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Abstract Bill Tutte was born on May 14, 1917 in Newmarket, England. In 1935,
he began studying at Trinity College, Cambridge reading natural sciences specializ-
ing in chemistry. After completing a master’s degree in chemistry in 1940, he was
recruited to work at Bletchley Park as one of an elite group of codebreakers that
included Alan Turing. While there, Tutte performed “one of the greatest intellec-
tual feats of the Second World War.” Returning to Cambridge in 1945, he com-
pleted a Ph.D. in mathematics in 1948. Thereafter, he worked in Canada, first in
Toronto and then as a founding member of the Department of Combinatorics and
Optimization at the University of Waterloo. His contributions to graph theory alone
mark him as arguably the twentieth century’s leading researcher in that subject. He
also made groundbreaking contributions to matroid theory including proving the
first excluded-minor theorems for matroids, one of which generalized Kuratowski’s
Theorem. He extended Menger’s Theorem to matroids and laid the foundations for
structural matroid theory. In addition, he introduced the Tutte polynomial for graphs
and extended it and some relatives to matroids. This paper will highlight some of
his many contributions focusing particularly on those to matroid theory.

1 Introduction

The task of summarizing Bill Tutte’s mathematical contributions in a short paper
is an impossible one. There are too many, they are too deep, and their implications
are too far-reaching. This paper will discuss certain of these contributions giving
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particular emphasis to his work in matroid theory and the way in which that work
links to graph theory. The terminology used here will follow Oxley [16].

This paper will attempt to give insight into the thoughts and motivations that
guided Tutte’s mathematical endeavours. To do this, we shall quote extensively from
three sources. Dan Younger, Tutte’s long-time colleague and friend at the Univer-
sity of Waterloo, wrote the paper William Thomas Tutte 14 May 1917 – 2 May
2002 [53] in the Biographical Memoirs of Fellows of the Royal Society, and that
paper includes many quotes from Tutte that are reproduced here. In 1999, Tutte pre-
sented the Richard Rado Lecture The Coming of the Matroids at the British Combi-
natorial Conference in Canterbury. We will also quote from Tutte’s write-up of that
lecture in the conference proceedings [47]. Finally, we draw on commentaries by
Tutte on his own papers that appear in Selected Papers of W.T. Tutte I, II [45, 46],
published in 1979 to mark Tutte’s sixtieth birthday.

These Selected Papers were edited by D. McCarthy and R. G. Stanton. Ralph
Stanton was a noted mathematician who had been the first Dean of Graduate Stud-
ies at the University of Waterloo and who recruited Tutte to Waterloo from Toronto
in 1962. Stanton’s foreward to the Selected Papers provides a context for the mag-
nitude of Tutte’s achievements:

Not too many people are privileged to practically create a subject, but there have been
several this century. Albert Einstein created Relativity . . . Similarly, modern Statistics owes
its existence to Sir Ronald Fisher’s exceptionally brilliant and creative work. And I think
that Bill Tutte’s place in Graph Theory is exactly like that of Einstein in Relativity and that
of Fisher in Statistics. He has been both a great creative artist and a great developer.

Tutte’s family moved several times when he was young but they returned to the
Newmarket area, to the village of Cheveley, when Bill was about seven. Bill attended
the local school. In May, 1927 and again a year later, he won a scholarship to the
Cambridge and County High School for Boys, some eighteen miles from his home.
The first time he won, his parents judged that it was too far for their son to travel
and he was kept home. A year later his parents permitted him to attend the school
despite the long daily commute each way, by bike and by train [53, p.287]. In the
high school library, Bill came across Rouse Ball’s book Mathematical Recreations
and Essays [1], first published in 1892. That book included discussions of chess-
board recreations, map colouring problems, and unicursal problems (including Euler
tours and Hamiltonian cycles). Some parts of his chemistry classes were [45, p.1]
pure graph theory and in his physics classes, he learned about electrical circuits and
Kirchhoff’s Laws. Tutte wrote [45, p.1],

When I became an undergraduate at Trinity College, Cambridge, I already possessed much
elementary graph-theoretical knowledge though I do not think I had this knowledge well-
organized at the time.

