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Abstract. If C1 and C2 are circuits in a matroid M with e1 in
C1 − C2 and e in C1 ∩ C2, then M has a circuit C3 such that
e ∈ C3 ⊆ (C1 ∪ C2) − e. This strong circuit elimination axiom is
inherently asymmetric. A matroid M has the symmetric strong
circuit elimination property (SSCE) if, when the above conditions
hold and e2 ∈ C2 − C1, there is a circuit C ′

3 with {e1, e2} ⊆ C ′
3 ⊆

(C1∪C2)−e. We prove that a connected matroid has this property
if and only if it has no two skew circuits. We also characterize such
matroids in terms of forbidden series minors, and we give a new
matroid axiom system that is built around a modification of SSCE.

1. Introduction

A matroid M has the symmetric strong circuit elimination property
(SSCE) if, whenever C1 and C2 are circuits and e1, e2, and e are ele-
ments such that e1 ∈ C1 − C2, e2 ∈ C2 − C1, and e ∈ C1 ∩ C2, there
is a circuit C3 that contains {e1, e2} and is contained in (C1 ∪C2)− e.
Sets X and Y in a matroid are skew if r(X) + r(Y ) = r(X ∪ Y ). The
next theorem, the main result of this paper, gives several characteriza-
tions of matroids satisfying SSCE. A matroid M is unbreakable if M is
connected and M/F is connected for every flat F of M .

Theorem 1.1. The following are equivalent for a connected matroid
M .

(i) M has the symmetric strong circuit elimination property;
(ii) M has no pair of skew circuits;

(iii) for all integers k and l exceeding two, M has no series minor
isomorphic to S(Uk−2,k, Ul−2,l); and

(iv) M∗ is unbreakable.

To see that not every connected matroid has the symmetric strong
circuit elimination property, consider the matroid N5 that is obtained
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from a 3-circuit {e1, e2, e} by adding fi in parallel to ei for each i in
{1, 2}. Consider the circuits C1 = {e1, f2, e} and C2 = {e2, f1, e}. Then
e1 ∈ C1 − C2 and e2 ∈ C2 − C1, but N5 has no circuit contained in
(C1∪C2)−e that contains {e1, e2}. Clearly N5 has {e1, f1} and {e2, f2}
as skew circuits.

The equivalence between (ii) and (iii) in Theorem 1.1 extends a re-
sult of Drummond, Fife, Grace, and Oxley [2, Proposition 15], which
shows that a connected binary matroid M has a pair of skew circuits
if and only if M has a series minor isomorphic to N5. Note that N5 is
isomorphic to the series connection of two copies of U1,3. A matroid M
is circuit-difference if C1∆C2 is a circuit for every distinct intersecting
pair of circuits C1 and C2 of M . Drummond et al. [2, Theorem 1]
proved the following.

Theorem 1.2. A connected regular matroid is circuit difference if and
only if it has no pair of skew circuits.

Combining Theorems 1.1 and 1.2, we immediately obtain the following.

Corollary 1.3. A connected regular matroid has the symmetric strong
circuit elimination property if and only if M is circuit-difference.

Oxley and Pfeil [5, Theorem 1.1] proved that a loopless matroid M is
unbreakable if and only if M∗ has no pair of skew circuits. Thus (ii) and
(iv) in Theorem 1.1 are equivalent. Oxley and Pfeil gave several other
characterizations of connected matroids with no skew circuits. Thus
the list of equivalent statements in Theorem 1.1 could be extended.

Theorem 1.1 gives several characterizations of when a connected ma-
troid does not have a pair of skew circuits. The next theorem charac-
terizes when a connected binary matroid has three skew circuits where,
for any integer k exceeding one, a matroid M has k skew circuits if M
has a set {C1, C2, . . . , Ck} of k circuits such that

M
∣∣ (∪ki=1Ci

)
= (M |C1)⊕ (M |C2)⊕ . . .⊕ (M |Ck).

Theorem 1.4. Let M be a connected binary matroid with three skew
circuits. Then M has a series minor isomorphic to M(G), where G is
one of the graphs shown in Figure 1.

After a section of preliminaries, the main theorem is proved in Sec-
tion 3. Section 4 proves Theorem 1.4. Finally, in Section 5, we give a
new circuit axiom system for matroids that is built around a modifica-
tion of SSCE.
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2. Preliminaries

The terminology and notation used here will follow [4]. The class of
matroids satisfying SSCE is not closed under taking contractions. To
see this, recall that N5 has a pair of skew circuits. Although M(K4)
has no pair of skew circuits, every single-element contraction of M(K4)
is isomorphic to N5. We now show that the class of matroids satisfying
SSCE is closed under series contraction.

