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A Note on the Non-spanning Circuits of a Matroid

foMES OXxLEY AND GEOFF WHITTLE

In this note we determine when a collection of subsets of a set E is the set of non-spanning
circuits of a matroid on E. This result is then used to characterize when a matroid on E is
uniquely determined by its set of non-spanning circuits.

Certain sets in a matroid are forced to be dependent simply because their size
exceeds the matroid’s rank. On the other hand, the small dependent sets, those whose
sizes do not exceed the rank, convey the crucial information about the matroid’s
structure. More specifically, if 4’ is the set of non-spanning circuits of a rank-k matroid
on a set E, then clearly the set € of circuits of M is given by

(1) €=¢U{XcE:|X|=k+1 and X contains no member of €'}.

Thus a matroid on E is uniquely determined by its set of non-spanning circuits
provided that its rank has been specified. If the rank has not been fixed, then the set of
non-spanning circuits may not uniquely determine the matroid. For example, all
uniform matroids on E have & as their set of non-spanning circuits. In this note, we
study the non-spanning circuits of a matroid. We shall begin by specifying the
relationship between two matroids on E that have the same set of non-spanning
circuits. Then we determine when a collection of subsets of E is the set of non-spanning
circuits of some matroid on E. Finally, we combine these two results to specify
precisely when a matroid on E is uniquely determined by its set of non-spanning
circuits. '

If M is a matroid, then we shall denote its rank and ground set by r(M) and E(M),
respectively. We shall follow Welsh [1] for any unexplained matroid terminology. If
r(M)=1, then T(M), the truncation of M, is the matroid on E(M) the bases of which
are the independent sets of M of cardinality »(M) — 1. This operation can be iterated so
that if 7(M)=j, then T/(M)= T(T'~'(M)). The operation of truncation is the key to
the next result.

(2) ProrosiTION. Let €' be a collection of subsets of a set E. Suppose that there is a
non-empty set I of matroids on E for which €' is the set of non-spanning circuits.
Then, for some non-negative integer n and some matroid M,

T ={M, T(M), TM), ..., T"(M)}.

Proor. Let r, =max{j: €’ is the set of non-spanning circuits of a rank-j matroid on
E}. If €'+, let r,=max{|C|: C € €'}; otherwise let r, = 0. Evidently if N € 7, then
rn<r(N)<r. Moreover, for all j in {0,1,2,...,rn—r}, T/(M) is a rank-(r, —j)
matroid on E having €’ as its set of non-spanning circuits. As 7/(M) must be the
unique such matroid, the proposition follows. (]

The following theorem, which characterizes when a collection of sets is the set of
non-spanning circuits of some matroid, should be compared with the well-known
characterization of a matroid in terms of its full set of circuits. Since the complement of
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a non-spanning circuit is a dependent hyperplane of the dual, this theorem can be used
to characterize when a collection of sets is the set of dependent hyperplanes of some
matroid.

(3) THEOREM. Let €' be a collection of subsets of a set E and k be a non-negative
integer. Then €' is the set of non-spanning circuits of a rank-k matroid on E iff €' has
the following properties:

(3.1) No member of €' properly contains another.

(3.2) If Cy and C, are distinct members of €', e C;NC,, and |(C;U C,) —e| <k,
then (C, U C,) — e contains a member of €'.

(3.3) All members of €' have at most k elements.

(3.4) E has a k-element subset that contains no member of €'.

Proor. Evidently, if €' is the collection of non-spanning circuits of a rank-k
matroid on E, then (3.1)-(3.4) hold. To prove the converse, suppose that €’ satisfies
(3.1)-(3.4) and define € as in (1). Clearly, @ ¢ € and no member of € properly
contains another. To show that 4 is the set of circuits of a matroid on E, it remains to
check that € satisfies the circuit elimination axiom. Suppose that C,; and C, are distinct
members of € and ee C,NC,. The elimination axiom follows by (3.2) unless
I(C:UC,) —e|=k+1. In the exceptional case, the definition of € guarantees that if
(Ci;N C,) — e does not contain a member of %’, then it must contain a member of
€ — €'. We conclude that € is indeed the set of circuits of a matroid M on E.
Moreover, the definition of € implies that r(M) <k and, by (3.4), (M) = k. Hence M
has rank k and €' is its set of non-spanning circuits. O

On combining the last two results, we obtain the following characterization of when
a matroid on a fixed non-empty set is uniquely determined by its set of non-spanning
circuits.