In 1935, Tutte began studying at Trinity College, Cambridge. He read natural
sciences, specializing in chemistry. From the beginning, he attended lectures of the
Trinity Mathematical Society. Three other members of that Society, all of whom
were first-year mathematics students, were R. Leonard Brooks, Cedric A.B. Smith,
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and Arthur H. Stone. This group had various names [47, p.4] including ‘The Impor-
tant Members, The Four Horsemen, The Gang of Four.’ They became fast friends
spending many hours discussing mathematical problems. Tutte wrote [53, p.288],

As time went on, I yielded more and more to the seductions of Mathematics.

Tutte’s first paper [22], in chemistry, was published in 1939 in the prestigious
scientific journal Nature. His first mathematical paper, The dissection of rectangles
into squares, was published with Brooks, Smith, and Stone in 1940 in the Duke
Mathematical Journal. Their motivating problem was to divide a square into a finite
number of unequal squares. In 1939, R. Sprague [21] from Berlin published a solu-
tion to this problem just as The Four were in the final stages of preparing their paper
in which, ingeniously, they converted the original problem into one for electrical
networks. Writing later about The Four’s paper, Tutte said [45, p.3],

I value the paper not so much for its ostensible geometrical results, which Sprague largely
anticipated, as for its graph-theoretical methods and observations.

Tutte went on to note [45, p.4] that, in this paper,

two streams of graph theory from my early studies came together, Kirchhoff’s Laws from
my Physics lessons, and planar graphs from Rouse Ball’s account of the Four Colour Prob-
lem.’

Tutte wrote a very readable account of this work in Martin Gardner’s Mathematical
Games column in Scientific American in November, 1958, and that account is now
available online [32].

The Four’s paper is remarkable not only for its solution to the squaring-the-
square problem and its beautiful graph-theoretic ideas, but also for the extent to
which it contains the seeds of Tutte’s later work. In it, we find planarity, duality,
flows, numbers of spanning trees, a deletion-contraction relation, symmetry, and
above all the powerful application of linear algebra to graph theory.1

After completing his chemistry degree in 1938, Tutte worked as a postgraduate
student in physical chemistry at Cambridge’s famous Cavendish Laboratory com-
pleting a master’s degree in 1940. Tutte’s work in chemistry [53, p.288]

convinced him that he would not succeed as an experimenter. He asked his tutor, Patrick
Duff, to arrange his transfer from natural sciences to mathematics. This transfer took place
at the end of 1940.

Tutte later wrote [47, p.4],

I left Cambridge in 1941 with the idea that graph theory could be reduced to abstract algebra
but that it might not be the conventional kind of algebra.

1 Incidentally, it may also be regarded as Tutte’s first paper on graph drawing. In that field, too, he
is regarded as a pioneer, mostly because of his 1963 paper ‘How to draw a graph’ [35]. But it is
still worth noting the graph-drawing aspect of his very first paper: the squared rectangles are a type
of simultaneous “visibility drawing” of a planar graph and its dual.
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Like so many of the brightest minds in Britain at the time, Tutte was recruited as
a codebreaker and worked at the Bletchley Park Research Station — now famous,
but then top secret — from 1941 till 1945. He wrote [47, p.5],

at Bletchley I was learning an odd new kind of linear algebra.

Narrating the 2011 BBC documentary, Code-Breakers: Bletchley Park’s Lost Heroes,
the actress Keeley Hawes says,

This is Bletchley Park. In 1939, it became the wartime headquarters of MI6. If you know
anything, about what happened here, it will be that a man named Alan Turing broke the
German Naval code known as ‘Enigma’ and saved the nation; and he did. But that’s only
half the story.

Then Captain Jerry Roberts, who had been a Senior Cryptographer at the Park dur-
ing the war, speaks:

There were three heroes of Bletchley Park. The first was Alan Turing; the second was Bill
Tutte, who broke the Tunny system, a quite amazing feat; and the third was Tommy Flowers
who, with no guidelines, built the first computer ever.

Tutte’s work at Bletchley Park was truly profound. The problem he faced was
to break into communications encoded by an unknown cypher machine, codenamed
Tunny by the British. (Its real name was Lorenz SZ40.) This machine was much
more secure and complex than the famous Enigma machine, reflecting its use at
the highest levels of the Nazi regime including by Hitler himself. Furthermore, al-
though the British knew the architecture of the Enigma machine, the design of the
Tunny machine was a complete mystery to them. The problem Tutte faced was thus
far harder than the Enigma problem which Turing is justly celebrated for solving.
Tutte’s first problem was the diagnosis of the Tunny machine (that is, determining
how it worked), just from collected cyphertext; only then could he and his col-
leagues move on to cryptanalysis. Tutte made the crucial breakthrough in diagnosis,
an astonishing achievement. He then went on to develop cryptanalysis algorithms.
These were very computationally intensive. The Colossus cryptanalytic computers,
designed by Tommy Flowers, were built to implement Tutte’s algorithms and per-
formed service of incalculable value for the remainder of the War.

