TOWARDS A SPLITTER THEOREM FOR INTERNALLY 4-CONNECTED BINARY MATROIDS II

CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

ABSTRACT. Let M and N be internally 4-connected binary matroids such that M has a proper N-minor, and $|E(N)| \ge 7$. As part of our project to develop a splitter theorem for internally 4-connected binary matroids, we prove the following result: if $M \setminus e$ has no N-minor whenever e is in a triangle of M, and M/e has no N-minor whenever e is in a triad of M, then M has a minor, M', such that M' is internally 4-connected with an N-minor, and $1 \le |E(M)| - |E(M')| \le 2$.

1. INTRODUCTION

It would be useful for structural matroid theory if we could make the following statement: there exists an integer, k, such that whenever M and N are internally 4-connected binary matroids and M has a proper N-minor, then M has an internally 4-connected minor, M', such that M' has an N-minor, and $1 \leq |E(M)| - |E(M')| \leq k$. However this statement is false; no such k exists. To see this, we let M be the cycle matroid of a quartic planar ladder on n vertices, and we let N be the cycle matroid of the cubic planar ladder on the same number of vertices. Then M and N are internally 4-connected, and M has a proper minor isomorphic to N. Moreover, |E(M)| = 2n, and |E(N)| = 3n/2. However, the only proper minor of M that is internally 4-connected with an N-minor is itself isomorphic to N.

In light of this example, we concentrate on a different goal. To aid brevity, let us introduce some notation. Say that S is the set of all ordered pairs, (M, N) where M and N are internally 4-connected binary matroids, and M has a proper N-minor. We will let S_k be the subset of S for which there is an internally 4-connected minor, M', of M that has an N-minor and satisfies $1 \leq |E(M)| - |E(M')| \leq k$. The discussion in the previous paragraph shows that we cannot find a k so that $S \subseteq S_k$. Instead, we want to show that, for any $(M, N) \in S$, either $(M, N) \in S_k$, for some small value of k, or there is some easily described operation we can perform on M to produce an internally 4-connected minor that has an N-minor. To this end, we are trying to identify as many pairs as possible that belong to S_k , for small values of k. For example, our first step [1] was to show that if M is

Date: September 26, 2013.

¹⁹⁹¹ Mathematics Subject Classification. 05B35.

4-connected, then (M, N) is in S_2 . In fact, in almost every case, (M, N) belongs to S_1 .

Theorem 1.1. Let M and N be binary matroids such that M has a proper N-minor, and $|E(N)| \ge 7$. If M is 4-connected and N is internally 4-connected, then M has an internally 4-connected minor M' with an N-minor such that $1 \le |E(M)| - |E(M')| \le 2$. Moreover, unless M is isomorphic to a specific 16-element self-dual matroid, such an M' exists with |E(M)| - |E(M')| = 1.

An internally 4-connected binary matroid is 4-connected if and only if it has no triangles and triads. Therefore we have shown that if M has no triangles or triads (and $|E(N)| \ge 7$), then $(M, N) \in S_2$. Hence we now assume that M does contain a triangle or triad. In this chapter of the series, we consider the case that all triangles and triads of M must be contained in the ground set of every N-minor. In other words, deleting an element from a triangle of M, or contracting an element from a triad, destroys all N-minors. We show that under these circumstances, (M, N) is in S_2 .

Theorem 1.2. Let M and N be internally 4-connected binary matroids, such that $|E(N)| \ge 7$, and N is isomorphic to a proper minor of M. Assume that if T is a triangle of M and $e \in T$, then $M \setminus e$ does not have an N-minor. Dually, assume that if T is a triad of M and $e \in T$, then M/e does not have an N-minor. Then M has an internally 4-connected minor, M', such that M' has an N-minor, and $1 \le |E(M)| - |E(M')| \le 2$.

With this result in hand, in the next chapter [2] we will be able to assume that (up to duality) M has a triangle T and an element $e \in T$ such that $M \setminus e$ has an N-minor.

We note that Theorem 1.2 is not strictly a strengthening of Theorem 1.1 as, in the earlier theorem, we completely characterized when (M, N) was in $S_2 - S_1$. We make no attempt to obtain the corresponding characterization in Theorem 1.2, as we believe that $S_2 - S_1$ will contain many more pairs when we relax the constraint that M is 4-connected. For example, let N be obtained from a binary projective geometry by performing a Δ -Y exchange on a triangle T. Let T' be a triangle that is disjoint from T. We obtain Mfrom N by coextending by the element x so that it is in a triad with two elements from T', and then extending by y so that it is in a circuit with xand two elements from T. It is not difficult to confirm that the hypotheses of Theorem 1.2 hold, but M has no internally 4-connected single-element deletion or contraction with an N-minor. Clearly this technique could be applied to create even more diverse examples.

2. Preliminaries

We assume familiarity with standard matroid notions and notations, as presented in [5]. We make frequent, and sometimes implicit, use of the following well-known facts. If M is *n*-connected, and $|E(M)| \ge 2(n-1)$,

then M has no circuit or cocircuit with fewer than n elements [5, Proposition 8.2.1]. In a binary matroid, a circuit and a cocircuit must meet in a set of even cardinality [5, Theorem 9.1.2(ii)]. The symmetric difference, $C \triangle C'$, of two circuits in a binary matroid is a disjoint union of circuits [5, Theorem 9.1.2(iv)].

We use 'by orthogonality' as shorthand for the statement 'by the fact that a circuit and a cocircuit cannot intersect in a set of cardinality one' [5, Proposition 2.1.11]. A *triangle* is a 3-element circuit, and a *triad* is a 3-element cocircuit. We use λ_M or λ to denote the connectivity function of the matroid M. If M and N are matroids, an N-minor of M is a minor of M that is isomorphic to N.

Let M be a matroid. A subset S of E(M) is a fan in M if $|S| \ge 3$ and there is an ordering (s_1, s_2, \ldots, s_n) of S such that

$$\{s_1, s_2, s_3\}, \{s_2, s_3, s_4\}, \dots, \{s_{n-2}, s_{n-1}, s_n\}$$

is an alternating sequence of triangles and triads. We call (s_1, s_2, \ldots, s_n) a fan ordering of S. Sometimes we blur the distinction between a fan and an ordering of that fan. Most of the fans we encounter have four or five elements. We adopt the following convention: if (s_1, s_2, s_3, s_4) is a fan ordering of a 4-element fan, then $\{s_1, s_2, s_3\}$ is a triangle. We call such a fan ordering a 4-fan. We distinguish between the two different types of 5-element fan by using 5-fan to refer to a 5-element fan containing two triangles, and using 5-cofan to refer to a 5-element fan containing two triads.

The next proposition is proved by induction on n, using the fact that s_n is contained in either the closure or the coclosure of $\{s_1, \ldots, s_{n-1}\}$.

Proposition 2.1. Let (s_1, \ldots, s_n) be a fan ordering in a matroid M. Then

 $\lambda_M(\{s_1,\ldots,s_n\}) \le 2.$

Lemma 2.2. Let M be a binary matroid that has an internally 4-connected minor, N, satisfying $|E(N)| \ge 8$. If (s_1, s_2, s_3, s_4) is a 4-fan of M, then $M \setminus s_1$ or M/s_4 has an N-minor. If $(s_1, s_2, s_3, s_4, s_5)$ is a 5-fan in M, then either $M \setminus s_1 \setminus s_5$ has an N-minor, or both $M \setminus s_1/s_2$ and $M/s_4 \setminus s_5$ have N-minors. In particular, both $M \setminus s_1$ and $M \setminus s_5$ have N-minors.

Proof. Let (s_1, s_2, s_3, s_4) be a 4-fan. Since $\{s_1, s_2, s_3, s_4\}$ contains a circuit and a cocircuit, $\lambda_{N_0}(\{s_1, s_2, s_3, s_4\}) \leq 2$ for any minor, N_0 , of E(M) that contains $\{s_1, s_2, s_3, s_4\}$ in its ground set. As N is internally 4-connected and $|E(N)| \geq 8$, we deduce that N is obtained from M by removing at least one element of $\{s_1, s_2, s_3, s_4\}$. Let x be an element in $\{s_1, s_2, s_3, s_4\} - E(N)$. If $M \setminus x$ has an N-minor, then either $x = s_1$, as desired; or $\{s_2, s_3, s_4\} - x$ is a 2-cocircuit in $M \setminus x$. In the latter case, as N is internally 4-connected, either $x \in \{s_2, s_3\}$, and M/s_4 has an N-minor, as desired; or $x = s_4$, and M/s_2 has an N-minor. But $\{s_1, s_3\}$ is a 2-circuit of the last matroid, so $M \setminus s_1$ has an N-minor, and the lemma holds. We may now suppose that deleting any element of $\{s_1, s_2, s_3, s_4\}$ from M yields a matroid with no N-minor. Then N is a minor of M/x for some $x \in \{s_1, s_2, s_3, s_4\}$. But x is not in $\{s_1, s_2, s_3\}$, or else $\{s_1, s_2, s_3\} - x$ is a 2-circuit in M/x, and we may delete one of its elements while keeping an N-minor. Thus $x = s_4$, and the lemma holds.