(4) THEOREM. Let M be a matroid on a non-empty set E and €' be its set of
non-spanning circuits. Then M is the unique matroid on E having €' as its set of
non-spanning circuits iff the following conditions hold:

(4.1) €’ is non-empty and max{|C|: C € €'} = r(M).

(4.2) Either (i) every (r(M) + 1)-element subset of E contains a member of €'; or (i)
there is an (r(M) + 1)-element subset X of E and an element e of E — X such that X
contains no member of €' but X U e contains at least two members of €'.

Proor. Suppose that M is the only matroid on E having €' as its set of
non-spanning circuits. Then clearly €' is non-empty. Moreover, #(M) = max{|C|: C e
€'}; otherwise T'(M) is a matroid that is distinct from M but has €' as its set of
non-spanning circuits. Assume next that neither (4.2)(i) nor (4.2)(ii) holds, and let
k=r(M)+1. If (3.1)—(3.4) hold with this choice of k, then Theorem 3 implies the
contradiction that €’ is the set of non-spanning circuits of a rank-(r(M) + 1) matroid
on E. Thus at least one of (3.1)-(3.4) fails for €'. But €' clearly satisfies both (3.1)
and (3.3). Moreover, as (4.2)(i) fails, (3.4) holds. Therefore (3.2) fails for k equal to
r(M) + 1, although it holds for k equal to r(M) because €’ is the set of non-spanning
circuits of M. It follows that there are distinct members C; and C, of €' and an
element e of C; N C, such that |[(C;UC,)—e|=r(M)+1 and (C,U C,) — e does not
contain a member of €’. Hence, taking X equal to (C,UC,)—e, we obtain. the
contradiction that (4.2)(ii) holds. We conclude that if M is the only matroid on E with
€' as its set of non-spanning circuits, then.(4.1) and (4.2) hold.

The proof of the converse follows without difficulty from Proposition 2 and Theorem
3, O
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Joseph P. S. Kung (private communication) has noted that a simple binary matroid is

uniquely determined by its set of non-spanning circuits unless it is a free matroid or a
circuit. The proof of this is a straightforward combination of Proposition 2, the Scum
Theorem, and the excluded-minor characterization of binary matroids.

To conclude this note, we sketch briefly what happens when one is allowed to vary
the ground set. The arguments here, which extend those given above, are not difficult
and are omitted. If € is the set of all circuits of a matroid and E is Ucég C, then there
is a unique matroid M on E having € as its set of circuits. Moreover, the other
matroids that have € as their set of circuits consist precisely of those matroids that can
be obtained from M by adjoining some set of coloops. Now consider the problem of
describing all matroids for which some fixed set ¢’ is the set of non-spanning circuits,
where we note that, this time, the ground set of the matroid is not being specified. Let
E =Jcece C and assume that the set & of matroids for which €’ is the set of
non-spanning circuits is non-empty.

We suppose first that there is a member of & having E as 1ts ground set. In this case,
let N be the unique such matroid of largest rank. Then, by Proposition 2, the members
of & having ground set E are {N, T(N), . T”(N)} where r(T"(N)) is max{|C|:
Ce €'} if €'+ and is 0 otherwise. Moreover the other members of & consist of all
the matroids that can be obtained in either of the following ways: (i) by adjoining i
coloops to 7™(N) and then truncating the resulting matroid i times for some
non-negative i and m with m < n; and (ii) provided that N has no spanning circuits, by
adjoining i coloops to N and then truncating the resulting matroid j times for some i
and j with 0 <j <i.

Finally, suppose that no member of & has E as its ground set. Then if e ¢ E, there is
a unique matroid P on E Ue that is in &. The element e is a coloop of P. Moreover,
every other member of & is isomorphic to a matroid that can be obtained by adjoining
i coloops to P and then truncating the resulting matroid j times for some i and j with
Osj=i
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