MATROIDS ARISING FROM NESTED SEQUENCES OF FLATS IN PROJECTIVE AND AFFINE GEOMETRIES

MATTHEW MIZELL AND JAMES OXLEY

Abstract

Targets are matroids that arise from a nested sequence of flats in a projective geometry. This class of matroids was introduced by Nelson and Nomoto, who found the forbidden induced restrictions for binary targets. This paper generalizes their result to targets arising from projective geometries over $G F(q)$. We also consider targets arising from nested sequences of affine flats and determine the forbidden induced restrictions for affine targets.

1. Introduction

Throughout this paper, we follow the notation and terminology of [3]. All matroids considered here are simple. This means, for example, that when we contract an element, we always simplify the result. An induced restriction of a matroid M is a restriction of M to one of its flats.

Let M be a rank- r projective or affine geometry represented over $G F(q)$. We call $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ a nested sequence of projective flats or a nested sequence of affine flats if $\emptyset=F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{k-1} \subseteq F_{k}=E(M)$ and each F_{i} is a, possibly empty, flat of M. Let (G, R) be a partition of $E(M)$ into, possibly empty, subsets G and R. We call the elements in G green; those in R are red. A subset X of $E(M)$ is monochromatic if $X \subseteq G$ or $X \subseteq R$. For a subset X of $E(P G(r-1, q))$, we call $P G(r-1, q) \mid X$ a projective target, or a target, if there is a nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of projective flats such that X is the union of all sets $F_{i+1}-F_{i}$ for i even. It is straightforward to check that $P G(r-1, q) \mid G$ is a target if and only if $P G(r-1, q) \mid R$ is a target. Because $G F(q)$-representable matroids are not necessarily uniquely $G F(q)$ representable, we have defined targets in terms of 2-colorings of $\operatorname{PG}(r-1, q)$. When $X \subseteq E(A G(r-1, q))$, we call $A G(r-1, q) \mid X$ an affine target if there is a nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of affine flats such that X is the union of all sets $F_{i+1}-F_{i}$ for i even. For affine targets in $A G(r-1, q)$, we follow the same convention of defining targets in terms of 2-colorings.

Consider an analogous construction for graphs, that is, take a sequence $\left(K_{0}, K_{1}, \ldots, K_{n}\right)$ of complete graphs where K_{i+1} has K_{i} as a subgraph for each i in $\{1,2, \ldots, n-1\}$. Moreover, for each such i, color the vertex v of $V\left(K_{i+1}\right)-V\left(K_{i}\right)$ either green or red and color all the edges of $E\left(K_{i+1}\right)$ -

Date: July 5, 2023.
2020 Mathematics Subject Classification. 05B35.
$E\left(K_{i}\right)$ the same color as v. This process is equivalent to repeatedly adding green or red dominating vertices, that is, adding a green or red vertex v to a graph G that is adjacent to every vertex u in $V(G-v)$. Consider the subgraph H of K_{n} whose vertex set is $V\left(K_{n}\right)$ and whose edge set is the set of green edges. Observe that, in the construction of H, when a red dominating vertex is added, it is an isolated vertex of the graph that has been constructed so far. Therefore, to construct H, at each step, we are adding a green dominating vertex or a red isolated vertex. Chvátal and Hammer [1] showed that the class of graphs that arises from repeatedly adding dominating vertices and isolated vertices coincides with the class of threshold graphs. This is the class of graphs that has no induced subgraph that is isomorphic to $C_{4}, 2 K_{2}$, or P_{4}, that is a 4 -cycle, two non-adjacent edges, or a 4 -vertex path.

Nelson and Nomoto [2] introduced binary targets and characterized them as follows.

Theorem 1.1. Let (G, R) be a 2 -coloring of $P G(r-1,2)$. Then $P G(r-$ $1,2) \mid G$ is a target if and only if it does not contain $U_{3,3}$ or $U_{2,3} \oplus U_{1,1}$ as an induced restriction.

Nelson and Nomoto [2] call $U_{3,3}$ the claw, while they call $U_{2,3} \oplus U_{1,1}$, the complement of $U_{3,3}$ in F_{7}, the anti-claw. They derive Theorem 1.1 as a consequence of a structural description of claw-free binary matroids. In Section 3, we give a proof of that theorem that does not rely on this structural description. Then, for all $q \geq 3$, we characterize targets represented over $G F(q)$ in terms of forbidden induced restrictions by proving the next result.

Theorem 1.2. For a prime power q exceeding two, let (G, R) be a 2 -coloring of $P G(r-1, q)$. Then $P G(r-1, q) \mid G$ is a target if and only if it does not contain any of $U_{2,2}, U_{2,3}, \ldots, U_{2, q-2}$, or $U_{2, q-1}$ as an induced restriction.

In Section 2, we prove some useful properties of targets. In particular, we show that targets are closed under contractions. A simple matroid N is an induced minor of a simple matroid M if N can be obtained from M by a sequence of contractions and induced restrictions. We observe that Theorem 1.2 can also be viewed as characterizing targets in terms of forbidden induced minors. Our other main theorems, which are proved in Section 4, characterize affine targets in terms of forbidden induced restrictions. There are three cases, depending on the value of q.

Theorem 1.3. Let (G, R) be a 2 -coloring of $A G(r-1,2)$. Then $A G(r-$ $1,2) \mid G$ is an affine target if and only if it does not contain $U_{4,4}$ as an induced restriction.

The matroids \mathcal{W}^{3} and $P\left(U_{2,3}, U_{2,3}\right)$ that appear in the next theorem are the rank- 3 whirl and the parallel connection of two copies of $U_{2,3}$.

Theorem 1.4. Let (G, R) be a 2 -coloring of $A G(r-1,3)$. Then $A G(r-$ $1,3) \mid G$ is an affine target if and only if it does not contain any of $U_{3,3}, U_{3,4}$, $U_{2,3} \oplus U_{1,1}, U_{2,3} \oplus_{2} U_{2,4}, P\left(U_{2,3}, U_{2,3}\right)$, or \mathcal{W}^{3} as an induced restriction.

Theorem 1.5. Let (G, R) be a 2 -coloring of $A G(r-1, q)$, for $q \geq 4$. Then $A G(r-1, q) \mid G$ is an affine target if and only if it does not contain any of $U_{2,2}, U_{2,3}, \ldots, U_{2, q-3}$, or $U_{2, q-2}$ as an induced restriction.

2. Preliminary Results

Throughout the paper, we will refer to flats and hyperplanes of $P G(r-$ $1, q)$ as projective flats and projective hyperplanes, respectively. Let M be a restriction of $P G(r-1, q)$. For a subset X of $E(M)$, its projective closure, $\operatorname{cl}_{P}(X)$, is the closure of X in the matroid $P G(r-1, q)$. We first show that if $P G(r-1, q) \mid G$ is a target, then the matroid $P G(r-1, q) \mid G$ is uniquely determined by the sequence $\left(r_{0}, r_{1}, \ldots, r_{k}\right)$ of ranks of the nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of projective flats. Note that we shall often write G and R for the matroids $P G(r-1, q) \mid G$ and $P G(r-1, q) \mid R$, respectively. This means that we will be using G and R to denote both matroids and the ground sets of those matroids.

Proposition 2.1. Let $\left(E_{0}, E_{1}, \ldots, E_{k}\right)$ and $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ be nested sequences of flats in $P G(r-1, q)$ such that $r\left(E_{i}\right)=r\left(F_{i}\right)$ for all i in $\{0,1, \ldots k\}$. Let G_{E} and G_{F} be the union, respectively, of all $E_{i+1}-E_{i}$ and of all $F_{i+1}-F_{i}$ for the even numbers i in $\{0,1, \ldots, k\}$. Then $\operatorname{PG}(r-1, q) \mid G_{E} \cong$ $P G(r-1, q) \mid G_{F}$.

Proof. Let h be the smallest i such that $r\left(E_{i}\right)>0$. Let $\left\{b_{h, 1}, b_{h, 2}, \ldots, b_{h, m_{h}}\right\}$ and $\left\{d_{h, 1}, d_{h, 2}, \ldots, d_{h, m_{h}}\right\}$ be bases B_{h} and D_{h} of $P G(r-1, q) \mid E_{h}$ and $P G(r-1, q) \mid F_{h}$, respectively. Let $B_{0}=B_{1}=\cdots=B_{h-1}=\emptyset$ and $D_{0}=D_{1}=\cdots=D_{h-1}=\emptyset$. For $j \geq h$, assume that $B_{0}, B_{1}, \ldots, B_{j}$ and $D_{0}, D_{1}, \ldots, D_{j}$ have been defined. Let B_{j+1} and D_{j+1} be bases of E_{j+1} and F_{j+1}, respectively, such that $B_{j} \subseteq B_{j+1}$ and $D_{j} \subseteq D_{j+1}$. Let $B_{j+1}-B_{j}=$ $\left\{b_{j+1,1}, b_{j+1,2}, \ldots, b_{j+1, m_{j+1}}\right\}$ and $D_{j+1}-D_{j}=\left\{d_{j+1,1}, d_{j+1,2}, \ldots, d_{j+1, m_{j+1}}\right\}$. Define the automorphism ϕ on $P G(r-1, q)$ by $\phi\left(b_{s, t}\right)=d_{s, t}$ for all s and t such that $s \geq h$. Then $\phi\left(E_{i}\right)=F_{i}$ for all i, so $\phi\left(E_{i+1}-E_{i}\right)=$ $\phi\left(E_{i+1}\right)-\phi\left(E_{i}\right)=F_{i+1}-F_{i}$, for all i. Therefore, $P G(r-1, q) \mid G_{E} \cong$ $P G(r-1, q) \mid G_{F}$.

The last result means that we can refer to a simple $G F(q)$-representable matroid M as being a target exactly when some, and hence all, of the $G F(q)$-representations of M are targets. Note that in a nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of flats defining a target, it is convenient to allow equality of the flats. A nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of flats is the canonical nested sequence defining a projective or affine target if $F_{0}=\emptyset$, and $F_{1}, F_{2}, \ldots, F_{k-1}$, and F_{k} are distinct. Observe that allowing F_{1} to be empty accommodates the requirement that the target is the union of all sets $F_{i+1}-F_{i}$ for i even.

Lemma 2.15 of Nelson and Nomoto [2] proved that binary targets are closed under induced restriction. Using the same proof, their result can be extended to targets represented over $G F(q)$.

Lemma 2.2. The class of targets over $G F(q)$ is closed under induced restrictions.

