ORDERING CIRCUITS OF MATROIDS

CAMERON CRENSHAW AND JAMES OXLEY

ABSTRACT. The cycles of a graph give a natural cyclic ordering to their
edge-sets, and these orderings are consistent in that two edges are ad-
jacent in one cycle if and only if they are adjacent in every cycle in
which they appear together. An orderable matroid is one whose set of
circuits admits such a consistent ordering. In this paper, we consider
the question of determining which matroids are orderable. Although
we are able to answer this question for non-binary matroids, it remains
open for binary matroids. We give examples to provide insight into the
potential difficulty of this question in general. We also show that, by
requiring that the ordering preserves the three arcs in every theta-graph
restriction of a binary matroid M, we guarantee that M is orderable if
and only if M is graphic.

1. INTRODUCTION

In a graph, the edges of each cycle have an ordering on them. But this
is not true for the circuits of a matroid. The goal of this paper is to see to
what extent we can distinguish graphic matroids by an ordering condition
that mimics the ordering condition on the edges of the cycles of a graph.

A reversible cyclic ordering of a finite set X is an arrangement of the
elements of X on the vertices of an n-gon with one element at each vertex.
Elements x1 and x9 of X are adjacent in the ordering when the corresponding
vertices of the n-gon lie on a common edge. Figure 1 shows an example of
such an ordering (z; 2 ... x,). The same ordering can also be denoted,
for example, by (z3 x2 1 =, ... x4). Throughout this paper, all orderings
are assumed to be reversible cyclic orderings unless stated otherwise.

In a graph, there is an associated ordering on the edge set of each cycle.
These orderings have the property that two edges are adjacent in an ordering
of a given cycle if and only if they are adjacent in the ordering of every cycle
in which the edges appear together.

Unlike the cycles of a graph, the circuits of a matroid are sets without
inherent order. We give a matroid M an ordering by imposing an ordering
on each of its circuits. Such an ordering of M is consistent if, for every pair
{e, f} of distinct elements of E(M) and every pair {C,C’} of circuits of M
with {e, f} CCNC’, if e and f are adjacent in the ordering of C, then e
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FIGURE 1. A reversible cyclic ordering.

and f are adjacent in the ordering of C’. A matroid is called orderable if it
has a consistent ordering.

The notation for matroids in this paper follows [5] with one modification.
We call a matroid N a series extension of a matroid M if N can be obtained
from M by a (possibly empty) sequence of single-element series extensions;
a parallel extension is defined analogously.

The primary goal of this work is characterizing orderable matroids. As
noted above, our first examples of orderable matroids are graphic matroids.

Proposition 1.1. If M is a graphic matroid, then M is orderable.

However, orderability is not enough to distinguish graphic matroids from
non-graphic matroids. Our main result specifies all non-binary orderable
matroids. The infinitely many such matroids are all built from Us, for
some n > 4 by using two operations, which we now describe.

For a matroid M without coloops, a series extension of M is balanced
if, for some integer k exceeding one, each element of M is replaced by k
elements in series. We call k the order of the balanced series extension. The
second operation is a generalization of the operation of adding an element
in parallel to another. A theta-graph is a graph consisting of a pair of
distinct vertices and three internally disjoint paths between them. Now, let
P be a nonempty subset of a series class of a matroid M. Fix an element
t of P, contract P — t, and relabel ¢t as t’ to obtain M’. Let N be the
cycle matroid of a theta-graph with series classes {t'}, P, and P’, where
|P'| = |P|. Finally, let M"” be the 2-sum of M’ and N with basepoint ¢'.
The operation transforming M into M" is called parallel-path addition. The
size of this addition is |P|; we call P and P’ parallel paths of M", and say
that M" is obtained from M by adding P’ in parallel to P. The following
theorem is the main result of the paper.

Theorem 1.2. Let M be a connected non-binary matroid. Then M is or-
derable if and only if it can be obtained from Us, for some n > 4 by a
sequence of the following operations:

(i) balanced series extension; and

(ii) parallel-path addition.

When we come to consider binary orderable matroids, we encounter con-
siderable difficulty. For example, as we show in the next section, F7 and
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M*(K35) are not orderable, yet each has an orderable series extension. In
view of this, it is natural to consider additional conditions that one can add
to orderability in order to distinguish graphic matroids within binary ma-
troids. The next theorem gives three equivalent such additional conditions.

Theorem 1.3. The following are equivalent for a binary matroid M :
(i) M is graphic.
(ii) every minor of M is orderable.
(iii) every series minor of M is orderable.
(iv) every parallel minor of M is orderable.

Although, as noted above, there are orderable binary matroids that are
not graphic, we know of no counterexample to the following.

Conjecture 1.4. A 3-connected orderable binary matroid is graphic.
We have, however, made the following progress.
Theorem 1.5. A 4-connected regular orderable matroid is graphic.

Another condition one can add to orderability to distinguish graphic ma-
troids within binary matroids involves the theta-graphs in a matroid M,
where a theta-graph in M is a restriction of M that is isomorphic to the
cycle matroid of a theta-graph. Equivalently, it is a restriction of M that is
isomorphic to a series extension of Uy 3. The series classes of a theta-graph
are called its theta-arcs. A subset B of a circuit C is a block if there is a
listing b1, b9, ..., b of the elements of B such that b; and b; 1 are adjacent
for all ¢ in [k — 1]. A consistent ordering of a matroid M is a theta-ordering
if every theta-arc of every theta-graph of M is a block in the ordering; M
is theta-orderable if it has a theta-ordering.

Theta-orderability turns out to be equivalent to a concept introduced by
Wagner [9]. For distinct circuits C' and D of a matroid M, an arc of C' is
a minimal non-empty subset A of C' such that A U D contains at least two
circuits. A set {Aj, A, A3} of arcs of a common circuit is incompatible if
AiNAyN Az # 0 and A; — (4; U Ag) # 0 for all ¢, j, and k such that
{i,j,k} = {1,2,3}. In Section 4, we prove the following characterization of
theta-orderable binary matroids. The equivalence of (i) and (ii) is Wagner’s
main result [9].

Theorem 1.6. The following are equivalent for a binary matroid M :
(i) M is graphic;
(il) M has no set of incompatible arcs; and
(iii) M is theta-orderable.

The following characterization of theta-orderable non-binary matroids will
also be proved in Section 4.

Theorem 1.7. Let M be a connected non-binary matroid. Then M is theta-
orderable if and only if M is a parallel extension of a balanced series exten-
sion of Ua,, for some n > 4.
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In Section 2, after some preliminaries, we prove Theorem 1.3. The proof
of our main result, Theorem 1.2, is in Section 3, and Theorem 1.5 is proved
in Section 5.

2. PRELIMINARIES

Our first proposition collects some basic properties of orderability. These
properties will be used frequently and often implicitly. We omit their straight-
forward proofs.

Proposition 2.1. Let M be a matroid.

(i) If M is orderable, then M\e is orderable for all e € E(M).
(ii) If r(M) < 2, then M is orderable.
(iii) M is orderable if and only if the connected components of M are
orderable.

(iv) M is orderable if and only if si(M) is orderable.
Next, we note a partial converse to Proposition 1.1.

Proposition 2.2. If M is an orderable binary matroid with a spanning
circuit, then M 1is graphic.

Proof. Let C be a spanning circuit of M and e be an element in C. Fix a
consistent ordering of M, and take a standard binary representation of M
with respect to the basis C'— e. Now construct a graph G beginning with a
cycle having edge set C, ordered consistently with the fixed ordering of M.
Now, for each element f of E(M)— C, let Cy be the fundamental circuit of
f with respect to C' —e. Because Cy — f is a block in the ordering, we may
add an edge f to G as a chord of C so that it forms a cycle with edge set C.
The result is a graph whose cycle matroid has ground set E(M), has C —e
as a basis, and has the same fundamental circuits with respect to this basis
as M. Since M and M (G) are binary, we deduce that M = M(G). O

We now note a necessary condition for a matroid to be orderable, along
with some consequences of this condition.