Next we assume that $(s_1, s_2, s_3, s_4, s_5)$ is a 5-fan in M. First we show that $M \setminus s_1/s_2$ has an N-minor if and only if $M/s_4 \setminus s_5$ has an N-minor. As $\{s_1, s_3\}$ is a 2-circuit of M/s_2 , it follows that if $M \setminus s_1/s_2$ has an N-minor, so does $M \setminus s_3$. As $\{s_4, s_5\}$ is a 2-cocircuit of the last matroid, this implies that M/s_4 has an N-minor. Hence so does $M/s_4 \setminus s_5$. Thus $M/s_4 \setminus s_5$ has an N-minor if $M \setminus s_1/s_2$ does. The converse statement yields to a symmetrical argument.

Now (s_1, s_2, s_3, s_4) is a 4-fan of M. By applying the first statement of the lemma, we see that $M \setminus s_1$ or M/s_4 has an N-minor. In the latter case, $M/s_4 \setminus s_5$ has an N-minor, and we are done. Therefore we assume that $M \setminus s_1$ has an N-minor. There is a cocircuit of $M \setminus s_1$ that contains s_2 and is contained in $\{s_2, s_3, s_4\}$. If this cocircuit is not a triad, then $M \setminus s_1/s_2$ has an N-minor, and we are done. Therefore we assume that (s_5, s_4, s_3, s_2) is a 4-fan of $M \setminus s_1$. We apply the first statement of the lemma, and deduce that either $M \setminus s_1/s_2$ or $M \setminus s_1 \setminus s_5$ has an N-minor. In either case the proof is complete.

A quad is a 4-element circuit-cocircuit. It is clear that if Q is a quad, then $\lambda(Q) \leq 2$. The next result is easy to verify.

Proposition 2.3. Let (X, Y) be a 3-separation of a 3-connected binary matroid with |X| = 4. Then X is a quad or a 4-fan.

The next result is Lemma 2.2 in [1].

Lemma 2.4. Let Q be a quad in a binary matroid M. If x and y are in Q, then $M \setminus x$ and $M \setminus y$ are isomorphic.

A matroid is (4, k)-connected if it is 3-connected, and, whenever (X, Y) is a 3-separation, either $|X| \leq k$ or $|Y| \leq k$. A matroid is *internally* 4-connected precisely when it is (4, 3)-connected. If a matroid is 3-connected, but not (4, k)-connected, then it contains a 3-separation, (X, Y), such that |X|, |Y| > k. We will call such a 3-separation a (4, k)-violator.

For $n \geq 3$, we let G_{n+2} denote the *biwheel* graph with n+2 vertices. Thus G_{n+2} consists of a cycle v_1, v_2, \ldots, v_n , and two additional vertices, u and v, each of which is adjacent to every vertex in $\{v_1, v_2, \ldots, v_n\}$. The planar dual of a biwheel is a *cubic planar ladder*. We construct G_{n+2}^+ by adding an edge between u and v. It is easy to see that $M(G_{n+2}^+)$ is represented over GF(2) by the following matrix

$$\left[\begin{array}{c|c} I_{n+1} & \mathbf{1} & \mathbf{0} \\ I_n & A_n \end{array}\right]$$

where A_n is the $n \times n$ matrix

and **1** and **0** are $1 \times n$ vectors with all entries equal to 1 or 0 respectively. Thus $M(G_{n+2}^+)$ is precisely equal to the matroid D_n , as defined by Zhou [8], and the element f_1 of $E(D_n)$ is the edge uv.

For $n \geq 2$ let Δ_{n+1} be the rank-(n+1) binary matroid represented by the following matrix.

$$\left[\begin{array}{c|c}I_{n+1} & \mathbf{1} & e_n\\I_n & A_n\end{array}\right]$$

In this case, e_n is the standard basis vector with a one in position n. Then Δ_{n+1} is a triangular Möbius matroid (see [4]). In [8], the notation D^n is used for the matroid Δ_{n+1} , and f_1 denotes the element represented by the first column in the matrix. We use z to denote the same element. We observe that $\Delta_{n+1} \setminus z$ is the bond matroid of a Möbius cubic ladder.

The next result is a consequence of a theorem due to Zhou [8].

Theorem 2.5. Let M and N be internally 4-connected binary matroids such that N is a proper minor of M satisfying $|E(N)| \ge 7$. Then either

- (i) $M \setminus e \text{ or } M/e \text{ is } (4,4)\text{-connected with an } N\text{-minor, for some element} e \in E(M), \text{ or }$
- (ii) M or M^* is isomorphic to either $M(G_{n+2})$, $M(G_{n+2}^+)$, Δ_{n+1} , or $\Delta_{n+1} \setminus z$, for some $n \ge 4$.

Note that the theorem in [8] is stated with the weaker hypothesis that $|E(N)| \ge 10$. However, Zhou explains that by using results from [3] and [7] and performing a relatively simple case-analysis, we can strengthen the theorem so that it holds under the condition that $|E(N)| \ge 7$.

3. Proof of the main theorem

In this section we prove Theorem 1.2. Throughout the section, we assume that the theorem is false. This means that there exist internally 4-connected binary matroids, \overline{M} and \overline{N} , with the following properties:

- (i) \overline{M} has a proper \overline{N} -minor,
- (ii) if e is in a triangle of \overline{M} , then $\overline{M} \setminus e$ has no \overline{N} -minor,
- (iii) if e is in a triad of M, then M/e has no N-minor,
- (iv) there is no internally 4-connected minor, M', of \overline{M} such that M' has an \overline{N} -minor and $1 \leq |E(\overline{M})| - |E(M')| \leq 2$, and
- (v) $|E(N)| \ge 7$.

Note that (\bar{M}^*, \bar{N}^*) also provides a counterexample to Theorem 1.2. We start by showing that we can assume $|E(\bar{N})| \geq 8$. If $|E(\bar{N})| = 7$, then \bar{N} is isomorphic to F_7 or F_7^* . Then \bar{M} is non-regular, and contains one of the five internally 4-connected non-regular matroids N_{10} , \tilde{K}_5 , \tilde{K}_5^* , $T_{12} \setminus e$, or T_{12}/e as a minor [7, Corollary 1.2]. But N_{10} contains an element in a triangle whose deletion is non-regular, so \bar{M} is not isomorphic to N_{10} . The same statement applies to \tilde{K}_5 and T_{12}/e , so \bar{M} is not isomorphic to these matroids, or their duals, \tilde{K}_5^* and $T_{12} \setminus e$. Thus \bar{M} has a proper internally 4-connected minor, N', isomorphic to one of the five matroids listed above. Therefore we can relabel N' as \bar{N} . As each of the five matroids has more than seven elements, we are justified in assuming that $|E(\bar{N})| \geq 8$. As (\bar{M}, \bar{N}) provides a counterexample to Theorem 1.2, it follows that $|E(\bar{M})| \geq 11$.

Lemma 3.1. Let (M, N) be $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$. Let N_0 be an arbitrary N-minor of M. If T is a triangle or a triad of M, then $T \subseteq E(N_0)$.

Proof. By duality, we can assume that $\{e, f, g\}$ is a triangle of M. Assume that $e \notin E(N_0)$. Since $M \setminus e$ has no minor isomorphic to N, it follows that N_0 is a minor of M/e. As $\{f, g\}$ is a 2-circuit in M/e, it follows that N_0 is a minor of either $M/e \setminus f$ or $M/e \setminus g$, and hence of $M \setminus f$ or $M \setminus g$. But neither of these matroids has an N-minor, so we have a contradiction.

Lemma 3.2. There is an element $e \in E(\overline{M})$ such that either $\overline{M} \setminus e$ or \overline{M}/e is (4, 4)-connected with an \overline{N} -minor.

Proof. If the lemma fails, then by Theorem 2.5, either \overline{M} or its dual is isomorphic to one of $M(G_{n+2})$, $M(G_{n+2}^+)$, Δ_{n+1} , or $\Delta_{n+1} \setminus z$, for some $n \ge 4$. In these cases it is easy to verify that every element of $E(\overline{M})$ is contained in a triangle or a triad. Therefore Lemma 3.1 implies that $E(\overline{M}) = E(\overline{N})$, contradicting the fact that \overline{N} is a proper minor of \overline{M} .

If e is an element such that $\overline{M} \setminus e$ is (4, 4)-connected with an \overline{N} -minor, then $\overline{M} \setminus e$ has a quad or a 4-fan, for otherwise it follows from Proposition 2.3 that $\overline{M} \setminus e$ is internally 4-connected, contradicting the fact that \overline{M} is a counterexample to Theorem 1.2. We will make frequent use of the following fact.

Proposition 3.3. Let (M, N) be either $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$. If $M \setminus e$ is 3-connected and has an N-minor, and (X, Y) is a 3-separation of $M \setminus e$ such that |Y| = 5, then Y is a 5-cofan of $M \setminus e$.

Proof. If Y is not a fan, then Y contains a quad (see [8, Lemma 2.14]). As in the proof of [8, Lemma 2.15], we can show that in M, there is either a triangle or a triad of M that is contained in Y and which contains two elements from the quad. In the first case, the triangle contains an element we can delete to keep an N-minor. In the second case, the triad contains an element we can contract and keep an N-minor. In either case, we have a contradiction to Lemma 3.1. Therefore Y is a 5-element fan. If Y is a 5-fan, then by Lemma 2.2, we can delete an element from a triangle in $M \setminus e$ and preserve an N-minor. This contradicts Lemma 3.1, so Y is a 5-cofan. At this point, we give a quick summary of the lemmas that follow. Lemma 3.4 considers the matroid produced by contracting the last element of a 4-fan in $M \setminus e$. Lemma 3.5 deals with deleting an element from a quad in $M \setminus e$. In Lemma 3.6 we show that whenever we delete such an element, we destroy all N-minors. We exploit this information in Lemma 3.7, and show that $M \setminus e$ has no 4-fans. The only case left to consider is one in which we contract an element from a quad in $M \setminus e$. This case is covered in Lemma 3.8. After this lemma, there is only a small amount of work to be done before we obtain a final contradiction and complete the proof.

