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Abstract. Let M and N be internally 4-connected binary matroids
such that M has a proper N -minor, and |E(N)| ≥ 7. As part of our
project to develop a splitter theorem for internally 4-connected binary
matroids, we prove the following result: if M\e has no N -minor when-
ever e is in a triangle of M , and M/e has no N -minor whenever e is
in a triad of M , then M has a minor, M ′, such that M ′ is internally
4-connected with an N -minor, and 1 ≤ |E(M)| − |E(M ′)| ≤ 2.

1. Introduction

It would be useful for structural matroid theory if we could make the
following statement: there exists an integer, k, such that whenever M and
N are internally 4-connected binary matroids and M has a proper N -mi-
nor, then M has an internally 4-connected minor, M ′, such that M ′ has an
N -minor, and 1 ≤ |E(M)| − |E(M ′)| ≤ k. However this statement is false;
no such k exists. To see this, we let M be the cycle matroid of a quartic
planar ladder on n vertices, and we let N be the cycle matroid of the cubic
planar ladder on the same number of vertices. Then M and N are inter-
nally 4-connected, and M has a proper minor isomorphic to N . Moreover,
|E(M)| = 2n, and |E(N)| = 3n/2. However, the only proper minor of M
that is internally 4-connected with an N -minor is itself isomorphic to N .

In light of this example, we concentrate on a different goal. To aid brevity,
let us introduce some notation. Say that S is the set of all ordered pairs,
(M,N) where M and N are internally 4-connected binary matroids, and
M has a proper N -minor. We will let Sk be the subset of S for which
there is an internally 4-connected minor, M ′, of M that has an N -minor
and satisfies 1 ≤ |E(M)| − |E(M ′)| ≤ k. The discussion in the previous
paragraph shows that we cannot find a k so that S ⊆ Sk. Instead, we want
to show that, for any (M,N) ∈ S, either (M,N) ∈ Sk, for some small value
of k, or there is some easily described operation we can perform on M to
produce an internally 4-connected minor that has an N -minor. To this end,
we are trying to identify as many pairs as possible that belong to Sk, for
small values of k. For example, our first step [1] was to show that if M is
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4-connected, then (M,N) is in S2. In fact, in almost every case, (M,N)
belongs to S1.

Theorem 1.1. Let M and N be binary matroids such that M has a proper
N -minor, and |E(N)| ≥ 7. If M is 4-connected and N is internally 4-con-
nected, then M has an internally 4-connected minor M ′ with an N -mi-
nor such that 1 ≤ |E(M)| − |E(M ′)| ≤ 2. Moreover, unless M is iso-
morphic to a specific 16-element self-dual matroid, such an M ′ exists with
|E(M)| − |E(M ′)| = 1.

An internally 4-connected binary matroid is 4-connected if and only if
it has no triangles and triads. Therefore we have shown that if M has
no triangles or triads (and |E(N)| ≥ 7), then (M,N) ∈ S2. Hence we now
assume that M does contain a triangle or triad. In this chapter of the series,
we consider the case that all triangles and triads of M must be contained
in the ground set of every N -minor. In other words, deleting an element
from a triangle of M , or contracting an element from a triad, destroys all
N -minors. We show that under these circumstances, (M,N) is in S2.

Theorem 1.2. Let M and N be internally 4-connected binary matroids,
such that |E(N)| ≥ 7, and N is isomorphic to a proper minor of M . Assume
that if T is a triangle of M and e ∈ T , then M\e does not have an N -minor.
Dually, assume that if T is a triad of M and e ∈ T , then M/e does not have
an N -minor. Then M has an internally 4-connected minor, M ′, such that
M ′ has an N -minor, and 1 ≤ |E(M)| − |E(M ′)| ≤ 2.

With this result in hand, in the next chapter [2] we will be able to assume
that (up to duality) M has a triangle T and an element e ∈ T such that
M\e has an N -minor.

We note that Theorem 1.2 is not strictly a strengthening of Theorem 1.1
as, in the earlier theorem, we completely characterized when (M,N) was in
S2 −S1. We make no attempt to obtain the corresponding characterization
in Theorem 1.2, as we believe that S2 − S1 will contain many more pairs
when we relax the constraint that M is 4-connected. For example, let N be
obtained from a binary projective geometry by performing a ∆-Y exchange
on a triangle T . Let T ′ be a triangle that is disjoint from T . We obtain M
from N by coextending by the element x so that it is in a triad with two
elements from T ′, and then extending by y so that it is in a circuit with x
and two elements from T . It is not difficult to confirm that the hypotheses
of Theorem 1.2 hold, but M has no internally 4-connected single-element
deletion or contraction with an N -minor. Clearly this technique could be
applied to create even more diverse examples.

2. Preliminaries

We assume familiarity with standard matroid notions and notations, as
presented in [5]. We make frequent, and sometimes implicit, use of the
following well-known facts. If M is n-connected, and |E(M)| ≥ 2(n − 1),
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then M has no circuit or cocircuit with fewer than n elements [5, Propo-
sition 8.2.1]. In a binary matroid, a circuit and a cocircuit must meet in
a set of even cardinality [5, Theorem 9.1.2(ii)]. The symmetric difference,
C4C ′, of two circuits in a binary matroid is a disjoint union of circuits [5,
Theorem 9.1.2(iv)].

We use ‘by orthogonality’ as shorthand for the statement ‘by the fact
that a circuit and a cocircuit cannot intersect in a set of cardinality one’
[5, Proposition 2.1.11]. A triangle is a 3-element circuit, and a triad is a
3-element cocircuit. We use λM or λ to denote the connectivity function of
the matroid M . If M and N are matroids, an N -minor of M is a minor of
M that is isomorphic to N .

Let M be a matroid. A subset S of E(M) is a fan in M if |S| ≥ 3 and
there is an ordering (s1, s2, . . . , sn) of S such that

{s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn}

is an alternating sequence of triangles and triads. We call (s1, s2, . . . , sn) a
fan ordering of S. Sometimes we blur the distinction between a fan and an
ordering of that fan. Most of the fans we encounter have four or five ele-
ments. We adopt the following convention: if (s1, s2, s3, s4) is a fan ordering
of a 4-element fan, then {s1, s2, s3} is a triangle. We call such a fan ordering
a 4-fan. We distinguish between the two different types of 5-element fan by
using 5-fan to refer to a 5-element fan containing two triangles, and using
5-cofan to refer to a 5-element fan containing two triads.

The next proposition is proved by induction on n, using the fact that sn
is contained in either the closure or the coclosure of {s1, . . . , sn−1}.

Proposition 2.1. Let (s1, . . . , sn) be a fan ordering in a matroid M . Then

λM ({s1, . . . , sn}) ≤ 2.

Lemma 2.2. Let M be a binary matroid that has an internally 4-connected
minor, N , satisfying |E(N)| ≥ 8. If (s1, s2, s3, s4) is a 4-fan of M , then
M\s1 or M/s4 has an N -minor. If (s1, s2, s3, s4, s5) is a 5-fan in M , then
either M\s1\s5 has an N -minor, or both M\s1/s2 and M/s4\s5 have N-mi-
nors. In particular, both M\s1 and M\s5 have N -minors.

Proof. Let (s1, s2, s3, s4) be a 4-fan. Since {s1, s2, s3, s4} contains a circuit
and a cocircuit, λN0({s1, s2, s3, s4}) ≤ 2 for any minor, N0, of E(M) that
contains {s1, s2, s3, s4} in its ground set. As N is internally 4-connected and
|E(N)| ≥ 8, we deduce that N is obtained from M by removing at least one
element of {s1, s2, s3, s4}. Let x be an element in {s1, s2, s3, s4} − E(N). If
M\x has an N -minor, then either x = s1, as desired; or {s2, s3, s4} − x is a
2-cocircuit in M\x. In the latter case, as N is internally 4-connected, either
x ∈ {s2, s3}, and M/s4 has an N -minor, as desired; or x = s4, and M/s2
has an N -minor. But {s1, s3} is a 2-circuit of the last matroid, so M\s1 has
an N -minor, and the lemma holds. We may now suppose that deleting any
element of {s1, s2, s3, s4} from M yields a matroid with no N -minor. Then
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N is a minor of M/x for some x ∈ {s1, s2, s3, s4}. But x is not in {s1, s2, s3},
or else {s1, s2, s3} − x is a 2-circuit in M/x, and we may delete one of its
elements while keeping an N -minor. Thus x = s4, and the lemma holds.