Proposition 2.3. Let M be a simple matroid and X be a subset of E(M)
with | X| > 3. If there are elements e and f in E(M) — X such that X Ue
and X U f are both circuits of M, then M is not orderable.

Proof. Assume to the contrary that M has a consistent ordering. Notice
that the ordering of X U f is obtained from that of X Ue by replacing f with
e. Let a and b be the elements in X that are adjacent to e. Using strong
circuit elimination on X Ue and X U f, we obtain a circuit C C X U {e, f}
containing e but not a, and another ¢’ C X U {e, f} containing f but not b.

As C is not properly contained in either X Ue or X U f, it must contain
both e and f. Further, M is simple, so C'N X is nonempty. Since a and b
are the only elements in X adjacent to e or f, it follows that C' = {e, f, b}.
By symmetry, C' = {e, f,a}.
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Circuit elimination applied to C' and C’ now yields a circuit D that does
not contain e. Then D C {a,b, f}. Since |X| > 3, it follows that D is a
proper subset of X U f, a contradiction. O

Corollary 2.4. Let M be a matroid of rank at least three and X be a circuit-
hyperplane of M. If E(M)—X is not a parallel class of M, then the matroid
obtained from M by relaxzing X is not orderable.

Corollary 2.5. The only orderable whirl is Us 4.

We now prove Theorem 1.3, whose proof relies on the next lemma and
its corollary. The following technical property facilitates the statements of
these results. A matroid M has the (e, f, g)-property if

(i) M has a circuit containing {e, f, g};
(ii) e, f, and g are distinct; and
(iii) M has a circuit D containing f but neither e nor g and, with the
exception of at most one d in D, there is a circuit of M containing

{e, f.g,d}.

Lemma 2.6. If a matroid M has the (e, f, g)-property, then f is not adja-
cent to both e and g in a consistent ordering of M.

Proof. Suppose M has the (e, f, g)-property and f is adjacent to both e and
g. Then, in the circuit D of condition (iii), f is adjacent to elements d; and
dy of D — f. But M has a circuit containing {e, f, g,d;} for some i in {1, 2},
a contradiction. O

Corollary 2.7. Let C be a circuit of a matroid M. Suppose there is an
element ¢ of C' so that M has the (e, c, g)-property for every choice of e and
g in C —c. Then M does not have a consistent ordering.

Proof of Theorem 1.3. Since graphic matroids are orderable and the class of
graphic matroids is minor-closed, (i) implies (ii)-(iv). Let S be the set

{Fr, 7, M*(K5), M™(K3,3), M™(K3 3), M (K35 3), M (K353), Rio}.

By results of Tutte [8] and Bixby [1, 2], S contains all binary matroids that
are excluded minors, excluded series minors, or excluded parallel minors for
the class of graphic matroids. Thus we can prove that (i) follows from each
of (ii)-(iv) by showing that none of the matroids in § is orderable.

Let F7 be labelled as in Figure 2. Using the element 1 in the circuit
{1,2,3,4}, Corollary 2.7 gives that F7 has no consistent ordering.

Let F¥ be labelled as in Figure 3. Consider the circuits C; = {1,2,3,4},
Cy=11,3,5,7}, and C3 = {2,4,5,7}. The ordering of a four-element circuit
is uniquely determined by a single pair of non-adjacent elements, and the
automorphism group of F7 is doubly transitive. Thus we may assume that
C has the ordering (1 2 3 4).

Since 1 and 3 are not adjacent in C, it follows that Cy has the ordering
(153 7). Thus 5 and 7 are non-adjacent, so C3 has the ordering (2 5 4 7).
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FI1GURE 2. The matroid Fr.
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FIGURE 3. The matroid F;.

FIGURE 4. The graph K.

However, the elements of the set {1,2,5} are now pairwise adjacent, so the
circuit {1,2,5,6} cannot be ordered. Thus F> has no consistent ordering.
Let M*(K35) be labelled as in Figure 4, and assume that M*(Kj5) has a
consistent ordering. Let C' be the circuit {1,2,3,4}. By symmetry, we may
assume its ordering is (1 2 3 4). This ordering and the circuit {1,2,4,7,8,9}
give that 1 and 8 are not adjacent, so the circuit {0, 1,5, 8} must be ordered
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(0 1 5 8). Similarly, the circuit {1,2,3,5,6,7} gives that 2 and 6 are not
adjacent, so {0,2,6,9} must be ordered (0 2 9 6). Now 0 is adjacent to 1,
6, and 8 in the circuit {0, 1,4, 6, 7,8}, a contradiction.

FIGURE 5. The graph K3 3.

Let M*(K33) be labelled as in Figure 5. We shall use Corollary 2.7 letting
¢ be the element 1 in the circuit C' = {1,3,5,8} of M*(K33). The cases
{e,g} = {3,5} and {e,g} = {3,8} are symmetric, and the circuits C and
{1,3,5,7,9} certify that M has the (3,1, 5)-property with D = {1,4,8,9}.
The circuit {1,5,6,8,9} certifies that M has the (5,1, 8)-property with
D = {1,2,6,9}. Corollary 2.7 now implies that M*(K33) has no consis-
tent ordering.

FIGURE 6. The graph K3 ;.

The next two cases will also use Corollary 2.7. Let M*(K3 3) be labelled
as in Figure 6, and let ¢ be the element 3 in the circuit C' = {3,6,7,8}
of M*(K33). The cases {e,g} = {6,7} and {e,g} = {6,8} are symmetric,
and the circuit {2, 3,5, 6,7, 8} certifies that M has the (6, 3, 7)-property with
D = {1,2,3}. The circuit C certifies that M has the (7,3, 8)-property with
D = {3,6,9}. Corollary 2.7 now implies that M*(K33) has no consistent
ordering.

FIGURE 7. The graph K3;.
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Let M*(K33) be labelled as in Figure 7, and let ¢ be the element 1 in the
circuit C' = {1,3,5,8,a,b} of M*(K353). When {e,g} C C — 3, the circuit
C certifies that M has the (e, 1, g)-property with D = {1,2,3}. Each of the
remaining cases uses D = {1,4,7,a}. The cases {e,g} = {3,5} and {e, g} =
{3,8} are symmetric, and the circuit {1,3,5,7,9,a,b} certifies that M has
the (3,1,5) property. The circuits {1,3,4,6,8,a,b} and {1,3,5,7,9,a,b}
certify the (3,1,a)-property. Finally, the circuit {1,3,4,6,8,a,b} certifies
the (3,1, b)-property. Corollary 2.7 now implies that M*(K. :’3’73) has no con-
sistent ordering.

FIGURE 8. The graph K3;.

Let M*(K3'3) be labelled as in Figure 8. We begin by noting that there
must be at least one adjacent pair in the set {1,4,7} due to the circuit
{1,4,7,a,c}. By symmetry, we may assume that 1 and 4 are adjacent.

Combining this adjacent pair with the three-element circuits, we get that
2145 is a block in the circuit {1,2,4,5,9,b,c}. Therefore 4 is not adjacent
to 9, b, or ¢. This means that, in the circuit {3,4,5,9, b, c}, we must have 4
adjacent to 3. Using the three-element circuit {4,5,6}, we now have that 4
is adjacent to 1, 3, and 6. Therefore the circuit {1, 3,4,6,8,a,b} cannot be
ordered consistently, and M*(K3';) has no consistent ordering.

FIGURE 9. A graft corresponding to Rjg.

Let M be the graft matroid of K33 where the graft element e, corresponds
to the set of boxed vertices in Figure 9. Then M = Rjq. Using Corollary 2.7
again, let ¢ be the element 1 in the circuit C = {1,2,4,5} of M. When
{e,g9} = {2,4}, the circuit {1, 2,4,6,8,9} certifies the (2,1, 4)-property when
D = {1,3,4,6}. When {e, g} = {2,5}, the circuit {1,2,5,6,7,9} certifies
the (2,1, 5)-property with D = {1,3,7,9}. Finally, when {e, g} = {4, 5}, the
circuit {1,4,5,6,7,e,} certifies the (4,1,5)-property with D = {1,6,8,¢,}.
Corollary 2.7 now implies that Rig has no consistent ordering. ([l
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We conclude this section with a pair of examples that indicate the poten-
tial difficulty of characterizing orderable binary matroids.