Lemma 2.1. The class of matroids satisfying the symmetric strong
circuit elimination property is closed under series minors.

Proof. Clearly the class of matroids satisfying SSCE is closed under
deletion. Now suppose that M satisfies SSCE and has {f, g} as a
cocircuit. Then, for every circuit C of M , either C or C− g is a circuit
of M/g. Let C1 and C2 be circuits of M/g with e in C1 ∩C2 such that
e1 ∈ C1 − C2 and e2 ∈ C2 − C1. Since {f, g} is a cocircuit of M , we
have C(M/g) = D1 ∪ D2 where D1 = {C ∈ C(M) : {f, g} ∩ C = ∅}
and D2 = {C − g : g ∈ C ∈ C(M)}.

If C1, C2 ∈ D1, then M has a circuit C3 such that {e1, e2} ⊆ C3 ⊆
(C1 ∪ C2) − e. Thus g 6∈ C3 so C3 ∈ C(M/g). Now suppose C1 ∈ D1

and C2 ∈ D2. Then C2 ∪ g is a circuit of M and M has a circuit C3

such that {e1, e2} ⊆ C3 ⊆ (C1 ∪ C2 ∪ g)− e. If g ∈ C3, then C3 − g is
a circuit of M/g containing {e1, e2} such that C3 − g ⊆ (C1 ∪ C2)− e.
If g 6∈ C3, then C3 is a circuit of M containing {e1, e2} such that
C3 ⊆ (C1 ∪ C2) − e. Similarly, if C1, C2 ∈ D2, then M has a circuit
C3 such that C3 ⊆ (C1 ∪ C2 ∪ g) − e and {e1, e2} ⊆ C3. Either C3 or
C3 − g is a circuit of M/g contained in (C1 ∪ C2) − e and containing
{e1, e2}. �

The next three lemmas will be used to prove the main results.

Lemma 2.2. Let M be a connected matroid with ground set D1∪D2∪e
where D1 and D2 are skew circuits of M . Then either M has a 2-
cocircuit avoiding e, or M ∼= S((Uk−2,k; e), (Ul−2,l; e)) for some integers
k and l exceeding two.



4 CHRISTINE CHO, JAMES OXLEY, AND SUIJIE WANG

Proof. Since M\e = M |D1 ⊕ M |D2, it follows that M is equal to
S((M1; e), (M2; e)) where M1 = M/D2 and M2 = M/D1. Evidently,
r(M) = r(D1) + r(D2) = |D1| + |D2| − 2, so r(M∗) = 3 and M∗ has
D1 ∪ e and D2 ∪ e as hyperplanes. Thus either M∗ has a 2-circuit
avoiding e, or M∗ ∼= P ((U2,k; e), (U2,l; e)) for some integers k and l
exceeding two. The lemma follows immediately. �

The proof of the next lemma uses the well-known fact (see, for exam-
ple, [4, Exercise 2.1.7]) that {x, y} is a circuit of a connected matroid
if and only if every circuit that contains x also contains y.

Lemma 2.3. Let S((M1; e), (M2; e)) be a connected matroid M having
a circuit contained in E(M2) − e. Then M has S((M1; e), (Uk−2,k; e))
as a series minor for some k exceeding two. Moreover, E(Uk−2,k) − e
is skew to E(M1)− e in M .

Proof. Clearly, if M has S((M1; e), (Uk−2,k; e)) as a series minor, then
E(Uk−2,k) − e is skew to E(M1) − e since S((M1; e), (Uk−2,k; e))\e =
(M1\e) ⊕ (Uk−2,k\e). To see that M has S((M1; e), (Uk−2,k; e)) as a
series minor, let M be a minimal counterexample. Let C be a circuit
contained in E(M2) − e. Choose a circuit D of M2 that contains e
and meets C so that |D − C| is a minimum. Then E(M2) = D ∪ C,
otherwise S((M1; e), (M2|(D ∪ C); e)) is a proper series minor of M ,
contradicting the minimality of M .

We now show that D−C is a series class of M2. Take x ∈ (D−C)−e.
Suppose M2 has a circuit D′ containing e and avoiding x. Then D′ ⊆
(D − x) ∪ C, so |D′ − C| < |D − C|. Therefore x is in every circuit of
M2 containing e, so {x, e} is a cocircuit of M2. Thus D−C is a series
class of M2.

