of near-regular matroids are U2,5, U3,5, F7,
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F ∗7 , F
−
7 , (F−7 )∗, AG(2, 3)\e, (AG(2, 3)\e)∗, ∆T (AG(2, 3)\e), and P8. Here,

∆T (AG(2, 3)\e) is the result of performing a ∆-Y operation on AG(2, 3)\e.
If r 6= 3, it follows from results of Kung [11, Theorem 1.1] and Kung and

Oxley [12, Theorem 1.1] that the largest simple dyadic matroid of rank r is the
rank-r ternary Dowling geometry, which is a signed-graphic matroid. Again,
suppose r 6= 3. Then Oxley, Vertigan, and Whittle [16, Theorem 2.1, Corollary
2.2] showed that T 1

r is the largest simple 6
√

1-matroid of rank r and the largest
simple near-regular matroid of rank r. We remark without proof that our main
results here, combined with [9, Lemmas 4.14, 4.16], show that Hypothesis 3.2
agrees with these known results.

3. Frame Templates

The notion of frame templates was introduced by Geelen, Gerards, and
Whittle in [5] to describe the structure of the highly connected members of
minor-closed classes of matroids representable over a �xed �nite �eld. Frame
templates have been studied further in [8, 14, 9, 7]. In this section, we give
several results proved in those papers that we will need to prove the main
results in this paper. The results in [5] technically deal with represented
matroids�which can be thought of as �xed representation matrices for ma-
troids. However, since we only deal with ternary matroids in this paper, and
since ternary matroids are uniquely GF(3)-representable [1], we will state the
results in terms of matroids rather than represented matroids.
If F is a �eld, let F× denote the multiplicative group of F, and let Γ be a

subgroup of F×. A Γ-frame matrix is a frame matrix A such that:

• Each column of A with a nonzero entry contains a 1.
• If a column of A has a second nonzero entry, then that entry is −γ for
some γ ∈ Γ.

If Γ = {1}, then the vector matroid of a Γ-frame matrix is a graphic matroid.
For this reason, we will call the columns of a {1}-frame matrix graphic columns.
A frame template over a �eld F is a tuple Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) such

that the following hold.

(i) Γ is a subgroup of F×.
(ii) C, X, Y0 and Y1 are disjoint �nite sets.
(iii) A1 ∈ FX×(C∪Y0∪Y1).
(iv) Λ is a subgroup of the additive group of FX and is closed under scaling

by elements of Γ.
(v) ∆ is a subgroup of the additive group of FC∪Y0∪Y1 and is closed under

scaling by elements of Γ.
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Let Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) be a frame template. Let B and E be
�nite sets, and let A′ ∈ FB×E. We say that A′ respects1 Φ if the following hold:

(i) X ⊆ B and C, Y0, Y1 ⊆ E.
(ii) A′[X,C ∪ Y0 ∪ Y1] = A1.
(iii) There exists a set Z ⊆ E − (C ∪ Y0 ∪ Y1) such that A′[X,Z] = 0, each

column of A′[B − X,Z] is a unit vector or zero vector, and A′[B −
X,E − (C ∪ Y0 ∪ Y1 ∪ Z)] is a Γ-frame matrix.

(iv) Each column of A′[X,E − (C ∪ Y0 ∪ Y1 ∪ Z)] is contained in Λ.
(v) Each row of A′[B −X,C ∪ Y0 ∪ Y1] is contained in ∆.

The structure of A′ is shown below.
Z Y0 Y1 C

X columns from Λ 0 A1

Γ-frame matrix unit or zero columns rows from ∆

Now, suppose that A′ respects Φ and that A ∈ FB×E satis�es the following
conditions:

(i) A[B,E − Z] = A′[B,E − Z]
(ii) For each i ∈ Z there exists j ∈ Y1 such that the i-th column of A is

the sum of the i-th and the j-th columns of A′.

We say that such a matrix A conforms1 to Φ.
Let M be an F-representable matroid. We say that M conforms1 to Φ if

there is a matrix A conforming to Φ such thatM is isomorphic toM(A)/C\Y1.
We denote byM(Φ) the set of matroids that conform to Φ. If M∗ conforms
to a template Φ, we say that M coconforms to Φ. We denote byM∗(Φ) the
set of matroids that coconform to Φ.
We now state the hypotheses on which the main results are based. As

stated in Section 1, they are modi�ed versions of a hypothesis given by Geelen,
Gerards, and Whittle in [5], and their proofs are forthcoming. In their current
forms, these hypotheses were stated in [9].

Hypothesis 3.1 ([9, Hypothesis 4.3]). Let F be a �nite �eld, let m be a positive
integer, and letM be a minor-closed class of F-representable matroids. Then
there exist k ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt such that

(1) M contains each of the classesM(Φ1), . . . ,M(Φs),
(2) M contains the duals of the matroids in each of the classesM(Ψ1), . . . ,M(Ψt),

and

1For simplicity, we will use the terms respecting and conforming to mean what was called
virtual respecting and virtual conforming in [8] and [7]. The distinction between conforming
and virtually conforming is explained in [8]. We can do this since every matroid virtually
conforming to a template is a minor of a matroid conforming to a template [8, Lemma 3.4].
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(3) if M is a simple k-connected member of M with at least 2k elements

and M̃ has no PG(m− 1,Fp)-minor, then either M is a member of at
least one of the classes M(Φ1), . . . ,M(Φs), or M

∗ is a member of at
least one of the classesM(Ψ1), . . . ,M(Ψt).