Example 2.8. This example describes a 12-element orderable series exten-
sion of F7, which we refer to as O;. Thus, the pair O and F?7 demonstrates
that the class of binary orderable matroids is not closed under the taking of
series minors. Let F7 be labelled as in Figure 3. We obtain O; by adding
1/, 2/, and 7’ in series with 1, 2, and 7, respectively, and adding 4’ and 4” in
series with 4. Figure 10 gives a consistent ordering of the circuits of O;.

(151262 (151737 (262737 (3454 64")
(1421434"2) (1741 74"64) (2745427 4"

FI1GURE 10. A consistent ordering of O;.

Example 2.9. Let K5 be labelled as in Figure 4. We obtain a regular,
non-graphic matroid O from M*(K35) by adding elements 0’ and 2 in series
with 0 and 2, respectively. Figure 11 gives a consistent ordering of Os.

(4657) (22126589) (00109346) (2124789)
(3789) (2123756) (00108746) (00109375)
(2'342085) (002902475 (20620873)
(21234) (01058 (026029) (346589)

FIGURE 11. A consistent ordering of O,.

3. A CHARACTERIZATION OF NON-BINARY ORDERABLE MATROIDS

In this section, we prove Theorem 1.2. We begin by finding the orderable
series extensions of uniform matroids and their consistent orderings. These
results allow us to characterize the non-binary orderable matroids that are 3-
connected, from which we obtain the full characterization using the canonical
tree decomposition of Cunningham and Edmonds [3].

A uniform matroid is binary if and only if it is graphic. Thus, the binary
uniform matroids are certainly orderable, as are those whose rank is at most
two. Proposition 2.3 implies this list is complete.

Corollary 3.1. A uniform matroid is orderable if and only if it is binary
or has rank at most two.

The next two results deduce the structure of a consistent ordering of a
series extension of a non-binary uniform matroid, and show that such an
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ordering can be used to consistently order the underlying uniform matroid.
For a non-coloop element e of a matroid M, we denote the series class of M
containing e by Se or sometimes by Se(M).

Let M be a matroid with a consistent ordering. Suppose X and Y are
disjoint subsets of a circuit C' of M. We say X and Y are adjacent if there
is an adjacent pair of elements x and y, where = belongs to X and y belongs
to Y. Let B be the union of a set of blocks that belong to a common circuit
of M. If there is a listing By, Bo, ..., By of the blocks in B such that B; and
Bt are adjacent for all ¢ in [k — 1], then B is a section. Finally, let S be
a series class of M. If a block of M is contained in S and is maximal with
this property, then it is called an S-block.

Lemma 3.2. Let M be an orderable series extension of a mon-binary uni-
form matroid U, ,, and fix a consistent ordering of M. Let C be a circuit of
M, and let x and y be elements of C' from distinct series classes of M.

(i) If a section K in C is adjacent to a pair of Sy-blocks, then K must
contain an Sy-block.
(ii) Ewvery series class S of M has the same number of S-blocks.

Proof. For (i), suppose to the contrary that there is a section K in C that
contains no Sy-block and is adjacent to a pair of distinct S;-blocks. As M
is non-binary, 2 < r < n — 2 and there is a circuit D, of M that contains K
and S, but avoids Sy. Let D, = (D, — S;) US,. Observe that, since M is a
series extension of U, ,, the set D, is a circuit. The consistency of D, with
C implies that K is not adjacent to Sy-blocks in D,, but the consistency
of D, with D, gives that K can only be adjacent to Sy-blocks in D, a
contradiction.

We now deduce (ii) from (i). Let S be a series class of E(M) for which
the number of S-blocks is as large as possible. We may assume this number
exceeds one. In a circuit C' containing S, let K be a minimal section that
is adjacent to a pair of distinct S-blocks. Note that the number of such
minimal sections in C equals the number of S-blocks. Let S’ be a series
class of M contained in C' that is distinct from S. Part (i) implies there is
an S’-block in K and, as K contains no S-blocks, (i) further implies that
there is exactly one S’-block in K. Thus there are the same number of
S’-blocks as S-blocks. Part (ii) now follows. O

Proposition 3.3. Let U,,, be a non-binary uniform matroid. If a series
extension of U,y is orderable, then so is U, .

Proof. Let M be an orderable series extension of U, , and fix a consistent
ordering of M. By Lemma 3.2(ii), there is an integer k£ > 1 such that every
series class of M is divided into exactly k blocks. If k = 1, the result follows
immediately, so assume k > 2.

Let [n] be the ground set of U,,. Consider the circuit C' of M that
contains {1,2,...,r + 1}. Label the Si-blocks in C as By, Ba, ..., B, such
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that B; and B;y; abut a section K; that does not contain Si-blocks, as in
Figure 12.

FiGURE 12. The circuit C in the proof of Proposition 3.3.

Applying Lemma 3.2(i), we see that each section K; contains exactly one
Sj-block for all j in {2,3,...,7+1}. Thus, B; UK; defines a permutation of
{1,2,...,r + 1} that begins with 1. We show this permutation is the same
for all 3.

Without loss of generality, suppose the block in K; adjacent to Bj is an
Sa-block. If the block in K5 adjacent to B is an Sj-block with j # 2,
then the S;-blocks in K and K3 abut a section that contains no S>-block,
contradicting Lemma 3.2(i). Thus the block in Ky adjacent to By is an
So-block. Repeating this argument gives that B; U K1 and By U Ko define
the same permutation on {1,2,...,r+1}. It follows that B; U K; defines the
same permutation on {1,2,...,r + 1} for all ¢ in [n]. Thus B; U K; U B;y;
defines the same reversible cyclic ordering on {1,2,...,r+ 1} for all 7 in [n];
it is this reversible cyclic ordering that we extract from C and use to order
the circuit {1,2,...,7+ 1} in Uy,

In this way, every circuit of U, ,, is ordered using the corresponding circuit
of M. Since the ordering of M is consistent, so too is the ordering it gives
to Uy . O

Theorem 3.4. Let U,, be a non-binary uniform matroid of rank at least
three. If M is a matroid with a series minor isomorphic to U, ,, then M is
not orderable.

Proof. By [5, Proposition 5.4.2], we may write U,,, = M\X/Y where each
element of Y is in series with an element of M\ X not in Y. By Corollary 3.1,
the matroid U, ,, is not orderable. Therefore, by Proposition 3.3, neither is
its series extension M\X. Thus, M is not orderable. |

Recall that, in a balanced series extension N of a matroid M without
coloops, each element of M is replaced by k elements in series for some
positive integer k.
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Lemma 3.5. Let N be a balanced series extension of a matroid M. If M
is orderable, then so is N.

Proof. A consistent ordering of N may be obtained from a consistent or-
dering of M by extracting a linear order from each ordered circuit of M,
then repeating this linear order k times in the corresponding circuit of V.
Specifically, if 21, x2,...,x, is a linear order for the elements of a circuit C

of M, and 3:},3312, A J:f" are the k elements in series in N that replace the
element z;, then

(az% 2 oala?al 2 abak x;g)
is the ordering of the circuit of N corresponding to C. O

The following proposition specializes some of the results about uniform
matroids to U, with n > 4. These rank-two uniform matroids will serve
as the foundation from which all non-binary orderable matroids are built.

Proposition 3.6. Let M be an orderable series extension of Ua, for some
n > 4, and fix a consistent ordering of M. Then

(i) for all series classes S of M, every S-block of the ordering consists
of a single element; and
(ii) M is a balanced series extension of Uz ,,.

Proof. Statement (ii) follows from combining (i) with Lemma 3.2(ii), so it
suffices to show (i). Let E(Usz,) = [n]. Suppose, to the contrary, that M
has an Si-block B of size at least two.