The University of Waterloo’s magazine for Spring, 2015 has an article Keeping
Secrets about this work in which one reads,

According to Bletchley Park’s historians, General Dwight D. Eisenhower himself described
Tutte’s work as one of the greatest intellectual feats of the Second World War.

Some details of this work can be found in [53, 12, 8]. Tutte’s own account of these
efforts appear in [48, 47].

As a consequence of Tutte’s top-secret code-breaking work at Bletchley Park, he
was elected a Fellow of Trinity College in 1942. He wrote [53, p.291] of this,

It seemed to me that the election might be criticized as a breach of security, but no harm
came of it.
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In 1945, after the War, Tutte returned to Cambridge for a Ph.D. in mathematics,
supervised by Shaun Wylie, with whom Tutte had worked at Bletchley. Tutte com-
pleted his Ph.D. thesis, An algebraic theory of graphs, in 1948 despite Wylie’s ad-
vice [53, p.291] to

drop graph theory and take up something respectable, such as differential equations.

Tutte’s thesis, which was xi + 417 pages, was an extraordinary accomplishment with
the ideas in it forming the basis for much of his work for the next two decades. We
discuss it in more detail in §8. He wrote [53, p.291] of his decision to stick with
graph theory,

If one assumes that graph theory was my métier, it was just as well that I had the prestige
of a Fellow of Trinity.

2 Tutte’s doctoral research

Tutte’s first year of doctoral research was remarkably productive. He submitted six
papers during the period from November 1945 to December 1946, including four
that became classics of the field, though most of them bore no relation to his Ph.D.
thesis.

In the first of these classic papers [24], Tutte found a 46-vertex counterexample
to an 1884 conjecture of Tait [23] that every cubic planar graph is Hamilitonian.

Tutte’s paper A ring in graph theory is his first paper on the Tutte polynomial and
one of his most profound. His polynomial is not given explicitly in any of its usual
forms, and its presence is somewhat obscured by some technical details and the use
of multivariate polynomials to develop much of the theory. But the main ingredients
of Tutte-polynomial theory are all there. We return to it shortly, in §2.1.

His third classic paper [27] studied symmetry in cubic graphs. An s-arc in a
graph is a walk with s edges in which consecutive edges are always distinct. Apart
from this constraint, vertices and edges may occur repeatedly. (s-arcs are ordered;
a walk and its reverse are considered to be different.) A graph G is s-arc-transitive
if it has at least one s-arc and, for any two s-arcs, there is an automorphism of G
that maps one to the other. This is a very strong symmetry property indeed. Tutte
showed that there are no s-arc-transitive cubic graphs with s > 5, gave an inequality
relating girth to s, and characterized graphs where the inequality comes as close to
equality as possible for a given girth; these are the g-cages, a finite family of graphs,
the most complex being his 8-cage. This paper became enormously influential in the
theory of symmetric graphs.

The fourth of these groundbreaking papers [25] proved the characterization of
when a graph has a 1-factor, or perfect matching. This theorem is now a staple of
most introductory courses on graph theory.
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2.1 ‘A ring in graph theory’

The starting point and driving principle of this paper is the observation that certain
functions on graphs obey deletion-contraction relations. As an example of such a
function, Tutte considered the complexity C(G) of a connected graph G, this being
the number of spanning trees of G. When The Four were working on the problem of
partitioning a rectangle into unequal squares, they observed that complexity obeys
the following recursion.

Lemma 1. In a graph G, let e be an edge that is neither a loop or a cut edge. Then

C(G) =C(G\e)+C(G/e).

Proof. Partition the set of spanning trees of G into

(i) those not using e; and
(ii) those using e.

There are C(G\e) spanning trees in (i); and the spanning trees in (ii) match up with
the spanning trees of G/e.

Tutte wrote [45, p.51],

I wondered if complexity, or tree number, could be characterized by the above identity alone
and decided that it could not.