Hypothesis 3.2 ([9, Hypothesis 4.6]). Let F be a �nite �eld, let m be a positive
integer, and letM be a minor-closed class of F-representable matroids. Then
there exist k, n ∈ Z+ and frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt such that

(1) M contains each of the classesM(Φ1), . . . ,M(Φs),
(2) M contains the duals of the matroids in each of the classesM(Ψ1), . . . ,M(Ψt),
(3) if M is a simple vertically k-connected member ofM with an M(Kn)-

minor but no PG(m − 1,Fp)-minor, then M is a member of at least
one of the classesM(Φ1), . . . ,M(Φs), and

(4) ifM is a cosimple cyclically k-connected member ofM with anM∗(Kn)-
minor but no PG(m − 1,Fp)-minor, then M∗ is a member of at least
one of the classesM(Ψ1), . . . ,M(Ψt).

If Φ and Φ′ are frame templates, it is possible that M(Φ) = M(Φ′) even
though Φ and Φ′ look very di�erent.

De�nition 3.3 ([7, De�nition 6.3]). Let Φ and Φ′ be frame templates over
a �eld F, then the pair Φ,Φ′ are strongly equivalent ifM(Φ) = M(Φ′). The

pair Φ,Φ′ are minor equivalent ifM(Φ) =M(Φ′).

There are other notions of template equivalence (namely equivalence, alge-
braic equivalence, and semi-strong equivalence) given in [7], but all of these
imply minor equivalence.
If F is a �eld and E is a set, we say that two subgroups U and W of the

additive subgroup of the vector space FE are skew if U ∩W = {0}. Nelson
and Walsh [14] gave De�nition 3.4 below.

De�nition 3.4. A frame template Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) is reduced if
there is a partition (X0, X1) of X such that

• ∆ = Γ(FC
p ×∆′) for some additive subgroup ∆′ of FY0∪Y1 ,

• FX0
p ⊆ Λ|X0 while Λ|X1 = {0} and A1[X1, C] = 0, and

• the rows of A1[X1, C ∪ Y0 ∪ Y1] form a basis for a subspace whose
additive group is skew to ∆.

We will refer to the partition X = X0 ∪ X1 given in De�nition 3.4 as the
reduction partition of Φ.

The following de�nition and theorem are found in [9].

De�nition 3.5 ([9, De�nition 5.3]). Let Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) be a
reduced frame template , with reduction partition X = X0 ∪X1. If Y1 spans
the matroid M(A1[X1, Y0 ∪ Y1]), then Φ is re�ned.
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Theorem 3.6 ([9, Theorem 5.6]). If Hypothesis 3.1 holds for a classM, then
the constant k and the templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt can be chosen so that
the templates are re�ned. Moreover, if Hypothesis 3.2 holds for a class M,
then the constants k, n, and the templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt can be chosen
so that the templates are re�ned.

A few speci�c templates have been given names. We list some of those now,
speci�cally for the ternary case. Note thatM(Φ2) is the class of signed-graphic
matroids.

De�nition 3.7 ([7, De�nition 7.8, ternary case]).

• Φ2 is the template with all sets empty and all groups trivial except
that Γ = {±1}.
• ΦC is the template with all groups trivial and all sets empty except
that |C| = 1 and ∆ ∼= Z/3Z.
• ΦX is the template with all groups trivial and all sets empty except
that |X| = 1 and Λ ∼= Z/3Z.
• ΦY0 is the template with all groups trivial and all sets empty except
that |Y0| = 1 and ∆ ∼= Z/3Z.
• ΦCX is the template with Y0 = Y1 = ∅, with |C| = |X| = 1, with

∆ ∼= Λ ∼= Z/3Z, with Γ trivial, and with A1 = [1].
• ΦCX2 is the template with Y0 = Y1 = ∅, with |C| = |X| = 1, with

∆ ∼= Λ ∼= Z/3Z, with Γ trivial, and with A1 = [−1].

The next lemma follows directly from [7, Lemma 7.9].

Lemma 3.8. The following are true: M(ΦY0) ⊆ M(ΦC), and M(ΦX) ⊆
M(ΦCX), andM(ΦX) ⊆M(ΦCX2).

Frame templates where the groups Γ, Λ, and ∆ are trivial are studied ex-
tensively in [7].

De�nition 3.9 ([7, De�nitions 6.9�6.10]). A Y -template is a re�ned frame
template with all groups trivial (so C = X0 = ∅). If A1 has the form below,
then YT(P0, P1) is de�ned to be the Y -template ({1}, ∅, X, Y0, Y1, A1, {0}, {0}).