Applying Lemma 3.2(i), we have that B is adjacent to both an Se-block
and an Ss-block in the circuit of M containing {1,2,3}. Let 1y be the
element of B adjacent to the Se-block and let 13 be the element of B adjacent
to the S3-block, where 15 and 13 are necessarily distinct. In the circuit of
M containing {1,2,4}, Lemma 3.2(i) now gives that B is adjacent to both
an Se-block and an Sy-block. Consistency dictates that 1o is again adjacent
to the Sa-block. Therefore 15 is now adjacent to the S4-block.

Now consider the circuit of M containing {1,3,4}. Consistency with the
two aforementioned circuits requires that 13 be adjacent to both an Ss-block
and an Sy-block. As |B| > 2, this is a contradiction. O

The next theorem identifies all orderable matroids that are 3-connected
and non-binary.

Theorem 3.7. If M is a 3-connected non-binary orderable matroid, then
M = Us,, for somen > 4.

The next two results will be used in the proof of this theorem.

Proposition 3.8. If M is an orderable matroid, then M has mo minor
isomorphic to Us 5.
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Proof. Assume instead that M\X/Y = Us 5, with X coindependent and Y
independent. Then M*/X\Y = Us where M*/X has rank two. Thus,
after deleting a set Z of loops from M™*/X, we obtain a parallel extension of
Us,p, for some n > 5. This makes M\ (X U Z) an orderable series extension
of Uy,—2.n, contradicting Theorem 3.4. O

Proposition 3.9. If M is an orderable matroid, then M has no minor
isomorphic to W3.

The proof of this proposition will rely on the next lemma and its corollary.
This second pair of results will use the following modification of the (e, f, g)-
property. A matroid M has the series (e, f, g)-property if

(i) M has a circuit containing {e, f, g};
(i) Sf(M) is distinct from both S.(M) and Sy(M); and
(iii) M has a circuit D containing f but not {e, g} and, for each d in D,
there is a circuit of M containing {e, f, g, d}.

Note that e and g may be equal in this definition.

Lemma 3.10. Suppose that M has the series (e, f,g)-property and that
N is a series extension of M. Then, in a consistent ordering of N, if
Se(N) # Sy(N), then no Sg(N)-block is adjacent to both an Se.(N)-block and
an Sg(N)-block; and, if Se(N) = Sq(N), then no S¢(N)-block is adjacent to
two Se(IN)-blocks.

Proof. Let D be the circuit of M whose existence is guaranteed by condition
(iii). Let D’ be the circuit of N corresponding to D, and let By be an S¢(N)-
block. Notice D must have an element d not in {e, f,g}, so D' — (Se(N) U
S§(N) U Sy(N)) is nonempty. If Se(IN) = S4(IN) and By is adjacent to two
Se(IN)-blocks, then e is not in D, so By is not adjacent to any elements of
D' — By, a contradiction. Now suppose S¢(N) # Sy(N) and, without loss of
generality, suppose e is in D but g is not. If By is adjacent to an S (IV)-block
and an Sy(N)-block, then all of the elements in D’ — By adjacent to By are
in S¢(N). This contradicts the fact that By is adjacent to an S.(IV)-block
and an Sg(N)-block in a common circuit. O

Corollary 3.11. Let C be a circuit of a matroid M. Suppose that C' con-
tains an element ¢ so that M has the series (e, ¢, g)-property for every choice
of e and g in C — c. Then no series extension of M is orderable.

Proof of Proposition 3.9. Assume instead that M\ X/Y = W3, with X coin-
dependent and Y independent. Let L be the set of loops of M*/X, and let
N denote M*/(X U L). Note that N is a loopless rank-3 extension of W3,
so si(/V) is 3-connected. Further, N is a parallel extension of si(N), which
makes N* an orderable series extension of co(/N*).

3.11.1. si(N) is ternary.

To see this, first note that, as N* is orderable, it has no Uss-minor by
Proposition 3.8. Thus, si(/NV) has no U s-minor. As si(N) is 3-connected
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and its rank and corank each exceed two, [5, Proposition 12.2.15] gives that
si(/V) has no Uss-minor. The rank of F exceeds three, so si(/V) also has
no F7-minor.

Finally, suppose si(N) has an Fy-minor. Then si(N)|Z = F; for some
set Z. As Fr has no W3-minor, si(N) has an element e not in Z. Then
si(/V)/e has a Uj s-restriction, a contradiction. We conclude that si(/V) has
no Fr-minor. Thus 3.11.1 holds.

By 3.11.1, si(N) has the form PG(2,3) — K, where K is a restriction
of Oz, the complement of W3 in PG(2,3). The matroid O; is obtained
from M (K4) by adding a point freely to an existing 3-point line; the fifteen
restrictions of O7 are given in Table 13. In the remainder of the proof, we
eliminate each possibility for K.

Number n of elements | Restrictions of O7 with n elements
0 U(),()
1 U1,1
2 UQ,Q
3 Us,3, Uz 3
4 Uz, Uz g, Uz 3 ® Uy
5 Uy ® Ui, P(Uzs3,Uzz3), Uz @2 Uz
6 P(Uz4,Us3), M(Ky), W3
7 O7

F1GuRE 13. Choices for K, the complement of si(/V) in PG(2,3).

If K = Uy, thensi(N) = PG(2,3). Let si(/V) be labelled as in Figure 14.
Suppose N* has a consistent ordering, and let B, By, and B, be S;-, Sy-,
and S,-blocks in a common circuit C' of N*, where z, y, and z are elements
of E(si(N)). Assume also that B, is adjacent to B, and B,. Then, by
Lemma 3.10, co(N*) does not have the series (x,y, z)-property. We show
next that

3.11.2. z, y, and z are collinear in si(N), and x # z.

Suppose z, y, and z are not collinear in si(N). Then one easily finds
circuits of co(N*) that verify the series (z,y, z)-property in co(N*), a con-
tradiction. Similarly, when z = z there are circuits of co(N*) that verify
the series (z,y, z)-property in co(N*), a contradiction. Thus, 3.11.2 holds.

By symmetry, we may assume that C' is the circuit {1,2,3,4,5,6,7,8,9}
of co(N*); let C’ be the corresponding circuit of N*. Consider an Sj-block
B in C’. The block B is adjacent to an Se- and S¢-block for some e and f
in C' — 1. By 3.11.2, the elements 1, e, and f are collinear in si(N); without
loss of generality, say e = 2 and f = 3. Let B3 be the S3-block adjacent
to B. By repeatedly applying 3.11.2, we have that Bj is adjacent to an
So-block Bs, the block Bs is adjacent to another Si-block Bi, the block By
is adjacent to another S3-block, and so on. It follows that C’ has a proper
subset X of elements not adjacent to any element of C/ — X, a contradiction.
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FIGURE 14. The matroid PG(2,3).

15

If K = Usy, then si(IV) = AG(2,3). Figure 15 gives two labelled copies
of si(N) in order to illustrate some of the symmetries of this matroid. Using
Corollary 3.11, let ¢ be the element 1 in the circuit C = {1,2,3,4,5,6}
of co(N*). When e = g = 2, the circuits C and {1,2,3,7,8,9} certify
that co(N*) has the series (2, 1, 2)-property with D = {1,3,4,6,7,9}. Since

o

R

FIGURE 15. Two geometric representations of the matroid AG(2, 3).

3

5

7
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co(N*) has a doubly transitive automorphism group, it follows that co(IN*)
has the series (e, 1, e)-property for each e in C. When {e,g} = {2,3}, the
circuits C' and {1,2,3,7,8,9} certify that co(N*) has the series (2,1, 3)-
property with D = {1,3,4,6,7,9}. The circuits C, {1,2,4,5,7,8}, and
{1,2,4,6,8,9} certify that co(N*) has the series (2, 1,4)-property with D =
{1,3,4,6,7,9}. A symmetric set of circuits certifies that co(/N*) has the
series (e, 1, g)-property for each independent set {e, 1, g} contained in C. By
Corollary 3.11, N* is not orderable.