His paper considered the following.

Problem 1. What isomorphism-invariant functions W of graphs satisfy

W (G) =W (G\e)+W (G/e)

for all non-loop edges e of G?

He called such a function, taking values in an abelian group, a W-function. A
W -function is a V -function if

W (G1∪G2) =W (G1)W (G2)

for all disjoint graphs G1 and G2, where W now takes values in a commutative ring
with unity.

For a graph G, let P(G;λ ) denote the number of proper λ -colourings of G. Tutte
noted that (−1)|V (G)| times P(G;λ ) is an example of a V -function. This is an im-
mediate consequence of the following lemma, which was first proved by Foster, in
“Note added in proof” in [51, p.718].

Lemma 2. For a non-loop edge e of a graph G,

P(G;λ ) = P(G\e;λ )−P(G/e;λ ).
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Proof. Let e have distinct endpoints u and v. Partition the proper k-colourings of
G\e into

(i) those in which u and v have different colours; and
(ii) those in which u and v have the same colour.

In (i), we are counting the number of proper k-colourings of G; while (ii) corre-
sponds to the number of proper k-colourings of G/e.

Tutte’s insightful breakthough here was to focus on the two recursions:

(i) W (G) =W (G\e)+W (G/e); and
(ii) W (G1∪G2) =W (G1)W (G2).

Many readers will recognize here the origins of the Tutte polynomial. There are
technical differences between the multivariate polynomials in this paper and the
more familiar polynomials of Whitney and Tutte, which we will define in §3. But
some simple adjustments — such as substitutions to give bivariate specializations,
and dividing by xk(G) or (x− 1)k(G) — reveal both the Whitney rank generating
function and Tutte polynomial, albeit in period costume. The relationship between
these two polynomials, which is just a coordinate translation of one step in each
direction, is subsumed by a more general result in the paper. In fact, most of the main
ingredients of Tutte-polynomial theory are here, with deletion-contraction relations
at the core. The details of this paper are discussed in [9].

3 Graph polynomials

In 1954, Tutte published [29] A contribution to the theory of chromatic polynomi-
als. By then, he was at the University of Toronto having been recruited there in 1948
by H.S.M. Coxeter, another famous graduate of Trinity College, Cambridge. In this
paper, Tutte introduced what he called the dichromate of a graph, this now being
known as the Tutte polynomial of the graph. The dichromate is a two-variable poly-
nomial not to be confused with another two-variable polynomial Tutte labelled the
dichromatic polynomial of a graph. The latter is now known as the Whitney rank-
generating function of the graph. Welsh [50, p.44] draws attention to the rather
confused history of these polynomials and their nomenclature. This history is clari-
fied in [7, 9] where Tutte [49, p.8] is quoted concerning the use of the name ‘Tutte
polynomial’ as saying,

This may be unfair to Hassler Whitney who knew and used analogous coefficients without
bothering to affix them to two variables.

Tutte cites Whitney’s 1932 paper [51] as his source. Formally, let G be a graph with
edge set E. For a subset X of E, let G[X ] be the subgraph of G induced by X , and
let r(X), the rank of X , be the difference between the number of vertices and the
number of connected components of G[X ]. The Whitney rank-generating function
R(G;x,y) of G is
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R(G;x,y) = ∑
X⊆E

xr(E)−r(X)y|X |−r(X).

The Tutte polynomial T (G;x,y) is the translation of R(G;x,y) defined by

T (G;x,y) = R(G;x−1,y−1).

In particular, when G is connected, T (G;1,1) is the complexity of G, that is, its num-
ber of spanning trees. When G has k(G) components, P(G;λ ), the number of proper
λ -colourings of G is λ k(G)(−1)r(E)T (G;1−λ ,0). Another important evaluation of
the Tutte polynomial involves flows.

To define a flow in a graph G, first assign directions to every edge of G. A
nowhere-zero k-flow assigns a flow value f (e) from Zk −{0} to every edge e of
G such that, at every vertex v, the sum of the flows on the edges directed into v
equals the sum of the flows on the edges directed out from v. Intuitively, Kirch-
hoff’s Current Law holds at each vertex of G. For example, G has a nowhere-zero
2-flow if and only if every vertex has even degree. When G is connected, this is, of
course, equivalent to G being Eulerian.