Lemma 2.3. Let (G, R) be a 2-coloring of $P G(r-1, q)$. Assume that G is a target and F is a projective flat of $\operatorname{PG}(r-1, q)$. Then exactly one of $G \cap F$ and $R \cap F$ has rank $r(F)$.
Proof. By Lemma 2.2, $P G(r-1, q) \mid(G \cap F)$ is a target corresponding to a nested sequence $\left(F_{0}^{\prime}, F_{1}^{\prime}, \ldots, F_{k-1}^{\prime}, F\right)$ of projective flats. By, for example, [4, Lemma 2.1], $r(G \cap F)$ or $r(R \cap F)$ is $r(F)$. Either $G \cap F$ or $R \cap F$ is contained in some proper projective flat of F. Therefore, either $r(G \cap F)<r(F)$ or $r(R \cap F)<r(F)$.

We refer to the rank of the set of green elements in a projective flat F as the green rank of F. If F has green $\operatorname{rank} r(F)$, we say that F is a green flat. Furthermore, if a projective hyperplane has green rank $r-1$, then it is a green hyperplane. Red rank, red flats, and red hyperplanes are defined analogously. From the last lemma, it follows that a projective flat can either be a green flat or a red flat, but not both.

We now show that every contraction of a target is a target. Consider contracting a green element e in M. If a parallel class in the contraction contains at least one green point, then, after the simplification, the resulting point will be green. If there are only red points in the parallel class, then, after the simplification, the resulting point is red.

Proposition 2.4. The class of targets over $G F(q)$ is closed under contractions.
Proof. Let (G, R) be a 2-coloring of $P G(r-1, q)$. Assume that G is a target. Then there is a canonical nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of projective flats such that G is the union of all sets $F_{i+1}-F_{i}$ for i even. Let e be an element of $F_{m}-F_{m-1}$ where F_{m} is a green flat. Then the elements of $F_{m}-F_{m-1}$ are green. Suppose x is a red point in F_{m}. Then $x \in F_{m-1}$. If $y \in \operatorname{cl}_{P}(\{e, x\})$, then $y \notin F_{m-1}$, otherwise the circuit $\{e, x, y\}$ gives the contradiction that e is an element of F_{m-1}. Since $\{e, x\} \subseteq F_{m}$, we must have that y is in F_{m}, so y is in $F_{m}-F_{m-1}$. Hence y is green. We deduce that, in the contraction of e, every element of $F_{m}-e$ is green.

Now assume F_{j} is a red flat containing F_{m}. Then $F_{j}-F_{j-1} \subseteq R$. Consider a point z in $F_{j}-F_{j-1}$. Using a symmetric argument to that given above, we deduce that e is the only point of $\operatorname{cl}_{P}(\{e, z\})$ not in $F_{j}-F_{j-1}$. Therefore, the points in $\left(F_{j}-F_{j-1}\right)-e$ are red. Clearly, if F_{k} is a green flat containing F_{m}, then the points in $\left(F_{k}-F_{k-1}\right)-e$ are green. Thus, in $\operatorname{si}(P G(r-1, q) / e)$, we have $\left(\operatorname{si}\left(F_{m}-e\right), \operatorname{si}\left(F_{m+1}-e\right), \ldots, \operatorname{si}\left(F_{k}-e\right)\right)$ as a nested sequence of projective flats. Writing this new nested sequence of projective flats in
$P G(r-2, q)$ as $\left(F_{m}^{\prime}, F_{m+1}^{\prime}, \ldots, F_{k}^{\prime}\right)$, we see that F_{m}^{\prime} is entirely green and, for each $i \geq 1$, the set $F_{m+i}^{\prime}-F_{m+i-1}^{\prime}$ is entirely red if i is odd and is entirely green if i is even. Hence $\operatorname{si}(G / e)$ is a target.

Combining Lemma 2.2 and Proposition 2.4, we get the following.
Corollary 2.5. The class of targets over $G F(q)$ is closed under induced minors.

Lemma 2.6. Let (G, R) be a 2 -coloring of $P G(r-1, q)$. If G is a target, then G and R are connected unless $q=2$ and G or R is $U_{2,2}$.

Proof. Assume that the exceptional case does not arise and that $r(G) \geq$ $r(R)$. If $G=P G(r-1, q)$, then the result holds. Assume G is not the whole projective geometry. Then G contains $A G(r-1, q)$, so G is connected. Similarly, R will also have an affine geometry as a restriction. Thus R is certainly connected when $r(R)=r(G)$. Assume $r(R)<r(G)$. Take a projective flat F that has R as a spanning restriction. Then $r(R) \geq r(G \cap F)$ so, as above, we deduce that R is connected.

If (G, R) is a 2-coloring of $P G(r-1, q)$, then G is a minimal non-target if G is not a target but every proper induced restriction of G is a target. Clearly, if G is a minimal non-target, then R is not a target. But if $r(R)>r(G)$, then R is not a minimal non-target.
Lemma 2.7. Let (G, R) be a 2-coloring of $P G(r-1, q)$. Suppose $P G(r-$ $1, q) \mid G$ is a minimal non-target of rank r. Then $r(R)=r$.
Proof. Assume $r(R)<r$. Then there is a hyperplane H containing R. Since $P G(r-1, q) \mid(G \cap H)$ is a target, R is a target. However, this implies that G is a target, a contradiction. Therefore $r(R)=r$.

3. Forbidden Induced Restrictions of Target Matroids

This section contains a common proof of Theorems 1.1 and 1.2. This proof closely follows the proof of Theorem 4.7 of Singh and Oxley [4].
Proof of Theorems 1.1 and 1.2. Assume that G is a target. First, suppose $q=2$. If there is a projective flat F such that $P G(r-1,2) \mid(G \cap F) \cong U_{3,3}$, then $P G(r-1,2) \mid(R \cap F) \cong U_{2,3} \oplus U_{1,1}$. Since $P G(r-1,2) \mid(G \cap F)$ is a target, this contradicts Lemma 2.3, as $r(G \cap F)=r(R \cap F)$. Now assume $q \geq 3$. If there is a projective flat F such that $P G(r-1, q) \mid(G \cap F)$ is any of $U_{2,2}, U_{2,3}, \ldots, U_{2, q-2}$, or $U_{2, q-1}$, then, letting $F^{\prime}=\mathrm{cl}_{P}(G \cap F)$, we have $r\left(G \cap F^{\prime}\right)=r\left(R \cap F^{\prime}\right)$, a contradiction to Lemma 2.3.

Let (G, R) be a 2 -coloring of $P G(r-1, q)$. Suppose that G is a rankr minimal non-target. In addition, when $q=2$, assume that G does not have $U_{3,3}$ or $U_{2,3} \oplus U_{1,1}$ as an induced restriction; and when $q \geq 3$, assume instead that G does not have $U_{2,2}, U_{2,3}, \ldots, U_{2, q-2}$, or $U_{2, q-1}$ as an induced restriction. Then, by Lemma 2.7, $r(R)=r$. Clearly, $r \geq 4$ when $q=2$, and $r \geq 3$ when $q \geq 3$.
3.1.1. When $q \geq 2$, each green hyperplane H contains at most one red rank- $(r-2)$ flat.

Assume that H contains at least two red flats, F_{1} and F_{2}, of rank $r-2$. Then, all the elements of $F_{1}-F_{2}$ are red. Adding an element z of $F_{2}-F_{1}$ to $F_{1}-F_{2}$ gives a subset of H whose red rank is $r-1$. This is a contradiction as H is a green hyperplane. Thus 3.1.1 holds.

Consider a rank- $(r-2)$ projective flat F. Then F is contained in exactly $q+1$ projective hyperplanes. Assume that $r(R \cap F)=r(F)$. We make the following observations.
3.1.2. When $q=2$, at most two of H_{1}, H_{2} and H_{3} are green.

Assume that all three hyperplanes are green. Then, all the elements of each of $H_{1}-F, H_{2}-F$ and $H_{3}-F$ are monochromatic green, so $r(R)=$ $r(F)=r-2$, a contradiction to Lemma 2.7. Thus 3.1.2 holds.
3.1.3. When $q \geq 3$, there are at least two red hyperplanes containing F.

As $r(R)=r$, there is at least one red hyperplane containing F. Now, assume there is exactly one red hyperplane containing F. Then, as $r(R)=r$, there is some red point in a green hyperplane H_{G} that contains F. Therefore $r\left(G \cap H_{G}\right)=r\left(R \cap H_{G}\right)$, contradicting Lemma 2.3. Thus 3.1.3 holds.
3.1.4. When $q \geq 3$, there is at most one green hyperplane containing F.

Let $H_{G_{1}}$ and $H_{G_{2}}$ be distinct green hyperplanes containing F and let $H_{R_{1}}$ and $H_{R_{2}}$ be distinct red hyperplanes containing F. If there is a red point in $H_{G_{1}}-F$, then $r\left(G \cap H_{G_{1}}\right)=r\left(R \cap H_{G_{1}}\right)$, a contradiction. Hence, there are no red points in $H_{G_{1}}-F$ or in $H_{G_{2}}-F$. Consider red points x in $H_{R_{1}}-F$ and y in $H_{R_{2}}-F$. The line $\operatorname{cl}_{P}(\{x, y\})$ intersects each of $H_{G_{1}}$ and $H_{G_{2}}$ once at some point not in F. Therefore, this line will have at least two red and two green points, a contradiction. Thus 3.1.4 holds.