Y1 Y0
I|X| P1 P0

The next lemma follows from [7, Lemma 7.16�17].

Lemma 3.10. Let Φ be a frame template such thatM(Φ′) *M(Φ) for each
template Φ′ ∈ {{ΦX ,ΦC ,ΦY0 ,ΦCX ,ΦCX2}. Then Φ is minor equivalent to a
template (Γ, C,X, Y0, Y1, A1,∆,Λ) with C = ∅ and with Λ and ∆ both trivial.

The next several results and de�nitions are found in [7].
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Lemma 3.11 ([7, Theorem 7.18]). Let Φ be a re�ned ternary frame template.

Then eitherM(Φ′) ⊆M(Φ) for some Φ′ ∈ {ΦX ,ΦC ,ΦY0 ,ΦCX ,ΦCX2,Φ2}, or
Φ is a Y -template.

De�nition 3.12 ([7, De�nition 9.3]). Let Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) be a
re�ned frame template with reduction partition X = X0∪X1, with A1[X0, Y1]
a zero matrix, and with A1[X1, Y1] an identity matrix. Then Φ is a lifted
template.

Lemma 3.13 ([7, Lemma 9.6]). Every re�ned frame template is minor equiv-
alent to a lifted template.

De�nition 3.14 ([7, De�nition 9.7]). A Y -template YT(P0, P1) is complete if
P0 contains D|X| as a submatrix.

De�nition 3.15 ([7, De�nition 9.12]). The Y -template YT([P0|D|X|], [∅]) is
the complete, lifted Y -template determined by P0 and is denoted by ΦP0 .

De�nition 3.16 ([7, De�nition 6.12]). Let ΦP0 be a complete, lifted Y -
template. The rank-r universal matroid for ΦP0 is the matroid represented
by the following matrix. [

Ir Dr
P0

0

]
It is shown in [7, Section 9] that every matroid conforming to ΦP0 is a

restriction of some universal matroid for ΦP0 .
We refer to [15, Section 11.4] for the de�nition of generalized parallel con-

nections of matroids.

Lemma 3.17 ([7, Lemma 9.13]). The rank-r universal matroid of ΦP0 is the
generalized parallel connection ofM(Kr+1) andM([Im|Dm|P0]) alongM(Km+1),
where m is the number of rows of P0.

Combining [7, Lemma 9.6], [7, Lemma 9.9], and [7, Lemma 9.14], we obtain
the following.

Lemma 3.18.

(i) Every Y -template is minor equivalent to the complete, lifted Y -template
determined by a matrix the sum of whose rows is the zero vector.

(ii) Conversely, let Φ be the complete, lifted Y -template determined by a
matrix P0 the sum of whose rows is the zero vector. Choose any one row
of P0. Then Φ is minor equivalent to the complete, lifted Y -template
determined by the matrix obtained from P0 by removing that row.

The next lemma is an easy but useful result.
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Lemma 3.19. Let P ′0 be a matrix with a submatrix P0. Every matroid con-
forming to ΦP0 is a minor of a matroid conforming to ΦP ′

0
.

We use the next lemma to prove the excluded minor characterizations in
Theorems 1.2 and 1.3; it is obtained by combining Lemmas 8.1 and 8.2 of [7].

Lemma 3.20. Let M be a minor-closed class of F-representable matroids,
where Fp is the prime sub�eld of F. Let E1 and E2 be two sets of F-representable
matroids such that

(i) no member of E1 ∪ E2 is contained inM,
(ii) some member of E1 ∪ E2 is Fp-representable,
(iii) for every re�ned frame template Φ over F such thatM(Φ) *M, there

is a member of E1 that is a minor of a matroid conforming to Φ, and
(iv) for every re�ned frame template Ψ over F such that M∗(Ψ) * M,

there is a member of E2 that is a minor of a matroid coconforming to
Ψ.

Suppose Hypothesis 3.1 holds; there exists k ∈ Z+ such that a k-connected F-
representable matroid with at least 2k elements is contained inM if and only
if it contains no minor isomorphic to one of the matroids in the set E1 ∪ E2.

Moreover, suppose Hypothesis 3.2 holds; there exist k, n ∈ Z+ such that a
vertically k-connected F-representable matroid with an M(Kn)-minor is con-
tained in M if and only if it contains no minor isomorphic to one of the
matroids in E1 and such that a cyclically k-connected F-representable matroid
with an M∗(Kn)-minor is contained inM if and only if it contains no minor
isomorphic to one of the matroids in E2.

The next lemma has not appeared previously, but it will be useful in Section
4. Recall from De�nition 3.12 that every lifted template is re�ned and therefore
reduced. Thus, a lifted template has a reduction partition as in De�nition 3.4.

Lemma 3.21. Let Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) be a lifted template with
reduction partition X = X0 ∪ X1. Let P0 = A1[X1, Y0], and let S be any

Γ-frame matrix with |X1| rows. Then M([S|P0]) ∈M(Φ).