It is straightforward to show that if G has a nowhere-zero k-flow, then G has no
cut edges. Moreover, a plane graph G without cut edges has a nowhere-zero k-flow
if and only if its dual G∗ is k-colourable.

Let A be an additive abelian group. A nowhere-zero A-flow takes flow values from
A−{0} such that, at every vertex, the flow into the vertex equals the flow out from
that vertex. Thus a nowhere-zero k-flow is just a nowhere-zero Zk-flow. Remarkably,
Tutte [29] showed that the number of nowhere A-flows on a graph depends only on
the cardinality of A.

Proposition 1 (Tutte, 1954). For n ≥ 2, let A be an abelian group with n elements
and G be a graph without cut edges. Then the number of nowhere-zero A-flows on
G equals the number of nowhere-zero n-flows on G.

Tutte [29] made two striking conjectures about flows.

Conjecture 1 (Tutte, 1954). There is a fixed number t such that every graph without
cut edges has a nowhere-zero t-flow.

This conjecture was not settled for over twenty years until Jaeger [14] proved the
following.

Theorem 1 (Jaeger, 1976). Every graph without cut edges has a nowhere-zero 8-
flow.

Tutte’s second flow conjecture is even more elusive and still remains open.

Conjecture 2 (Tutte, 1954). Every graph without cut edges has a nowhere-zero 5-
flow.

The best partial result towards this 5-Flow Conjecture was proved by Sey-
mour [19]. Just as Jaeger’s proof relied on the fact that 8 is 2 cubed, Seymour’s
proof relies on 6 being the product of 3 and 2.
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Theorem 2 (Seymour, 1981). Every graph without cut edges has a nowhere-zero
6-flow.

4 Matroids

Before discussing Tutte’s contributions to matroid theory, we briefly introduce ma-
troids to readers unfamiliar with them.

Let A be a matrix having E as its set of column labels. Let I be the collection
of subsets X of E such that X labels a linearly independent set of columns. The
pair (E,I ) is an example of a matroid M with the members of the set I being its
independent sets. We denote this matroid by M[A]. In general, (E,I ) is a matroid
M with ground set E if I is a non-empty hereditary collection of subsets of the
finite set E with the property that, whenever X and Y are in I and |X |> |Y |, there
is an element x of X −Y such that Y ∪{x} ∈ I . Subsets of E that are not in I
are dependent and the minimal dependent sets are the circuits of M. Evidently, M is
uniquely determined by its collection of circuits. If G is a graph, there is a matroid
M(G) having E(G) as its ground set and the set of edge sets of cycles of G as its set
of circuits. The matroid M(G) is the cycle matroid of G.

For a field F, a matroid M is F-representable if there is a matrix A over F such
that M = M[A]. A GF(2)-representable matroid is called binary. For example, over
GF(2), let

A =


1 2 3 4 5 6 7
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

.

Then M[A] is a matroid with ground set {1,2, . . . ,7} whose circuits include {4,5,6}
since, over GF(2), the three corresponding vectors are linearly dependent although
any two of them are linearly independent. This matroid is usually called the Fano
matroid and is denoted by F7. A geometric representation of this matroid is shown in
Figure 1. In such a picture, three collinear points form a circuit as do four coplanar
points of which no three are collinear. The dual, F∗7 , of the Fano matroid is the
matroid M[A∗] where

A∗ =


1 2 3 4 5 6 7
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

.

In general, if the n-element matroid M = M[Ir|D], its dual M∗ is M[DT |In−r]. More
generally, suppose M is a matroid on the set E having B as its set of maximal
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independent sets (bases). The collection {E−B : B∈B} can be shown to be the set
of bases of a matroid on E; this matroid M∗ is the dual of M.

The deletion of the element 1 from F7 is the matroid of the matrix that is obtained
from A by deleting the first column. The reader may wish to check that this deletion
is actually equal to M(K4) where {2,3, . . . ,7} is the edge set of K4. The contraction
of 1 from F7 is the matroid of the matrix that is obtained from A by deleting the
first row and the first column. This contraction is the cycle matroid of the doubled
triangle graph, obtained from a triangle with edge set {2,6,3} by adding 4,7, and
5 in parallel with 2,6, and 3, respectively In general, for a matroid M, the deletion
of the element e from M is the matroid M\e having ground set E −{e} and set
of independent sets {I ∈ I : e 6∈ I}. Moreover, provided {e} is independent, the
contraction M/e of e from M is the matroid with ground set E −{e} and set of
independent sets {I′ ⊆ E−{e} : I′∪{e} ∈I }. When {e} is dependent, we define
M/e to be M\e. A minor of M is any matroid that can be obtained from M by a
sequence of deletions and contractions. As partially outlined above, every minor
of an F-representable matroid is F-representable. This means that the class of F-
representable matroids can be characterized by the matroids that are themselves not
F-representable but for which every minor is F-representable. These minor-minimal
matroids that are not F-representable are the excluded minors for the class of F-
representable matroids.