Let G_{2} and R_{2} be the sets of green and red projective flats of $P G(r-1, q)$ of rank $r-2$, and let G_{1} and R_{1} be the sets of green and red projective hyperplanes of $P G(r-1, q)$. We now construct a bipartite graph B with vertex sets $G_{2} \cup R_{2}$ and $G_{1} \cup R_{1}$. A vertex x in $G_{2} \cup R_{2}$ is adjacent to a vertex y in $G_{1} \cup R_{1}$ if the flat associated to x is contained in the hyperplane associated to y. We count the number of cross edges, $G_{1} R_{2^{-}}$edges or $R_{1} G_{2^{-}}$ edges, of B. By 3.1.1, no flat in G_{1} contains two or more flats in R_{2}, so it follows, using symmetry, that the total number of cross edges is at most $\left|G_{1}\right|+\left|R_{1}\right|$. Consider a pair $\left(H_{G}, H_{R}\right)$, where $H_{G} \in G_{1}$ and $H_{R} \in R_{1}$. The total number of these pairs is $\left|G_{1}\right|\left|R_{1}\right|$. Say $H_{G} \cap H_{R}$ is a red flat F_{R}. Then the edge of B from H_{G} to F_{R} is a cross edge. When $q=2$, by 3.1.2, there is at most one other red hyperplane H_{R}^{\prime} such that $H_{R}^{\prime} \cap H_{G}=F_{R}$. Therefore, when $q=2$, the number of cross edges is at least $\frac{1}{2}\left|G_{1}\right|\left|R_{1}\right|$. If $q \geq 3$, then, by 3.1.4, each cross edge corresponds to exactly q such pairs, so the number of cross edges is at least $\frac{1}{q}\left|G_{1}\right|\left|R_{1}\right|$. Hence, for all q, the number of cross
edges is at least $\frac{1}{q}\left|G_{1}\right|\left|R_{1}\right|$. Thus,

$$
\begin{equation*}
\frac{1}{q}\left|G_{1}\right|\left|R_{1}\right| \leq\left|G_{1}\right|+\left|R_{1}\right| . \tag{1}
\end{equation*}
$$

We may suppose $\left|G_{1}\right| \leq\left|R_{1}\right|$. Then $\frac{1}{q}\left|G_{1}\right| \leq \frac{\left|G_{1}\right|}{\left|R_{1}\right|}+1$, so

$$
\begin{equation*}
\left|G_{1}\right| \leq 2 q . \tag{2}
\end{equation*}
$$

Assume $q=2$. Then $\left|G_{1}\right| \leq 4$. Now take a basis B_{G} of G. As $r(G) \geq 4$, each $(r(G)-1)$-element subset of B_{G} spans a green hyperplane. Hence $\left|G_{1}\right| \geq 4$, so $\left|G_{1}\right|=4$. Then, by (1), we have $\frac{1}{2}(4)\left|R_{1}\right| \leq 4+\left|R_{1}\right|$, so $\left|R_{1}\right| \leq 4$. Therefore, $\left|R_{1}\right|=4$ and $P G(r-1,2)$ has exactly eight hyperplanes. This is a contradiction, as $P G(r-1,2)$ has $2^{r}-1$ hyperplanes.

Now assume $q \geq 3$. Take a green hyperplane H. As $r(G)=r(R)=$ r, there is some green point z not in H. Now, $P G(r-1, q) \mid(G \cap H)$ is a target having, say $\left(F_{0}, F_{1}, \ldots, F_{k-1}, H\right)$, as its corresponding canonical nested sequence of projective flats. Let X be a projective flat of rank $r-2$ that is contained in H and contains F_{k-1}. Then $P G(r-1, q) \mid(H-X) \cong$ $A G(r-2, q)$ and all the elements of $H-X$ are green. In $H-X$, there are $\frac{q\left(q^{r-2}-1\right)}{q-1}$ green rank- $(r-2)$ affine flats. Let Z be one of these affine flats. Then $\mathrm{cl}_{P}(Z \cup z)$ will be a green projective hyperplane. This implies that $\left|G_{1}\right| \geq \frac{q\left(q^{r-2}-1\right)}{q-1}$, so, by (2),

$$
2 q \geq \frac{q\left(q^{r-2}-1\right)}{q-1}
$$

Thus $2 q-2 \geq q^{r-2}-1$, so

$$
2 q \geq q^{r-2}+1
$$

Observe that, for $r \geq 4$, as $q \geq 3$, the last inequality does not hold. Thus $r(G) \leq 3$.

Assume $r(G)=3$. Suppose there is a green line L with a red point z on it. Because there is no line having at least two green and at least two red points, z is the only red point on L. As $r(G)=r(R)=3$, there are red points u and v that are not on L such that $r(\{u, v, z\})=3$. Then $\operatorname{cl}_{P}(\{u, v\})$ is a red line L_{1} that meets L at green a point p. Moreover, there is a green point x that is not on L or L_{1}. Consider the line $L_{2}=\operatorname{cl}_{P}(\{x, z\})$. This line intersects L_{1} at some red point r_{0}, so L_{2} is a red line whose only green point is x. Observe that every other line that passes through x will be a green line, as it must intersect L at a point other than z. This implies that every red point in $P G(2, q)$ lies on L_{1} or L_{2} or is a single red point on the green line $\operatorname{cl}_{P}(\{p, x\})$. Therefore, for distinct red points r_{1}, r_{2} in $L_{1}-\left\{r_{0}\right\}$, one of $\operatorname{cl}_{P}\left(\left\{r_{1}, z\right\}\right)$ or $\mathrm{cl}_{P}\left(\left\{r_{2}, z\right\}\right)$ will have at least two red points and two green points, a contradiction. Therefore, there cannot be a red point on any green line. By symmetry, there cannot be a green point on any red line. Since every two lines meet, this is a contradiction.

4. Affine Target Matroids

In this section, we look at targets arising from affine geometries. This section begins with preliminary results about affine targets and minimal affine-non-targets. It concludes with the forbidden induced restrictions for affine targets over $G F(q)$. One fact that we use repeatedly is that if (G, R) is a 2-coloring of $A G(r-1, q)$, then G is an affine target if and only if R is an affine target. Viewing $A G(r-1, q)$ as a restriction, $P G(r-1, q) \mid X$, of $P G(r-1, q)$ obtained by deleting a projective hyperplane H from $P G(r-$ $1, q)$, we call H the complementary hyperplane of X. We shall also refer to H as the complementary hyperplane of $A G(r-1, q)$.

Proposition 4.1. Let $\left(E_{0}, E_{1}, \ldots, E_{k}\right)$ and $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ be nested sequences of flats in $A G(r-1, q)$ such that $r\left(E_{i}\right)=r\left(F_{i}\right)$ for all i in $\{0,1, \ldots k\}$. Let H and H^{\prime} be the complementary hyperplanes of E_{k} and F_{k}, respectively. Let G_{E} and G_{F} be the union, respectively, of all $E_{i+1}-E_{i}$ and of all $F_{i+1}-F_{i}$ for the even numbers i in $\{0,1, \ldots, k\}$. Then $A G(r-1, q) \mid G_{E} \cong$ $A G(r-1, q) \mid G_{F}$.

Proof. Observe that $E_{k}=E(P G(r-1, q))-H$ and $F_{k}=E(P G(r-1, q))-$ H^{\prime}. Let h be the smallest i such that $r\left(E_{i}\right)>0$. Let $\left\{b_{h, 1}, b_{h, 2}, \ldots, b_{h, m_{h}}\right\}$ and $\left\{d_{h, 1}, d_{h, 2}, \ldots, d_{h, m_{h}}\right\}$ be bases B_{h} and D_{h} of $P G(r-1, q) \mid\left(\operatorname{cl}_{P}\left(E_{h}\right)-E_{h}\right)$ and $P G(r-1, q) \mid\left(\operatorname{cl}_{P}\left(F_{h}\right)-F_{h}\right)$, respectively. Let v and v^{\prime} be elements in E_{h} and F_{h}, respectively. Then $\left\{v, b_{h, 1}, b_{h, 2}, \ldots, b_{h, m_{h}}\right\}$ is a basis for $P G(r-$ $1, q) \mid \operatorname{cl}_{P}\left(E_{h}\right)$ and $\left\{v^{\prime}, d_{h, 1}, d_{h, 2}, \ldots, d_{h, m_{h}}\right\}$ is a basis for $P G(r-1, q) \mid \operatorname{cl}_{P}\left(F_{h}\right)$. Let $B_{0}=B_{1}=\cdots=B_{h-1}=\emptyset$ and $D_{0}=D_{1}=\cdots=D_{h-1}=\emptyset$. For $j \geq h$, assume that $B_{0}, B_{1}, \ldots, B_{j}$ and $D_{0}, D_{1}, \ldots, D_{j}$ have been defined. Let B_{j+1} and D_{j+1} be bases of $P G(r-1, q) \mid\left(\operatorname{cl}_{P}\left(E_{j+1}\right)-E_{j+1}\right)$ and $P G(r-1, q) \mid\left(\mathrm{cl}_{P}\left(F_{j+1}\right)-F_{j+1}\right)$, respectively, such that $B_{j} \subseteq B_{j+1}$ and $D_{j} \subseteq D_{j+1}$. Observe that adding v and v^{\prime} to B_{j+1} and D_{j+1}, respectively, gives bases for $P G(r-1, q) \mid \mathrm{cl}_{P}\left(E_{j+1}\right)$ and $P G(r-1, q) \mid \mathrm{cl}_{P}\left(F_{j+1}\right)$ for all j. Let $B_{j+1}-B_{j}=\left\{b_{j+1,1}, b_{j+1,2}, \ldots, b_{j+1, m_{j+1}}\right\}$ and $D_{j+1}-D_{j}=$ $\left\{d_{j+1,1}, d_{j+1,2}, \ldots, d_{j+1, m_{j+1}}\right\}$. Observe that B_{k} and D_{k} are bases for H and H^{\prime}, respectively. Now, $G_{E}=\operatorname{cl}_{P}\left(G_{E}\right)-H$ and $G_{F}=\operatorname{cl}_{P}\left(G_{F}\right)-H^{\prime}$. Define the automorphism ϕ on $P G(r-1, q)$ by $\phi(v)=v^{\prime}$ and $\phi\left(b_{s, t}\right)=d_{s, t}$, for all s and t such that $s \geq h$. Then $\phi(H)=H^{\prime}$ and, for all i, we have $\phi\left(\operatorname{cl}_{P}\left(B_{i}\right)\right)=$ $\operatorname{cl}_{P}\left(D_{i}\right)$, so $\phi\left(\operatorname{cl}_{P}\left(B_{i+1}\right)-\operatorname{cl}_{P}\left(B_{i}\right)-H\right)=\phi\left(\mathrm{cl}_{P}\left(B_{i+1}\right)\right)-\phi\left(\mathrm{cl}_{P}\left(B_{i}\right)\right)-\phi(H)=$ $\operatorname{cl}_{P}\left(D_{i+1}\right)-\operatorname{cl}_{P}\left(D_{i}\right)-H^{\prime}$. Thus, $P G(r-1, q) \mid\left(\mathrm{cl}_{P}\left(G_{E}\right)-H\right) \cong P G(r-$ $1, q) \mid\left(\mathrm{cl}_{P}\left(G_{F}\right)-H^{\prime}\right)$. Therefore, $A G(r-1, q)\left|G_{E} \cong A G(r-1, q)\right| G_{F}$.

Similar to projective targets, the previous result means that we can refer to a simple $G F(q)$-representable affine matroid M as being an affine target when all the $G F(q)$-representations of M are affine targets.

Proposition 4.2. The class of affine targets is closed under induced restrictions.