Next we assume that (s1, s2, s3, s4, s5) is a 5-fan in M . First we show
that M\s1/s2 has an N -minor if and only if M/s4\s5 has an N -minor. As
{s1, s3} is a 2-circuit of M/s2, it follows that if M\s1/s2 has an N -minor,
so does M\s3. As {s4, s5} is a 2-cocircuit of the last matroid, this implies
that M/s4 has an N -minor. Hence so does M/s4\s5. Thus M/s4\s5 has an
N -minor if M\s1/s2 does. The converse statement yields to a symmetrical
argument.

Now (s1, s2, s3, s4) is a 4-fan of M . By applying the first statement of
the lemma, we see that M\s1 or M/s4 has an N -minor. In the latter case,
M/s4\s5 has an N -minor, and we are done. Therefore we assume that
M\s1 has an N -minor. There is a cocircuit of M\s1 that contains s2 and is
contained in {s2, s3, s4}. If this cocircuit is not a triad, then M\s1/s2 has
an N -minor, and we are done. Therefore we assume that (s5, s4, s3, s2) is
a 4-fan of M\s1. We apply the first statement of the lemma, and deduce
that either M\s1/s2 or M\s1\s5 has an N -minor. In either case the proof
is complete. �

A quad is a 4-element circuit-cocircuit. It is clear that if Q is a quad,
then λ(Q) ≤ 2. The next result is easy to verify.

Proposition 2.3. Let (X,Y ) be a 3-separation of a 3-connected binary ma-
troid with |X| = 4. Then X is a quad or a 4-fan.

The next result is Lemma 2.2 in [1].

Lemma 2.4. Let Q be a quad in a binary matroid M . If x and y are in Q,
then M\x and M\y are isomorphic.

A matroid is (4, k)-connected if it is 3-connected, and, whenever (X,Y )
is a 3-separation, either |X| ≤ k or |Y | ≤ k. A matroid is internally 4-con-
nected precisely when it is (4, 3)-connected. If a matroid is 3-connected,
but not (4, k)-connected, then it contains a 3-separation, (X,Y ), such that
|X|, |Y | > k. We will call such a 3-separation a (4, k)-violator.

For n ≥ 3, we let Gn+2 denote the biwheel graph with n+2 vertices. Thus
Gn+2 consists of a cycle v1, v2, . . . , vn, and two additional vertices, u and v,
each of which is adjacent to every vertex in {v1, v2, . . . , vn}. The planar dual
of a biwheel is a cubic planar ladder. We construct G+

n+2 by adding an edge

between u and v. It is easy to see that M(G+
n+2) is represented over GF(2)

by the following matrix [
1 0

In+1
In An

]
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where An is the n× n matrix
1 0 0 · · · 1
1 1 0 · · · 0
0 1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


and 1 and 0 are 1 × n vectors with all entries equal to 1 or 0 respectively.
Thus M(G+

n+2) is precisely equal to the matroid Dn, as defined by Zhou [8],
and the element f1 of E(Dn) is the edge uv.

For n ≥ 2 let ∆n+1 be the rank-(n + 1) binary matroid represented by
the following matrix. [

1 en
In+1

In An

]
In this case, en is the standard basis vector with a one in position n. Then
∆n+1 is a triangular Möbius matroid (see [4]). In [8], the notation Dn is used
for the matroid ∆n+1, and f1 denotes the element represented by the first
column in the matrix. We use z to denote the same element. We observe
that ∆n+1\z is the bond matroid of a Möbius cubic ladder.

The next result is a consequence of a theorem due to Zhou [8].

Theorem 2.5. Let M and N be internally 4-connected binary matroids such
that N is a proper minor of M satisfying |E(N)| ≥ 7. Then either

(i) M\e or M/e is (4, 4)-connected with an N -minor, for some element
e ∈ E(M), or

(ii) M or M∗ is isomorphic to either M(Gn+2), M(G+
n+2), ∆n+1, or

∆n+1\z, for some n ≥ 4.

Note that the theorem in [8] is stated with the weaker hypothesis that
|E(N)| ≥ 10. However, Zhou explains that by using results from [3] and
[7] and performing a relatively simple case-analysis, we can strengthen the
theorem so that it holds under the condition that |E(N)| ≥ 7.

3. Proof of the main theorem

In this section we prove Theorem 1.2. Throughout the section, we assume
that the theorem is false. This means that there exist internally 4-connected
binary matroids, M̄ and N̄ , with the following properties:

(i) M̄ has a proper N̄ -minor,
(ii) if e is in a triangle of M̄ , then M̄\e has no N̄ -minor,
(iii) if e is in a triad of M̄ , then M̄/e has no N̄ -minor,
(iv) there is no internally 4-connected minor, M ′, of M̄ such that M ′ has

an N̄ -minor and 1 ≤ |E(M̄)| − |E(M ′)| ≤ 2, and
(v) |E(N̄)| ≥ 7.
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Note that (M̄∗, N̄∗) also provides a counterexample to Theorem 1.2. We
start by showing that we can assume |E(N̄)| ≥ 8. If |E(N̄)| = 7, then N̄ is
isomorphic to F7 or F ∗7 . Then M̄ is non-regular, and contains one of the five

internally 4-connected non-regular matroids N10, K̃5, K̃
∗
5 , T12\e, or T12/e as

a minor [7, Corollary 1.2]. But N10 contains an element in a triangle whose
deletion is non-regular, so M̄ is not isomorphic to N10. The same statement

applies to K̃5 and T12/e, so M̄ is not isomorphic to these matroids, or

their duals, K̃∗5 and T12\e. Thus M̄ has a proper internally 4-connected
minor, N ′, isomorphic to one of the five matroids listed above. Therefore
we can relabel N ′ as N̄ . As each of the five matroids has more than seven
elements, we are justified in assuming that |E(N̄)| ≥ 8. As (M̄, N̄) provides
a counterexample to Theorem 1.2, it follows that |E(M̄)| ≥ 11.

Lemma 3.1. Let (M,N) be (M̄, N̄) or (M̄∗, N̄∗). Let N0 be an arbitrary
N -minor of M . If T is a triangle or a triad of M , then T ⊆ E(N0).

Proof. By duality, we can assume that {e, f, g} is a triangle of M . Assume
that e /∈ E(N0). Since M\e has no minor isomorphic to N , it follows that
N0 is a minor of M/e. As {f, g} is a 2-circuit in M/e, it follows that N0 is a
minor of either M/e\f or M/e\g, and hence of M\f or M\g. But neither
of these matroids has an N -minor, so we have a contradiction. �

Lemma 3.2. There is an element e ∈ E(M̄) such that either M̄\e or M̄/e
is (4, 4)-connected with an N̄ -minor.

Proof. If the lemma fails, then by Theorem 2.5, either M̄ or its dual is
isomorphic to one of M(Gn+2), M(G+

n+2), ∆n+1, or ∆n+1\z, for some n ≥ 4.

In these cases it is easy to verify that every element of E(M̄) is contained
in a triangle or a triad. Therefore Lemma 3.1 implies that E(M̄) = E(N̄),
contradicting the fact that N̄ is a proper minor of M̄ . �

If e is an element such that M̄\e is (4, 4)-connected with an N̄ -minor, then
M̄\e has a quad or a 4-fan, for otherwise it follows from Proposition 2.3 that
M̄\e is internally 4-connected, contradicting the fact that M̄ is a counterex-
ample to Theorem 1.2. We will make frequent use of the following fact.