Since M is series-minor-minimal, it follows that E(M2)∩ (D−C) =
{e}. Then r(M2) = r(C) = |C| − 1 so r∗(M2) = 2. Since M∗

2 is
connected of rank two having {e} as a flat, it follows that M∗

2
∼= U2,k

for some k exceeding two. Note that M∗
2 has no nontrivial parallel

class, since M∗
2 is parallel-minor-minimal. Hence M2

∼= Uk−2,k, so M ∼=
S((M1; e), (Uk−2,k, e)), a contradiction. �

For the next result, recall that N5 is the series connection of two
copies of U1,3.

Lemma 2.4. Let M be a connected binary matroid containing an el-
ement e and a pair of skew circuits both avoiding e. Then, for some i
in {1, 2, 3, 4, 5}, M contains M(Gi) as series minor, where Gi is one
of the five graphs in Figure 2. Each such graphic matroid M(Gi) has
a unique pair of skew circuits avoiding e, indicated in bold in Figure 2.
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Proof. Let M be a minimal counterexample. If E(M) = C1∪C2∪{e},
then M = M(G1) ∼= N5, since M\e = M |(C1 ∪ C2) = M |C1 ⊕M |C2,
and M has no nontrivial series class. Now suppose M has an element f
contained in E(M)−(C1∪C2∪e) such that M\f is disconnected. Thus
M = S((M1; f), (M2; f)), where M1 and M2 are nonempty, connected
binary matroids.

Suppose first that C1 and C2 are circuits in M1 and that e is an
element of M2. Take a circuit D of M2 containing {e, f}. Then
E(M2) = D by the minimality of M . Further, {e, f} is a 2-cocircuit
of M , a contradiction. We may now assume that C1 ∪ e ⊆ E(M1)
and C2 ⊆ E(M2). Since M is binary, it follows from Lemma 2.3 that
M = S((M1; f), (U1,3; f)).

Suppose E(M1) = C1∪{e, f}. Then r(M1) = r(C1), otherwise {e, f}
is a cocircuit of M . Hence r∗(M1) = 3. It follows that M∗

1 is a rank-3
binary matroid containing C1 as a cocircuit and {e, f} as a hyperplane.
Hence |C1| ∈ {2, 3, 4} and r(M1) ∈ {1, 2, 3}. For each possible value
of r(M1), there is a unique matroid satisfying these conditions, namely
U1,4 containing C1 as a 2-circuit, N5 containing C1 as a 3-circuit, or
M(K4) containing C1 as a 4-circuit. Hence M1 is isomorphic to one of
U1,4, N5, and M(K4). Since M = S((M1; f), (U1,3; f)), it follows that
M is isomorphic to M(G) for some G ∈ {G2, G3, G4}.

We may now assume that M1 has an element g ∈ E(M1) − (C1 ∪
{e, f}). Then M1\g is disconnected, so M1 = S((N1; g), (N2; g)), where
N1 and N2 are connected, binary matroids. If g is in a series pair in
M1, then g is in a series pair of M , a contradiction. It follows that we
may assume that {e, f} ⊆ E(N1), while C1 ⊆ E(N2). By Lemma 2.3,
we have that M1 = S((N1; g), (U1,3; g).

Suppose N1 has a circuit C avoiding {e, f}. Then N1\x is discon-
nected for all x in C − g. It follows by [3, Lemma 2.3] (see also [4,
Lemma 4.3.10]) that C−g contains a 2-cocircuit of N1. As this is a con-
tradiction, every circuit of N1 must meet {e, f}. It follows that {e, f}
contains a cobasis of N1, so r(N∗1 ) = 1, or r(N∗1 ) = 2. If r(N∗1 ) = 1,
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then N1 is a circuit and {e, f, g} is a series class of M1, a contradic-
tion. Thus r(N∗1 ) = 2. Since N∗1 is binary and parallel-minor minimal,
N∗1
∼= U2,3. Therefore M1 = S((U1,3; g), (U1,3; g) ∼= N5, containing

2-circuits C1 and {e, f}. We conclude that M ∼= M(G5). �

Note that the graphs G3 and G5 are isomorphic up to a relabeling of
the special element e that is specified in the statement of Lemma 2.4.
The unique pair of skew circuits avoiding e in M(G3) have sizes two
and three, while, in M(G5), the unique pair of skew circuits both have
size two.

3. Proof of the Main Theorem

In this section, we prove Theorem 1.1 by showing that (iii) implies
(ii), that (ii) implies (i), and that (i) implies (iii). The equivalence of
(ii) and (iv) was proved in [5, Theorem 1.1].