Proof. Let (G, R) be a 2-coloring of $A G(r-1, q)$. Assume that G is an affine target. Then G corresponds to a nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of affine flats with G being the union of the sets $F_{i+1}-F_{i}$ for all even i. Take a proper flat X of $A G(r-1, q)$. As the intersection of two affine flats is an affine flat, the sequence $\left(X \cap F_{0}, X \cap F_{1}, \ldots, X \cap F_{k}\right)$ is a nested sequence of affine flats. Assume that n is odd. As $F_{n}-F_{n-1} \subseteq G$, it follows that $\left(X \cap F_{n}\right)-\left(X \cap F_{n-1}\right) \subseteq G \cap F$. Hence, $G \cap F$ is the union of the sets $\left(X \cap F_{i+1}\right)-\left(X \cap F_{i}\right)$ for all even i. Therefore, $A G(r-1, q) \mid(G \cap X)$ is an affine target.

We will use the following well-known lemmas about affine geometries quite often in this section (see, for example [3, Exercise 6.2.2]).

Lemma 4.3. $A G(r-1, q)$ can be partitioned into q hyperplanes.
Lemma 4.4. Let X and Y be distinct hyperplanes of $A G(r-1, q)$. Then either $r(X \cap Y)=0$, or $r(X \cap Y)=r-2$.

The techniques used for handling affine targets are similar to those that we used for projective targets. The binary case will be treated separately.

Lemma 4.5. Let (G, R) be a 2-coloring of $A G(r-1,2)$ with $|G|=|R|$. Then $r(G)=r(R)$.

Proof. Since $|G|=|R|$, we have that $|G|=2^{r-2}$. Because the hyperplanes of $A G(r-1,2)$ have exactly 2^{r-2} elements, either $A G(r-1,2) \mid G$ is a hyperplane, or $r(G)=r$. Since $A G(r-1,2) \mid G$ is a hyperplane if and only if $A G(r-1,2) \mid R$ is a hyperplane, the lemma follows.

Lemma 4.6. Let (G, R) be a 2-coloring of $A G(r-1,2)$. Assume G is an affine target and F is a flat of $A G(r-1,2)$. Then either exactly one of $G \cap F$ and $R \cap F$ is of rank $r(F)$; or $r(G \cap F)=r(R \cap F)=r(F)-1$, and each of $G \cap F$ and $R \cap F$ is an affine flat. Moreover, if $r(G \cap F)=r(F)$ and H_{1} and H_{2} are disjoint hyperplanes of $A G(r-1,2) \mid F$, then $r\left(G \cap H_{1}\right)=r(F)-1$ or $r\left(G \cap H_{2}\right)=r(F)-1$.

Proof. Assume $r(G \cap F)<r(F)$. Then there is a rank- $(r(F)-1)$ affine flat H_{G} that is contained in F and contains G. As H_{G} is a hyperplane of $A G(r-1,2) \mid F$, there is another hyperplane H_{R} of $A G(r-1,2) \mid F$ that is complementary to H_{G} in F. Moreover, $H_{R} \subseteq R \cap F$, so $r(R \cap F) \geq r(F)-1$. If there is a red point z in H_{G}, then $r(R \cap F)=r(F)$. Otherwise, $r(R \cap F)=$ $r(G \cap F)=r(F)-1$, and each of $R \cap F$ and $G \cap F$ is an affine flat.

Now suppose that $r(G \cap F)=r(F)$ and that H_{1} and H_{2} are disjoint hyperplanes of $A G(r-1,2) \mid F$ with $r\left(G \cap H_{1}\right)<r(F)-1$ and $r\left(G \cap H_{2}\right)<$ $r(F)-1$. As $A G(r-1,2) \mid(G \cap F)$ is an affine target of rank $r(F)$, there is a hyperplane H^{\prime} of $A G(r-1,2) \mid F$ that is monochromatic green. Since H^{\prime} must meet both of H_{1} and H_{2}, its intersection with each such set has rank $r(F)-3$. Since F is green, it follows that H_{1} or H_{2} is green.

Lemma 4.7. Let (G, R) be a 2-coloring of $A G(r-1, q)$, where $q \geq 3$. Assume that G is an affine target and F is a flat of $A G(r-1, q)$. Then exactly one of $G \cap F$ and $R \cap F$ has rank $r(F)$.

Proof. Assume $r(G \cap F)<r(F)$. Then there is a rank- $(r(F)-1)$ affine flat H_{G} containing $G \cap F$. Thus $F-H_{G}$ does not contain any green points, so $r(R \cap F)=r(F)$.

As with 2-colorings of $E(P G(r-1, q))$, for a 2-coloring (G, R) of $E(A G(r-$ $1, q)$), a flat F is green if $r(G \cap F)=r(F)$. We call F red if $r(R \cap F)=r(F)$. Furthermore, a flat F of $A G(r-1,2)$ is half-green and half-red if $r(G \cap F)=$ $r(R \cap F)=r(F)-1$. In this case, $G \cap F$ and $R \cap F$ are complementary hyperplanes of $A G(r-1,2) \mid F$.

The following results show how one can get an affine target from a projective target and how to construct projective targets from affine targets.
Proposition 4.8. Let (G, R) be a 2-coloring of $\operatorname{PG}(r-1, q)$. Let H be a hyperplane of $P G(r-1, q)$. Assume that G is a projective target. Then $P G(r-1, q) \mid(G-H)$ is an affine target.
Proof. As G is a projective target, G corresponds to a nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of projective flats, where G is equal to the union of $F_{i+1}-F_{i}$ for all even i. Then $F_{j}-H$ is an affine flat for all j. Therefore, $\left(F_{0}-\right.$ $\left.H, F_{1}-H, \ldots, F_{k}-H\right)$ is a nested sequence of affine flats. Let $F_{j}^{\prime}=F_{j}-H$ for all j. Then $P G(r-1, q) \mid(G-H)$ corresponds to the nested sequence $\left(F_{0}^{\prime}, F_{1}^{\prime}, \ldots, F_{k}^{\prime}\right)$ of affine flats and $G-H$ is equal to the union of $F_{i+1}^{\prime}-F_{i}^{\prime}$ for all even i.

The following result is immediate.
Proposition 4.9. Let (G, R) be a 2-coloring of $A G(r-1, q)$. Assume that G is an affine target corresponding to a nested sequence ($F_{0}, F_{1}, \ldots, F_{k}$) of affine flats where G is equal to the union of $F_{i+1}-F_{i}$ for all even i. Viewing $A G(r-1, q)$ as a restriction of $P G(r-1, q)$, the sequence $\left(\operatorname{cl}_{P}\left(F_{0}\right), \operatorname{cl}_{P}\left(F_{1}\right), \ldots, \mathrm{cl}_{P}\left(F_{k}\right)\right)$ is a nested sequence of projective flats and, if G_{P} is the projective target that is the union of $\mathrm{cl}_{P}\left(F_{i+1}\right)-\mathrm{cl}_{P}\left(F_{i}\right)$ for all even i, and $H=E(P G(r-1, q))-E(A G(r-1, q))$, then $P G(r-1, q) \mid\left(G_{P}-H\right) \cong$ $A G(r-1, q) \mid G$.

We call the projective target G_{P} that arises from the affine target G in Proposition 4.9 the standard projective target arising from G. Now consider an affine target M_{1} that arises from a green-red coloring of $P G(r-1, q) \backslash H$ where H is a projective hyperplane. Let M_{2} be a projective target that arises as a green-red coloring of H. We say that M_{1} and M_{2} are compatible if the green-red coloring of $P G(r-1, q)$ induced by the colorings of M_{1} and M_{2} is a projective target, that is, if $P G(r-1, q) \mid\left(E\left(M_{1}\right) \cup E\left(M_{2}\right)\right)$ is a projective target. In the previous proposition, the affine target G and the projective target $G_{P} \cap H$ are compatible as $P G(r-1, q) \mid\left(G \cup\left(G_{P} \cap H\right)\right)$ is the projective target G_{P}. We now consider when $\operatorname{PG}(r-1, q) \mid\left(E\left(M_{1}\right) \cup E\left(M_{2}\right)\right)$
is not a standard projective target. As M_{1} is an affine target, it corresponds to a canonical nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of affine flats. Let F_{h} be the first non-empty flat in this sequence. Then $\operatorname{cl}_{P}\left(F_{h}\right)$ meets the projective hyperplane H in a rank- $\left(r\left(F_{h}\right)-1\right)$ projective flat T. In the construction of a standard projective target, T is monochromatic. The next result shows that, apart from the standard projective target, the only way for M_{1} and M_{2} to be compatible is if we modify the standard projective target by replacing T with a 2-coloring of it that is a projective target.

Proposition 4.10. Let (G, R) be a 2-coloring of $P G(r-1, q)$. Let H be a projective hyperplane. Assume that $P G(r-1, q) \mid(G-H)$ is an affine target corresponding to a canonical nested sequence $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ of affine flats. Assume that $P G(r-1, q) \mid(G \cap H)$ is a projective target corresponding to a canonical nested sequence $\left(S_{0}, S_{1}, \ldots, S_{t}\right)$ of projective flats. Then $P G(r-$ $1, q) \mid(G-H)$ and $P G(r-1, q) \mid(G \cap H)$ are compatible if and only if, when β is the smallest h such that $r\left(F_{h}\right)>0$,
(i) there is an m in $\{0,1, \ldots, t\}$ such that $F_{\beta} \cup S_{m}$ is a projective flat, $r\left(S_{m}\right)=r\left(F_{\beta}\right)-1$, and $P G(r-1, q) \mid\left(G \cap\left(F_{\beta} \cup S_{m}\right)\right)$ is a projective target; and
(ii) for all α in $\{1,2, \ldots, k-\beta\}$, the set $F_{\beta+\alpha} \cup S_{m+\alpha}$ is a projective flat, $\left(F_{\beta+\alpha} \cup S_{m+\alpha}\right)-\left(F_{\beta+\alpha-1} \cup S_{\beta+\alpha-1}\right)$ is monochromatic, and $t=m+k-\beta$.

Proof. Assume that $P G(r-1, q) \mid(G-H)$ and $P G(r-1, q) \mid(G \cap H)$ are compatible. Then $P G(r-1, q) \mid G$ is a projective target corresponding to a canonical nested sequence $\left(X_{0}, X_{1}, \ldots, X_{s}\right)$ of projective flats. Thus $\left(X_{0} \cap\right.$ $\left.H, X_{1} \cap H, \ldots, X_{s} \cap H\right)$ is a nested sequence of projective flats for $P G(r-$ $1, q) \mid H$, and $\left(X_{0}-H, X_{1}-H, \ldots, X_{s}-H\right)$ is a nested sequence of affine flats for $P G(r-1, q) \backslash H$. Now,
(a) $X_{1}=\emptyset$ and $X_{2} \cap H=\emptyset$ but $X_{3} \cap H \neq \emptyset$; or
(b) $X_{1}=\emptyset$ and $X_{2} \cap H \neq \emptyset$; or
(c) $X_{1} \neq \emptyset$ but $X_{1} \cap H=\emptyset$ and $X_{2} \cap H \neq \emptyset$; or
(d) $X_{1} \neq \emptyset$ and $X_{1} \cap H \neq \emptyset$.