Proposition 3.3. Let (M,N) be either (M̄, N̄) or (M̄∗, N̄∗). If M\e is
3-connected and has an N -minor, and (X,Y ) is a 3-separation of M\e such
that |Y | = 5, then Y is a 5-cofan of M\e.
Proof. If Y is not a fan, then Y contains a quad (see [8, Lemma 2.14]). As
in the proof of [8, Lemma 2.15], we can show that in M , there is either
a triangle or a triad of M that is contained in Y and which contains two
elements from the quad. In the first case, the triangle contains an element
we can delete to keep an N -minor. In the second case, the triad contains
an element we can contract and keep an N -minor. In either case, we have a
contradiction to Lemma 3.1. Therefore Y is a 5-element fan. If Y is a 5-fan,
then by Lemma 2.2, we can delete an element from a triangle in M\e and
preserve an N -minor. This contradicts Lemma 3.1, so Y is a 5-cofan. �
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At this point, we give a quick summary of the lemmas that follow.
Lemma 3.4 considers the matroid produced by contracting the last element
of a 4-fan in M\e. Lemma 3.5 deals with deleting an element from a quad in
M\e. In Lemma 3.6 we show that whenever we delete such an element, we
destroy all N -minors. We exploit this information in Lemma 3.7, and show
that M\e has no 4-fans. The only case left to consider is one in which we
contract an element from a quad in M\e. This case is covered in Lemma 3.8.
After this lemma, there is only a small amount of work to be done before
we obtain a final contradiction and complete the proof.

Lemma 3.4. Let (M,N) be either (M̄, N̄) or (M̄∗, N̄∗). Assume that e is an
element of M such that M\e is (4, 4)-connected with an N -minor, and that
(a, b, c, d) is a 4-fan of M\e. Then M\e/d is 3-connected with an N -minor,
and M/d is (4, 4)-connected. Moreover, if (X,Y ) is a (4, 3)-violator of M/d
such that |X ∩{a, b, c}| ≥ 2, then Y is a quad of M/d, and Y ∩{a, b, c, e} =
{e}.

Proof. From Proposition 2.1 and the fact that M is internally 4-connected
with at least eleven elements, it follows that (a, b, c, d) is not a 4-fan of M .
Therefore {b, c, d, e} is a cocircuit in M .

3.4.1. M\e/d and M/d are 3-connected.

Proof. We start by showing that M\e/d is 3-connected. Because M\e is
(4, 4)-connected, it is also 3-connected. Assume that M\e/d is not 3-con-
nected. As M\e/c contains the parallel pair {a, b}, it too is not 3-connected.
As {b, c, d} is a triad in M\e, we can apply the dual of [5, Lemma 8.8.6], and
see that there is a triangle of M\e containing d, and exactly one of b and c.
Let z be the third element of this triangle. Then z 6= a, or else {a, b, c, d} is
a U2,4-restriction of M\e and in this case {b, c, d} is both a triangle and a
triad. This leads to a contradiction to the 3-connectivity of M\e. Therefore
(a, b, c, d, z) is a 5-fan in M\e. Since |E(M\e)| ≥ 10, this means that M\e
is not (4, 4)-connected, and we have a contradiction. Therefore M\e/d is
3-connected.

If M/d is not 3-connected, then it follows easily (see the dual of [6,
Lemma 2.6]) that {e, d} is contained in a triangle of M . However, N is
a minor of M\e, so we have a contradiction to Lemma 3.1. ♦

3.4.2. M\e/d, and hence M/d, has an N -minor.

Proof. Let N0 be an N -minor of M . Then {a, b, c} ⊆ E(N0), by Lemma 3.1.
As (a, b, c, d) is a 4-fan of M\e, it now follows by Lemma 2.2 that M\e/d
has an N -minor. ♦

3.4.3. Let (X,Y ) be a (4, 3)-violator of M/d, and assume that |X ∩
{a, b, c}| ≥ 2. Then |Y | = 4, and e ∈ Y . Morever, Y ∩ {a, b, c} = ∅.

Proof. Assume that the result fails.

3.4.3.1. |Y | ≥ 5.
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Proof. Assume otherwise. Then |Y | = 4. Assume that e ∈ X. If {b, c} ⊆ X,
then d ∈ cl∗M (X), as {b, c, d, e} is a cocircuit. It follows from [5, Corol-
lary 8.2.6(iii)] that λM (X ∪ d) = λM/d(X), and therefore (X ∪ d, Y ) is a
(4, 3)-violator of M , an impossibility. Hence either b or c is contained in Y ,
so |X ∩ {a, b, c}| ≥ 2 implies a is in X.

Proposition 2.3 implies that Y is either a quad or a 4-fan of M/d. As
{a, b, c} is a triangle of M/d that meets Y in a single element, Y is not a
cocircuit, and hence not a quad of M/d. Thus Y = {y1, y2, y3, y4}, where
(y1, y2, y3, y4) is a 4-fan of M/d. Since the triangle {a, b, c} cannot meet the
triad {y2, y3, y4} in a single element, it follows that y1 is equal to b or c. Let
N0 be an N -minor of M/d. Since {y2, y3, y4} is a triad of M , it follows from
Lemma 3.1 that {y2, y3, y4} ⊆ E(N0). But {a, b, c} is a triangle of M , so
{a, b, c} ⊆ E(N0). Therefore {y1, y2, y3, y4} ⊆ E(N0), and this contradicts
Lemma 2.2. From this contradiction we conclude that e ∈ Y .

Since 3.4.3 fails, yet |Y | = 4 and e ∈ Y , we deduce that Y contains
exactly one element of the triangle {a, b, c}. Thus Y is not a quad of M/d,
so Y is a 4-fan, (y1, y2, y3, y4), of M/d. Since {a, b, c} is a triangle of M/d,
and {y2, y3, y4} is a triad, orthogonality requires that the single element in
Y ∩{a, b, c} is y1. Therefore e is contained in the triad {y2, y3, y4}. But this
means that M\e contains a 2-cocircuit, a contradiction as it is 3-connected.

♦

Let T = {a, b, c}. As Y contains at most one element of T , it follows from
3.4.3.1 that |Y − T | ≥ 4. Furthermore, X spans T . The next fact follows
from these observations and from 3.4.1.

3.4.3.2. (X ∪ T, Y − T ) is a 3-separation in M/d.

3.4.3.3. e ∈ Y .

Proof. Assume that e ∈ X. Then 3.4.3.2 and the cocircuit {b, c, d, e} imply
that (X ∪ T ∪ d, Y − T ) is 3-separation of M . Since |Y − T | ≥ 4, it follows
that M has a (4, 3)-violator, which is impossible. ♦

3.4.3.4. |Y − T | ≤ 5.

Proof. By 3.4.3.2 and 3.4.3.3, we see that (X∪T, Y −(T∪e)) is a 3-separation
in M/d\e. As {b, c, d} is a triad in M\e, it follows that d ∈ cl∗M\e(T ), so

(X ∪ T ∪ d, Y − (T ∪ e))
is a 3-separation of M\e. Since |X∪T ∪d| > 4, and M\e is (4, 4)-connected,
it follows that |Y − (T ∪ e)| ≤ 4, so |Y − T | ≤ 5. ♦

3.4.3.5. |Y − T | = 4.