If K = Uy ® Uy, then si(N) = AG(2,3)\9 with AG(2,3) labelled as
in Figure 15. Using Corollary 3.11 again, let ¢ be the element 1 in the
circuit C' = {1,2,3,7,8} of co(N*). When e = g = 2, the circuits C' and
{1,2,4,6,8} certify that co(N*) has the series (2,1, 2)-property with D =
{1,3,4,6,7}. A symmetric set of circuits certifies that co(N*) has the series
(e, 1, e)-property for each e in C' — 1.

When {e, g} = {2, 3}, the circuits C and {1, 2,4, 6,8} certify that co(N*)
has the series (2,1, 3)-property with D = {1,3,4,6,7}. From Figure 15,
we see that the cases {e,g} = {2,7} and {e,g} = {3,8} are symmetric;
and the circuits C and {1,2,4,5,7,8} certify that co(IN*) has the series
(2,1,7)-property with D = {1,3,4,5,8}. The cases {e,g} = {2,8} and
{e,g} = {3,7} are also symmetric, and the circuits C' and {1,2,4,6,8}
certify that co(IN*) has the series (2,1, 8)-property with D = {1,3,4,6,7}.
Finally, the circuits {1,2,4,5,7,8} and {1,3,5,6,7,8} certify that co(IN*¥)
has the series (7, 1, 8)-property with D = {1,2,3,4,5,6}. Corollary 3.11 now
implies N* is not orderable.

The next five cases make frequent use of Proposition 3.6(ii). The strategy
is to contract strategic parallel classes of IV to get parallel extensions of Us 4.
These parallel extensions are dual to orderable series extensions of Us g4,
and Proposition 3.6(ii) implies that the parallel classes of such a parallel
extension have the same size. For each case, we view si(N) as a restriction
of the labelled copy of PG(2,3) in Figure 14. For each element e in E(N),
let p. be the size of the parallel class of N containing e.

If K = Uy, then si(N) = PG(2,3)\d. The following equations are ob-
tained by applying Proposition 3.6(ii) in the minors N/ cl({a}), N/ cl({b}),
and N/ cl({c}), respectively:

Db+ Pec = Pp1 + P2 +P3 = pa+ ps + pe = pr + pg + Po;
DPa +Pc =Dp1+Ps + P9 =p2 + pe + pr = D3+ pa+ pg;
Da +Pp = D3 +P6 + P9 = p2 + ps + ps = p1 + pa + pr1.
Combining these equations, we obtain
3(pa + b) + 3(pa + pc) + 306 + ) = 3(P1 4+ P2+ - + Do),
which implies
2(pa + o +pe) = p1+pa+ -+ po,

and therefore
3(pa + o + 1) = |E(N)].
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We conclude that exactly one-third of the elements of E(N) lie on the
line {a, b, c}. By symmetry, the same is true of the lines {1,6,8}, {3,5,7},
and {2,4,9}, so now four disjoint lines each account for one-third of the
elements in N, a contradiction.

If K =Usg, then si(N) = PG(2,3)\{b, ¢, d}. The following equations are
obtained by applying Proposition 3.6(ii) in the minors N/ cl({1}), N/ cl({2}),
and N/ cl({3}), respectively:

(31)  pe4+ps+pPa=pi+pr=ps+ps=p5+ps=—(EN)—m);

[

(32)  p1+p3+Pa=pi+py=ps+ps=ps+pr=—(EN)—p2);

4

1
PL+D2+ P = ps +pr = po +p9 = pa+ ps = J([E(N)] = ps)-
Solving equations (3.1) and (3.2) for |[E(N)|, we see that

p1 + 4p2 + 4ps = 4p1 + p2 + 4ps,

so p1 = p2. Through additional substitutions, it follows that p; = p; for
each i,j # a. But now p, = 0, a contradiction.

If K = P(U3,Uz4), then si(N) = PG(2,3)\{7,8,9,a,b,d} = P;. From
the minors N/cl({1}) and N/cl({3}) and Proposition 3.6(ii), we get the
equations

D2 + P3 = P4+ Pe = P5 = Do,
D1+ P2 = Pe + Pc = P4 = P5-
It follows that p. = 0, a contradiction.
If K = W3, thensi(N) = PG(2,3)\{6,8,9,b,¢,d} = O;. From the minors
N/cl({7}) and N/cl({5}) we get the equations
D1+ P4 =pP3+P5 = P2 = Pa,

D3+ P7 = P4+ Pa = P1 = P2-
It follows that ps = 0, a contradiction.
If K = Oz, thensi(N) = PG(2,3)\6,8,9,a,b,c,d = W3. From the minors
N/ cl({2}) and N/ cl({4}) we get the equations

P1+P3 = p4 = ps = pPr,

p1+p7 = p2 = p3 = ps,
so p1 = 0, a contradiction.
For the next six cases, we continue to view N as a parallel extension of
a restriction of PG(2,3), with PG(2,3) labelled as in Figure 14. However,
we now represent the deletion of an element e from PG(2,3) by setting pe
to be 0. Each of these cases is eliminated using the following assertion.

3.11.3. Let N be a restriction of PG(2,3) such that

(1) pC = pd = 0;
(ii) pz # 0 for each x in {a,b,1};
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(iii) si(N/cl({x})) = Uzq for each z in {a,b,1}; and
(iv) p2 and ps are not both zero.
Then N* is not orderable.

To see this, we first use the minors N/ cl({a}) and N/ cl({b}) to establish
the equations

Pb = p1+ P2 +P3 = pa+ps +ps = pr+ ps + P,
Pa = P2 +P6 +P7 = P1+ P5s + P9 = P3 + P4 + Ps,
from which we obtain
3pa =p1+p2+ -+ Py = 3pp,
SO pa = pp, and |E(N)| = 5p,. Now, N/ cl({1}) gives that

[E(N)| = p1 = 4(p2 + ps + pa),
and substituting 5p, for |E(N)| produces

Pa = p1 + 4(p2 + p3).

Finally, since p, = p1 + p2 + p3, we deduce that ps +p3 = 0, a contradiction.
Thus 3.11.3 holds.

The six options for K eliminated by 3.11.3 are the matroids Us 2, Us 3,
Uz, U3 ® Uy, P(U273,U2,3), and Us3 @9 Uzy. It is straightforward to
check that, for each K in this list, we may set classes of PG(2,3) equal to
zero in such a way that the zeroed classes form a restriction isomorphic to
K, and the conditions of 3.11.3 hold. For example, U 3 ©2 Us 4 is produced
when ps, p7, pg, pe, and py are the zeroed classes.

1

FIGURE 16. The matroid F, .

In the final case, K = M(K4) and si(N) = F. . Label F- as in Fig-
ure 16, and, for each e in [7], let S, = S.(N*). Suppose N* has a consistent
ordering, and let B be an Si-block in the ordering. In N*, there is a circuit
corresponding to each circuit {1,2,3,5,7}, {1,3,4,5,7}, and {1,3,5,6,7}
of co(N*); let X be the collection of these circuits of N*. Similarly, let )
be the collection of circuits of N* corresponding to the circuits {1,2,3,4},
{1,4,5,6}, and {1,2,6,7} of co(N*).



ORDERING CIRCUITS OF MATROIDS 19

Suppose B is adjacent to an Se-block for some e in {2,4,6}. Then the
consistency of the circuits in X' implies that B is adjacent to an S.-block for
every e in {2,4,6}. The circuits in )) now imply that B is adjacent to an
So-, S4-, and Sg-block. Further, B is not adjacent to an Se-block for any e in
{3,5,7}. It follows that, in the circuit of N* corresponding to {1,2,3,5,7},
the block B must be adjacent to a pair of Ss-blocks, contradicting the fact
that B is adjacent to both an Ss-block and an S4-block in the circuit of N*
corresponding to {1,2,3,4}.