For the projective target $P G(r-1, q) \mid H$, the canonical nested sequence is $\left(X_{2} \cap H, X_{3} \cap H, \ldots, X_{s} \cap H\right)$ in case (a) and is ($\left.X_{0} \cap H, X_{1} \cap H, \ldots, X_{s} \cap H\right)$ in the other three cases.

Let γ be the smallest h such that $X_{h}-H$ is non-empty. Then $\mathrm{cl}_{P}\left(X_{\gamma}-H\right)$ meets H in a projective flat of rank $r\left(X_{\gamma}\right)-1$. Thus $P G(r-1, q) \mid\left(G \cap X_{\gamma} \cap H\right)$ is a projective target in $X_{\gamma} \cap H$ that corresponds to the canonical nested sequence $\left(X_{2} \cap H, X_{3} \cap H, \ldots, X_{\gamma} \cap H\right)$ in case (a) and to the canonical nested sequence $\left(X_{0} \cap H, X_{1} \cap H, \ldots, X_{\gamma} \cap H\right)$ in the other three cases.

Now $\left(X_{\gamma}-X_{\gamma-1}\right)-H=\left(X_{\gamma}-H\right)-\left(X_{\gamma-1}-H\right)=\left(X_{\gamma}-H\right)-\emptyset$. Thus $X_{\gamma}-H$ is monochromatic. Therefore, the canonical nested sequence corresponding to $P G(r-1, q) \mid(G-H)$ is $\left(X_{\gamma-1}-H, X_{\gamma}-H, \ldots, X_{s}-H\right)$ when $X_{\gamma}-H$ is green and is $\left(\emptyset, X_{\gamma-1}-H, X_{\gamma}-H, \ldots, X_{s}-H\right)$ when
$X_{\gamma}-H$ is red. Thus $\left(F_{0}, F_{1}, \ldots, F_{k}\right)$ is $\left(X_{\gamma-1}-H, X_{\gamma}-H, \ldots, X_{s}-H\right)$ when $X_{\gamma}-H$ is green and is $\left(\emptyset, X_{\gamma-1}-H, X_{\gamma}-H, \ldots, X_{s}-H\right)$ when $X_{\gamma}-H$ is red. We see that $F_{\beta}=X_{\gamma}-H$, that $F_{\beta} \cup\left(X_{\gamma} \cap H\right)$ is a projective flat, that $r\left(X_{\gamma} \cap H\right)=r\left(F_{\beta}\right)-1$, and that $P G(r-1, q) \mid\left(G \cap\left(F_{\beta} \cup\left(X_{\gamma} \cap H\right)\right)\right)=$ $P G(r-1, q) \mid\left(G \cap X_{\gamma}\right)$. Therefore, $P G(r-1, q) \mid\left(G \cap\left(F_{\beta} \cup\left(X_{\gamma} \cap H\right)\right)\right)$ is a projective target. Thus (i) holds. Evidently $F_{\beta+\alpha} \cup\left(X_{\gamma+\alpha} \cap H\right)=X_{\gamma+\alpha}$, so $F_{\beta+\alpha} \cup\left(X_{\gamma+\alpha} \cap H\right)$ is a projective flat for all α in $\{1,2, \ldots, k-\beta\}$. Moreover, $\gamma+k-\beta=s$ and (ii) holds.

Now suppose that (i) and (ii) hold. We know that $S_{m}-S_{m-1}$ and F_{β} are monochromatic. Then $P G(r-1, q) \mid G$ is a projective target for which the corresponding nested sequence is $\left(S_{0}, S_{1}, \ldots, S_{m-1}, F_{\beta} \cup S_{m}, F_{\beta+1} \cup S_{m+1}, \ldots\right.$, $\left.F_{k} \cup S_{t}\right)$ when the colors of $S_{m}-S_{m-1}$ and F_{β} match and is $\left(S_{0}, S_{1}, \ldots\right.$, $\left.S_{m}, F_{\beta} \cup S_{m}, F_{\beta+1} \cup S_{m+1}, \ldots, F_{k} \cup S_{t}\right)$ when the colors of $S_{m}-S_{m-1}$ and F_{β} differ. We conclude that $P G(r-1, q) \mid(G \cap H)$ and $P G(r-1, q) \mid(G-H)$ are compatible.

A minimal affine-non-target is an affine matroid that is not an affine target such that every proper induced restriction of it is an affine target. The next result is an analog of Lemma 2.7.

Lemma 4.11. Let (G, R) be a 2-coloring of $A G(r-1, q)$. Assume G is a rank-r minimal affine-non-target. Then $r(R)=r$.

Proof. Assume $r(R)<r$. Then R is contained in an affine hyperplane H. As G is a minimal affine-non-target, $A G(r-1, q) \mid(G \cap H)$ is an affine target corresponding to a nested sequence $\left(F_{0}, F_{1}, \ldots, F_{n-1}, H\right)$ of affine flats. As $R \subseteq H$, there are no red points in $E(A G(r-1, q))-H$. Then we obtain the contradiction that G is an affine target for which a corresponding sequence of nested affine flats is $\left(F_{0}, F_{1}, \ldots, F_{n-1}, H, E(A G(r-1, q))\right.$) if $H-F_{n-1} \subseteq R$ and $\left(F_{0}, F_{1}, \ldots, F_{n-1}, E(A G(r-1, q))\right)$ if $H-F_{n-1} \subseteq G$.

Lemma 4.12. Let (G, R) be a 2-coloring of $A G(r-1,2)$. Assume G is a minimal affine-non-target of rank r. Then $A G(r-1,2)$ has a red hyperplane and a green hyperplane that are disjoint.

Proof. Assume the lemma fails. By Lemma 4.11, $r(R)=r$, so we have a red hyperplane X_{1} and a green hyperplane Y_{1}. There are affine hyperplanes X_{2} and Y_{2} that are complementary to X_{1} and Y_{1}, respectively. As the lemma fails, X_{2} is not green and Y_{2} is not red. By assumption, X_{1} and Y_{1} meet in a rank- $(r-2)$ flat $F_{1,1}$. For $(i, j) \neq(1,1)$, let $F_{i, j}=X_{i} \cap Y_{j}$. As $r\left(F_{1,1}\right)=r-2$, it follows that $r\left(F_{i, j}\right)=r-2$ for each i and j. Then $\left\{F_{1,1}, F_{1,2}, F_{2,1}, F_{2,2}\right\}$ is a partition of $A G(r-1,2)$ and there are red points in each of $F_{1,2}$ and $F_{1,1}$, and there are green points in each of $F_{1,1}$ and $F_{2,1}$. Next we show the following.
4.12.1. There is a red point in $F_{2,1}$.

As $A G(r-1,2) \mid\left(R \cap X_{2}\right)$ is a target and $r\left(G \cap X_{2}\right)<r-1$, it follows, by Lemma 4.6, that either $r\left(R \cap X_{2}\right)=r-1$, or $R \cap X_{2}$ and $G \cap X_{2}$ are affine
flats of rank $r-2$. In the first case, there is certainly a red point in $F_{2,1}$. Consider the second case. Assume that $F_{2,1}$ is monochromatic green. Then $F_{2,2}$ is monochromatic red. As $r\left(R \cap F_{1,2}\right)>0$, we see that $r\left(R \cap Y_{2}\right)=r-1$, so Y_{2} is red, a contradiction. Thus 4.12.1 holds.
4.12.2. $F_{1,2}$ is red.

Assume that $F_{1,2}$ is not red. Then $r\left(R \cap F_{1,2}\right)<r-2$. As X_{1} is red and $r\left(G \cap F_{1,1}\right)>0$, it follows that $r\left(G \cap F_{1,2}\right)<r-2$. Thus, by Lemma 4.6, $R \cap F_{1,2}$ and $G \cap F_{1,2}$ are affine flats of rank $r-3$. Observe that $F_{1,1}$ is not red, otherwise $r\left(R \cap Y_{1}\right)=r-1$, a contradiction. Moreover, $F_{1,1}$ is not a green flat, otherwise X_{1} is a green hyperplane. Thus $R \cap F_{1,1}$ and $G \cap F_{1,1}$ are affine flats of rank $r-3$. Now, as $r\left(R \cap X_{1}\right)=r-1$ and $\left|R \cap X_{1}\right|=\left|G \cap X_{1}\right|$, it follows by Lemma 4.5 that $r\left(G \cap X_{1}\right)=r-1$, a contradiction to Lemma 4.6. Therefore, 4.12.2 holds.

As Y_{2} is not red but $F_{1,2}$ is red, $F_{2,2}$ is monochromatic green. Since $r\left(G \cap F_{2,1}\right)>0$, we obtain the contradiction that X_{2} is green.

In each of the remaining results in this section, we shall consider disjoint sets \mathbf{X} and \mathbf{Y} of hyperplanes of $A G(r-1, q)$ where the members of \mathbf{X} and \mathbf{Y} partition $E(A G(r-1, q))$. With $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{q}\right\}$ and $\mathbf{Y}=$ $\left\{Y_{1}, Y_{2}, \ldots, Y_{q}\right\}$, we let $F_{i, j}=X_{i} \cap Y_{j}$ for all i and j.

Lemma 4.13. Let (G, R) be a 2-coloring of $A G(r-1, q)$, where $q \geq 3$. Assume that G is a minimal affine-non-target of rank r. Then $A G(r-1, q)$ has a red hyperplane and a green hyperplane that are disjoint.

Proof. Assume the lemma fails. By Lemma 4.7, each proper flat of $A G(r-$ $1, q)$ is either red or green but not both. By Lemma 4.11, $r(G)=r(R)=r$, so $A G(r-1, q)$ has a red hyperplane X_{1} and a green hyperplane Y_{1}. Then there are partitions $\left\{X_{1}, X_{2}, \ldots, X_{q}\right\}$ and $\left\{Y_{1}, Y_{2}, \ldots, Y_{q}\right\}$ of $E(A G(r-1, q))$ into sets \mathbf{X} and \mathbf{Y} of hyperplanes. By assumption, all the hyperplanes in \mathbf{X} are red and all the hyperplanes in \mathbf{Y} are green. As $X_{1} \cap Y_{1} \neq \emptyset$, it follows, by Lemma 4.4, that $r\left(F_{i, j}\right)=r-2$ for all i and j.