Proof. We have observed that |Y − T | ≥ 4, so if 3.4.3.5 is false, it follows
from 3.4.3.4 that |Y −T | = 5. From 3.4.3.2 and the dual of Proposition 3.3,
we see that Y − T is a 5-fan of M/d. Let (y1, . . . , y5) be a fan ordering of
Y −T . Since M\e is 3-connected, e is contained in no triads of M , so e = y1
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or e = y5. By reversing the fan ordering as necessary, we can assume that
the first case holds. As {y2, y3, y4} is a triad of M , it follows that {y3, y4, y5}
is not a triangle, or else M has a 4-fan. Therefore {y3, y4, y5, d} is a circuit
of M that is contained in (Y − T )∪ d. It meets the cocircuit {b, c, d, e} in a
single element, violating orthogonality. ♦

As |Y | ≥ 5, and |Y − T | = 4, it follows that |Y | = 5 and |Y ∩ T | = 1.
From Proposition 3.3, we see that Y is a 5-fan of M/d. Let (y1, . . . , y5) be
a fan ordering of Y in M/d. As M\e is 3-connected, e is in no triad in M ,
and hence in M/d, so e = y1 or e = y5. By reversing the fan ordering as
necessary, we assume e = y1. Since {y2, y3, y4} is a triad of M , it follows that
{y3, y4, y5} is not a triangle, or else M has a 4-fan. Therefore {y3, y4, y5, d}
is a circuit of M . This circuit cannot meet the cocircuit {b, c, d, e} in the
single element d. Therefore the single element in T ∩ Y is in {y3, y4, y5}.
Call this element y. As the triangle T cannot meet the triad {y2, y3, y4} in a
single element, it follows that y = y5. Since (y5, y4, y3, y2) is a 4-fan of M/d,
and {y2, y3, y4} is a triad of M , it follows from Lemma 3.1 and Lemma 2.2
that M/d\y5, and hence M\y5 has an N -minor. This contradicts the fact
that y5 is in the triangle T . Thus we have completed the proof of 3.4.3. ♦

From 3.4.3 we know that M/d is (4, 4)-connected. Next we must eliminate
the possibility that M/d has a 4-fan.

3.4.4. Let (X,Y ) be a (4, 3)-violator of M/d, where |X∩{a, b, c}| ≥ 2. Then
Y is not a 4-fan of M/d.

Proof. Assume that Y is a 4-fan, (y1, y2, y3, y4). Thus {y2, y3, y4} is a triad
in M/d, and hence in M . It follows from 3.4.3 that e ∈ Y . But e is not in
a triad of M , so e = y1. Since M has no 4-fan, it follows that {e, y2, y3} is
not a triangle of M , so {e, d, y2, y3} is a circuit.

From 3.4.1, we see that M/d\e is 3-connected. We shall show that it is
internally 4-connected. Once we prove this assertion, we will have shown
that (M,N) is not a counterexample to Theorem 1.2, since M/d\e has an
N -minor by 3.4.2. This contradiction will complete the proof of 3.4.4.

3.4.4.1. If (U, V ) is a (4, 3)-violator of M/d\e, then {b, c} * U and {b, c} *
V .

Proof. If the result fails, then by symmetry we can assume that (U, V ) is a
(4, 3)-violator of M/d\e such that b, c ∈ U . Then d ∈ cl∗M\e(U), because of

the triad {b, c, d}, so (U ∪ d, V ) is a (4, 3)-violator in M\e. As |U ∪ d| > 4,
and M\e is (4, 4)-connected, we deduce that |V | = 4. Assume that V is a
quad of M\e. Then V ∪ e is a cocircuit of M , which cannot meet the circuit
{e, d, y2, y3} in a single element. Hence y2 or y3 is in V . However, V is a
circuit in M\e, and {y2, y3, y4} is a cocircuit in M\e, as it is a triad of M ,
and M\e is 3-connected. Orthogonality requires that |V ∩ {y2, y3, y4}| = 2.
This means that {y2, y3, y4} ⊆ cl∗M\e(V ), so V ∪ {y2, y3, y4} is a 5-element

3-separating set in M\e. As M\e is (4, 4)-connected, it follows that M\e has
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at most nine elements, contradicting our earlier assumption that |E(M)| ≥
11. Thus V is not a quad of M\e, and Proposition 2.3 implies that V is a
4-fan in M\e.

Let T ∗ be the triad of M\e that is contained in V . As M has no 4-fans,
T ∗ ∪ e is a cocircuit of M . It cannot meet the circuit {e, d, y2, y3} in the
single element e. Let y be an element in {y2, y3} ∩ T ∗. As {y2, y3, y4} is a
triad in M/d, and hence in M , it does not contain any element that is in
a triangle of M , or else M has a 4-fan. Therefore y is not in the triangle
of M\e that is contained in V , so V − y is a triangle of M . Thus V − y is
contained in the ground set of every N -minor of M , so Lemma 2.2 implies
that M\e/y, and hence M/y has an N -minor. However, since y is contained
in the triad {y2, y3, y4} of M , this contradicts Lemma 3.1. ♦

Let (U, V ) be a (4, 3)-violator of M/d\e, and assume that a ∈ U .
By 3.4.4.1, we may assume that x ∈ U and y ∈ V , where {x, y} = {b, c}.
Then y ∈ clM/d\e(U), as {a, x, y} is a triangle, so (U ∪ y, V − y) is a 3-sep-
aration of M/d\e. It follows from 3.4.4.1 that it is not a (4, 3)-violator, so
|V | = 4. Since V contains an element that is in clM/d\e(U), it cannot be
a quad of M/d\e, so it is a 4-fan. Moreover, as y ∈ clM/d\e(U), it follows
that y is not in the triad of M/d\e that is contained in V . Therefore V − y
is a triad of M/d\e. If V − y is a triad of M , then V − y is contained in
every N -minor of M . Because {a, x, y} = {a, b, c} is a triangle, it follows
that y is contained in every N -minor. Thus V is in every N -minor of M .
This implies that N has a 4-element 3-separating set, which is impossible
as |E(N)| ≥ 8. Therefore V − y is not a triad of M , so (V − y) ∪ e is a
cocircuit. It cannot meet the circuit {e, d, y2, y3} in the single element e, so
either y2 or y3 is in the triad V − y of M\e.

Note that V − y is not equal to {y2, y3, y4}, as one set is a triad of M
and the other is not. They are both triads of M\e, and they have at least
one element in common. Hence they have exactly one element in common,
as M\e is 3-connected, and therefore does not contain a series pair. Let z
be the unique element in (V − y) ∩ {y2, y3}. If T ′ is the triangle of M/d\e
that is contained in V , then z is not in T ′, as otherwise the triad {y2, y3, y4}
in M/d meets the triangle T ′ in a single element, z. Therefore V − z is a
triangle in M/d\e, and V − y is a triad.

Note that y is in every N -minor of M , because of the triangle {a, x, y} =
{a, b, c}, and z is in every N -minor of M because of the triad {y2, y3, y4}.
But V cannot be contained in an N -minor of M/d\e, as it is a 3-separating
set. Therefore there is some element w ∈ V −{y, z} such that N is a minor
of M/d\e\w or M/d\e/w. But z is in the 2-cocircuit V −{y, w} of the first
matroid, and y is in the 2-circuit V − {z, w} of the second. This leads to a
contradiction, as y and z are in the ground set of every N -minor of M .

We conclude that there can be no (4, 3)-violator in M/d\e, and therefore
M/d\e is internally 4-connected and has an N -minor. This contradicts our
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assumption that M is a counterexample to Theorem 1.2. Thus 3.4.4 holds.
♦

Now we can complete the proof of Lemma 3.4. If (a, b, c, d) is a 4-fan of
M\e, where this matroid is (4, 4)-connected with an N -minor, then 3.4.2 im-
plies that M/d has an N -minor. It follows from 3.4.1 that M\e/d and M/d
are 3-connected, and 3.4.3 implies that M/d is (4, 4)-connected. Moreover,
if (X,Y ) is a (4, 3)-violator of M/d where X contains at least two elements
of {a, b, c}, then 3.4.3 also implies that |Y | = 4 and Y ∩ {a, b, c, e} = {e}.
As 3.4.4 implies that Y cannot be a 4-fan in M/d, Proposition 2.3 implies
that Y is a quad. Thus Lemma 3.4 is proved. �

Lemma 3.5. Let (M,N) be either (M̄, N̄) or (M̄∗, N̄∗). Assume that the
element e is such that M\e is (4, 4)-connected with an N -minor, and that
Q is a quad of M\e. If x ∈ Q and M\e\x has an N -minor, then M\x
is (4, 4)-connected. In particular, if (X,Y ) is a (4, 3)-violator of M\x such
that |X ∩ (Q−x)| ≥ 2, then Y is a quad of M\x such that |Y ∩Q| = 1, and
e ∈ Y .

Proof. As M has no quads, we deduce that Q ∪ e is a cocircuit in M .