Proof of Theorem 1.1. To see that (iii) implies (ii), let M be a con-
nected matroid satisfying (iii) and suppose that M has C1 and C2 as
skew circuits but that no proper connected series minor of M has a pair
of skew circuits. Let D be a circuit of M that intersects both C1 and C2

such that |D−(C1∪C2)| is minimal. Since M |(C1∪C2∪D) is connected
and C1 and C2 are skew in this restriction, M = M |(C1 ∪C2 ∪D). We
will show that |D−(C1∪C2)| = 1. Suppose {f, g} ⊆ D−(C1∪C2). We
shall show that f and g are in series in M . Assume they are not. Then
M has a circuit K that contains f but not g. By the choice of D, the
circuit K cannot meet both C1 and C2. Since K is not a proper subset
of D, we may assume that K ∩ (C1 −D) 6= ∅ and K ∩C2 = ∅. Take h
in D ∩ C2. Then M has a circuit C3 such that h ∈ C3 ⊆ (D ∪K)− f .
Because C3 is not a proper subset of D, there is an element k in C3−D.
Thus C3 meets both C1 and C2 but avoids f , a contradiction to the
choice of D. We conclude that f and g are in series in M . Then M/g
is a connected series minor of M having C1 and C2 as skew circuits.
This contradiction to the choice of M implies that |D− (C1∪C2)| = 1.
Let D− (C1 ∪C2) = {e}. Then since M has no 2-cocircuits, it follows
from Lemma 2.2 that M ∼= S(Uk−2,k, Ul−2,l) for some integers k and l
exceeding two, which contradicts (iii). Thus (iii) implies (ii).

To see that (ii) implies (i), let M be a connected matroid satisfying
(ii) but not (i). Let C1 and C2 be distinct circuits of M with e ∈ C1∩C2,
e1 ∈ C1 − C2, and e2 ∈ C2 − C1. Then M has no circuit D such that
{e1, e2} ⊆ D ⊆ (C1 ∪ C2) − e. For each i ∈ {1, 2}, there is a circuit
Di of M such that ei ∈ Di and Di ⊆ (C1 ∪ C2) − e. By assumption,
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D1 and D2 are not skew. Then M |(D1 ∪ D2) is connected, so M has
a circuit D containing {e1, e2} with D ⊆ D1 ∪ D2. It follows that
{e1, e2} ⊆ D ⊆ (C1 ∪ C2) − e, a contradiction. We conclude that (ii)
implies (i).

Now assume that M satisfies (i) but not (iii). Let N be the series
minor of M that is isomorphic to S(N1, N2), with N1

∼= Uk−2,k and
N2
∼= Ul−2,l for some k and l exceeding two. Then N satisfies SSCE by

Lemma 2.1. Let p be the basepoint of the series connection N . Choose
distinct circuits C1 and C2 of N1, and distinct circuits D1 and D2 of
N2 so that all of C1, C2, D1, and D2 contain p. Let e1 ∈ C1 − C2 and
e2 ∈ D2−D1. Then N has circuits K1 and K2 such that K1 = C1∪D1

and K2 = C2 ∪ D2. Clearly e1 ∈ K1 − K2 and e2 ∈ K2 − K1, while
p ∈ K1 ∩ K2. Since e1 ∈ E(N1) and e2 ∈ E(N2), every circuit of
N containing {e1, e2} must also contain p. Hence N does not satisfy
SSCE, a contradiction. Thus (i) implies (iii). We conclude that the
theorem holds. �

4. Connected binary matroids with three skew circuits

The goal of this section is to complete the proof of Theorem 1.4. The
core of this proof is contained in Lemmas 2.3 and 2.4. After giving this
proof, we consider potential extensions of this theorem.

Proof of Theorem 1.4. Let M be a minimal counterexample and let
C1, C2, and C3 be skew circuits in M . Since M is connected, there is
an element e in E(M)− (C1 ∪C2 ∪C3). Then M\e is disconnected, so
M = S((M1; e), (M2; e)); that is, M is a series connection of connected
matroids M1 and M2 across the basepoint e.

Suppose first that {C1, C2, C3} ⊆ C(M1). Take a circuit C of M
containing e and let N = M |(E(M1) ∪ C). The matroid N has C ∩
E(M2) contained in a series class. Now N/((C ∩ E(M2)) − e) is a
connected, binary, proper series minor of M having C1, C2, and C3 as
skew circuits. Thus we contradict the minimality of M .