Lemma 3.4. Let (M, N) be either $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$. Assume that e is an element of M such that $M \setminus e$ is (4, 4)-connected with an N-minor, and that (a, b, c, d) is a 4-fan of $M \setminus e$. Then $M \setminus e/d$ is 3-connected with an N-minor, and M/d is (4, 4)-connected. Moreover, if (X, Y) is a (4, 3)-violator of M/d such that $|X \cap \{a, b, c\}| \ge 2$, then Y is a quad of M/d, and $Y \cap \{a, b, c, e\} = \{e\}$.

Proof. From Proposition 2.1 and the fact that M is internally 4-connected with at least eleven elements, it follows that (a, b, c, d) is not a 4-fan of M. Therefore $\{b, c, d, e\}$ is a cocircuit in M.

3.4.1. $M \setminus e/d$ and M/d are 3-connected.

Proof. We start by showing that $M \setminus e/d$ is 3-connected. Because $M \setminus e$ is (4, 4)-connected, it is also 3-connected. Assume that $M \setminus e/d$ is not 3-connected. As $M \setminus e/c$ contains the parallel pair $\{a, b\}$, it too is not 3-connected. As $\{b, c, d\}$ is a triad in $M \setminus e$, we can apply the dual of [5, Lemma 8.8.6], and see that there is a triangle of $M \setminus e$ containing d, and exactly one of b and c. Let z be the third element of this triangle. Then $z \neq a$, or else $\{a, b, c, d\}$ is a $U_{2,4}$ -restriction of $M \setminus e$ and in this case $\{b, c, d\}$ is both a triangle and a triad. This leads to a contradiction to the 3-connectivity of $M \setminus e$. Therefore (a, b, c, d, z) is a 5-fan in $M \setminus e$. Since $|E(M \setminus e)| \geq 10$, this means that $M \setminus e$ is not (4, 4)-connected, and we have a contradiction. Therefore $M \setminus e/d$ is 3-connected.

If M/d is not 3-connected, then it follows easily (see the dual of [6, Lemma 2.6]) that $\{e, d\}$ is contained in a triangle of M. However, N is a minor of $M \setminus e$, so we have a contradiction to Lemma 3.1. \diamondsuit

3.4.2. $M \setminus e/d$, and hence M/d, has an N-minor.

Proof. Let N_0 be an *N*-minor of *M*. Then $\{a, b, c\} \subseteq E(N_0)$, by Lemma 3.1. As (a, b, c, d) is a 4-fan of $M \setminus e$, it now follows by Lemma 2.2 that $M \setminus e/d$ has an *N*-minor. \diamondsuit

3.4.3. Let (X, Y) be a (4, 3)-violator of M/d, and assume that $|X \cap \{a, b, c\}| \ge 2$. Then |Y| = 4, and $e \in Y$. Morever, $Y \cap \{a, b, c\} = \emptyset$.

Proof. Assume that the result fails.

3.4.3.1. $|Y| \ge 5$.

Proof. Assume otherwise. Then |Y| = 4. Assume that $e \in X$. If $\{b, c\} \subseteq X$, then $d \in \operatorname{cl}_M^*(X)$, as $\{b, c, d, e\}$ is a cocircuit. It follows from [5, Corollary 8.2.6(iii)] that $\lambda_M(X \cup d) = \lambda_{M/d}(X)$, and therefore $(X \cup d, Y)$ is a (4, 3)-violator of M, an impossibility. Hence either b or c is contained in Y, so $|X \cap \{a, b, c\}| \geq 2$ implies a is in X.

Proposition 2.3 implies that Y is either a quad or a 4-fan of M/d. As $\{a, b, c\}$ is a triangle of M/d that meets Y in a single element, Y is not a cocircuit, and hence not a quad of M/d. Thus $Y = \{y_1, y_2, y_3, y_4\}$, where (y_1, y_2, y_3, y_4) is a 4-fan of M/d. Since the triangle $\{a, b, c\}$ cannot meet the triad $\{y_2, y_3, y_4\}$ in a single element, it follows that y_1 is equal to b or c. Let N_0 be an N-minor of M/d. Since $\{y_2, y_3, y_4\}$ is a triad of M, it follows from Lemma 3.1 that $\{y_2, y_3, y_4\} \subseteq E(N_0)$. But $\{a, b, c\}$ is a triangle of M, so $\{a, b, c\} \subseteq E(N_0)$. Therefore $\{y_1, y_2, y_3, y_4\} \subseteq E(N_0)$, and this contradicts Lemma 2.2. From this contradiction we conclude that $e \in Y$.

Since 3.4.3 fails, yet |Y| = 4 and $e \in Y$, we deduce that Y contains exactly one element of the triangle $\{a, b, c\}$. Thus Y is not a quad of M/d, so Y is a 4-fan, (y_1, y_2, y_3, y_4) , of M/d. Since $\{a, b, c\}$ is a triangle of M/d, and $\{y_2, y_3, y_4\}$ is a triad, orthogonality requires that the single element in $Y \cap \{a, b, c\}$ is y_1 . Therefore e is contained in the triad $\{y_2, y_3, y_4\}$. But this means that $M \setminus e$ contains a 2-cocircuit, a contradiction as it is 3-connected.

Let $T = \{a, b, c\}$. As Y contains at most one element of T, it follows from 3.4.3.1 that $|Y - T| \ge 4$. Furthermore, X spans T. The next fact follows from these observations and from 3.4.1.

3.4.3.2. $(X \cup T, Y - T)$ is a 3-separation in M/d.

3.4.3.3. $e \in Y$.

Proof. Assume that $e \in X$. Then 3.4.3.2 and the cocircuit $\{b, c, d, e\}$ imply that $(X \cup T \cup d, Y - T)$ is 3-separation of M. Since $|Y - T| \ge 4$, it follows that M has a (4, 3)-violator, which is impossible.

3.4.3.4. $|Y - T| \le 5$.

Proof. By 3.4.3.2 and 3.4.3.3, we see that $(X \cup T, Y - (T \cup e))$ is a 3-separation in $M/d \setminus e$. As $\{b, c, d\}$ is a triad in $M \setminus e$, it follows that $d \in \operatorname{cl}^*_{M \setminus e}(T)$, so

$$(X \cup T \cup d, Y - (T \cup e))$$

is a 3-separation of $M \setminus e$. Since $|X \cup T \cup d| > 4$, and $M \setminus e$ is (4, 4)-connected, it follows that $|Y - (T \cup e)| \le 4$, so $|Y - T| \le 5$.

3.4.3.5. |Y - T| = 4.

Proof. We have observed that $|Y - T| \ge 4$, so if 3.4.3.5 is false, it follows from 3.4.3.4 that |Y - T| = 5. From 3.4.3.2 and the dual of Proposition 3.3, we see that Y - T is a 5-fan of M/d. Let (y_1, \ldots, y_5) be a fan ordering of Y - T. Since $M \setminus e$ is 3-connected, e is contained in no triads of M, so $e = y_1$

or $e = y_5$. By reversing the fan ordering as necessary, we can assume that the first case holds. As $\{y_2, y_3, y_4\}$ is a triad of M, it follows that $\{y_3, y_4, y_5\}$ is not a triangle, or else M has a 4-fan. Therefore $\{y_3, y_4, y_5, d\}$ is a circuit of M that is contained in $(Y - T) \cup d$. It meets the cocircuit $\{b, c, d, e\}$ in a single element, violating orthogonality. \diamondsuit

As $|Y| \ge 5$, and |Y - T| = 4, it follows that |Y| = 5 and $|Y \cap T| = 1$. From Proposition 3.3, we see that Y is a 5-fan of M/d. Let (y_1, \ldots, y_5) be a fan ordering of Y in M/d. As $M \setminus e$ is 3-connected, e is in no triad in M, and hence in M/d, so $e = y_1$ or $e = y_5$. By reversing the fan ordering as necessary, we assume $e = y_1$. Since $\{y_2, y_3, y_4\}$ is a triad of M, it follows that $\{y_3, y_4, y_5\}$ is not a triangle, or else M has a 4-fan. Therefore $\{y_3, y_4, y_5, d\}$ is a circuit of M. This circuit cannot meet the cocircuit $\{b, c, d, e\}$ in the single element d. Therefore the single element in $T \cap Y$ is in $\{y_3, y_4, y_5\}$. Call this element y. As the triangle T cannot meet the triad $\{y_2, y_3, y_4\}$ in a single element, it follows that $y = y_5$. Since (y_5, y_4, y_3, y_2) is a 4-fan of M/d, and $\{y_2, y_3, y_4\}$ is a triad of M, it follows from Lemma 3.1 and Lemma 2.2 that $M/d \setminus y_5$, and hence $M \setminus y_5$ has an N-minor. This contradicts the fact that y_5 is in the triangle T. Thus we have completed the proof of 3.4.3. \diamondsuit

From 3.4.3 we know that M/d is (4, 4)-connected. Next we must eliminate the possibility that M/d has a 4-fan.