As X_{1} is red, at most one of $F_{1,1}, F_{1,2}, \ldots, F_{1, q-1}$, and $F_{1, q}$ is green. Thus, we may assume that $F_{1,1}, F_{1,2}, \ldots, F_{1, q-2}$, and $F_{1, q-1}$ are red. As $F_{1,1}$ is red and Y_{1} is green, $Y_{1}-F_{1,1}$ will be monochromatic green. Similarly, $Y_{2}-F_{1,2}$ will be monochromatic green. This implies that $r\left(G \cap X_{2}\right)=r\left(R \cap X_{2}\right)=$ $r-1$, a contradiction.

The following technical lemmas show a relationship between the lines and planes of $A G(r-1, q)$ and the hyperplanes in \mathbf{X} and \mathbf{Y}. In these lemmas, when we take closures, we are doing so in the underlying affine geometry $A G(r-1, q)$.

Lemma 4.14. Let \boldsymbol{X} and \boldsymbol{Y} be two disjoint sets each consisting of a set of hyperplanes that partition $A G(r-1, q)$. Let x and y be distinct elements of $E(A G(r-1, q))$ such that $\left|\{x, y\} \cap F_{i, j}\right| \leq 1$ for all i, j and no member of
\boldsymbol{X} or \boldsymbol{Y} contains $\{x, y\}$. Then $\left|\operatorname{cl}(\{x, y\}) \cap X_{i}\right|=1$ and $\mid \operatorname{cl}\left(\{x, y\} \cap Y_{j} \mid=1\right.$ for all i and j.

Proof. Clearly $\left|\operatorname{cl}(\{x, y\}) \cap X_{i}\right| \leq 1$ for all i, otherwise X_{i} contains $\{x, y\}$. As $|\operatorname{cl}(\{x, y\})|=q$, we deduce that $\left|\operatorname{cl}(\{x, y\}) \cap X_{i}\right|=1$ for all i. The lemma follows by symmetry.

Lemma 4.15. For q in $\{2,3\}$, let \boldsymbol{X} and \boldsymbol{Y} be two disjoint sets each consisting of a set of hyperplanes that partition $A G(r-1, q)$. Let $\{x, y, z\}$ be a rank-3 subset of $E(A G(r-1, q))$ such that $\left|\{x, y, z\} \cap F_{i, j}\right| \leq 1$ for all i and j, and there is an X_{k} in \boldsymbol{X} such that $\left|X_{k} \cap\{x, y, z\}\right|=2$. Then $\left|\operatorname{cl}(\{x, y, z\}) \cap F_{i, j}\right|=1$ for all i and j.

Proof. Note that, by Lemma 4.3, each $F_{i, j}$ has rank $r-2$. Let $q=2$. We may assume that $x \in F_{1,1}$, that $y \in F_{1,2}$, and that $z \in F_{2,1}$. As $r(\{x, y, z\})=3$, there is exactly one point, say $e, \operatorname{in} \operatorname{cl}(\{x, y, z\})-\{x, y, z\}$. Assume $e \notin F_{2,2}$. Then, by symmetry, we may assume that $e \in X_{1}$. As $\{e, x, y, z\}$ is a circuit, we deduce that $z \in X_{1}$, a contradiction.

Now assume that $q=3$. We may assume that $x \in F_{1,1}$ and $y \in F_{1,2}$. Suppose $z \in F_{2,3}$. Consider $\operatorname{cl}(\{x, z\})$. The third point e on this line cannot be in X_{1}, otherwise the circuit $\{e, x, z\}$ gives the contradiction that z is in X_{1}. Similarly, e cannot be in X_{2}, Y_{1}, or Y_{3}. Therefore, $e \in F_{3,2}$. By a similar argument, the third point on $\operatorname{cl}(\{y, z\})$ is in $F_{3,1}$. Continuing in this manner, we deduce that $\left|\operatorname{cl}(\{x, y, z\}) \cap X_{3}\right|=3$. Since $|\operatorname{cl}(\{x, y, z\})|=9$, using the same technique, we deduce that $\left|\operatorname{cl}(\{x, y, z\}) \cap F_{i, j}\right|=1$ for all i and j. By symmetry, we may now assume that $z \in F_{2,1}$. Then the third elements on the lines $\operatorname{cl}(\{x, z\}), \operatorname{cl}(\{x, y\})$, and $\operatorname{cl}(\{y, z\})$ are in $F_{3,1}, F_{1,3}$, and $F_{3,3}$, respectively. Arguing as before, we again deduce that $\left|\operatorname{cl}(\{x, y, z\}) \cap F_{i, j}\right|=1$ for all i and j.

Lemma 4.16. Let \boldsymbol{X} and \boldsymbol{Y} be two disjoint sets of each consisting of hyperplanes that partition $A G(r-1,2)$. Let $P_{1}=\{w, x, y, z\}$ be a rank-3 flat of $A G(r-1,2)$ such that $w, x \in F_{1,2}$ and $y, z \in F_{2,1}$. Let $P_{2}=\{e, f, y, z\}$ be a rank-3 flat of $A G(r-1,2)$ such that $e, f \in F_{2,2}$. Then $\operatorname{cl}\left(P_{1} \cup P_{2}\right)$ is a rank-4 affine flat such that $\left|\operatorname{cl}\left(P_{1} \cup P_{2}\right) \cap F_{i, j}\right|=2$ for all i and j.

Proof. As $\left|P_{1} \cap P_{2}\right|=2$, it follows that $r\left(P_{1} \cup P_{2}\right)=4$. Thus $\operatorname{cl}\left(P_{1} \cup P_{2}\right)$ is a rank-4 affine flat. Now consider $\operatorname{cl}(\{e, w, z\})$. By Lemma 4.15, $\operatorname{cl}(\{e, w, z\})$ intersects $F_{1,1}$ in an affine flat. Therefore, as $\operatorname{cl}\left(P_{1} \cup P_{2}\right)$ meets each of $X_{1}, X_{2}, Y_{1}, Y_{2}, F_{1,1}, F_{1,2}, F_{2,1}$, and $F_{2,2}$ in an affine flat, each such intersection has 1,2 , or 4 elements. Thus the lemma follows.

We now prove the main results of this section.
Proof of Theorem 1.3. Assume G is an affine target and there is a rank-4 affine flat F such that $A G(r-1,2) \mid(G \cap F) \cong U_{4,4}$. Then $A G(r-1,2) \mid(R \cap$ $F) \cong U_{4,4}$. This contradicts Lemma 4.6 as $r(G \cap F)=r(R \cap F)=4$. Hence a binary affine target does not have $U_{4,4}$ as an induced restriction.

Let (G, R) be a 2-coloring of $A G(r-1,2)$. Suppose that G is a rank- r minimal affine-non-target and that G does not contain $U_{4,4}$ as an induced restriction. By Lemma 4.12, $A G(r-1,2)$ has a red hyperplane X_{1} and a green hyperplane X_{2} such that $X_{1} \cap X_{2}=\emptyset$. By Lemma 4.11, $r(R)=r$, so there is a red point z in X_{2}. As $A G(r-1,2) \mid\left(R \cap X_{1}\right)$ is an affine target, in X_{1}, there is a monochromatic red rank- $(r-2)$ flat $F_{1,1}$. Observe that $\operatorname{cl}\left(F_{1,1} \cup z\right)$ is a red hyperplane Y_{1} that intersects X_{1} and X_{2}. Then there is a hyperplane Y_{2} that is complementary to Y_{1}. By Lemma 4.4, $r\left(F_{i, j}\right)=$ $r-2$ for all i and j. Observe that z is in $F_{2,1}$. Furthermore, there is a red point e in $F_{1,2}$ and there are green points f and g in $F_{2,1}$ and $F_{2,2}$, respectively. As $r(G)=r$, there is a green point h in $F_{1,2}$. We make the following observations.
4.17.1. $F_{1,2} \cup F_{2,1}$ is an affine hyperplane.

Observe that $F_{2,1}$ is contained in three affine hyperplanes, two of which are $F_{1,1} \cup F_{2,1}$ and $F_{2,1} \cup F_{2,2}$. Therefore, $F_{1,2} \cup F_{2,1}$ is the third such hyperplane. Thus 4.17.1 holds.
4.17.2. $F_{2,2}$ is not monochromatic green.

Assume that $F_{2,2}$ is monochromatic green. Then Y_{2} is green. By 4.17.1, $F_{1,2} \cup F_{2,1}$ is an affine hyperplane, so both $A G(r-1,2) \mid\left(G \cap\left(F_{1,2} \cup F_{2,1}\right)\right)$ and $A G(r-1,2) \mid\left(R \cap\left(F_{1,2} \cup F_{2,1}\right)\right)$ are affine targets. Then there is a rank- $(r-2)$ affine flat F such that either $G \cap\left(F_{1,2} \cup F_{2,1}\right) \subseteq F$ or $R \cap\left(F_{1,2} \cup F_{2,1}\right) \subseteq F$. Because we currently have symmetry between the red and green subsets of $A G(r-1,2)$, we may assume the former. Then f and h are in F. Let x be a red point in $F_{1,2}-F$. Let $P_{1}=\operatorname{cl}(\{f, h, x\})$. The fourth point y on this plane is in Y_{1}, otherwise the circuit $\{f, h, x, y\}$ gives the contradiction that $f \in Y_{2}$. Moreover, $y \notin F$, otherwise the circuit $\{f, h, x, y\}$ gives the contradiction that $x \in F$. Thus $y \in F_{1,2}-F$, so y is red. Let $P_{2}=\operatorname{cl}(\{f, g, y\})$. Then the fourth point g^{\prime} on this plane is in $F_{2,2}$, so g^{\prime} is green. By Lemma 4.16, $r\left(\operatorname{cl}\left(P_{1} \cup P_{2}\right)\right)=4$. Let $\{s, t\}=\operatorname{cl}\left(P_{1} \cup P_{2}\right)-\left\{f, g, g^{\prime}, h, x, y\right\}$. Then, by Lemma 4.16, s and t in $F_{1,1}$, so both points are red. Therefore, $r\left(G \cap \operatorname{cl}\left(P_{1} \cup\right.\right.$ $\left.\left.P_{2}\right)\right)=r\left(R \cap \operatorname{cl}\left(P_{1} \cup P_{2}\right)\right)=4$, so $A G(r-1,2) \mid\left\{f, g, g^{\prime}, h\right\} \cong U_{4,4}$. We conclude that $A G(r-1,2) \mid G$ has $U_{4,4}$ as an induced restriction, a contradiction. Thus 4.17.2 holds.