3.5.1. M\x\e and M\x are 3-connected.

Proof. Let (U, V ) be a 2-separation in M\x\e. By relabeling as necessary,
we assume that |U ∩ (Q− x)| ≥ 2. If U contains Q− x, then (U ∪ x, V ) is a
2-separation of M\e. This is impossible, so V contains a single element of
Q− x. Then

λM\x\e(V − (Q− x)) ≤ λM\x\e(V ) ≤ 1,

as Q− x is a triad of M\x\e. Now x ∈ clM\e(U ∪ (Q− x)), so

λM\e(V − (Q− x)) = λM\x\e(V − (Q− x)) ≤ 1.

But M\e is 3-connected, so this means that |V −(Q−x)| ≤ 1. Thus |V | = 2,
and V must be a 2-cocircuit of M\x\e. This means that x is in a triad of
M\e. This triad must meet Q in two elements, by orthogonality. Thus
| cl∗M\e(Q)| ≥ 5, and M\e contains a 5-element 3-separating set. This is a

contradiction as M\e is (4, 4)-connected with at least ten elements. Thus
M\x\e is 3-connected, and it follows easily that M\x is 3-connected. ♦

Let (X,Y ) be a (4, 3)-violator of M\x, and assume that X contains at
least two elements of Q − x. If Q − x ⊆ X, then x ∈ clM (X), as Q is a
circuit of M . This implies that (X ∪x, Y ) is a (4, 3)-violator of M , which is
impossible. Therefore Y contains exactly one element of Q− x. Let us call
this element y.

3.5.2. (X−e, Y −e) is a 3-separation of M\x\e and y ∈ cl∗M\x\e(Y −{e, y}).

Proof. The fact that (X−e, Y −e) is a 3-separation of M\x\e follows because
|X|, |Y | ≥ 4, and M\x\e is 3-connected. Since Q − x is a triad of M\x\e,
and Q − {x, y} ⊆ X − e, we deduce that y ∈ cl∗M\x\e(X − e). This means
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that y ∈ cl∗M\x\e(Y − {e, y}), as otherwise ((X − e) ∪ y, Y − {e, y}) is a

2-separation of M\x\e. ♦

3.5.3. λM\e(Y − {e, y}) ≤ 2.

Proof. Since (X−e, Y −e) is a 3-separation ofM\x\e and y ∈ cl∗M\x\e(X−e),
it follows that

λM\x\e(Y − {e, y}) ≤ λM\x\e(Y − e) = 2.

Since (X − e) ∪ {x, y} contains Q, it follows that x ∈ clM\e((X − e) ∪ y).
This means that

λM\e(Y − {e, y}) = λM\x\e(Y − {e, y}) ≤ 2,

as desired. ♦

3.5.4. |Y | ≤ 6.

Proof. As M\e is (4, 4)-connected, |Y − {e, y}| ≤ 4 by 3.5.3. Thus |Y | ≤ 6.
♦

3.5.5. |Y | 6= 6.

Proof. Assume that |Y | = 6. If e /∈ Y , then 3.5.3 implies that ((X − e) ∪
{x, y}, Y −y) is a 3-separation of M\e. As |Y −y| = 5 and |(X−e)∪{x, y}| =
|X|+1 ≥ 5, this contradicts the fact that M\e is (4, 4)-connected. Therefore
e ∈ Y , and Y −{e, y} is a 4-element 3-separating set in M\e. Thus Y −{e, y}
is either a quad or a 4-fan of M\e. The next two assertions show that both
these cases are impossible, thereby finishing the proof of 3.5.5.

3.5.5.1. Y − {e, y} is not a quad of M\e.

Proof. Assume that Y − {e, y} is a quad of M\e. Thus it is a circuit of M ,
and Y −y is a cocircuit of M . If Y −y is not a cocircuit of M\x, then x is in
the coclosure of Y − y in M . This leads to a contradiction to orthogonality
with the circuit Q of M . Thus Y −y is a cocircuit of M\x, so Y −{e, y} is a
quad in both M\e and M\x\e. As Y − y is a cocircuit of M\x and |Y | = 6,
we see that r∗M\x(Y ) ≥ 4, so

rM\x(Y ) = λM\x(Y )− r∗M\x(Y ) + |Y | ≤ 2− 4 + 6 = 4.

By 3.5.2, there is a cocircuit of M\x\e contained in Y − e that contains
y. The symmetric difference of this cocircuit with Y − {e, y} is a disjoint
union of cocircuits. As M\x\e contains no cocircuit with fewer than three
elements, it follows that there are two triads, T ∗1 and T ∗2 , of M\x\e, such
that T ∗1 ∩ T ∗2 = {y}, and T ∗1 ∪ T ∗2 = Y − e. If both T ∗1 ∪ e and T ∗2 ∪ e
are cocircuits of M\x, then we can take the symmetric difference of these
cocircuits, and deduce that Y −{e, y} is a cocircuit of M\x that is properly
contained in the cocircuit Y − y. Since this is impossible, we deduce that
we can relabel as necessary, and assume that T ∗1 is a triad of M\x.

Let z be an arbitrary element of T ∗2 −y. Then Y −{e, y, z} is independent
in M\x. Orthogonality with the cocircuit (Q− x) ∪ e means that y cannot
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be in the closure of Y − {e, y, z} in M\x. Thus Y − {e, z} is independent.
Since rM\x(Y ) ≤ 4, it follows that Y − {e, z} spans Y in M\x. Let C be
a circuit of M\x such that {e} ⊆ C ⊆ Y − z. If y /∈ C, then C and the
cocircuit (Q − x) ∪ e meet in {e}. Therefore y ∈ C. This implies that C
contains exactly one element of T ∗1 −y. Now C cannot be a triangle, as M\e
has an N -minor. Therefore C also contains the single element in T ∗2 −{y, z}.
But now the circuit C meets the cocircuit Y − y of M\x in three elements:
e, and a single element from each of T ∗1 − y and T ∗2 − y. This contradiction
proves 3.5.5.1. ♦

3.5.5.2. Y − {e, y} is not a 4-fan of M\e.

Proof. Assume that (y1, y2, y3, y4) is a fan ordering of Y − {e, y} in M\e.
Then {y2, y3, y4, e} is a cocircuit of M .

As M\x\e has no cocircuits with fewer than three elements, {y2, y3, y4} is
a triad of M\x\e. Thus (y1, y2, y3, y4) is a 4-fan of M\x\e. By 3.5.2, there
is a cocircuit C∗ of M\x\e such that {y} ⊆ C∗ ⊆ Y −e. This cocircuit must
meet the triangle {y1, y2, y3} in exactly two elements. If {y2, y3} ⊆ C∗, then
the symmetric difference of {y2, y3, y4} and C∗ is {y, y4}, as {y2, y3, y4} is
not properly contained in C∗. Since M\x\e has no 2-cocircuit, we deduce
that y1 ∈ C∗. Either C∗, or its symmetric difference with {y2, y3, y4}, is
a triad of M\x\e that contains y, y1, and a single element from {y2, y3}.
We can swap the labels on y2 and y3 if necessary, so we can assume that
{y, y1, y2} is a triad. Thus (y, y1, y2, y3, y4) is a 5-cofan of M\x\e. The dual
of Lemma 2.2 implies that M\x\e/y and M\x\e/y4 have N -minors.

Recall that {y2, y3, y4, e} is a cocircuit of M . It is also a cocircuit of M\x,
as otherwise x ∈ cl∗M ({y2, y3, y4, e}), and this contradicts orthogonality with
the circuit Q. Therefore {y2, y3, y4} is coindependent in M\x.

Assume y1 ∈ cl∗M\x({y2, y3, y4}), so y1 is in cl∗M\x\e({y2, y3, y4}). As it is

also in clM\x\e({y2, y3, y4}), it follows that λM\x\e({y1, y2, y3, y4}) ≤ 1. This
leads to a contradiction to the fact that M\x\e is 3-connected. Therefore
y1 /∈ cl∗M\x({y2, y3, y4}). Thus {y1, y2, y3, y4} is a coindependent set in M\x,

so r∗M\x(Y ) ≥ 4. Now we see that

rM\x(Y ) = λM\x(Y )− r∗M\x(Y ) + |Y | ≤ 2− 4 + 6 = 4.