3.4.4. Let (X, Y) be a (4, 3)-violator of M/d, where $|X \cap \{a, b, c\}| \ge 2$. Then Y is not a 4-fan of M/d.

Proof. Assume that Y is a 4-fan, (y_1, y_2, y_3, y_4) . Thus $\{y_2, y_3, y_4\}$ is a triad in M/d, and hence in M. It follows from 3.4.3 that $e \in Y$. But e is not in a triad of M, so $e = y_1$. Since M has no 4-fan, it follows that $\{e, y_2, y_3\}$ is not a triangle of M, so $\{e, d, y_2, y_3\}$ is a circuit.

From 3.4.1, we see that M/d e is 3-connected. We shall show that it is internally 4-connected. Once we prove this assertion, we will have shown that (M, N) is not a counterexample to Theorem 1.2, since M/d e has an *N*-minor by 3.4.2. This contradiction will complete the proof of 3.4.4.

3.4.4.1. If (U, V) is a (4, 3)-violator of $M/d \setminus e$, then $\{b, c\} \not\subseteq U$ and $\{b, c\} \not\subseteq V$.

Proof. If the result fails, then by symmetry we can assume that (U, V) is a (4,3)-violator of $M/d \setminus e$ such that $b, c \in U$. Then $d \in \operatorname{cl}_{M \setminus e}^*(U)$, because of the triad $\{b, c, d\}$, so $(U \cup d, V)$ is a (4,3)-violator in $M \setminus e$. As $|U \cup d| > 4$, and $M \setminus e$ is (4,4)-connected, we deduce that |V| = 4. Assume that V is a quad of $M \setminus e$. Then $V \cup e$ is a cocircuit of M, which cannot meet the circuit $\{e, d, y_2, y_3\}$ in a single element. Hence y_2 or y_3 is in V. However, V is a circuit in $M \setminus e$, and $\{y_2, y_3, y_4\}$ is a cocircuit in $M \setminus e$, as it is a triad of M, and $M \setminus e$ is 3-connected. Orthogonality requires that $|V \cap \{y_2, y_3, y_4\}| = 2$. This means that $\{y_2, y_3, y_4\} \subseteq \operatorname{cl}_{M \setminus e}^*(V)$, so $V \cup \{y_2, y_3, y_4\}$ is a 5-element 3-separating set in $M \setminus e$. As $M \setminus e$ is (4, 4)-connected, it follows that $M \setminus e$ has

at most nine elements, contradicting our earlier assumption that $|E(M)| \ge 11$. Thus V is not a quad of $M \setminus e$, and Proposition 2.3 implies that V is a 4-fan in $M \setminus e$.

Let T^* be the triad of $M \setminus e$ that is contained in V. As M has no 4-fans, $T^* \cup e$ is a cocircuit of M. It cannot meet the circuit $\{e, d, y_2, y_3\}$ in the single element e. Let y be an element in $\{y_2, y_3\} \cap T^*$. As $\{y_2, y_3, y_4\}$ is a triad in M/d, and hence in M, it does not contain any element that is in a triangle of M, or else M has a 4-fan. Therefore y is not in the triangle of $M \setminus e$ that is contained in V, so V - y is a triangle of M. Thus V - y is contained in the ground set of every N-minor of M, so Lemma 2.2 implies that $M \setminus e/y$, and hence M/y has an N-minor. However, since y is contained in the triad $\{y_2, y_3, y_4\}$ of M, this contradicts Lemma 3.1.

Let (U, V) be a (4, 3)-violator of $M/d \setminus e$, and assume that $a \in U$. By 3.4.4.1, we may assume that $x \in U$ and $y \in V$, where $\{x, y\} = \{b, c\}$. Then $y \in \operatorname{cl}_{M/d \setminus e}(U)$, as $\{a, x, y\}$ is a triangle, so $(U \cup y, V - y)$ is a 3-separation of $M/d \setminus e$. It follows from 3.4.4.1 that it is not a (4, 3)-violator, so |V| = 4. Since V contains an element that is in $\operatorname{cl}_{M/d \setminus e}(U)$, it cannot be a quad of $M/d \setminus e$, so it is a 4-fan. Moreover, as $y \in \operatorname{cl}_{M/d \setminus e}(U)$, it follows that y is not in the triad of $M/d \setminus e$ that is contained in V. Therefore V - y is a triad of $M/d \setminus e$. If V - y is a triad of M, then V - y is contained in every N-minor of M. Because $\{a, x, y\} = \{a, b, c\}$ is a triangle, it follows that y is contained in every N-minor. Thus V is in every N-minor of M. This implies that N has a 4-element 3-separating set, which is impossible as $|E(N)| \geq 8$. Therefore V - y is not a triad of M, so $(V - y) \cup e$ is a cocircuit. It cannot meet the circuit $\{e, d, y_2, y_3\}$ in the single element e, so either y_2 or y_3 is in the triad V - y of $M \setminus e$.

Note that V - y is not equal to $\{y_2, y_3, y_4\}$, as one set is a triad of Mand the other is not. They are both triads of $M \setminus e$, and they have at least one element in common. Hence they have exactly one element in common, as $M \setminus e$ is 3-connected, and therefore does not contain a series pair. Let zbe the unique element in $(V - y) \cap \{y_2, y_3\}$. If T' is the triangle of $M/d \setminus e$ that is contained in V, then z is not in T', as otherwise the triad $\{y_2, y_3, y_4\}$ in M/d meets the triangle T' in a single element, z. Therefore V - z is a triangle in $M/d \setminus e$, and V - y is a triad.

Note that y is in every N-minor of M, because of the triangle $\{a, x, y\} = \{a, b, c\}$, and z is in every N-minor of M because of the triad $\{y_2, y_3, y_4\}$. But V cannot be contained in an N-minor of $M/d \setminus e$, as it is a 3-separating set. Therefore there is some element $w \in V - \{y, z\}$ such that N is a minor of $M/d \setminus e \setminus w$ or $M/d \setminus e/w$. But z is in the 2-cocircuit $V - \{y, w\}$ of the first matroid, and y is in the 2-circuit $V - \{z, w\}$ of the second. This leads to a contradiction, as y and z are in the ground set of every N-minor of M.

We conclude that there can be no (4,3)-violator in $M/d\backslash e$, and therefore $M/d\backslash e$ is internally 4-connected and has an N-minor. This contradicts our

assumption that M is a counterexample to Theorem 1.2. Thus 3.4.4 holds. \diamond

Now we can complete the proof of Lemma 3.4. If (a, b, c, d) is a 4-fan of $M \setminus e$, where this matroid is (4, 4)-connected with an N-minor, then 3.4.2 implies that M/d has an N-minor. It follows from 3.4.1 that $M \setminus e/d$ and M/d are 3-connected, and 3.4.3 implies that M/d is (4, 4)-connected. Moreover, if (X, Y) is a (4, 3)-violator of M/d where X contains at least two elements of $\{a, b, c\}$, then 3.4.3 also implies that |Y| = 4 and $Y \cap \{a, b, c, e\} = \{e\}$. As 3.4.4 implies that Y cannot be a 4-fan in M/d, Proposition 2.3 implies that Y is a quad. Thus Lemma 3.4 is proved.

Lemma 3.5. Let (M, N) be either $(\overline{M}, \overline{N})$ or $(\overline{M^*}, \overline{N^*})$. Assume that the element e is such that $M \setminus e$ is (4, 4)-connected with an N-minor, and that Q is a quad of $M \setminus e$. If $x \in Q$ and $M \setminus e \setminus x$ has an N-minor, then $M \setminus x$ is (4, 4)-connected. In particular, if (X, Y) is a (4, 3)-violator of $M \setminus x$ such that $|X \cap (Q - x)| \ge 2$, then Y is a quad of $M \setminus x$ such that $|Y \cap Q| = 1$, and $e \in Y$.

Proof. As M has no quads, we deduce that $Q \cup e$ is a cocircuit in M.

3.5.1. $M \setminus x \setminus e$ and $M \setminus x$ are 3-connected.

Proof. Let (U, V) be a 2-separation in $M \setminus x \setminus e$. By relabeling as necessary, we assume that $|U \cap (Q - x)| \ge 2$. If U contains Q - x, then $(U \cup x, V)$ is a 2-separation of $M \setminus e$. This is impossible, so V contains a single element of Q - x. Then

$$\lambda_{M\setminus x\setminus e}(V - (Q - x)) \leq \lambda_{M\setminus x\setminus e}(V) \leq 1,$$

as $Q - x$ is a triad of $M\setminus x\setminus e$. Now $x \in \operatorname{cl}_{M\setminus e}(U \cup (Q - x))$, so

$$\lambda_{M\setminus e}(V - (Q - x)) = \lambda_{M\setminus x\setminus e}(V - (Q - x)) \le 1.$$

But $M \setminus e$ is 3-connected, so this means that $|V - (Q - x)| \leq 1$. Thus |V| = 2, and V must be a 2-cocircuit of $M \setminus x \setminus e$. This means that x is in a triad of $M \setminus e$. This triad must meet Q in two elements, by orthogonality. Thus $|c|_{M \setminus e}^*(Q)| \geq 5$, and $M \setminus e$ contains a 5-element 3-separating set. This is a contradiction as $M \setminus e$ is (4, 4)-connected with at least ten elements. Thus $M \setminus x \setminus e$ is 3-connected, and it follows easily that $M \setminus x$ is 3-connected. \diamondsuit

Let (X, Y) be a (4, 3)-violator of $M \setminus x$, and assume that X contains at least two elements of Q - x. If $Q - x \subseteq X$, then $x \in cl_M(X)$, as Q is a circuit of M. This implies that $(X \cup x, Y)$ is a (4, 3)-violator of M, which is impossible. Therefore Y contains exactly one element of Q - x. Let us call this element y.