The affine hyperplane $F_{1,2} \cup F_{2,1}$ is either green, red, or half-green and half-red.
4.17.3. $F_{1,2} \cup F_{2,1}$ is not red

Assume that $F_{1,2} \cup F_{2,1}$ is red. Then, by Lemma 4.6, at least one of $F_{1,2}$ and $F_{2,1}$ will be red. Assume that $F_{2,1}$ is red. As X_{2} is green, $F_{2,2}$ is monochromatic green, otherwise $r\left(R \cap X_{2}\right)=r-1$. By 4.17.2, we deduce that $F_{2,1}$ is not red. Thus $F_{1,2}$ is red. Observe that if $F_{2,1}$ is green, then $r\left(G \cap\left(F_{1,2} \cup F_{2,1}\right)\right)=r\left(R \cap\left(F_{1,2} \cup F_{2,1}\right)\right)=r-1$, a contradiction. Thus, $F_{2,1}$ is half-green and half-red. As X_{2} is green, by Lemma 4.6, $F_{2,2}$ is green.

Therefore $r\left(G \cap\left(F_{2,2} \cup h\right)\right)=r-1$, so Y_{2} is green. As $F_{1,2}$ is red, $F_{2,2}$ is monochromatic green, a contradiction to 4.17.2. Therefore, 4.17.3 holds.

Since $F_{1,2} \cup F_{2,1}$ is not red, there is a monochromatic green flat Z of rank $r-2$ that is contained in $F_{1,2} \cup F_{2,1}$. Because neither $F_{1,2}$ nor $F_{2,1}$ is monochromatic green, Z meets $F_{1,2}$ and $F_{2,1}$ in monochromatic green flats, $Z_{1,2}$ and $Z_{2,1}$, of rank $r-3$. Similarly, as X_{2} is green, there is a monochromatic green flat V of rank $r-2$ that is contained in X_{2}. Because neither $F_{2,1}$ nor $F_{2,2}$ is monochromatic green, V meets $F_{2,1}$ and $F_{2,2}$ in monochromatic green flats, $V_{2,1}$ and $V_{2,2}$, of rank $r-3$.

In the next part of the argument, we shall use the observation that if Y_{2} is green, then we have symmetry between $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$.
4.17.4. $F_{1,2} \cup F_{2,1}$ is not green.

Assume that $F_{1,2} \cup F_{2,1}$ is green. Then, by Lemma 4.6, $F_{2,1}$ or $F_{1,2}$ is green. But the latter case implies that Y_{2} is green, so this case can be reduced to the former by the symmetry between $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ noted above. Thus we may assume that $F_{2,1}$ is green.

Now $Z_{2,1}$ and $V_{2,1}$ are rank- $(r-3)$ monochromatic green flats that are both contained in $F_{2,1}$. Suppose $Z_{2,1}=V_{2,1}$. As $F_{2,1}$ is green, there is a green element g_{1} in $F_{2,1}-Z_{2,1}$. Since $F_{2,2}$ is not monochromatic green, there is a red point u_{1} in $F_{2,2}-V_{2,2}$. Take a green point g_{2} in $V_{2,2}$ and let $P_{1}=$ $\operatorname{cl}\left(\left\{g_{1}, g_{2}, u_{1}\right\}\right)$. Let the fourth point on this plane be g_{3}. Then $g_{3} \in F_{2,1}$, otherwise the circuit $\left\{g_{1}, g_{2}, g_{3}, u_{1}\right\}$ implies that $g_{1} \in F_{2,2}$, a contradiction. Likewise, $g_{3} \in V_{2,1}$, otherwise $g_{2} \notin V$, a contradiction. Because X_{1} is red, there is a red point u_{2} in $F_{1,2}-Z_{1,2}$. Let $P_{2}=\operatorname{cl}\left(\left\{g_{1}, g_{3}, u_{2}\right\}\right)$. Let g_{4} be the fourth point on this plane. Then the circuit $\left\{g_{1}, g_{3}, g_{3}, u_{2}\right\}$ implies that $g_{4} \in Z_{1,2}$, so g_{4} is green. By Lemma 4.16, $\operatorname{cl}\left(P_{1} \cup P_{2}\right)$ is a rank-4 affine flat having two points, s and t, in $F_{1,1}$. We see that $A G(r-1,2) \mid\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \cong$ $U_{4,4}$. Thus G has $U_{4,4}$ as an induced restriction, a contradiction. Thus $Z_{2,1} \neq V_{2,1}$.

Now Y_{2} contains the monochromatic green flats $Z_{1,2}$ and $V_{2,2}$, each of which has rank $r-3$. Thus Y_{2} is green, or Y_{2} is half-green and half-red. Assume the latter. Then $Z_{1,2} \cup V_{2,2}$ is a monochromatic green flat of rank $r-2$ and $Y_{2}-\left(Z_{1,2} \cup V_{2,2}\right)$ is a monochromatic red flat of rank $r-2$. As before, we take u_{1} to be a red point in $F_{2,2}$. Choose g_{1} to be a point in $V_{2,2}$. Then g_{1} is green. Let g_{2} be a point in $Z_{2,1}-V_{2,1}$, so g_{2} is green. Let $P_{1}=\operatorname{cl}\left(\left\{g_{1}, g_{2}, u_{1}\right\}\right)$ and let g_{3} be the fourth point in P_{1}. Then $g_{3} \in F_{2,1}$ and $g_{3} \in V$. Thus $g_{3} \in V_{2,1}$, so g_{3} is green. Choose u_{2} in $F_{1,2}-Z_{1,2}$. Then u_{2} is red. Let $P_{2}=\operatorname{cl}\left(\left\{g_{1}, u_{1}, u_{2}\right\}\right)$ and let g_{4} be the fourth point in P_{2}. Then $g_{4} \in F_{1,2}$ and $g_{4} \in Z_{1,2} \cup V_{2,2}$, so $g_{4} \in Z_{1,2}$. Thus g_{4} is green. By Lemma 4.16, $\operatorname{cl}\left(P_{1} \cup P_{2}\right)$ is a rank-4 affine flat that meets $F_{1,1}$ in two elements, both of which are red. Moreover, $A G(r-1,2) \mid\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \cong U_{4,4}$, a contradiction.

We now know that Y_{2} is green. Then there is a monochromatic green flat W of rank $r-2$ such that $W \subseteq Y_{2}$. As neither $F_{1,2}$ nor $F_{2,2}$ is monochromatic green, $W \cap F_{1,2}$ and $W \cap F_{2,2}$ are monochromatic green flats, $W_{1,2}$ and $W_{2,2}$,
of rank $r-3$. We choose u_{1} to be a red point in $F_{2,2}-\left(V_{2,2} \cup W_{2,2}\right)$. Choose g_{1} in $V_{2,2} \cup W_{2,2}$. Then g_{1} is green. Choose g_{2} in $Z_{2,1}-V_{2,1}$. Then g_{2} is green. The fourth point g_{3} of the plane P_{1} that equals $\operatorname{cl}\left(\left\{g_{1}, g_{2}, u_{1}\right\}\right)$ is in $F_{2,1} \cap V$; that is, $g_{3} \in V_{2,1}$, so g_{3} is green. Now let u_{2} be a red point in $F_{1,2}-\left(Z_{1,2} \cup W_{1,2}\right)$. The fourth point g_{4} on the plane P_{2} that equals $\operatorname{cl}\left(\left\{g_{1}, u_{1}, u_{2}\right\}\right)$ is in $F_{1,2} \cap W$, so it is in $W_{2,1}$ and hence is green. Then, by Lemma 4.16, $\operatorname{cl}\left(P_{1} \cup P_{2}\right)$ is a rank-4 affine flat that contains exactly four green points g_{1}, g_{2}, g_{3}, and g_{4}. Since $A G(r-1,2) \mid\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \cong U_{4,4}$, we have a contradiction. We conclude that 4.17.4 holds.

By 4.17.3 and 4.17.4, we must have that $F_{1,2} \cup F_{2,1}$ is half-green and halfred. As Z is a monochromatic green flat of rank $r-2$ that is contained in $F_{1,2} \cup F_{2,1}$, we deduce that $\left(F_{1,2} \cup F_{2,1}\right)-Z$ is a monochromatic red flat of rank $r-2$. Moreover, $F_{1,2}-Z$ and $F_{2,1}-Z$ are monochromatic red flats of rank $r-3$. Thus $V_{2,1}=Z_{2,1}$. As X_{2} is green, there is a green point g_{1} in $F_{2,2}-V$. Take g_{2} to be a point in $V_{2,2}$ and let u_{1} be a point in $F_{2,1}-V_{2,1}$. Let $P_{1}=\operatorname{cl}\left(\left\{g_{1}, g_{2}, u_{1}\right\}\right)$. The fourth point g_{3} on this plane is in $F_{2,2}$ and in V so it is in $V_{2,2}$ and hence it is green. Let u_{2} be a point in $F_{1,2}-Z_{1,2}$. Then u_{2} is red. Let $P_{2}=\operatorname{cl}\left(\left\{g_{3}, u_{1}, u_{2}\right\}\right)$. The fourth point g_{4} on this plane is in $F_{1,2} \cap Z$, so it is green. By Lemma 4.16, $\operatorname{cl}\left(P_{1} \cup P_{2}\right)$ is a rank-4 affine flat that contains exactly four green points, g_{1}, g_{2}, g_{3}, and g_{4}. Moreover, $A G(r-1,2) \mid\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\} \cong U_{4,4}$, a contradiction. We conclude that the theorem holds.

Proof of Theorem 1.4. Assume that G is an affine target over $G F(3)$ such that there is an affine flat F for which $A G(r-1,3) \mid(G \cap F)$ is one of $U_{3,3}, U_{3,4}, U_{2,3} \oplus U_{1,1}, U_{2,3} \oplus_{2} U_{2,4}, P\left(U_{2,3}, U_{2,3}\right)$, or \mathcal{W}^{3}. Then $r(G \cap F)=$ $r(R \cap F)=3$, contradicting Lemma 4.7.