Proof. Let R = A1[X0, Y0 ∪ C]. Note that the following matrix conforms to
Φ, since FX0

p ⊆ Λ|X0 in a reduced template and since the zero vector is an
element of Λ and ∆.

H1 H2 Z Y0 C
X0 I|X0| 0 0 R
X1 0 0 I|X1| P0 0

0 S I|X1| 0 0

By contracting H1 ∪ Z ∪ C (recalling that C must be contracted to obtain a
matroid that conforms to Φ), we obtain the desired matroid. �
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4. Dyadic Matroids

In this section, we characterize the highly connected dyadic matroids by
proving Theorems 1.1 and 1.2. First, we will need to de�ne the family of ma-
troids Ur and to prove several lemmas that build on the machinery of Section
3.
Consider the rank-3 ternary Dowling geometry Q3(GF(3)×). This matroid

contains a restriction isomorphic to M(K4), with the signed-graphic represen-
tation given in Figure 2, with negative edges printed in bold. This represen-

Figure 2. A signed-graphic representation of M(K4)

tation of M(K4) has been encountered before, for example in [24, 6, 21, 9].
The Dowling geometry Q3(GF(3)×) can also be represented by the matrix
[I3|D3|T ], where

T =

 −1 1 1
1 −1 1
1 1 −1

 ,
with the columns of T representing the joints of the Dowling geometry.
For r ≥ 3, we de�ne the matroid Ur to be the generalized parallel connection

of the complete graphic matroid M(Kr+1) with Q3(GF(3)×) along a common
restriction isomorphic M(K4), where the restriction of Q3(GF(3)×) has the
signed-graphic representation given in Figure 2. (The restriction isomorphic
to M(K4) is a modular �at of M(Kr+1), which is uniquely representable over
any �eld. Therefore, this generalized parallel connection is well-de�ned.) By
Lemma 3.17, Ur is the rank-r universal matroid for the complete, lifted Y -
template ΦT and therefore has the following representation matrix.[

Ir Dr
T
0

]
Lemma 4.1. The matroid Ur is dyadic for every r ≥ 3.

Proof. Since U3 is the ternary rank-3 Dowling geometry, it is signed-graphic
and therefore dyadic. Since Ur is the generalized parallel connection of U3 and
the complete graphic matroidM(Kr+1) along a common restriction isomorphic
toM(K4), and since every complete graphic matroid is uniquely representable
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over every �eld, a result of Brylawski [2, Theorem 6.12] implies that Ur is
representable over both GF(3) and GF(5) and therefore dyadic. (The reader
familiar with partial �elds may also apply [13, Theorem 3.1] to the dyadic
partial �eld.) �

We remark that, for r ≥ 4, the matroid Ur is not signed-graphic; this can
be easily checked by using SageMath to show that U4 is not a restriction of
the rank-4 ternary Dowling geometry.

Lemma 4.2. If Φ ∈ {ΦX ,ΦC ,ΦY0 ΦCX ,ΦCX2}, then AG(2, 3)\e ∈M(Φ).

Proof. Note that the following ternary matrix conforms to ΦY0 .

1 2 3 4 5 6 7 8 9
0 0 0 0 0 1 1 1 1

1 0 0 1 1 0 0 0 1
0 1 0 −1 0 0 −1 0 1
0 0 1 0 −1 0 0 −1 1

By contracting 9, pivoting on the �rst entry, we obtain the following represen-
tation of AG(2, 3)\e (with column labels matching the labels in Figure 1).

1 2 3 4 5 6 7 8[ ]
1 0 0 1 1 1 1 1
0 1 0 −1 0 1 −1 1
0 0 1 0 −1 1 1 −1

Therefore, AG(2, 3)\e ∈ M(ΦY0). Moreover, by Lemma 3.8, we also have

AG(2, 3)\e ∈M(ΦC).
Now, note that the following ternary matrix is a representation of AG(2, 3)\e.

Also note that the matrix conforms to ΦX , with the top row indexed by X
and the bottom two rows forming a {1}-frame matrix.

(4.1)

1 2 3 4 5 6 7 8[ ]
0 0 −1 0 1 1 −1 1
1 0 1 1 1 0 0 1
0 1 0 −1 0 1 1 −1

Therefore, AG(2, 3)\e ∈ M(ΦX). Moreover, by Lemma 3.8, we also have

AG(2, 3)\e ∈M(ΦCX) and AG(2, 3)\e ∈M(ΦCX2). �

Lemma 4.3. Suppose Φ = (Γ, C,X, Y0, Y1, A1,∆,Λ) is a re�ned ternary frame

template such that AG(2, 3)\e /∈ M(Φ). Then either M(Φ) ⊆ M(Φ2), or Φ
is a Y -template.
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Proof. Combining Lemmas 4.2 and 3.10, we see that C = ∅ and that Λ and
∆ are both trivial. Since Φ is re�ned, it is reduced, with reduction partition
X = X0 ∪ X1. However, the fact that Λ is trivial implies that X0 = ∅. By
Lemma 3.13, we may assume that Φ is lifted. Therefore, we may assume that
A1 is of the form [I|P0], with Y1 indexing the columns of the identity matrix
and Y0 indexing the columns of P0.
The only proper subgroup of the multiplicative group of GF(3) is the trivial