We may now assume that C1, C2 ∈ C(M1) and C3 ∈ C(M2). Since
M is binary, by Lemma 2.3, M = S((M1; e), (U1,3; e)) with E(U1,3)− e
skew to E(M1) − e. By Lemma 2.4, the matroid M1 is isomorphic to
the cycle matroid of one of the graphs pictured in Figure 2. Hence
M ∼= S((M(Gi); e), (U1,3; e)) ∼= M(Li) for some i in {1, 2, 3, 4, 5}. �

The techniques used in the proof of Theorem 1.4 can be extended
to prove analagous results for connected binary matroids containing
k skew circuits, for k ≥ 4. As one may gather from the proof of
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Theorem 1.4, the number of cases required to obtain an exhaustive list
of connected, binary, series-minor-minimal matroids containing k skew
circuits becomes unmanageably large as k increases.

To see why an analagous result for non-binary matroids is not in-
cluded in this paper, let M ′ be isomorphic to the direct sum of k cir-
cuits. Let M be the matroid obtained by freely adding an element e to
M ′. Then M is connected and non-binary, containing k skew circuits.
The addition of e has the effect of turning every 2-cocircuit of M ′ into
a 3-cocircuit of M containing e. Thus M contains no connected series
minor containing k skew circuits.

5. A new circuit axiom system

The symmetric strong circuit elimination property does not hold for
all matroids, and is therefore not equivalent to the weak and strong
circuit elimination axioms, (C3) and (C3)′ in [4, pp.9 and 29]. By
adding an additional hypothesis to the definition of SSCE presented in
Section 1, we are able to provide a symmetric variant of the well-known
circuit elimination axioms.

Lemma 5.1. The set C of circuits of a matroid M obeys the following.

(C3)′′ Let C1 and C2 be members of C with e1 ∈ C1 − C2 and e2 ∈
C2−C1. If e ∈ C1∩C2 and (C1−e1)∪(C2−e2) contains no member of C ,
then C contains a member C3 such that {e1, e2} ⊆ C3 ⊆ (C1 ∪C2)− e.

Furthermore, C3 is the unique circuit of M contained in (C1∪C2)−e.

Proof. Certainly (C1 ∪ C2) − e is dependent. Let C3 be a circuit
contained in this set. We shall show first that {e1, e2} ⊆ C3. As
(C1−e1)∪ (C2−e2) is independent, we may assume that e1 ∈ C3. Sup-
pose e2 6∈ C3. Then e1 ∈ C1 ∩C3 and e ∈ C3 −C1, so there is a circuit
C4 such that C4 ⊆ (C1 ∪ C3)− e1. Thus C4 ⊆ (C1 − e1) ∪ (C2 − e2), a
contradiction. We deduce that {e1, e2} ⊆ C3.

To see that C3 is unique, suppose there is a second circuit C ′3 con-
tained in (C1 ∪ C2) − e. Then e1 ∈ C3 ∩ C ′3, so M has a circuit C5

contained in (C3 ∪ C ′3) − e1. As C5 is contained in (C1 ∪ C2) − e,
we deduce that {e1, e2} ⊆ C5, a contradiction. Hence C3 is indeed
unique. �

The following theorem seems to give a new axiom system for ma-
troids in terms of their circuits. For example, it is absent from the two
standard reference books for the subject [4,6] and also does not appear
in Brylawski’s encyclopedic appendix of matroid cryptomorphisms [1].
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Theorem 5.2. A collection C of nonempty pairwise incomparable sub-
sets of a finite set E is the set of circuits of a matroid on E if and only
if C satisfies (C3)′′.

Proof. By Lemma 5.1, if C is the set of circuits of a matroid on E, then
C satisfies (C3)′′. Conversely, assume C satisfies (C3)′′. Suppose C1

and C2 are distinct members of C with e in C1∩C2. Assume that (C3)
fails for (C1, C2, e) and that |C1∪C2| is a minimum among such triples.
As the members of C are incomparable, there are elements e1 and e2
of C1 −C2 and C2 −C1, respectively. By (C3)′′, (C1 − e1) ∪ (C2 − e2)
must contain a member C4 of C , so e ∈ C4. Then e ∈ C1 ∩ C4 and
|C1 ∪ C4| ≤ |(C1 ∪ C2) − e2| < |C1 ∪ C2|, so (C1 ∪ C4) − e, and hence
(C1 ∪ C2)− e contains a member of C , a contradiction. �

It is tempting to try to weaken (C3)′′ to require only that e1 ∈ C1

and e2 ∈ C2. To see that this variant need not hold, consider the cycle
matroid of the graph K2,3 and let C1 and C2 be the circuits {e1, a, e, e2}
and {b, c, e, e2}. Then (C1 − e1) ∪ (C2 − e2) does not contain a circuit.
But, although (C1 ∪ C2) − e does contain a circuit, that circuit does
not contain e2.
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