If {y, y1, y3, y4} is dependent in M\x\e, then it is a circuit, by orthogo-
nality with the triads {y, y1, y2} and {y2, y3, y4}, and the fact that M\x\e
has no 2-circuits. In this case, {y, y1, y3, y4} is a circuit of M , and Q ∪ e is
a cocircuit that meets it in the single element y. Therefore {y, y1, y3, y4} is
independent in M\x\e, and hence in M\x. Therefore {y, y1, y3, y4} spans
Y in M\x. Let C be a circuit of M\x such that {e} ⊆ C ⊆ {e, y, y1, y3, y4}.

First observe that y ∈ C, as otherwise C and Q ∪ e are a circuit and
a cocircuit of M that meet in {e}. We have noted that {e, y2, y3, y4} is a
cocircuit of M\x. Therefore orthogonality implies that C contains exactly
one element of {y3, y4}. Since M\e has an N -minor, it follows that e is in no
triangles of M . Therefore y1 must be in C. Hence C is either {e, y, y1, y3}



14 CHUN, MAYHEW, AND OXLEY

or {e, y, y1, y4}. In the first case, we take the symmetric difference of C with
the triangle {y1, y2, y3}, and discover that e is in the triangle {e, y, y2}, a
contradiction. Therefore C = {e, y, y1, y4}.

We noted earlier that M\x\e/y, and hence M/y, has an N -minor. The
symmetric difference of C with the triangle {y1, y2, y3} is {e, y, y2, y3, y4},
which must therefore be a circuit of M . Thus {e, y2, y3, y4} is a circuit
of M/y. It is also a cocircuit, as it is a cocircuit in M . Thus M/y con-
tains a quad that contains e. Since M/y\e has an N -minor, it follows from
Lemma 2.4 that if z is an arbitrary member of the quad {e, y2, y3, y4}, then
M/y\z has an N -minor. In particular, M/y\y2, and hence M\y2 has an
N -minor. This is contradictory, as y2 is contained in the triangle {y1, y2, y3}
of M . This completes the proof of 3.5.5.2. ♦

The proof of 3.5.5 now follows immediately from 3.5.5.1 and 3.5.5.2. ♦

3.5.6. |Y | 6= 5.

Proof. Assume that |Y | = 5. If e ∈ X, then y ∈ cl∗M\x(X), since (Q−x)∪e is

a cocircuit of M\x that is contained in X∪y. This means that (X∪y, Y −y)
is a 3-separation of M\x. As Q is a circuit of M , and Q−x ⊆ X∪y, it follows
that x ∈ clM (X ∪ y). Therefore (X ∪ {x, y}, Y − y) is a 3-separation of M ,
and as |X ∪{x, y}|, |Y − y| ≥ 4, we have violated the internal 4-connectivity
of M . Therefore e is in Y .

Proposition 3.3 implies that Y is a 5-cofan of M\x. Let (y1, y2, y3, y4, y5)
be a fan ordering of Y in M\x. Since e is contained in no triangle of M by
Lemma 3.1, we can assume that e = y1. The element y cannot be contained
in {y2, y3, y4}, or else this triangle meets the cocircuit Q ∪ e of M in the
single element y. Now {y1, y2, y3} is a triad of M , or else {x, y1, y2, y3} is
a cocircuit, and it meets the circuit Q in the single element x. However,
{y1, y2, y3} cannot be a triad, as e = y1 and M\e is 3-connected. ♦

We can now complete the proof of Lemma 3.5. Recall that (X,Y ) is a
(4, 3)-violator of M\x, where x is contained in the quad Q of M\e, and
|X ∩ (Q − x)| ≥ 2. By combining 3.5.4, 3.5.5, and 3.5.6, we deduce that
|Y | = 4. Therefore M\x is (4, 4)-connected with an N -minor, and Y is
either a quad or a 4-fan of M\x.

Assume that e is not in Y . If Y is a quad of M\x, then it is a circuit
of M that meets the cocircuit Q ∪ e in the single element y. Therefore Y
must be a 4-fan of M\x. Certainly y is not contained in the triangle of Y ,
by orthogonality with Q∪ e. Therefore Y = (y1, y2, y3, y) is a 4-fan. We can
apply Lemma 3.4 to M\x, and deduce that M/y is (4, 4)-connected with an
N -minor. Since M/y is not internally 4-connected, Lemma 3.4 also implies
that M/y contains a quad and that this quad contains x. However, Q− y is
a triangle in M/y, so M/y contains a quad, and a triangle that contains an
element of this quad. It follows that the triangle and the quad meet in two
elements, and their union is a 5-element 3-separating set of M/y. As M/y
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is (4, 4)-connected, this leads to a contradiction, so now we know that e is
in Y .

If Y is a 4-fan of M\x, then e is not contained in the triangle of this fan,
as M\e has an N -minor. Therefore y is contained in a triangle of M\x that
is contained in Y −e. This triangle violates orthogonality with the cocircuit
Q ∪ e in M . Hence Y is a quad of M\x, and Lemma 3.5 holds. �

The next proof is essentially the same as an argument used in [1].

Lemma 3.6. Let (M,N) be either (M̄, N̄) or (M̄∗, N̄∗). Assume that the
element e is such that M\e is (4, 4)-connected with an N -minor, and that
Q is a quad of M\e. Then N is not a minor of M\e\x, for any element
x ∈ Q.

Proof. Assume that N is a minor of M\e\x for some element x of Q. By
Lemma 2.4, deleting any element of Q from M\e produces a matroid with
an N -minor. Lemma 3.5 implies that M\x is (4, 4)-connected and contains
a quad, Qx, such that e ∈ Qx, and |Q ∩Qx| = 1.

3.6.1. Assume that x1 and x2 are elements of Q, and that M\x1 contains
a quad, Q1, such that e ∈ Q1, and Q ∩Q1 = {x2}. Then M\x2 contains a
quad, Q2, such that Q ∩Q2 = {x1} and Q1 ∩Q2 = {e}.

Proof. Since M\e\x2 has an N -minor, we can apply Lemma 3.5, and deduce
that M\x2 contains a quad Q2 such that e ∈ Q2 and |Q ∩Q2| = 1. On the
other hand, M\x1 is (4, 4)-connected, and contains a quad, Q1. Moreover,
M\x1\x2 is isomorphic to M\x1\e, by Lemma 2.4 and the fact that e and x2
are both inQ1, soM\x1\x2 has anN -minor. Hence we can apply Lemma 3.5
again, and deduce that M\x2 contains a quad Q′2 such that x1 ∈ Q′2 and
|Q1 ∩Q′2| = 1.

We will show that Q2 = Q′2. Assume this is not the case. As Q2 and Q′2
are both quads of M\x2, orthogonality demands that they are disjoint, or
they meet in two elements. In the latter case, Q24Q′2 is a circuit of M , and
(Q2 ∪x2)4(Q′2 ∪x2) = Q24Q′2 must be a cocircuit of M , so M has a quad.
As this is impossible, we deduce that Q2 and Q′2 are disjoint. Therefore
e /∈ Q′2, as e is in Q2. This means that |Q∩Q′2| = 2, as otherwise the circuit
Q′2 and the cocircuit Q ∪ e meet in {x1}. But Q′2 ∪ x2 is a cocircuit, and
Q is a circuit, and they meet in three elements: x2 and the two elements of
Q ∩Q′2. This contradiction shows that Q2 = Q′2, so x1 ∈ Q2. Furthermore,
Q ∩Q2 = {x1} and Q1 ∩Q2 = {e}. ♦

Now we return to the proof of Lemma 3.6. Let y be the single element in
Q ∩Qx. By 3.6.1, we see that M\y has a quad Qy such that Q ∩Qy = {x}
and Qx ∩Qy = {e}.