Tutte wrote [53, p.292] that his Ph.D. thesis

attempted to reduce Graph Theory to Linear Algebra. It showed that many graph-theoretical
results could be generalized to algebraic theorems about structures I called ‘chain-groups’.
Essentially, I was discussing a theory of matrices in which elementary operations could be
applied to rows but not columns.

As Dan Younger noted in his wonderful memoir of Tutte [53, p.292]:

This is matroid theory.

His chain-groups, called nets in his thesis, are essentially row spaces of representa-
tive matrices of representable matroids. In a sense, they may be regarded as repre-
sented matroids. But it would be pedantic to make much of the difference between
these and representable matroids.

In essence, then, Tutte developed a theory of representable matroids as general-
izations of graphs. Some of his work is valid for arbitrary matroids, in that some

7

1

2 3

4 5

6

Fig. 1 The Fano matroid, F7.
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definitions and arguments only use matroid ideas (such as rank) in a way that does
not depend on representability. But the thesis does not mention arbitrary matroids,
and does not cite Whitney’s seminal 1935 paper on matroids [52].

5 The excluded-minor theorems

In a commentary on one of his matroid papers, Tutte wrote [46, p.497],

If a theorem about graphs can be stated in terms of edges and circuits only it probably
exemplifies a more general theorem about matroids.

The application of this principle is evident in much of Tutte’s work and has guided
the efforts of a number of other researchers in matroid theory. Two of the most
well-known graphs are K5 and K3,3, the latter being the three-houses-three-utilities
graph. These graphs are forever linked by their appearance in Kuratowski’s famous
characterizations [15] of planar graphs in terms of excluded (topological) minors.
Tutte introduced the operation of contraction for matroids and also the notion of a
minor of a matroid. In a very productive period in the late 1950s, Tutte published
three important papers that included excluded-minor characterizations of various
classes of matroids. This section will discuss these theorems.

Looking back on his thesis, Tutte wrote [47, p.6],

I went on happily developing a theory of chain-groups and their elementary chains, these
latter of course being defined by minimal supports. The method was to select theorems about
graphs and try to generalize them to chain-groups. This was not too difficult for theorems
expressible in terms of circuits. But theorems about 1-factors imposed problems. As I look
back on this episode I am grieved to recall that I still did not appreciate the work of Whitney
[on matroids]. Yet these chain-groups were half-way to matroids and their minimal supports
were Whitney’s matroid circuits.

Later in the same paper, Tutte wrote [47, p.7],

By 1958 . . . I had learned to appreciate matroids. I put the work in my thesis into matroid ter-
minology and generalized from chain-groups to matroids. . . . Then from the thesis-theorems
I got the now well-known excluded minor conditions for a binary matroid to be regular and
for a regular matroid to be graphic.

The uniform matroid U2,4, which geometrically corresponds to four collinear
points, is the matroid M[A] where A is the real matrix

( 1 2 3 4
1 0 1 1
0 1 1 −1

)
.

It is straightforward to see that U2,4 is not binary. Tutte’s first excluded-minor
theorem [31], which is relatively straightforward to prove, establishes that U2,4 is
the unique excluded minor for the class of binary matroids.
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Theorem 3 (Tutte, 1958). A matroid is binary if and only if it has no U2,4-minor.

A real matrix A is totally unimodular if the determinant of every square submatrix
of A is in {0,1,−1}. A matroid M is regular if there is a totally unimodular matrix A
such that M = M[A]. As an example, take a graph G and arbitrarily orient its edges.
Then take the vertex-edge incidence matrix A of this directed graph. In this real
matrix, each non-zero column has one 1 and one−1. By a result of Poincaré [17], A
is totally unimodular. The matroid M[A] of this matrix can be shown to be equal to
the cycle matroid M(G) of G. In general, a matroid is graphic it it equals the cycle
matroid of some graph. Thus every graphic matroid is regular. Tutte [31] proved the
following.