We now know that, for each e in {2,4,6}, the block B is not adjacent
to an Se-block. The circuits in )Y now imply that, in the circuit of N*
corresponding to {1,2,3,5,7}, the block B is adjacent to an Se-block for
every e in {3,5,7}. This contradiction implies N* is not orderable. O

The next proposition is a result of Oxley [4] (see also [5, Corollary 12.2.18]).
We will use it to prove Theorem 3.7.

Proposition 3.12. A 3-connected non-binary matroid whose rank and corank
exceed two has a minor isomorphic to one of W3, Ps, Qg, and Use.

Proof of Theorem 3.7. Assume that the theorem fails for M. Then r(M) >
3. As Fs, Q¢, and U3z each have Uz s as a minor, Proposition 3.12 and
Propositions 3.8 and 3.9 now imply that r*(M) < 2, so r*(M) = 2. As M
is 3-connected, it follows that M = U,_2, for some n > 5. Hence M has a
Us,5-minor, a contradiction. O

If {My,M,,...,My,} is a set of a matroids, then a matroid-labelled tree
with vertex set { My, My, ..., M,} is a tree T such that
(i) if e is an edge of T with endpoints M; and M, then E(M;)NE(M;) =
{e}, and {e} is not a separator of M; or M;; and
(ii) E(M;) N E(M;) is empty if M; and M; are non-adjacent.
The matroids My, M, ..., M, are called the vertex labels of T'. Now suppose
e is an edge of T" with endpoints M; and Ms. We obtain a new matroid-
labelled tree T'/e by contracting e and relabelling the resulting vertex with
M @9 Ms. As 2-sum is associative, T'/X is well defined for all subsets X of

E(T).
Let T be a matroid-labelled tree with V(T') = {My, Ma,...,M,} and
E(T) = {e1,e2,...,en—1}. Then T is a tree decomposition of a connected

matroid M if
() B(M) = (B(My) U E(Mp) U U B(My)) — {er, 0, en 1}
(ii) |E(M;)| > 3 for all ¢ unless |[E(M)| < 3, in which case n = 1 and

M = M;; and
(iii) M labels the single vertex of T'/E(T).
In this case, the elements {e1, ea, ..., e,_1} are the edge labels of T'. The next

theorem of Cunningham and Edmonds [3] (see also [5, Theorem 8.3.10]) tells
us that M has a canonical tree decomposition, unique to within relabelling
of the edges.
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Theorem 3.13. Let M be a 2-connected matroid. Then M has a tree de-
composition T in which every vertex label is 3-connected, a circuit, or a
cocircuit, and there are mo two adjacent vertices that are both labelled by
circuits or are both labelled by cocircuits. Moreover, T is unique to within
relabelling of its edges.

Let T be a tree decomposition of a matroid M, and let N and p be a vertex
label and edge label of T, respectively. For the remainder of this section, we
define M, n and M;Q,N to be the matroids such that M = M, y ®2 M;C,N with
basepoint p, where E(M,, y) contains the subset of E(M) corresponding to
the component of T'\p containing N. Notice that if the vertex labels M;
and M; lie in different components of T'\p, then My, rr, = My /.

In the next four lemmas, M is assumed to be a connected, orderable,
non-binary matroid whose canonical tree decomposition is 7.

Lemma 3.14. Suppose that T has a vertex label U that is isomorphic to
Usa,p for some n > 4. Then, for alle, f € E(U),

(i) e is an edge label of T, unless M is a parallel extension of Uy ;
(ii) all circuits of Mé,U containing e have the same size; and
(iii) the circuits of M é’U containing e have the same size as the circuits
of M}y, containing f.

Proof. We may assume that M is not a parallel extension of Us , otherwise
(i) holds. For each element y of E(U) that labels an edge of T', let Cy be
a circuit of Mz,/,U that contains y. As M is not a parallel extension of Uz ,,
we may assume that |Cy| > 3 for some element x. Let M " be the matroid
that is obtained from U by attaching each C, via 2-sum. This matroid is a
restriction of M having C, — z as a non-trivial series class. Moreover, M" is
a series extension of Us,, and it is orderable. Thus, by Proposition 3.6(ii),
M" is a balanced series extension of Us,. Hence (i) holds. Furthermore,
|Cz| = |Cy| > 3 for all y in E(U) — {z}. Parts (ii) and (iii) now follow
without difficulty. O

The next lemma generalizes Lemma 3.14(ii) to arbitrary edges of 7T

Lemma 3.15. Suppose that T has a vertex label U that is isomorphic to
Us,, for some n > 4, and suppose e is an edge label of T. Then the circuits
of Mé’U that contain e all have the same size.

Proof. Let N be the endpoint of e in the same component of T\e as U. If
U = N, then the assertion holds by Lemma 3.14(ii), so assume otherwise.
Let f be the label of the edge incident with U that lies on the path connecting
U to N in T. Next, let 7" be the subtree of T'\{e, f} containing N, and let
M’ be the matroid with tree decomposition 7.

Fix a circuit C' of M’ that contains e and f. Observe that, for each circuit
D of M; y that contains e, there is a circuit (D —e) U (C —e) of M} ; that
contains f. By Lemma 3.14(ii), the quantity |(D —e) U (C —e)| is the same
for each choice of D, so every such circuit D has the same size. O
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Lemma 3.16. The tree T has exactly one 3-connected mon-binary vertex
label, and this label is isomorphic to Us,, for some n > 4.

Proof. As M is non-binary, it has at least one 3-connected non-binary vertex
label N. For each element y of E(N) that labels an edge of T, let C, be
a circuit of M v that contains y. Let M” be the matroid that is obtained
from N by attaching each C, via 2-sum. Then M” is a restriction of M.
Thus M” is an orderable series extension of N. By Propositions 3.8, 3.9,
and 3.12, N = Uy, for some n > 4. Now suppose 1" has a pair of 3-connected
non-binary vertex labels N1 £ Uy ,,, and Ny = Us p,, with n1,n9 > 4. Let e;
and es be the edge labels of T incident with N7 and Ny that lie on the path
connecting N1 and Ny in T'.

By Lemma 3.14(ii), the circuits of M, y, containing e; all have size k and
the circuits of M éQ, N, containing eo all have size £, where k and £ are integers
exceeding one. Let {e1,z,y} be a circuit of N7. By Lemma 3.14(i), x and y
are also edge labels of T'; let C';. be a circuit of M :f: ~, containing z, and Cy, be
a circuit of M v, containing y. Then k = |C;| = |C,| by Lemma 3.14(iii).
Now there is a circuit of M é% No containing es that also contains C, — x
and Cy —y. Thus, £ > 2(k — 1) + 1. A symmetric argument gives that
k> 2(¢ — 1)+ 1, and substitution yields that k < 1, a contradiction. O

The next lemma rules out 3-connected binary vertex labels that are not
circuits or cocircuits. It uses the following result of Seymour [6].

Proposition 3.17. Let M be a 3-connected binary matroid with at least
four elements. If e € E(M), then M has an M (K4)-minor using e.

Lemma 3.18. No vertex of T is labelled by a 3-connected binary matroid
with at least four elements.

Proof. Suppose B is such a vertex label of T', let U be the unique vertex
label with U = Uy, and n > 4 given by Lemma 3.16, and say E(U) =
{e1,€2,...,en}. Let p € E(B) and e; € E(U) be the labels of the edges
incident with B and U, respectively, that lie on the path connecting B to U
in T. By Proposition 3.17, B has a minor isomorphic to M (K4) that uses
.

This minor can be written in the form B/I\I*, where I is independent
in B and I* is coindependent in B. This makes B/I a rank-three binary
matroid with M (K},) as a restriction, so after deleting the loops from B/I,
we obtain a parallel extension of either M (K4) or F7. Dually, after deleting
the coloops from B\I*, we obtain a series extension of M (Ky) or F¥. Thus
B has a restriction N; using p that is a series extension of M (Ky) or F7.