Let {z, w} = Q− {x, y}. We can again apply Lemma 3.5 and deduce the
existence of Qz, a quad of M\z that contains e and a single element of Q.
Note that Qz 6= Qy, or else we can take the symmetric difference of Qy ∪ y
and Qz∪z and deduce that {y, z} is a series pair of M . Assume that y ∈ Qz.
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As the cocircuit Qz ∪ z and the circuit Qy both contain e, and x is not the
single element in Q∩Qz, it follows that one of the elements in Qy−{x, e} is
in Qz. Then the cocircuit Qy ∪ y and the circuit Qz meet in three elements:
e, y, and an element in Qy−{x, e}. This contradiction shows that the single
element in Q ∩Qz is not y nor z. Therefore it is x or w.

First we assume that Q ∩ Qz = {w}. Then 3.6.1 implies that M\w has
a quad Qw such that Q ∩ Qw = {z} and Qz ∩ Qw = {e}. The cocircuit
Qw ∪ w and the circuit Qx both contain the element e. Moreover, y /∈ Qw,
so there is an element α in (Qx−{e, y})∩Qw. Let β be the unique element
in Qx−{e, y, α}. Similarly, the cocircuit Qw∪w and the circuit Qy have e in
common, but x /∈ Qw, so there is an element γ in (Qy − {e, x}) ∩Qw. Thus
Qw = {e, z, α, γ}. Consider the set X = {x, y, z, α, β}. It spans: w because
of the circuit Q; e because of the circuit Qx; γ because it spans the circuit
Qw; and Qy because it spans x, e, and γ. This shows that Q∪Qx ∪Qy is a
9-element set satisfying r(Q∪Qx∪Qy) ≤ 5. Moreover, X cospans e because
of the cocircuit Qx ∪ x. It cospans w because it cospans e, and Q ∪ e is a
cocircuit. Now it cospans: γ as Qw ∪w is a cocircuit; and Qy as Qy ∪ y is a
cocircuit. Thus X spans and cospans Q ∪Qx ∪Qy, so

λM (Q ∪Qx ∪Qy) ≤ 5 + 5− 9 = 1.

As M is 3-connected, this means that there is at most 1 element not in
Q ∪ Qx ∪ Qy. This is a contradiction as |E(M)| ≥ 11. Hence we conclude
that Q ∩Qz = {x}.

Now the cocircuit Qz∪z and the circuit Qx both contain e, so |Qz∩(Qx−
{e, y})| = 1. But this means that the circuit Qz and the cocircuit Qx ∪ x
have three elements in common: e, x, and the element in Qz ∩ (Qx−{e, y}).
This contradiction completes the proof of Lemma 3.6. �

Lemma 3.7. Let (M,N) be either (M̄, N̄) or (M̄∗, N̄∗). Assume that the
element e is such that M\e is (4, 4)-connected with an N -minor. Then M\e
has no 4-fans.

Proof. Assume that (a, b, c, d) is a 4-fan of M\e. It follows from Lemma 3.4
that M/d is (4, 4)-connected with an N -minor. Since it is not internally
4-connected, it contains a quad Q such that Q ∩ {a, b, c, e} = {e}. We will
show that M\e/d is internally 4-connected, and this will contradict the fact
that M and N provide a counterexample to Theorem 1.2, thereby proving
Lemma 3.7. Note that Lemma 3.4 states that M\e/d is 3-connected with
an N -minor.

3.7.1. Let (X ′, Y ′) be a (4, 3)-violator of M\e/d. Then neither X ′ nor Y ′

contains Q− e.

Proof. Assume that Q− e ⊆ X ′. As Q is a circuit of M/d, this means that
e ∈ clM/d(X ′). Thus (X ′ ∪ e, Y ′) is a (4, 3)-violator of M/d. Lemma 3.4
says that one side of this (4, 3)-violator is a quad that contains e. But this
is impossible as |X ′ ∪ e| > 4, and e /∈ Y ′. ♦
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Let (X,Y ) be a (4, 3)-violator of M\e/d, and assume that |X∩ (Q−e)| ≥
2. By 3.7.1 we see that there is a single element in Y ∩ (Q − e). Let this
element be y. Since Q−e is a triad in M\e/d, it follows that y ∈ cl∗M\e/d(X).

Therefore (X ∪ y, Y − y) is a 3-separation in M\e/d, but 3.7.1 implies that
it is not a (4, 3)-violator. Hence |Y | = 4. Orthogonality with the triad Q−e
implies that Y is not a quad of M\e/d. Thus Y = {y1, y2, y3, y4}, where
(y1, y2, y3, y4) is a 4-fan in M\e/d. Orthogonality also implies that y = y4.

Assume that M\e/d/y has an N -minor. Then M∗\d\y has an N∗-minor.
As M∗\d is (4, 4)-connected, and y is in the quad Q of this matroid, we now
have a contradiction to Lemma 3.6. Therefore M\e/d/y has no N -minor.
Lemma 2.2 implies that M\e/d\y1, and hence M\y1, has an N -minor. From
this, we deduce that {y1, y2, y3} is not a triangle of M , so {d, y1, y2, y3} is
a circuit. Since {b, c, d, e} is a cocircuit, this implies that exactly one of b
or c is in {y1, y2, y3}. Let α be the single element in {b, c} ∩ {y1, y2, y3}.
Then α 6= y1, as M\e/d\y1 has an N -minor, and b and c are contained in a
triangle of M .

Both {y2, y3, y} and {a, b, c} contain the element α. As {y2, y3, y} is a
triad in M\e/d, and hence in M\e, and {a, b, c} is a triangle of M\e, it
follows that {y2, y3} = {α, a}, since y ∈ Q and Q ∩ {a, b, c} = ∅. Hence
either (y, a, b, c, d) or (y, a, c, b, d) is a 5-cofan of M\e, depending on whether
α = b or α = c. In either case, from Proposition 2.1, and the fact that M\e
is (4, 4)-connected, we deduce that |E(M\e)| ≤ 9, a contradiction. Thus
M\e/d has no (4, 3)-violator, and is therefore internally 4-connected. This
contradiction completes the proof of Lemma 3.7. �

By Lemma 3.2, we know we can choose (M,N) to be (M̄, N̄) or (M̄∗, N̄∗)
in such a way thatM\e is (4, 4)-connected with anN -minor for some element
e ∈ E(M). From Lemma 3.7, we deduce that M\e has no 4-fans, and
therefore contains at least one quad. Moreover, deleting any element from
this quad destroys all N -minors, by Lemma 3.6. Therefore we next consider
contracting an element from a quad in M\e.

Lemma 3.8. Let (M,N) be either (M̄, N̄) or (M̄∗, N̄∗). Assume that the
element e is such that M\e is (4, 4)-connected with an N -minor, and that
Q is a quad of M\e. If x ∈ Q, then M\e/x is 3-connected, and M/x is
(4, 4)-connected with an N -minor. In particular, if (X,Y ) is a (4, 3)-violator
of M/x such that |X ∩ (Q−x)| ≥ 2, then Y is a quad of M/x, and Y ∩ (Q∪
e) = {e}.

Proof. To see that M/x has an N -minor, we note that Q is not contained
in the ground set of any N -minor of M\e. By Lemma 3.6, we cannot delete
any element of Q in M\e and preserve an N -minor. Therefore we must
contract an element of Q. By the dual of Lemma 2.4, we can contract any
element. Thus M\e/x, and hence M/x, has an N -minor.

3.8.1. M\e/x and M/x are 3-connected.
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Proof. Assume that (U, V ) is a 2-separation of M\e/x such that |U ∩ (Q−
x)| ≥ 2. If Q − x ⊆ U , then (U ∪ x, V ) is a 2-separation in M\e, as Q is
a cocircuit in this matroid. Since M\e is 3-connected, this is not true, so
V contains a single element, y, of Q − x. Then y ∈ clM\e/x(U). However
(U ∪ y, V − y) is not a 2-separation of M\e/x, or else (U ∪{x, y}, V − y) is a
2-separation of M\e. Thus V is either a 2-circuit or a 2-cocircuit in M\e/x.
Orthogonality with Q−x tells us that the latter case is impossible. Therefore
x is in a triangle in M\e that contains two elements of Q. The union of Q
with this triangle is a 5-element 3-separating set in M\e, contradicting the
fact that M\e is (4, 4)-connected. Therefore M\e/x is 3-connected. If M/x
is not, then e must be in a triangle with x in M , and this is impossible by
Lemma 3.1. ♦

We will prove that M/x is (4, 4)-connected. Assume otherwise, and let
(X,Y ) be a (4, 4)-violator of M/x, so that |X|, |Y | ≥ 5. We can assume
that |X ∩ (Q− x)| ≥ 2.