3.5.2.
$$(X-e, Y-e)$$
 is a 3-separation of $M \setminus x \setminus e$ and $y \in cl^*_{M \setminus x \setminus e}(Y - \{e, y\})$.

Proof. The fact that (X-e, Y-e) is a 3-separation of $M \setminus x \setminus e$ follows because $|X|, |Y| \ge 4$, and $M \setminus x \setminus e$ is 3-connected. Since Q - x is a triad of $M \setminus x \setminus e$, and $Q - \{x, y\} \subseteq X - e$, we deduce that $y \in cl^*_{M \setminus x \setminus e}(X - e)$. This means

that $y \in \operatorname{cl}^*_{M \setminus x \setminus e}(Y - \{e, y\})$, as otherwise $((X - e) \cup y, Y - \{e, y\})$ is a 2-separation of $M \setminus x \setminus e$.

3.5.3. $\lambda_{M\setminus e}(Y - \{e, y\}) \leq 2.$

Proof. Since (X-e, Y-e) is a 3-separation of $M \setminus x \setminus e$ and $y \in cl^*_{M \setminus x \setminus e}(X-e)$, it follows that

$$\lambda_{M\setminus x\setminus e}(Y-\{e,y\}) \le \lambda_{M\setminus x\setminus e}(Y-e) = 2.$$

Since $(X - e) \cup \{x, y\}$ contains Q, it follows that $x \in cl_{M \setminus e}((X - e) \cup y)$. This means that

$$\lambda_{M\setminus e}(Y - \{e, y\}) = \lambda_{M\setminus x\setminus e}(Y - \{e, y\}) \le 2,$$

 \diamond

as desired.

3.5.4. $|Y| \le 6$.

Proof. As $M \setminus e$ is (4, 4)-connected, $|Y - \{e, y\}| \le 4$ by 3.5.3. Thus $|Y| \le 6$.

3.5.5. $|Y| \neq 6$.

Proof. Assume that |Y| = 6. If $e \notin Y$, then 3.5.3 implies that $((X - e) \cup \{x, y\}, Y - y)$ is a 3-separation of $M \setminus e$. As |Y - y| = 5 and $|(X - e) \cup \{x, y\}| = |X| + 1 \ge 5$, this contradicts the fact that $M \setminus e$ is (4, 4)-connected. Therefore $e \in Y$, and $Y - \{e, y\}$ is a 4-element 3-separating set in $M \setminus e$. Thus $Y - \{e, y\}$ is either a quad or a 4-fan of $M \setminus e$. The next two assertions show that both these cases are impossible, thereby finishing the proof of 3.5.5.

3.5.5.1. $Y - \{e, y\}$ is not a quad of $M \setminus e$.

Proof. Assume that $Y - \{e, y\}$ is a quad of $M \setminus e$. Thus it is a circuit of M, and Y - y is a cocircuit of M. If Y - y is not a cocircuit of $M \setminus x$, then x is in the coclosure of Y - y in M. This leads to a contradiction to orthogonality with the circuit Q of M. Thus Y - y is a cocircuit of $M \setminus x$, so $Y - \{e, y\}$ is a quad in both $M \setminus e$ and $M \setminus x \setminus e$. As Y - y is a cocircuit of $M \setminus x$ and |Y| = 6, we see that $r_{M \setminus x}^*(Y) \ge 4$, so

$$r_{M\setminus x}(Y) = \lambda_{M\setminus x}(Y) - r^*_{M\setminus x}(Y) + |Y| \le 2 - 4 + 6 = 4.$$

By 3.5.2, there is a cocircuit of $M \setminus x \setminus e$ contained in Y - e that contains y. The symmetric difference of this cocircuit with $Y - \{e, y\}$ is a disjoint union of cocircuits. As $M \setminus x \setminus e$ contains no cocircuit with fewer than three elements, it follows that there are two triads, T_1^* and T_2^* , of $M \setminus x \setminus e$, such that $T_1^* \cap T_2^* = \{y\}$, and $T_1^* \cup T_2^* = Y - e$. If both $T_1^* \cup e$ and $T_2^* \cup e$ are cocircuits of $M \setminus x$, then we can take the symmetric difference of these cocircuits, and deduce that $Y - \{e, y\}$ is a cocircuit of $M \setminus x$ that is properly contained in the cocircuit Y - y. Since this is impossible, we deduce that we can relabel as necessary, and assume that T_1^* is a triad of $M \setminus x$.

Let z be an arbitrary element of $T_2^* - y$. Then $Y - \{e, y, z\}$ is independent in $M \setminus x$. Orthogonality with the cocircuit $(Q - x) \cup e$ means that y cannot

12

be in the closure of $Y - \{e, y, z\}$ in $M \setminus x$. Thus $Y - \{e, z\}$ is independent. Since $r_{M \setminus x}(Y) \leq 4$, it follows that $Y - \{e, z\}$ spans Y in $M \setminus x$. Let C be a circuit of $M \setminus x$ such that $\{e\} \subseteq C \subseteq Y - z$. If $y \notin C$, then C and the cocircuit $(Q - x) \cup e$ meet in $\{e\}$. Therefore $y \in C$. This implies that C contains exactly one element of $T_1^* - y$. Now C cannot be a triangle, as $M \setminus e$ has an N-minor. Therefore C also contains the single element in $T_2^* - \{y, z\}$. But now the circuit C meets the cocircuit Y - y of $M \setminus x$ in three elements: e, and a single element from each of $T_1^* - y$ and $T_2^* - y$. This contradiction proves 3.5.5.1.

3.5.5.2. $Y - \{e, y\}$ is not a 4-fan of $M \setminus e$.

Proof. Assume that (y_1, y_2, y_3, y_4) is a fan ordering of $Y - \{e, y\}$ in $M \setminus e$. Then $\{y_2, y_3, y_4, e\}$ is a cocircuit of M.

As $M \setminus x \mid e$ has no cocircuits with fewer than three elements, $\{y_2, y_3, y_4\}$ is a triad of $M \setminus x \mid e$. Thus (y_1, y_2, y_3, y_4) is a 4-fan of $M \setminus x \mid e$. By 3.5.2, there is a cocircuit C^* of $M \setminus x \mid e$ such that $\{y\} \subseteq C^* \subseteq Y - e$. This cocircuit must meet the triangle $\{y_1, y_2, y_3\}$ in exactly two elements. If $\{y_2, y_3\} \subseteq C^*$, then the symmetric difference of $\{y_2, y_3, y_4\}$ and C^* is $\{y, y_4\}$, as $\{y_2, y_3, y_4\}$ is not properly contained in C^* . Since $M \setminus x \mid e$ has no 2-cocircuit, we deduce that $y_1 \in C^*$. Either C^* , or its symmetric difference with $\{y_2, y_3, y_4\}$, is a triad of $M \setminus x \mid e$ that contains y, y_1 , and a single element from $\{y_2, y_3\}$. We can swap the labels on y_2 and y_3 if necessary, so we can assume that $\{y, y_1, y_2\}$ is a triad. Thus (y, y_1, y_2, y_3, y_4) is a 5-cofan of $M \setminus x \mid e$. The dual of Lemma 2.2 implies that $M \setminus x \mid e/y$ and $M \setminus x \mid e/y_4$ have N-minors.

Recall that $\{y_2, y_3, y_4, e\}$ is a cocircuit of M. It is also a cocircuit of $M \setminus x$, as otherwise $x \in cl_M^*(\{y_2, y_3, y_4, e\})$, and this contradicts orthogonality with the circuit Q. Therefore $\{y_2, y_3, y_4\}$ is coindependent in $M \setminus x$.

Assume $y_1 \in \operatorname{cl}^*_{M\setminus x}(\{y_2, y_3, y_4\})$, so y_1 is in $\operatorname{cl}^*_{M\setminus x\setminus e}(\{y_2, y_3, y_4\})$. As it is also in $\operatorname{cl}_{M\setminus x\setminus e}(\{y_2, y_3, y_4\})$, it follows that $\lambda_{M\setminus x\setminus e}(\{y_1, y_2, y_3, y_4\}) \leq 1$. This leads to a contradiction to the fact that $M\setminus x\setminus e$ is 3-connected. Therefore $y_1 \notin \operatorname{cl}^*_{M\setminus x}(\{y_2, y_3, y_4\})$. Thus $\{y_1, y_2, y_3, y_4\}$ is a coindependent set in $M\setminus x$, so $r^*_{M\setminus x}(Y) \geq 4$. Now we see that

$$r_{M\setminus x}(Y) = \lambda_{M\setminus x}(Y) - r^*_{M\setminus x}(Y) + |Y| \le 2 - 4 + 6 = 4.$$

If $\{y, y_1, y_3, y_4\}$ is dependent in $M \setminus x \setminus e$, then it is a circuit, by orthogonality with the triads $\{y, y_1, y_2\}$ and $\{y_2, y_3, y_4\}$, and the fact that $M \setminus x \setminus e$ has no 2-circuits. In this case, $\{y, y_1, y_3, y_4\}$ is a circuit of M, and $Q \cup e$ is a cocircuit that meets it in the single element y. Therefore $\{y, y_1, y_3, y_4\}$ is independent in $M \setminus x \setminus e$, and hence in $M \setminus x$. Therefore $\{y, y_1, y_3, y_4\}$ spans Y in $M \setminus x$. Let C be a circuit of $M \setminus x$ such that $\{e\} \subseteq C \subseteq \{e, y, y_1, y_3, y_4\}$.