group {1}. If Γ is the trivial group {1}, then Φ is a Y -template. Thus, we
may assume that Γ is the entire multiplicative group of GF(3).
Suppose that P0 contains a column with at least three nonzero entries. Then

by column scaling and permuting of rows, we may assume that P0 contains
either [1, 1, 1]T or [1, 1,−1]T as a submatrix. Call this submatrix P ′0, and let
Φ′ = (Γ, ∅, X ′, {y}, Y ′1 , A′1, {0}, {0}), where X ′ and {y} index the rows and col-
umn of P ′0, respectively, and where A′1 = [I|P ′0], with Y ′1 indexing the columns
of the identity matrix. It is not di�cult to see that every matroid conforming
to Φ′ is a minor of some matroid conforming to (Γ, ∅, X, Y0, Y1, [I|P0], {0}, {0}),
which is Φ. Thus, AG(2, 3)\e is not a minor of any matroid conforming to Φ′.
However, if P0 = [1, 1,−1]T , then the representation of AG(2, 3)\e given in

Matrix (4.1) is of the form [S|P ′0], where S is a Γ-frame matrix. Thus, by
Lemma 3.21, AG(2, 3)\e is a minor of a matroid conforming to Φ′. Similarly,
if P ′0 = [1, 1, 1]T , we may take Matrix (4.1) and scale by −1 the last row and
the columns indexed by 2 and 7. We see that AG(2, 3)\e can be represented
by a matrix of the form [S|P ′0], where S is a Γ-frame matrix. Again, Lemma
3.21 implies that AG(2, 3)\e is a minor of a matroid conforming to Φ′.
Therefore, we deduce that every column of P0 has at most two nonzero

entries, implying that every column of every matrix conforming to Φ has at
most two nonzero entries. Thus, M(Φ) consists entirely of signed-graphic
matroids, andM(Φ) ⊆M(Φ2). �

Lemma 4.4. Let Φ be the complete, lifted Y -template determined by some
matrix P0. If P0 contains as a submatrix some matrix listed in Table 1, then
AG(2, 3)\e ∈M(Φ).

Proof. LetM = M([I|D|P ′0]), where P ′0 is some submatrix listed in Table 1. By
Lemma 3.19, it su�ces to show that AG(2, 3)\e is a minor ofM . For each of the
matrices A�K, the authors used SageMath to show this. The computations are
expedited by contracting some subset of E(M) and simplifying the resulting
matroid before testing if AG(2, 3)\e is a minor. If P ′0 is an r × c matrix,
then |E(M)| =

(
r+1
2

)
+ c. Label the elements of M , from left to right, as

{0, 1, 2, . . . ,
(
r+1
2

)
+ c−1}. If S is the set listed in Table 1 corresponding to the

matrix P ′0, then the authors used SageMath to show that the simpli�cation of
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Table 1. Forbidden Matrices

Matrix Set to Contract Matrix Set to Contract

A =


1
1
1
1

 {10} B =


1 0
1 0
1 0
0 1
0 1

 {15, 16}

C =


1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

 {0, 18, 23} D =



1 0
1 0
−1 0
−1 1

0 1
0 −1
0 −1


{0, 1, 28, 29}

E =


−1 1
−1 −1

1 −1
1 0
0 1

 {0, 16} F =


−1 1
−1 −1

1 0
1 0
0 1
0 −1

 {0, 15, 22}

G =


1 0
1 0
1 1
0 1
0 −1
0 −1

 {0, 4, 22} H =


1 0
1 1
1 −1
0 1
0 −1

 {0, 16}

I =


1 1 1
1 1 −1
1 0 1
0 1 −1

 {0} J =


−1 −1 1
−1 1 1

1 −1 1
1 1 0

 {0}

K =


1 1 0
1 0 1
0 1 1
1 0 0
0 1 1

 {0, 15}
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M/S contains AG(2, 3)\e as a minor. The code for an example computation
is given in Appendix A. �

Lemma 4.5. Let V be a ternary matrix consisting entirely of unit columns,
and let W be a ternary matrix each of whose columns has exactly two nonzero
entries, both of which are 1s. If Φ is the complete, lifted Y -template determined
by the following ternary matrix, thenM(Φ) is contained in the class of signed-
graphic matroids.  1 · · · 1 −1 · · · − 1

1 · · · 1 −1 · · · − 1
V W


Proof. Let P0 be the matrix obtained from the given matrix by removing the
top row. By Lemma 3.18(ii), Φ is minor equivalent to the complete, lifted
Y -template ΦP0 . Every matroid M conforming to ΦP0 is a restriction of the
vector matroid of a matrix of the following form. (If the rank of M is larger
than the number of rows of P0, then some of the rows of [V |W ] below are zero
rows.) 

1 0 · · · 0 1 · · · 1 0 · · · 0 1 · · · 1 −1 · · · − 1
0
... I −I D V W
0


From the �rst row, subtract all other rows. The result is the following.