3.8.2. e ∈ Y .

Proof. Assume that e ∈ X. If Q − x ⊆ X, then x ∈ cl∗M (X), as Q ∪ e
is a cocircuit of M . Therefore (X ∪ x, Y ) is a (4, 4)-violator of M , which
is impossible. Therefore Y ∩ (Q − x) contains a single element, y. Now
y ∈ clM/x(X), so (X∪y, Y −y) is a 3-separation in M/x. As x ∈ cl∗M (X∪y),
and |Y − y| ≥ 4, it follows that (X ∪ {x, y}, Y − y) is a (4, 3)-violator of M ,
a contradiction. ♦

3.8.3. λM\e(Y − (Q ∪ e)) ≤ 2.

Proof. As λM/x(Y ) = 2, and Q − x ⊆ clM/x(X), it follows that λM/x(Y −
Q) ≤ 2. Therefore λM\e/x(Y − (Q ∪ e)) ≤ 2. Now x is in the coclosure of
the complement of Y − (Q ∪ e) in M\e, as Q is a cocircuit, so

λM\e(Y − (Q ∪ e)) = λM\e/x(Y − (Q ∪ e)) ≤ 2,

as desired. ♦

3.8.4. |Y | ≤ 6.

Proof. Since M\e is (4, 4)-connected, 3.8.3 implies that |Y − (Q ∪ e)| ≤ 4.
The result follows. ♦

3.8.5. |Y | 6= 6.

Proof. Assume that |Y | = 6. If Q − x ⊆ X, then 3.8.3 implies that M\e
has a 5-element 3-separating set, which leads to a contradiction. Therefore
Y ∩ (Q− x) contains a single element, y. Since Q− x is a triangle in M/x,
it follows that y ∈ clM/x(X), so (X ∪ x, Y − y) is a 3-separation of M/x.
Proposition 3.3 implies that Y − y is a 5-fan of M/x. Let (y1, . . . , y5) be a
fan ordering of Y − y. As e is contained in no triads of M , we can assume
that e = y1. As {y2, y3, y4} is a triad of M/x, and hence of M , it cannot
be the case that {y3, y4, y5} is a triangle, or else M has a 4-fan. Therefore
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{x, y3, y4, y5} is a circuit of M that meets the cocircuit Q ∪ e in the single
element x. This contradiction completes the proof of 3.8.5. ♦

3.8.6. |Y | 6= 5.

Proof. Assume that |Y | = 5. First suppose that Q − x ⊆ X. Then (X ∪
x, Y − e) is a 3-separation of M\e, by 3.8.3. Thus Y − e is a quad of M\e,
by Proposition 2.3 and Lemma 3.7. But Proposition 3.3 implies that Y is a
5-fan of M/x. Thus Y contains a triad of M/x, and hence of M . This means
that Y − e contains a cocircuit of size at most three in M\e, contradicting
the fact that it is a quad. Thus Y ∩ (Q− x) contains a single element, y.

By again using Proposition 3.3, we see that Y is a 5-fan of M/x. Let
(y1, . . . , y5) be a fan ordering. Orthogonality with Q − x means that y is
not contained in a triad of M/x that is contained in Y . Therefore we can
assume that y = y1. As e is in no triad of M , it follows that e /∈ {y2, y3, y4}.
As M/x\e is 3-connected, by 3.8.1, we deduce that (y1, y2, y3, y4) is a 4-fan
of M/x\e. As {y2, y3, y4} is a triad of M/x, and hence of M , Lemma 3.1
implies M/y4 has no N -minor, so neither does M/x\e/y4. Lemma 2.2 now
implies that M/x\e\y1, and hence M\e\y1, has an N -minor. As y1 = y
is contained in the quad Q of M\e, this means we have a contradiction to
Lemma 3.6. ♦

We assume (X,Y ) was a (4, 4)-violator of M/x, so we now obtain a con-
tradiction by combining 3.8.4, 3.8.5, and 3.8.6. Therefore M/x is (4, 4)-con-
nected. Now assume (X,Y ) is a (4, 3)-violator of M/x. We can assume that
|X ∩ (Q− x)| ≥ 2. Because M∗\x is (4, 4)-connected with an N∗-minor, it
follows from Lemma 3.7 that either X or Y is a quad of M/x. If X is a quad
of M/x, then it does not contain the triangle Q− x. Therefore X ∪ (Q− x)
is a 5-element 3-separating set of M/x. This leads to a contradiction, as
|E(M/x)| ≥ 10 and M/x is (4, 4)-connected. Therefore Y is a quad of M/x.
Orthogonality shows that Y is disjoint from the triangle Q − x. If Y does
not contain e, then x ∈ cl∗M (X), and Y is a quad of M , a contradiction.
Therefore Y ∩ (Q ∪ e) = {e}, and the proof of Lemma 3.8 is complete. �

Finally, we are in a position to prove Theorem 1.2. By Lemma 3.2, we can
assume that (M,N) is either (M̄, N̄) or (M̄∗, N̄∗), and M\e is (4, 4)-con-
nected with an N -minor, for some element e. Lemma 3.7 implies that M\e
has no 4-fans. As it is not internally 4-connected, it contains a quad Q.
Deleting any element of Q destroys all N -minors, by Lemma 3.6, so M\e/x
has an N -minor, for some element x ∈ Q. Lemma 3.8 says that M\e/x is
3-connected, and M/x is (4, 4)-connected. As M/x is not internally 4-con-
nected, it has a quad, Qx, such that (Q∪ e)∩Qx = {e}. We will show that
M\e/x is internally 4-connected, and this will provide a contradiction that
completes the proof of Theorem 1.2.

Assume that (X,Y ) is a (4, 3)-violator of M\e/x, where |X∩(Qx−e)| ≥ 2.
If Qx− e ⊆ X, then (X ∪ e, Y ) is a (4, 3)-violator of M/x, as Qx is a circuit
in M/x. Then Lemma 3.8 implies that either X ∪ e or Y is a quad that
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contains e. This is impossible, as |X ∪ e| ≥ 5. Therefore Y ∩ (Qx − e)
contains a single element, y. In M\e/x, the set Qx − e is a triad, so y is
in the coclosure of X. Therefore (X ∪ y, Y − y) is a 3-separation. If it is a
(4, 3)-violator, then (X ∪ {y, e}, Y − y) is a (4, 3)-violator of M/x, and this
leads to the same contradiction as before, since either X ∪ {y, e} or Y − y
must be a quad of M/x that contains e. Therefore |Y | = 4. Orthogonality
with Qx − e shows that Y is not a quad of M\e/x. Thus we assume that
(y1, y2, y3, y4) is a 4-fan and a fan ordering of Y in M\e/x. Then y = y4, or
else we violate orthogonality between Qx − e and {y1, y2, y3}.

Since y is in a quad of M/x, Lemma 3.6 implies that M/x/y, and hence
M\e/x/y has no N -minor. Therefore Lemma 2.2 implies that M\e/x\y1
has an N -minor. As M\y1 has an N -minor, it follows that {y1, y2, y3} is not
a triangle of M . Therefore {x, y1, y2, y3} is a circuit. As Q∪ e is a cocircuit,
there is a single element, which we call z, in (Q− x) ∩ {y1, y2, y3}.

Note that {y2, y3, y} is not a triad of M , by orthogonality with the circuit
Qx ∪ x. Therefore {y2, y3, y, e} is a cocircuit. This means that z is not in
{y2, y3}, for otherwise {y2, y3, y, e} meets the circuit Q in the single element
z. Therefore z = y1, and M\e/x\z has an N -minor. This means that
M\e\z has an N -minor, and as z is in Q, we have contradicted Lemma 3.6.
Thus Theorem 1.2 is now proved.
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