First observe that $y \in C$, as otherwise C and $Q \cup e$ are a circuit and a cocircuit of M that meet in $\{e\}$. We have noted that $\{e, y_2, y_3, y_4\}$ is a cocircuit of $M \setminus x$. Therefore orthogonality implies that C contains exactly one element of $\{y_3, y_4\}$. Since $M \setminus e$ has an N-minor, it follows that e is in no triangles of M. Therefore y_1 must be in C. Hence C is either $\{e, y, y_1, y_3\}$ or $\{e, y, y_1, y_4\}$. In the first case, we take the symmetric difference of C with the triangle $\{y_1, y_2, y_3\}$, and discover that e is in the triangle $\{e, y, y_2\}$, a contradiction. Therefore $C = \{e, y, y_1, y_4\}$.

We noted earlier that $M \setminus x \setminus e/y$, and hence M/y, has an N-minor. The symmetric difference of C with the triangle $\{y_1, y_2, y_3\}$ is $\{e, y, y_2, y_3, y_4\}$, which must therefore be a circuit of M. Thus $\{e, y_2, y_3, y_4\}$ is a circuit of M/y. It is also a cocircuit, as it is a cocircuit in M. Thus M/y contains a quad that contains e. Since $M/y \setminus e$ has an N-minor, it follows from Lemma 2.4 that if z is an arbitrary member of the quad $\{e, y_2, y_3, y_4\}$, then $M/y \setminus z$ has an N-minor. In particular, $M/y \setminus y_2$, and hence $M \setminus y_2$ has an N-minor. This is contradictory, as y_2 is contained in the triangle $\{y_1, y_2, y_3\}$ of M. This completes the proof of 3.5.5.2.

The proof of 3.5.5 now follows immediately from 3.5.5.1 and 3.5.5.2.

3.5.6. $|Y| \neq 5$.

Proof. Assume that |Y| = 5. If $e \in X$, then $y \in cl^*_{M \setminus x}(X)$, since $(Q-x) \cup e$ is a cocircuit of $M \setminus x$ that is contained in $X \cup y$. This means that $(X \cup y, Y - y)$ is a 3-separation of $M \setminus x$. As Q is a circuit of M, and $Q-x \subseteq X \cup y$, it follows that $x \in cl_M(X \cup y)$. Therefore $(X \cup \{x, y\}, Y - y)$ is a 3-separation of M, and as $|X \cup \{x, y\}|, |Y - y| \ge 4$, we have violated the internal 4-connectivity of M. Therefore e is in Y.

Proposition 3.3 implies that Y is a 5-cofan of $M \setminus x$. Let $(y_1, y_2, y_3, y_4, y_5)$ be a fan ordering of Y in $M \setminus x$. Since e is contained in no triangle of M by Lemma 3.1, we can assume that $e = y_1$. The element y cannot be contained in $\{y_2, y_3, y_4\}$, or else this triangle meets the cocircuit $Q \cup e$ of M in the single element y. Now $\{y_1, y_2, y_3\}$ is a triad of M, or else $\{x, y_1, y_2, y_3\}$ is a cocircuit, and it meets the circuit Q in the single element x. However, $\{y_1, y_2, y_3\}$ cannot be a triad, as $e = y_1$ and $M \setminus e$ is 3-connected.

We can now complete the proof of Lemma 3.5. Recall that (X, Y) is a (4,3)-violator of $M \setminus x$, where x is contained in the quad Q of $M \setminus e$, and $|X \cap (Q - x)| \ge 2$. By combining 3.5.4, 3.5.5, and 3.5.6, we deduce that |Y| = 4. Therefore $M \setminus x$ is (4,4)-connected with an N-minor, and Y is either a quad or a 4-fan of $M \setminus x$.

Assume that e is not in Y. If Y is a quad of $M \setminus x$, then it is a circuit of M that meets the cocircuit $Q \cup e$ in the single element y. Therefore Ymust be a 4-fan of $M \setminus x$. Certainly y is not contained in the triangle of Y, by orthogonality with $Q \cup e$. Therefore $Y = (y_1, y_2, y_3, y)$ is a 4-fan. We can apply Lemma 3.4 to $M \setminus x$, and deduce that M/y is (4, 4)-connected with an N-minor. Since M/y is not internally 4-connected, Lemma 3.4 also implies that M/y contains a quad and that this quad contains x. However, Q - y is a triangle in M/y, so M/y contains a quad, and a triangle that contains an element of this quad. It follows that the triangle and the quad meet in two elements, and their union is a 5-element 3-separating set of M/y. As M/y

14

is (4, 4)-connected, this leads to a contradiction, so now we know that e is in Y.

If Y is a 4-fan of $M \setminus x$, then e is not contained in the triangle of this fan, as $M \setminus e$ has an N-minor. Therefore y is contained in a triangle of $M \setminus x$ that is contained in Y - e. This triangle violates orthogonality with the cocircuit $Q \cup e$ in M. Hence Y is a quad of $M \setminus x$, and Lemma 3.5 holds. \Box

The next proof is essentially the same as an argument used in [1].

Lemma 3.6. Let (M, N) be either $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$. Assume that the element e is such that $M \setminus e$ is (4, 4)-connected with an N-minor, and that Q is a quad of $M \setminus e$. Then N is not a minor of $M \setminus e \setminus x$, for any element $x \in Q$.

Proof. Assume that N is a minor of $M \setminus e \setminus x$ for some element x of Q. By Lemma 2.4, deleting any element of Q from $M \setminus e$ produces a matroid with an N-minor. Lemma 3.5 implies that $M \setminus x$ is (4, 4)-connected and contains a quad, Q_x , such that $e \in Q_x$, and $|Q \cap Q_x| = 1$.

3.6.1. Assume that x_1 and x_2 are elements of Q, and that $M \setminus x_1$ contains a quad, Q_1 , such that $e \in Q_1$, and $Q \cap Q_1 = \{x_2\}$. Then $M \setminus x_2$ contains a quad, Q_2 , such that $Q \cap Q_2 = \{x_1\}$ and $Q_1 \cap Q_2 = \{e\}$.

Proof. Since $M \setminus e \setminus x_2$ has an N-minor, we can apply Lemma 3.5, and deduce that $M \setminus x_2$ contains a quad Q_2 such that $e \in Q_2$ and $|Q \cap Q_2| = 1$. On the other hand, $M \setminus x_1$ is (4,4)-connected, and contains a quad, Q_1 . Moreover, $M \setminus x_1 \setminus x_2$ is isomorphic to $M \setminus x_1 \setminus e$, by Lemma 2.4 and the fact that e and x_2 are both in Q_1 , so $M \setminus x_1 \setminus x_2$ has an N-minor. Hence we can apply Lemma 3.5 again, and deduce that $M \setminus x_2$ contains a quad Q'_2 such that $x_1 \in Q'_2$ and $|Q_1 \cap Q'_2| = 1$.

We will show that $Q_2 = Q'_2$. Assume this is not the case. As Q_2 and Q'_2 are both quads of $M \setminus x_2$, orthogonality demands that they are disjoint, or they meet in two elements. In the latter case, $Q_2 \triangle Q'_2$ is a circuit of M, and $(Q_2 \cup x_2) \triangle (Q'_2 \cup x_2) = Q_2 \triangle Q'_2$ must be a cocircuit of M, so M has a quad. As this is impossible, we deduce that Q_2 and Q'_2 are disjoint. Therefore $e \notin Q'_2$, as e is in Q_2 . This means that $|Q \cap Q'_2| = 2$, as otherwise the circuit Q'_2 and the cocircuit $Q \cup e$ meet in $\{x_1\}$. But $Q'_2 \cup x_2$ is a cocircuit, and Q is a circuit, and they meet in three elements: x_2 and the two elements of $Q \cap Q'_2$. This contradiction shows that $Q_2 = Q'_2$, so $x_1 \in Q_2$. Furthermore, $Q \cap Q_2 = \{x_1\}$ and $Q_1 \cap Q_2 = \{e\}$.

Now we return to the proof of Lemma 3.6. Let y be the single element in $Q \cap Q_x$. By 3.6.1, we see that $M \setminus y$ has a quad Q_y such that $Q \cap Q_y = \{x\}$ and $Q_x \cap Q_y = \{e\}$.

Let $\{z, w\} = Q - \{x, y\}$. We can again apply Lemma 3.5 and deduce the existence of Q_z , a quad of $M \setminus z$ that contains e and a single element of Q. Note that $Q_z \neq Q_y$, or else we can take the symmetric difference of $Q_y \cup y$ and $Q_z \cup z$ and deduce that $\{y, z\}$ is a series pair of M. Assume that $y \in Q_z$. As the cocircuit $Q_z \cup z$ and the circuit Q_y both contain e, and x is not the single element in $Q \cap Q_z$, it follows that one of the elements in $Q_y - \{x, e\}$ is in Q_z . Then the cocircuit $Q_y \cup y$ and the circuit Q_z meet in three elements: e, y, and an element in $Q_y - \{x, e\}$. This contradiction shows that the single element in $Q \cap Q_z$ is not y nor z. Therefore it is x or w.