1 −1 · · · − 1 −1 · · · − 1 0 · · · 0 0 · · · 0 0 · · · 0
0
... I −I D V W
0


This is a ternary matrix such that each column has at most two nonzero entries.
Therefore, M is a signed-graphic matroid. �

Lemma 4.6. Let Φ be a re�ned ternary frame template with AG(2, 3)\e /∈
M(Φ). Either M(Φ) is contained in the class of signed-graphic matroids,
or Φ is minor equivalent to the complete, lifted Y -template determined by a
submatrix of the matrix T given at the beginning of this section.

Proof. By Lemma 4.3, since M(Φ2) is the class of signed-graphic matroids,
we may assume that Φ is a Y -template. Therefore, by Lemma 3.18(i), we
may assume that Φ is the complete, lifted Y -template ΦP0 determined by a
matrix P0 the sum of whose rows is the zero vector. The template ΦP0 is
YT([Dn|P0], [∅]), where n is the number of rows of P0. Since Dn is already
included, we may assume that no column of P0 is graphic. Since the only
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weight-2 columns whose entries sum to 0 are graphic, every column of P0 has
at least three nonzero entries.
In the remainder of the proof, matrices A�K are the matrices listed in Table

1. By Lemma 4.4, none of matrices A�K may be submatrices of P0. Since
each of matrices C�K has rows whose sum is the zero vector, Lemma 3.18(ii)
implies that no matrix obtained from one of matrices C�K by removing one
row can be a submatrix of P0 either.
By Lemma 3.18(ii) the complete, lifted Y -template determined by the ma-

trix [1, 1, 1, 1,−1]T is minor equivalent to the complete, lifted Y -templates
determined by both [1, 1, 1,−1]T and [1, 1, 1, 1]T , which is matrix A. Since
matrix A is forbidden from being a submatrix of P0, so is [1, 1, 1,−1]T by
minor equivalence. Thus, no column of P0 can contain four equal nonzero
entries, and no column of P0 with three equal nonzero entries can contain the
negative of that nonzero entry. Therefore, by scaling columns of P0, we may
assume that every column of P0 is of the form [1, 1, 1, 0, . . . , 0]T or of the form
[1, 1,−1,−1, 0, . . . , 0]T , up to permuting rows.
Since matrices B, C, andK are forbidden, the intersection of the supports of

all of the weight-3 columns of P0 must be nonempty. Therefore, if P0 consists
entirely of weight-3 columns, then Lemma 3.18(ii) implies that Φ is minor
equivalent to the template Φ′ determined by the matrix obtained from P0

by removing the row where every column has a nonzero entry. Every matrix
conforming to Φ′ has at most two nonzero entries per column. Therefore, every
matroid conforming to the template is signed-graphic.
Thus, we may assume that P0 has a weight-4 column. Let G′ be the matrix

obtained by removing the row of matrix G with two nonzero entries. If P0

contains a weight-3 column and a weight-4 column whose supports have an
intersection of size 0 or 1, then P0 contains matrix G′ or G, respectively,
up to permuting rows and scaling columns. Since matrices G′ and G are
both forbidden, every pair of columns, one of which has weight 3 and one of
which has weight 4, must have supports with an intersection of size at least
2. Moreover, since matrices H, I, and J are forbidden, if P0 contains both
weight-3 and weight-4 columns, then P0 must be of the form given in Lemma
4.5. By that lemma,M(Φ) consists of signed-graphic matroids.
Therefore, we may assume that P0 consists entirely of weight-4 columns.

Let D′ be the matrix obtained by removing the row of matrix D with two
nonzero entries. A similar argument to the one involving G and G′ in the
last paragraph shows that every pair of weight-4 columns must have supports
whose intersection has size at least 2. Since matrices E and F are forbidden,
eitherM(Φ) consists of signed-graphic matroids, by Lemma 4.5, or restricting
to the nonzero rows of P0 results in a column submatrix of the matrix T+

obtained from matrix T by appending the row [−1,−1,−1]. Then by Lemma
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3.18(ii), we may assume that restricting to the nonzero rows of P0 results in a
column submatrix of the matrix T . �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We will prove the statement in Theorem 1.1 that is
dependent on Hypothesis 3.1. The statement that is dependent on Hypothesis
3.2 is proved similarly.
Recall that AG(2, 3)\e is an excluded minor for the class of dyadic ma-

troids. Since AG(2, 3)\e is a restriction of PG(2, 3), Hypothesis 3.1, with
F = GF(3) and m = 3, implies that there exist k ∈ Z+ and frame tem-
plates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt such that every k-connected dyadic matroid M
with at least 2k elements either is contained in one of M(Φ1), . . . ,M(Φs)
or has a dual M∗ contained in one ofM(Ψ1), . . . ,M(Ψt). Moreover, each of
M(Φ1), . . . ,M(Φs),M(Ψ1), . . . ,M(Ψt) is contained in the class of dyadic ma-
troids. By Theorem 3.6, we may assume that these templates are re�ned. Let
Φ be any template in {Φ1, . . . ,Φs,Ψ1, . . . ,Ψt}. By Lemma 4.6, either M(Φ)
is contained in the class of signed-graphic matroids, or Φ is minor equivalent
to the complete, lifted Y -template determined by a submatrix of the matrix
T given at the beginning of this section. In the former case, condition (1) of
Theorem 1.1 holds. In the latter case, since Ur is the rank-r universal matroid
for ΦT , Lemma 3.19 implies that every matroid conforming to Φ is a minor of
some Ur.
If we contract from Ur one of the elements that indexes a column of the

matrix T , then the simpli�cation of the resulting matroid has the following
representation matrix. Ir−1 Dr−1