Suppose ¢ is an edge label of T' that is used in Ni, and choose a circuit
Cq of M, 47 p that contains ¢. Form the matroid No from N by replacing ¢
with Cy — ¢ in E(N;) for each ¢ in E(N;) — p that is an edge label of T.
Then N> is a series extension of M (K4) or F that appears as a restriction of
M, p. Now, for each i in {2, 3}, let C¢, be a circuit of Mé“U that contains e;.
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Then M]; g has a circuit C), that contains p and both C,, — ez and C,; — e3.
Form the matroid N from N> by taking the 2-sum of N2 and C), across
the basepoint p. Then N is a restriction of M that is a series extension of
M (Ky) or F7. For each element x of M(Ky4) or F7, let S, be S;(N). By
Lemma 3.15, every circuit of Ny that contains p has the same size.

FIGURE 17. K4 in the proof of Lemma 3.18.

Suppose first that N is a series extension of M (Ky) with Ky labelled
as in Figure 17. Thus, every circuit of N that contains .S, has the same
size. Since all circuits of N containing S, have the same size, |Sq| + [Se| =
|Sal + |Ss| + |Se], so

(3.3) |Sa| = |Sa| + |Sp]-
Similarly, |Sa| 4 [Se| = |Sa| + |Sb| + |Se|, so
(3.4) |Sal = |Sal + |Sp|.

Equations (3.3) and (3.4) imply that |Sp| = 0, a contradiction.

/\

/\

FIGURE 18. F7 in the proof of Lemma 3.18.

Now suppose that N is a series extension of F7 with F7 labelled as in
Figure 18. Since the circuits of N containing S, must have the same size,

|Sa| + |S5| = |Sa| + |57,
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|S2| + [Se| = |Ss] 4 |57,
and

55| + [S6| = |S3] 4 |S4l-
Together, these equations imply that

(3-5) |S2| = |57

Fix a consistent ordering of M. This induces a consistent ordering of
N. Consider the circuit C' = S, U So U S3 U Sy of N. Notice that M has,
as a restriction, a series extension U’ of U, whose ground set contains C.
Specifically, C' = S,, U Se, U Se,, where S, is Se, (U’).

Let ¢t be an arbitrary member of the series class Sy of N. In U’, the
element ¢ belongs to the class Se,, so {t} is an S¢,-block in the ordering of
C by Proposition 3.6(i). Lemma 3.2(i) implies that ¢ is adjacent to some
element x € S, and some y € Se,; notice that, in N, the elements x and
y both belong to S,. Thus, every element of S; is adjacent to a pair of
elements from S, in C. In particular, ¢ is not adjacent to any element of
Sy or of S3. Now observe that ¢ is adjacent to this same pair {z,y} in the
circuit S, U S2 U S5 U Sg of N, so t is also not adjacent to any element of
Sg. It follows that ¢ is adjacent to a pair of elements from S in the circuit
So U S3U Sg U Sy of N. Therefore |Sa| < |S7|, contradicting (3.5). O

Proposition 3.19. Let M" be obtained from M by parallel-path addition.
Then M is orderable if and only if M" is orderable.

Proof. In forming M" from M, let P’ be added in parallel to P. As M”
has M as a restriction, M is orderable if M" is. Conversely, fix a consistent
ordering of M and let C” be a circuit of M"”. If C" does not meet P’, give C”
the same ordering in M” that it has in M. Otherwise, C” contains P’ and
either C” = PUP’, or there is a circuit C of M such that C = (C"” — P")UP.
In the the latter case, give C” the same ordering in M” that C has in M by
replacing every element p € P by the corresponding element p’ € P’.

If C" = PUP”, take a circuit D of M containing P. Let By, Ba, ..., By
be the P-blocks of D, numbered sequentially as they appear in a traversal
of the ordering of D in M. For each i in [k], let B, = {p’ : p € B;}. Now,
order C" as By, By, Ba, B), ..., By, Bj. It is straightforward to check that
this gives a consistent ordering of M". O

We are now ready to prove the main result of the paper, which was given
as Theorem 1.2 in the introduction and is restated here for convenience.

Theorem 3.20. Let M be a connected non-binary matroid. Then M is
orderable if and only if it can be obtained from U, for some n > 4 by a
sequence of the following operations:

(i) balanced series extension; and
(ii) parallel-path addition.



24 CAMERON CRENSHAW AND JAMES OXLEY

Proof. By Lemmas 3.5 and 3.19, a matroid obtained from U, by the given
operations is certainly orderable, so it remains to show the converse.

We may assume that M is simple, as adding an element in parallel is a
parallel-path addition of size one. If M = U ,, the result holds, so assume
otherwise. Let T be the canonical tree decomposition of M. Lemmas 3.16
and 3.18 imply that there is a single vertex label U of T for which U = Us,,
and n > 4, and every vertex of T'—U is labelled by a circuit or a cocircuit. By
Lemma 3.14(i), each e in E(U) labels an edge of T'. Let T be the component
of T'\e that does not have U as a vertex. As M is simple, the leaves of T’
are labelled by circuits. Therefore, if every 7. has only one vertex, then M
is a series extension of Us 5, and the result holds by Proposition 3.6(ii). We
show that, if this is not the case, then each T can be reduced to a single
vertex labelled by a circuit via a sequence of deletions that can be undone
by parallel-path additions.

Suppose T” has at least two vertices. Since only one vertex of T is
adjacent to U, not all vertices of T/ are leaves of T'. We now observe that

3.21. T! has a vertex v that
(i) is adjacent to a leaf of T'; and
(ii) has exactly one neighbor that is not a leaf of T

If L is the set of leaves of T', such a vertex v can be found as a leaf of
T — L. Since the leaves of T are labelled by circuits and T is canonical,
v is labelled by a cocircuit C*. Lemma 3.15 now implies that the circuits
that label the leaves of T' adjacent to C* all have the same size, and every
element of C* must be used as a basepoint labelling an edge of T'.

We can delete all but one of the leaves, C' say, of T that are adjacent to
C*, along with the corresponding basepoints in C*, since the circuit that
labels each deleted leaf can be added via a parallel-path addition. As C* is
now a pair of parallel elements, we can delete the leaf labelled C' and relabel
v with C. At this point, v is a leaf, and is either adjacent to U, in which case
the work on this subtree is complete, or v is adjacent to another vertex of 77
labelled by a circuit C’. In the latter case, keep T' canonical by contracting
the edge of T between v and C’ and labelling the resulting vertex with the
circuit that is the 2-sum of C' and C".

Provided the modification of 7, continues to have at least two vertices,
condition 3.21 continues to hold, and the process described in the previous
paragraph can be repeated. Thus, we may assume 7 consists of a single
vertex labelled by a circuit. By applying this pruning process on the other
subtrees attached to U, the tree T is reduced to the decomposition tree of a
balanced series extension of Us,,. Thus, M can be obtained from a balanced
series extension of Us , by a sequence of parallel-path additions. [l

4. THETA-ORDERABILITY

Recall that theta-orderability of a matroid requires a consistent ordering
of the matroid with respect to the theta-graphs of that matroid. Each of
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the elementary properties of orderability given in Proposition 2.1 also holds
for theta-orderability. Their straightforward proofs are omitted.

Proposition 4.1. Let M be a matroid.

(i) If M is theta-orderable, then M\e is theta-orderable for all e in
(ii) If r(M) < 2, then M is theta-orderable.
(iii) M 1is theta-orderable if and only if the connected components of M
are theta-orderable.
(iv) M is theta-orderable if and only if si(M) is theta-orderable.

Next we prove Theorem 1.6, a characterization of graphic theta-orderable
matroids.

Proof of Theorem 1.6. It is clear that a graphic matroid is theta-orderable.
Moreover, Wagner [9] proved that a matroid is graphic if and only if it has
no set of incompatible arcs. Now suppose that M has a circuit C' and a
set {41, A2, A3} of incompatible arcs of C. It remains to show that M is
not theta-orderable. Our proof of this is a straightforward modification of
Wagner’s proof that no graphic matroid has a set of incompatible arcs [9,
Lemma 2]. Assume that M is theta-orderable. Because each of A;, Ag, and
Asz is an arc, for each i in {1, 2,3}, there is a theta-graph of M in which A; is
a theta-arc. As M is theta-orderable, A; is a block in a consistent ordering
of M. As {Aj, As, A3} is an incompatible set, there are distinct elements
e1, ez, and ez of C such that e € A1 N Ay N Az and e; € A; — (A; U Ay) for
all {i,j,k} = {1,2,3}. For each h in {2,3}, the set A; U A4;, is a block in C'
in which e appears between e; and e;. Then e does not appear between es
and eg in As U Az, a contradiction. O

To prove Theorem 1.7, we will establish the following equivalent version
of it.