First we assume that $Q \cap Q_z = \{w\}$. Then 3.6.1 implies that $M \setminus w$ has a quad Q_w such that $Q \cap Q_w = \{z\}$ and $Q_z \cap Q_w = \{e\}$. The cocircuit $Q_w \cup w$ and the circuit Q_x both contain the element e. Moreover, $y \notin Q_w$, so there is an element α in $(Q_x - \{e, y\}) \cap Q_w$. Let β be the unique element in $Q_x - \{e, y, \alpha\}$. Similarly, the cocircuit $Q_w \cup w$ and the circuit Q_y have e in common, but $x \notin Q_w$, so there is an element γ in $(Q_y - \{e, x\}) \cap Q_w$. Thus $Q_w = \{e, z, \alpha, \gamma\}$. Consider the set $X = \{x, y, z, \alpha, \beta\}$. It spans: w because of the circuit Q_i because of the circuit Q_x ; γ because it spans the circuit Q_w ; and Q_y because it spans $x, e, \text{ and } \gamma$. This shows that $Q \cup Q_x \cup Q_y$ is a 9-element set satisfying $r(Q \cup Q_x \cup Q_y) \leq 5$. Moreover, X cospans e because of the cocircuit $Q_x \cup x$. It cospans w because it cospans e, and $Q \cup e$ is a cocircuit. Now it cospans: γ as $Q_w \cup w$ is a cocircuit; and Q_y as $Q_y \cup y$ is a cocircuit. Thus X spans and cospans $Q \cup Q_x \cup Q_y$, so

$$\lambda_M(Q \cup Q_x \cup Q_y) \le 5 + 5 - 9 = 1.$$

As M is 3-connected, this means that there is at most 1 element not in $Q \cup Q_x \cup Q_y$. This is a contradiction as $|E(M)| \ge 11$. Hence we conclude that $Q \cap Q_z = \{x\}$.

Now the cocircuit $Q_z \cup z$ and the circuit Q_x both contain e, so $|Q_z \cap (Q_x - \{e, y\})| = 1$. But this means that the circuit Q_z and the cocircuit $Q_x \cup x$ have three elements in common: e, x, and the element in $Q_z \cap (Q_x - \{e, y\})$. This contradiction completes the proof of Lemma 3.6.

Lemma 3.7. Let (M, N) be either $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$. Assume that the element e is such that $M \setminus e$ is (4, 4)-connected with an N-minor. Then $M \setminus e$ has no 4-fans.

Proof. Assume that (a, b, c, d) is a 4-fan of $M \setminus e$. It follows from Lemma 3.4 that M/d is (4, 4)-connected with an N-minor. Since it is not internally 4-connected, it contains a quad Q such that $Q \cap \{a, b, c, e\} = \{e\}$. We will show that $M \setminus e/d$ is internally 4-connected, and this will contradict the fact that M and N provide a counterexample to Theorem 1.2, thereby proving Lemma 3.7. Note that Lemma 3.4 states that $M \setminus e/d$ is 3-connected with an N-minor.

3.7.1. Let (X', Y') be a (4,3)-violator of $M \setminus e/d$. Then neither X' nor Y' contains Q - e.

Proof. Assume that $Q - e \subseteq X'$. As Q is a circuit of M/d, this means that $e \in \operatorname{cl}_{M/d}(X')$. Thus $(X' \cup e, Y')$ is a (4,3)-violator of M/d. Lemma 3.4 says that one side of this (4,3)-violator is a quad that contains e. But this is impossible as $|X' \cup e| > 4$, and $e \notin Y'$.

Let (X, Y) be a (4, 3)-violator of $M \setminus e/d$, and assume that $|X \cap (Q - e)| \ge 2$. By 3.7.1 we see that there is a single element in $Y \cap (Q - e)$. Let this element be y. Since Q - e is a triad in $M \setminus e/d$, it follows that $y \in cl^*_{M \setminus e/d}(X)$. Therefore $(X \cup y, Y - y)$ is a 3-separation in $M \setminus e/d$, but 3.7.1 implies that it is not a (4, 3)-violator. Hence |Y| = 4. Orthogonality with the triad Q - e implies that Y is not a quad of $M \setminus e/d$. Thus $Y = \{y_1, y_2, y_3, y_4\}$, where (y_1, y_2, y_3, y_4) is a 4-fan in $M \setminus e/d$. Orthogonality also implies that $y = y_4$.

Assume that $M \setminus e/d/y$ has an N-minor. Then $M^* \setminus d \setminus y$ has an N*-minor. As $M^* \setminus d$ is (4, 4)-connected, and y is in the quad Q of this matroid, we now have a contradiction to Lemma 3.6. Therefore $M \setminus e/d/y$ has no N-minor. Lemma 2.2 implies that $M \setminus e/d \setminus y_1$, and hence $M \setminus y_1$, has an N-minor. From this, we deduce that $\{y_1, y_2, y_3\}$ is not a triangle of M, so $\{d, y_1, y_2, y_3\}$ is a circuit. Since $\{b, c, d, e\}$ is a cocircuit, this implies that exactly one of bor c is in $\{y_1, y_2, y_3\}$. Let α be the single element in $\{b, c\} \cap \{y_1, y_2, y_3\}$. Then $\alpha \neq y_1$, as $M \setminus e/d \setminus y_1$ has an N-minor, and b and c are contained in a triangle of M.

Both $\{y_2, y_3, y\}$ and $\{a, b, c\}$ contain the element α . As $\{y_2, y_3, y\}$ is a triad in $M \setminus e/d$, and hence in $M \setminus e$, and $\{a, b, c\}$ is a triangle of $M \setminus e$, it follows that $\{y_2, y_3\} = \{\alpha, a\}$, since $y \in Q$ and $Q \cap \{a, b, c\} = \emptyset$. Hence either (y, a, b, c, d) or (y, a, c, b, d) is a 5-cofan of $M \setminus e$, depending on whether $\alpha = b$ or $\alpha = c$. In either case, from Proposition 2.1, and the fact that $M \setminus e$ is (4, 4)-connected, we deduce that $|E(M \setminus e)| \leq 9$, a contradiction. Thus $M \setminus e/d$ has no (4, 3)-violator, and is therefore internally 4-connected. This contradiction completes the proof of Lemma 3.7.

By Lemma 3.2, we know we can choose (M, N) to be $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$ in such a way that $M \setminus e$ is (4, 4)-connected with an N-minor for some element $e \in E(M)$. From Lemma 3.7, we deduce that $M \setminus e$ has no 4-fans, and therefore contains at least one quad. Moreover, deleting any element from this quad destroys all N-minors, by Lemma 3.6. Therefore we next consider contracting an element from a quad in $M \setminus e$.

Lemma 3.8. Let (M, N) be either $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$. Assume that the element e is such that $M \setminus e$ is (4, 4)-connected with an N-minor, and that Q is a quad of $M \setminus e$. If $x \in Q$, then $M \setminus e/x$ is 3-connected, and M/x is (4, 4)-connected with an N-minor. In particular, if (X, Y) is a (4, 3)-violator of M/x such that $|X \cap (Q-x)| \ge 2$, then Y is a quad of M/x, and $Y \cap (Q \cup e) = \{e\}$.

Proof. To see that M/x has an N-minor, we note that Q is not contained in the ground set of any N-minor of $M \setminus e$. By Lemma 3.6, we cannot delete any element of Q in $M \setminus e$ and preserve an N-minor. Therefore we must contract an element of Q. By the dual of Lemma 2.4, we can contract any element. Thus $M \setminus e/x$, and hence M/x, has an N-minor.

3.8.1. $M \setminus e/x$ and M/x are 3-connected.

Proof. Assume that (U, V) is a 2-separation of $M \setminus e/x$ such that $|U \cap (Q - x)| \ge 2$. If $Q - x \subseteq U$, then $(U \cup x, V)$ is a 2-separation in $M \setminus e$, as Q is a cocircuit in this matroid. Since $M \setminus e$ is 3-connected, this is not true, so V contains a single element, y, of Q - x. Then $y \in cl_{M \setminus e/x}(U)$. However $(U \cup y, V - y)$ is not a 2-separation of $M \setminus e/x$, or else $(U \cup \{x, y\}, V - y)$ is a 2-separation of $M \setminus e$. Thus V is either a 2-circuit or a 2-cocircuit in $M \setminus e/x$. Orthogonality with Q-x tells us that the latter case is impossible. Therefore x is in a triangle in $M \setminus e$ that contains two elements of Q. The union of Q with this triangle is a 5-element 3-separating set in $M \setminus e$, contradicting the fact that $M \setminus e$ is (4, 4)-connected. Therefore $M \setminus e/x$ is 3-connected. If M/x is not, then e must be in a triangle with x in M, and this is impossible by Lemma 3.1. ♢

We will prove that M/x is (4, 4)-connected. Assume otherwise, and let (X, Y) be a (4, 4)-violator of M/x, so that $|X|, |Y| \ge 5$. We can assume that $|X \cap (Q - x)| \ge 2$.

3.8.2. $e \in Y$.

Proof. Assume that $e \in X$. If $Q - x \subseteq X$, then $x \in \operatorname{cl}_M^*(X)$, as $Q \cup e$ is a cocircuit of M. Therefore $(X \cup x, Y)$ is a (4, 4)-violator of M, which is impossible. Therefore $Y \cap (Q - x)$ contains a single element, y. Now $y \in \operatorname{cl}_{M/x}(X)$, so $(X \cup y, Y - y)$ is a 3-separation in M/x. As $x \in \operatorname{cl}_M^*(X \cup y)$, and $|Y - y| \ge 4$, it follows that $(X \cup \{x, y\}, Y - y)$ is a (4, 3)-violator of M, a contradiction.