−1 · · · −1 1
1 · · · 1 1

−Ir−3
0
...
0


We see that this matroid is signed-graphic by adding to the second row the

negatives of all other rows. Therefore, every simple matroid M ∈ M(Φ) is
either signed-graphic or a restriction of some Ur. (Since we are dealing with
highly connected matroids, they must also be simple. Therefore, we are only
concerned with simple matroids.) We also see that we may choose r = r(M)
because otherwise there are rows of the matrix representing M that can be
removed without changing the matroid. �

Now we prove Theorem 1.2.
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Proof of Theorem 1.2. We will use Lemma 3.20 to prove Theorem 1.2. Let
E1 = {AG(2, 3)\e}, and let E2 = {(AG(2, 3)\e)∗}. Since AG(2, 3)\e is ternary
but not dyadic, and since the classes of ternary and dyadic matroids are closed
under duality, conditions (i) and (ii) of Lemma 3.20 are satis�ed. Since every
signed-graphic matroid is dyadic and Ur is dyadic for every r, Lemma 4.6
implies that condition (iii) of Lemma 3.20 is satis�ed. Then (iv) follows from
(iii) and duality. The result follows. �

5. Near-Regular and
6
√

1-Matroids

In this section, we prove Theorem 1.3 after proving several lemmas.

Lemma 5.1. Let Φ ∈ {Φ2,ΦX ,ΦC ,ΦY0 ΦCX ,ΦCX2}. Then the non-Fano ma-
troid F−7 is a minor of some member of M(Φ). Therefore, M(Φ) is not
contained in the class of 6

√
1-matroids.

Proof. It is well known (see [15, Proposition 6.4.8]) that F−7 is F-representable
if and only if the characteristic of F is not 2. Thus, F−7 is not representable
over GF(4) and is therefore not a 6

√
1-matroid. Therefore, the last statement

of the lemma follows from the �rst part of the lemma.
We saw in Section 4 that M(K4) can be obtained from the rank-3 ternary

Dowling geometry by deleting the three joints. If we leave one of the joints in
place, then it is contained in the closures of exactly two pairs of points that are
not collinear in M(K4). The result is the non-Fano matroid F−7 . Therefore,
the F−7 is signed-graphic, implying that F−7 ∈M(Φ2).
The following ternary matrix is a representation of F−7 that conforms to

both ΦX and ΦY0 .

(5.1)

 1 0 0 −1 −1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 −1 −1


Therefore, F−7 ∈ M(ΦX) and F−7 ∈ M(ΦY0). By Lemma 3.8, we also have
that F−7 is a minor of matroids conforming to ΦC , ΦCX , and ΦCX2. �

Recall that the matroid T 1
r is obtained from the complete graphic matroid

M(Kr+2) by adding a point freely to a triangle, contracting that point, and
simplifying. For r ≥ 2, Semple (see [20, Section 2] and [19, Proposition 3.1])
showed that T 1

r is representable over a �eld F if and only if F 6= GF(2).
Therefore, every T 1

r is near-regular. The following matrix represents T 1
r over

every �eld of characteristic other than 2.

(5.2)

[
Ir Dr

1 · · · 1
Ir−1

]
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Lemma 5.2. Let Φ be the complete, lifted Y -template determined by some
ternary matrix P0. Either F−7 is a minor of some matroid conforming to Φ, or
every member ofM(Φ) has a simpli�cation that is a restriction of some T 1

r .

Proof. Suppose P0 = [1, 1, 1, 1]T . Consider the vector matroid of [I4|D4|P0].
By contracting the element represented by P0, we obtain a matroid containing
F−7 as a restriction. Therefore, no column of P0 can contain four equal nonzero
entries. If P0 = [1, 1,−1]T , then [I3|D3|P0] is (up to column scaling) the
representation of F−7 given in Matrix (5.1). Therefore, if a column of P0

contains unequal nonzero entries, then it can contain no other nonzero entry.
Thus, the column is a graphic column, which is already assumed to be included
in a complete Y -template.
Thus, every column of P0 contains at most three nonzero entries, all of which