Theorem 4.2. A simple connected non-binary matroid is theta-orderable if
and only if it is a balanced series extension of Us, for some n > 4.

The proof of this theorem will use the next lemma and a corollary of it.

Lemma 4.3. Let M be a connected non-binary orderable matroid, and let
S be a sequence of balanced series extensions and parallel-path additions by
which M is obtained from Us,, for some n > 4. Suppose that the operation
s1 immediately precedes the operation so in S. Then

(i) if s1 and s9 are balanced series extensions of orders my and mq, then
s1 and so may be replaced by a single balanced series extension of
order myms; and

(ii) if s1 1s a parallel-path addition of size k, and sy is a balanced series
extension of order m, then, in S, the order of the operations s1 and
so can be reversed provided si is replaced by a corresponding parallel-
path addition of size km.



26 CAMERON CRENSHAW AND JAMES OXLEY

Proof. Part (i) is immediate. For part (ii), let P; be the k-element set that
is added in parallel to the subset P, of a series class at step s1. After
the balanced series extension in step s is performed, P; and P, become
parallel paths P{ and Pj of size mk. Thus, the same result is obtained by
first performing a balanced series extension of order m, then adding the
mk-element set P| in parallel to the subset Pj of a series class. O

The following is an immediate consequence of the last lemma.

Corollary 4.4. Let M be a connected non-binary orderable matroid. Then
M is obtained from a balanced series extension of Ua, for somen >4 by a
sequence of parallel-path additions.

Proof of Theorem 4.2. First, for n > 4, the matroid Us,, and its series exten-
sions have no theta-graphs. Therefore, consistent orderings of these matroids
are also theta-orderings.

Conversely, suppose M is a simple connected non-binary orderable ma-
troid. By Corollary 4.4, for some n > 4, we can obtain M from Us, by
a balanced series extension B followed by a sequence of parallel-path addi-
tions. It now suffices to show that the sequence of parallel-path additions is
empty.

Suppose to the contrary that P’ is a set added in parallel to a subset
P of a series class S of B. Note |P| > 2 since M is simple. Now, by
Proposition 3.6, each S-block in a consistent ordering of B contains a single
element. As B is a restriction of M, this implies that the elements of P are
not a block in a consistent ordering of M. Since M has a theta-graph with
P and P’ as theta-arcs, this is a contradiction. O

5. CHARACTERIZING 3-CONNECTED ORDERABLE BINARY MATROIDS

This section proves the following partial result towards Conjecture 1.4.
Theorem 1.5 is an immediate consequence of this result.

Theorem 5.1. A 4-connected binary orderable matroid with no series minor
isomorphic to F7 is graphic.

Our proof will require the next three results, the first of which is due to
Seymour [7]. Two elements are opposite in M (Ky) if they form a matching
in the Ky4.

Theorem 5.2. Let M be a 4-connected binary matroid and let e and f be
elements of M. Suppose there is no M(Ky)-minor of M in which e and f
are opposite elements. Then there is a graph G with M = M(G) or M*(G),
and e and f are adjacent edges in G.

Proposition 5.3. In a consistent ordering of a series extension M of
M(Ky), if two elements correspond to opposite elements in the M (Ky), then
they are not adjacent.
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FiGUrE 19. Ky in the proof of Proposition 5.3.

Proof. Let A, B, C, D, X, and Y be the series classes of M, labelled as
in Figure 19. Take elements x in X and y in Y, and suppose = and y are
adjacent in the given consistent ordering of M.

In the circuit AU X UC UY, we have that y is adjacent to at most one
member of C. Therefore, in BUC UY, there must be an element, b,, of B
that is adjacent to y. Similarly, in AU X U B, there must be an element, b,
of B adjacent to x. Now, in BUX UDUY, we have the block b,xyb,, so no
member of D is adjacent to y. By symmetry, no member of A is adjacent
to y. Since y is adjacent to at most one element in Y, it follows that there
is no second element of AU D UY adjacent to y, a contradiction. ([

Lemma 5.4. Suppose M is a binary matroid with no series minor isomor-
phic to F. If e and f are opposite elements in an M (K4)-minor of M, then
e and f are not adjacent in any consistent ordering of M.

Proof. Assume that M has a consistent ordering in which e and f are ad-
jacent. Let N be an M (Ky)-minor of M in which e and f are opposite
elements, and write N = M\X/Y with X coindependent and Y indepen-
dent. Then N* = M*/X\Y, where r(M*/X) =r(N*) = 3. Since M*/X is
binary and N* = M(Ky), if L is the set of loops of M*/X | then M*/X\L
is a parallel extension of either M (Ky) or Fy. It follows that M\(X U L) is
a series extension of M (Ky) or 7. By assumption, M has no series minor
isomorphic to F, so M\ (X UL) is a series extension of M (Ky). However, e
and f are adjacent in the consistent ordering of M\ (X U L) inherited from
M and correspond to opposite elements in N, a contradiction by Proposi-
tion 5.3. (]

We now prove the main result of this section.

Proof of Theorem 5.1. Let M be a 4-connected binary orderable matroid
that does not have F7 as a series minor. Take a consistent ordering of
M and assume M is not graphic. Suppose M is cographic, letting M =
M*(G) for some graph G. Take an edge e of G with endpoints u and
v. Let (1 xo -+ =, e) be the ordering on the edges meeting u, and let
(e y1 y2 -+ ym) be the ordering on the edges meeting v. Then we may
assume the ordering on the bond that is the symmetric difference of these
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two vertex bonds is (z1 x2 -+ Tpn Y1 Y2 -+ Ym), SO X, and y; are adjacent.
Combining Lemma 5.4 and Theorem 5.2, we now have that x,, and y; share
an endpoint in G. Hence, {e,z,,y1} is a triangle in G, a contradiction as
M 1is 4-connected.

We may now assume that M is not cographic. Let e and f be adjacent
elements of M. By Theorem 5.2, e and f appear as opposite elements in
some M (K4)-minor of M. Lemma 5.4 now gives a contradiction. O

ACKNOWLEDGEMENTS

The authors thank Jim Geelen for suggesting that [7] may be helpful in
resolving Conjecture 1.4.

REFERENCES

[1] Bixby, R. E., A strengthened form of Tutte’s characterization of regular matroids, J.
Combin. Theory Ser. B 20 (1976), 216-221.

[2] Bixby, R. E., Kuratowski’s and Wagner’s theorems for matroids, J. Combin. Theory
Ser. B 22 (1977), 31-53.

[3] Cunningham, W. H.; A combinatorial decomposition theory, Ph.D. thesis, University
of Waterloo, 1973.

[4] Oxley, J. G., On nonbinary 3-connected matroids, Trans. Amer. Math. Soc. 300
(1987), 663-679.

[5] Oxley, J. G., Matroid Theory, 2nd ed., Oxford University Press, New York, 2011.

[6] Seymour, P. D., Minors of 3-connected matroids, Furopean J. Combin. 6 (1985), 375—
382.

[7] Seymour, P. D., Adjacency in binary matroids, European J. Combin. 7 (1986), 171
176.

[8] Tutte, W. T., Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527-552.

[9] Wagner, D. K., A circuit characterization of graphic matroids, J. Combin. Theory Ser.
B 118 (2016), 284-290.

[10] Whitney, H., 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245-254.

MATHEMATICS DEPARTMENT, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA

FE-mail address: ccrens5@lsu.edu

MATHEMATICS DEPARTMENT, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA

E-mail address: oxley@math.lsu.edu