Let (G, R) be a 2 -coloring of $A G(r-1,3)$. Suppose that G is a rankr minimal affine-non-target. Then $r(G) \geq 3$. If $r(G)=3$, then, by Lemma 4.11, $r(R)=3$. One can now check that $A G(r-1,3) \mid G$ is one of $U_{3,3}, U_{3,4}, U_{2,3} \oplus U_{1,1}, U_{2,3} \oplus_{2} U_{2,4}, P\left(U_{2,3}, U_{2,3}\right)$, or \mathcal{W}^{3}. Thus we may assume $r(G) \geq 4$ and that G does not contain a rank-3 flat F such that $r(G \cap F)=r(R \cap F)=3$. By Lemma 4.11, $r(R)=r$. Now, by Lemma 4.13, there is a green hyperplane X_{1} and a red hyperplane X_{2} that are disjoint. Let $\left\{X_{1}, X_{2}, X_{3}\right\}$ and $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ be distinct sets, \mathbf{X} and \mathbf{Y}, each consisting of three disjoint hyperplanes in $A G(r-1,3)$. Then, by Lemma 4.4, $r\left(F_{i, j}\right)=r-2$ for all i and j. We proceed by showing there are no possible colorings of the hyperplanes in \mathbf{Y}.
4.18.5. If $F_{1,1}$ and $F_{1,2}$ are green, then Y_{1} or Y_{2} is green.

Assume that Y_{1} and Y_{2} are both red. Then $Y_{1}-F_{1,1}$ and $Y_{2}-F_{1,2}$ are monochromatic red. As $r(G)=r$, there is a green element e in $Y_{3}-F_{1,3}$. Let f and g be green elements in $F_{1,1}$ and $F_{1,2}$, respectively. Consider $\operatorname{cl}(\{e, f, g\})$. By Lemma 4.15 this plane will contain red points in $F_{2,1}, F_{2,2}$, and $F_{3,2}$. Therefore $r(G \cap \operatorname{cl}(\{e, f, g\}))=r(R \cap \operatorname{cl}(\{e, f, g\}))=3$, a contradiction. Thus 4.18.5 holds.
4.18.6. There cannot be at least two red hyperplanes or at least two green hyperplanes in \mathbf{Y}.

Assume that Y_{1} and Y_{2} are red. As X_{1} is green, at most one of $F_{1,1}, F_{1,2}$, and $F_{1,3}$ is red. By 4.18.5, we may assume that $F_{1,2}$ is red. Then $X_{1}-F_{1,2}$ is monochromatic green, so $Y_{1}-F_{1,1}$ is monochromatic red. As $r(G)=r$, there is a green point g that is not in X_{1}. Then $g \in F_{2,2} \cup F_{2,3} \cup F_{3,2} \cup F_{3,3}$. Let e be a green point in $F_{1,1}$, and f be a red point in $F_{1,2}$. Consider $\operatorname{cl}(\{e, f, g\})$. By Lemma 4.15, this plane will contain red points in $F_{2,1}$ and $F_{3,1}$, and a green point in $F_{1,3}$. Therefore, $r(G \cap \operatorname{cl}(\{e, f, g\}))=r(R \cap \operatorname{cl}(\{e, f, g\}))=3$, a contradiction. By symmetry, there cannot be two green hyperplanes in \mathbf{Y}. Thus 4.18.6 holds.

We conclude that there are no possible colorings of the hyperplanes in \mathbf{Y}, a contradiction.

Proof of Theorem 1.5. Assume that G is an affine target over $G F(q)$ for $q \geq 4$. If there is an affine flat F such that $A G(r-1, q) \mid(G \cap F)$ is any of $U_{2,2}, U_{2,3}, \ldots, U_{2, q-3}$, or $U_{2, q-2}$, then $r(G \cap F)=r(R \cap F)$, contradicting Lemma 4.7.

Let (G, R) be a 2 -coloring of $A G(r-1, q)$. Suppose that G is a rankr minimal affine-non-target that does not contain $U_{2,2}, U_{2,3}, \ldots, U_{2, q-3}$, or $U_{2, q-2}$ as an induced restriction. Then $r(G) \geq 3$. By Lemma 4.7, $r(R)=r$. Now, by Lemma 4.13, there is a red hyperplane X_{1} that is disjoint from a green hyperplane X_{2}. Let $\left\{X_{1}, X_{2}, \ldots, X_{q}\right\}$ and $\left\{Y_{1}, Y_{2}, \ldots, Y_{q}\right\}$ be disjoint sets, \mathbf{X} and \mathbf{Y}, each consisting of q disjoint hyperplanes in $A G(r-1, q)$. By Lemma 4.4, $r\left(F_{i, j}\right)=r-2$ for all i and j. We show there are no possible colorings of the hyperplanes in \mathbf{Y}.
4.19.7. There is at least one green hyperplane and at least one red hyperplane in \boldsymbol{Y}.

Assume that all members of \mathbf{Y} are red. As X_{2} is green, we may assume that $F_{2,1}, F_{2,2}, \ldots, F_{2, q-2}$, and $F_{2, q-1}$ are green. Then $Y_{k}-F_{2, k}$ is monochromatic red for all k in $\{1,2, \ldots, q-1\}$. As $r(G)=r$, there is a green element e in $Y_{q}-F_{2, q}$. We may assume that $e \in F_{3, q}$. Let f be a green element in $F_{2,1}$. Consider $\operatorname{cl}(\{e, f\})$. By Lemma 4.14, this line will contain red points in $Y_{2}-\left(F_{2,2} \cup F_{3,2}\right)$ and $Y_{3}-\left(F_{2,3} \cup F_{3,3}\right)$. However, this gives the contradiction that $r(G \cap \operatorname{cl}(\{e, f\}))=r(R \cap \operatorname{cl}(\{e, f\}))=2$. By symmetry, not all members of \mathbf{Y} are green. Thus 4.19.7 holds.
4.19.8. There cannot be at least two green hyperplanes and at least two red hyperplanes in \boldsymbol{Y}.

Let Y_{1} and Y_{2} be green and let Y_{3} and Y_{4} be red. As X_{1} is red, at most one of $F_{1,1}, F_{1,2}, \ldots, F_{1, q-1}$, and $F_{1, q}$ is green. This implies that $F_{1,1}$ or $F_{1,2}$ is red, so we may assume the latter. Then $Y_{2}-F_{1,2}$ is monochromatic green. Similarly, as X_{2} is green, $F_{2,3}$ or $F_{2,4}$, say $F_{2,3}$, is green. Then $Y_{3}-F_{2,3}$ is monochromatic red. Assume $F_{1,1}$ and $F_{2,1}$ are green. Then $X_{1}-F_{1,1}$
is monochromatic red. Let e be a red point in $F_{1,4}$ and let f be a green point in $F_{2,1}$. Consider $\operatorname{cl}(\{e, f\})$. Then, by Lemma 4.14, this line will have a green point in $Y_{2}-\left(F_{1,2} \cup F_{2,2}\right)$ and a red point in $Y_{3}-\left(F_{1,3} \cup F_{2,3}\right)$. Hence $r(G \cap \operatorname{cl}(\{e, f\}))=r(R \cap \operatorname{cl}(\{e, f\}))$, a contradiction. A symmetric argument holds when $F_{1,4}$ and $F_{2,4}$ are both red. Therefore, either $F_{1,1}$ or $F_{2,1}$ is red, and either $F_{1,4}$ or $F_{2,4}$ is green. This implies that $Y_{1}-\left(F_{1,1} \cup F_{2,1}\right)$ is monochromatic green and $Y_{4}-\left(F_{1,4} \cup F_{2,4}\right)$ is monochromatic red. Hence $r\left(G \cap X_{3}\right)=r\left(R \cap X_{3}\right)=r-1$, a contradiction. Thus 4.19.8 holds.
4.19.9. There cannot be exactly one red hyperplane or exactly one green hyperplane in \boldsymbol{Y}.

Assume that Y_{1} is red and $Y_{2}, Y_{3}, \ldots, Y_{q-1}$, and Y_{q} are green. As X_{1} is red, at most one of $F_{1,1}, F_{1,2}, \ldots, F_{1, q-1}$, and $F_{1, q}$ is green. First assume that $F_{1,2}, F_{1,3}, \ldots, F_{1, q-1}$ and $F_{1, q}$ are red. Then $Y_{k}-F_{1, k}$ is monochromatic green for all k in $\{2,3, \ldots, q\}$. By Lemma 4.7, $r(R)=r$, so there is a red point e in $Y_{1}-F_{1,1}$. We may assume e is in $F_{2,1}$. Let f be a red point in $F_{1,2}$ and consider $\operatorname{cl}(\{e, f\})$. By Lemma 4.14, this line will have green points in $X_{3}-\left(F_{3,1} \cup F_{3,2}\right)$ and $X_{4}-\left(F_{4,1} \cup F_{4,2}\right)$. Therefore, $r(G \cap \operatorname{cl}(\{e, f\}))=$ $r(R \cap \operatorname{cl}(\{e, f\}))=2$, a contradiction.

Now assume that $F_{1,2}$ is green. Then $X_{1}-F_{1,2}$ is monochromatic red. Hence $Y_{k}-F_{1, k}$ is monochromatic green for all k in $\{3,4, \ldots, q\}$. Let e be a red element in $Y_{1}-F_{1,1}$ and f be a green element in $Y_{2}-F_{1,2}$ such that $\left|X_{i} \cap\{e, f\}\right| \leq 1$ for all i in $\{2,3, \ldots, q\}$. As Y_{1} is red and Y_{2} is green, such a pair of points exists. We may assume that $e \in F_{2,1}$ and $f \in F_{3,2}$. Then, by Lemma 4.14, $\operatorname{cl}(\{e, f\})$ will contain a red element in $X_{1}-\left(F_{1,1} \cup F_{1,2}\right)$ and a green element in $X_{4}-\left(F_{4,1} \cup F_{4,2}\right)$, a contradiction. By symmetry, there cannot be exactly one green hyperplane in \mathbf{Y}. Thus 4.19.9 holds.

We conclude that there are no possible colorings of the hyperplanes in \mathbf{Y}, a contradiction.

References

[1] V. Chvátal and P. L. Hammer, Aggregation of inequalities in integer programming, Studies in Integer Programming (Proc. Workshop, Bonn, 1975), pp. 145-162. Ann. of Discrete Math., Vol. 1, North-Holland, Amsterdam, 1977.
[2] P. Nelson and K. Nomoto, The structure of claw-free binary matroids, J. Combin. Theory Ser. B 150 (2021), 76-118.
[3] J. Oxley, Matroid Theory, Second Edition, Oxford University Press, New York, 2011.
[4] J. Oxley and J. Singh, The smallest classes of binary and ternary matroids closed under direct sums and complements, SIAM J. Discrete Math. 36 (2022), 2051-2072.

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
Email address: mmizel4@1su.edu
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
Email address: oxley@math.lsu.edu