are equal. Consider the following matrices.
1 0
1 0
0 1
0 1

,
1 1 0

1 0 1
0 1 1


If P0 is either of these matrices, then M([I|D|P0]) contains F−7 as a minor.
(This can be easily checked with SageMath or by hand. If P0 is the �rst matrix,
contracting one of the elements represented by a column of P0 and simplifying
results in the rank-3 ternary Dowling geometry. We saw in the proof of Lemma
5.1 that F−7 is signed-graphic, implying that it is a restriction of the rank-3
ternary Dowling geometry. If P0 is the second matrix, then M([I|D|P0]) is
itself the rank-3 ternary Dowling geometry.)
It is routine to check that the class of matroids whose simpli�cations are

restrictions of some T 1
r is minor-closed. Therefore, it su�ces to consider a

template that is minor equivalent to Φ. Thus, by Lemma 3.18(i), we may
assume that the sum of the rows of P0 is the zero vector. Therefore, we may
assume that every column has exactly three nonzero entries all of which are
equal. Because the two matrices above are forbidden, P0 is of the following
form, where V consists entirely of unit columns.1 · · · 1

1 · · · 1
V


Now, Lemma 3.18(ii) implies that Φ is minor equivalent to the complete, lifted
Y -template Φ′ determined by the matrix obtained by removing the top row
from P0. Every member ofM(Φ′) has a simpli�cation that is a restriction of
some T 1

r . �
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We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We prove the statement in Theorem 1.3 that is depen-
dent on Hypothesis 3.1. The statement dependent on Hypothesis 3.2 is proved
similarly.
Every near-regular matroid is also a 6

√
1-matroid; therefore, (1) implies (2).

We will now show that (2) implies (3). By Hypothesis 3.1, there exist ternary
frame templates Φ1, . . . ,Φs,Ψ1, . . . ,Ψt and a positive integer k1 such that every
matroid conforming to these templates is a 6

√
1-matroid and such that every

simple k1-connected
6
√

1-matroid with at least 2k1 elements either conforms
or coconforms to one of these templates. By Theorem 3.6, we may assume
that these templates are re�ned. Lemmas 5.1 and 3.11 imply that each of
these templates is a Y -template. Then Lemmas 3.18 and 5.2 imply that every
matroid conforming to these templates has a simpli�cation isomorphic to a
restriction of T 1

r for some r (because the class of matroids whose simpli�cations
are restrictions of T 1

r is minor-closed). We see that we may choose r = r(M)
because otherwise there are rows of the matrix representing M that can be
removed without changing the matroid. By taking k ≥ k1, we see that (2)
implies (3).
Since T 1

r is near-regular for every r, (3) implies (1). We complete the proof
of the theorem by showing the equivalence of (2) and (4) using Lemma 3.20.
In that lemma, letM be the class of 6

√
1-matroids, let E1 = {F−7 }, and let E2 =

{(F−7 )∗}. Since F−7 and (F−7 )∗ are ternary matroids that are not 6
√

1-matroids,
conditions (i) and (ii) of Lemma 3.20 are satis�ed. Combining Lemmas 5.1 and
3.11, we see that for every re�ned frame template Φ that is not a Y -template,
F−7 ∈M(Φ). Combining Lemmas 3.18(i), and 5.2, we see that F−7 ∈M(Φ) for

every Y -template Φ such thatM(Φ) is not contained in the class of matroids
whose simpli�cations are restrictions of some T 1

r . Since T
1
r is a 6

√
1-matroid for

every r, condition (iii) of Lemma 3.20 holds. Finally, condition (iv) of Lemma
3.20 holds because of condition (iii) and the fact that the class of 6

√
1-matroids

is closed under duality. Therefore, by Lemma 3.20, there is a positive integer
k2 such that a k2-connected ternary matroid with at least 2k2 elements is a
6
√

1-matroid if and only if it contains no minor isomorphic to either F−7 or
(F−7 )∗. By taking k ≥ k2, we see that (2) is equivalent to (4), completing the
proof. �

Appendix A. SageMath Code

We give here an example of the code for the computations used to prove
Lemma 4.4. The function complete_Y_template_matrix takes as input a
matrix P0 and returns the matrix [I|D|P0]. The code below returns True,
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showing that if P0 is matrix C from Table 1, then M([I|D|P0])/{0, 18, 23}
contains AG(2, 3)\e as a minor.

N=matroids.named_matroids.AG23minus()
# N is the matroid AG(2,3)\e

def complete_Y_template_matrix(P0):
k=P0.nrows()
num_elts=k+k*(k-1)/2+P0.ncols()
F=P0.base_ring()
A = Matrix(F, k, num_elts)
i = 0
# identity in front
for j in range(k):

A[j,j] = 1
i = k
# all pairs
for S in Subsets(range(k),2):

A[S[0],i]=1
A[S[1],i]=-1
i = i + 1

# Columns from Y0
for l in range(P0.ncols()):

for j in range(k):
A[j, i] = P0[j, l]

i=i+1
return A

P0 = Matrix(GF(3), [[1,1,0],
[1,0,1],
[0,1,1],
[1,0,0],
[0,1,0],
[0,0,1]])

A=complete_Y_template_matrix(P0)
M=Matroid(field=GF(3), matrix=A)
((M/0/18/23).simplify()).has_minor(N)
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