3.8.3. $\lambda_{M \setminus e}(Y - (Q \cup e)) \leq 2.$

Proof. As $\lambda_{M/x}(Y) = 2$, and $Q - x \subseteq \operatorname{cl}_{M/x}(X)$, it follows that $\lambda_{M/x}(Y - Q) \leq 2$. Therefore $\lambda_{M\setminus e/x}(Y - (Q \cup e)) \leq 2$. Now x is in the coclosure of the complement of $Y - (Q \cup e)$ in $M\setminus e$, as Q is a cocircuit, so

$$\lambda_{M\setminus e}(Y - (Q \cup e)) = \lambda_{M\setminus e/x}(Y - (Q \cup e)) \le 2,$$

 \diamond

as desired.

3.8.4. $|Y| \le 6$.

Proof. Since $M \setminus e$ is (4, 4)-connected, 3.8.3 implies that $|Y - (Q \cup e)| \le 4$. The result follows.

3.8.5. $|Y| \neq 6$.

Proof. Assume that |Y| = 6. If $Q - x \subseteq X$, then 3.8.3 implies that $M \setminus e$ has a 5-element 3-separating set, which leads to a contradiction. Therefore $Y \cap (Q - x)$ contains a single element, y. Since Q - x is a triangle in M/x, it follows that $y \in cl_{M/x}(X)$, so $(X \cup x, Y - y)$ is a 3-separation of M/x. Proposition 3.3 implies that Y - y is a 5-fan of M/x. Let (y_1, \ldots, y_5) be a fan ordering of Y - y. As e is contained in no triads of M, we can assume that $e = y_1$. As $\{y_2, y_3, y_4\}$ is a trian of M/x, and hence of M, it cannot be the case that $\{y_3, y_4, y_5\}$ is a triangle, or else M has a 4-fan. Therefore

 $\{x, y_3, y_4, y_5\}$ is a circuit of M that meets the cocircuit $Q \cup e$ in the single element x. This contradiction completes the proof of 3.8.5.

3.8.6. $|Y| \neq 5$.

Proof. Assume that |Y| = 5. First suppose that $Q - x \subseteq X$. Then $(X \cup x, Y - e)$ is a 3-separation of $M \setminus e$, by 3.8.3. Thus Y - e is a quad of $M \setminus e$, by Proposition 2.3 and Lemma 3.7. But Proposition 3.3 implies that Y is a 5-fan of M/x. Thus Y contains a triad of M/x, and hence of M. This means that Y - e contains a cocircuit of size at most three in $M \setminus e$, contradicting the fact that it is a quad. Thus $Y \cap (Q - x)$ contains a single element, y.

By again using Proposition 3.3, we see that Y is a 5-fan of M/x. Let (y_1, \ldots, y_5) be a fan ordering. Orthogonality with Q - x means that y is not contained in a triad of M/x that is contained in Y. Therefore we can assume that $y = y_1$. As e is in no triad of M, it follows that $e \notin \{y_2, y_3, y_4\}$. As $M/x \setminus e$ is 3-connected, by 3.8.1, we deduce that (y_1, y_2, y_3, y_4) is a 4-fan of $M/x \setminus e$. As $\{y_2, y_3, y_4\}$ is a triad of M/x, and hence of M, Lemma 3.1 implies M/y_4 has no N-minor, so neither does $M/x \setminus e/y_4$. Lemma 2.2 now implies that $M/x \setminus e \setminus y_1$, and hence $M \setminus e \setminus y_1$, has an N-minor. As $y_1 = y$ is contained in the quad Q of $M \setminus e$, this means we have a contradiction to Lemma 3.6.

We assume (X, Y) was a (4, 4)-violator of M/x, so we now obtain a contradiction by combining 3.8.4, 3.8.5, and 3.8.6. Therefore M/x is (4, 4)-connected. Now assume (X, Y) is a (4, 3)-violator of M/x. We can assume that $|X \cap (Q - x)| \ge 2$. Because $M^* \setminus x$ is (4, 4)-connected with an N^* -minor, it follows from Lemma 3.7 that either X or Y is a quad of M/x. If X is a quad of M/x, then it does not contain the triangle Q - x. Therefore $X \cup (Q - x)$ is a 5-element 3-separating set of M/x. This leads to a contradiction, as $|E(M/x)| \ge 10$ and M/x is (4, 4)-connected. Therefore Y is a quad of M/x. Orthogonality shows that Y is disjoint from the triangle Q - x. If Y does not contain e, then $x \in cl_M^*(X)$, and Y is a quad of M, a contradiction. Therefore $Y \cap (Q \cup e) = \{e\}$, and the proof of Lemma 3.8 is complete. \Box

Finally, we are in a position to prove Theorem 1.2. By Lemma 3.2, we can assume that (M, N) is either $(\overline{M}, \overline{N})$ or $(\overline{M}^*, \overline{N}^*)$, and $M \setminus e$ is (4, 4)-connected with an N-minor, for some element e. Lemma 3.7 implies that $M \setminus e$ has no 4-fans. As it is not internally 4-connected, it contains a quad Q. Deleting any element of Q destroys all N-minors, by Lemma 3.6, so $M \setminus e/x$ has an N-minor, for some element $x \in Q$. Lemma 3.8 says that $M \setminus e/x$ is 3-connected, and M/x is (4, 4)-connected. As M/x is not internally 4-connected, it has a quad, Q_x , such that $(Q \cup e) \cap Q_x = \{e\}$. We will show that $M \setminus e/x$ is internally 4-connected, and this will provide a contradiction that completes the proof of Theorem 1.2.

Assume that (X, Y) is a (4, 3)-violator of $M \setminus e/x$, where $|X \cap (Q_x - e)| \ge 2$. If $Q_x - e \subseteq X$, then $(X \cup e, Y)$ is a (4, 3)-violator of M/x, as Q_x is a circuit in M/x. Then Lemma 3.8 implies that either $X \cup e$ or Y is a quad that contains e. This is impossible, as $|X \cup e| \geq 5$. Therefore $Y \cap (Q_x - e)$ contains a single element, y. In $M \setminus e/x$, the set $Q_x - e$ is a triad, so y is in the coclosure of X. Therefore $(X \cup y, Y - y)$ is a 3-separation. If it is a (4,3)-violator, then $(X \cup \{y,e\}, Y - y)$ is a (4,3)-violator of M/x, and this leads to the same contradiction as before, since either $X \cup \{y,e\}$ or Y - y must be a quad of M/x that contains e. Therefore |Y| = 4. Orthogonality with $Q_x - e$ shows that Y is not a quad of $M \setminus e/x$. Thus we assume that (y_1, y_2, y_3, y_4) is a 4-fan and a fan ordering of Y in $M \setminus e/x$. Then $y = y_4$, or else we violate orthogonality between $Q_x - e$ and $\{y_1, y_2, y_3\}$.

Since y is in a quad of M/x, Lemma 3.6 implies that M/x/y, and hence $M \setminus e/x/y$ has no N-minor. Therefore Lemma 2.2 implies that $M \setminus e/x \setminus y_1$ has an N-minor. As $M \setminus y_1$ has an N-minor, it follows that $\{y_1, y_2, y_3\}$ is not a triangle of M. Therefore $\{x, y_1, y_2, y_3\}$ is a circuit. As $Q \cup e$ is a cocircuit, there is a single element, which we call z, in $(Q - x) \cap \{y_1, y_2, y_3\}$.

Note that $\{y_2, y_3, y\}$ is not a triad of M, by orthogonality with the circuit $Q_x \cup x$. Therefore $\{y_2, y_3, y, e\}$ is a cocircuit. This means that z is not in $\{y_2, y_3\}$, for otherwise $\{y_2, y_3, y, e\}$ meets the circuit Q in the single element z. Therefore $z = y_1$, and $M \setminus e/x \setminus z$ has an N-minor. This means that $M \setminus e \setminus z$ has an N-minor, and as z is in Q, we have contradicted Lemma 3.6. Thus Theorem 1.2 is now proved.

References

- C. Chun, D. Mayhew, and J. Oxley. Towards a splitter theorem for internally 4connected binary matroids. J. Combin. Theory Ser. B 102 (2012), no. 3, 688–700.
- [2] C. Chun, D. Mayhew, and J. Oxley. Towards a splitter theorem for internally 4connected binary matroids III. Adv. in Appl. Math. 51 (2013), no. 2, 309–344.
- [3] J. Geelen and X. Zhou. A splitter theorem for internally 4-connected binary matroids. SIAM J. Discrete Math. 20 (2006), no. 3, 578–587 (electronic).
- [4] D. Mayhew, G. Royle, and G. Whittle. The internally 4-connected binary matroids with no $M(K_{3,3})$ -minor. Mem. Amer. Math. Soc. **208** (2010), no. 981, vi+95.
- [5] J. Oxley. Matroid theory. Oxford University Press, New York, second edition (2011).
- [6] J. G. Oxley. On matroid connectivity. Quart. J. Math. Oxford Ser. (2) 32 (1981), no. 126, 193–208.
- [7] X. Zhou. On internally 4-connected non-regular binary matroids. J. Combin. Theory Ser. B 91 (2004), no. 2, 327–343.
- [8] X. Zhou. Generating an internally 4-connected binary matroid from another. Discrete Math. 312 (2012), no. 15, 2375–2387.

School of Mathematics, Statistics, and Operations Research, Victoria University, Wellington, New Zealand

E-mail address: carolyn.chun@vuw.ac.nz

School of Mathematics, Statistics, and Operations Research, Victoria University, Wellington, New Zealand

E-mail address: dillon.mayhew@vuw.ac.nz

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA, USA

E-mail address: oxley@math.lsu.edu