Lemma 3. A matroid M is regular if and only if M is F-representable for all fields
F.

Tutte’s second excluded-minor characterization [31] is significantly more diffi-
cult than his first.

Theorem 4 (Tutte, 1958). A matroid is regular if and only if it has none of U2,4, F7,
or F∗7 as a minor.

The last theorem was proved in two papers in the Transactions of the American
Mathematical Society called A homotopy theorem for matroids I, II. In a 1959 paper
Matroids and graphs in the same journal, Tutte [33] characterized graphic matroids
in terms of excluded minors. For a graph G, the dual of its cycle matroid M(G) is
denoted by M∗(G). Recognizing the link between cycles in a plane graph and bonds
in the dual graph, the reader may not be surprised to learn that the circuits of M∗(G)
coincide with the bonds in G. One attractive feature of M∗(G) is that it is defined
whether or not G is planar. Thus, although non-planar graphs do not have graphic
duals, the cycle matroids of such graphs do have matroid duals.

Theorem 5 (Tutte, 1959). A regular matroid is graphic if and only if it has neither
M∗(K3,3) nor M∗(K5) as a minor.

Tutte wrote [47, p.8] of this theorem that it

was guided, in the usual vague graph-to-matroid way, by Kuratowski’s Theorem and my
favourite proof thereof.

6 Higher connectivity for matroids

Whitney [52] had introduced the notion of a non-separable matroid as one with
the property that, for every two distinct elements, there is a circuit containing both.
Such a matroid is now more commonly called connected. A loopless graph G has the
property that every two edges lie in a cycle if and only if G is 2-connected, provided
G has at least three vertices and has no isolated vertices. Given the importance of
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higher connectivity for graphs, it was natural to seek a matroid analogue. Tutte [40]
did this. One feature of Tutte’s definition was the desire for the connectivity of a
matroid and its dual to be equal. Of course, a 3-connected graph cannot have a bond
of size at most two. Dually, Tutte felt that a 3-connected graph should have no cycles
of size at most two; in other words, it should be simple. Tutte began his work in this
area by proving the following result for graphs [34].

Theorem 6 (Tutte, 1961). A 3-connected simple graph G has an edge e such that
G\e or G/e is 3-connected and simple unless G is a wheel.

Five years later, in the paper Connectivity in matroids, Tutte [40] generalized
this theorem to matroids. Indeed, it is in his commentary [46, p.487] on this paper
that Tutte made the statement about generalizing graph results to matroids quoted
at the beginning of Section 5. Let M be a matroid with ground set E. For a subset
X of E, the rank r(X) of X is the cardinality of the largest independent set that is
contained in X . Earlier, we defined the rank of a set of edges in a graph G. That rank
is precisely the rank of X in the cycle matroid of G.

Tutte defined the matroid M to be 2-connected if

r(X)+ r(E−X)− r(M)≥ 1

for all X ⊆ E with |X |, |E−X | ≥ 1. He then defined a 2-connected matroid M to be
3-connected if

r(X)+ r(E−X)− r(M)≥ 2

for all X ⊆ E with |X |, |E−X | ≥ 2.
The following result is elementary.

Proposition 2. Let G be a graph with at least four vertices. Then

(i) M(G) is 2-connected if and only if G is 2-connected and loopless; and
(ii) M(G) is 3-connected if and only if G is 3-connected and simple.

In the cycle matroid M(Wr) of the r-spoked wheel Wr, the rim R is a cycle whose
complement is a bond. The set R has the same size as the bases of M(Wr), that is, as
the spanning trees of Wr. Indeed, Tutte defined a new matroid W r, the rank-r whirl,
on the set of edges of Wr having as its bases all of the bases of M(Wr) together with
the set R.

Theorem 7 (Tutte, 1966). A 3-connected matroid M has an element e such that
M\e or M/e is 3-connected unless M has rank at least three and is a whirl or the
cycle matroid of a wheel.

In 1980, Seymour [18] generalized this theorem by proving the following.

Theorem 8 (Seymour, 1980). Let M and N be 3-connected matroids such that N is
a proper minor of M. Then M has an element e such that M\e or M/e is 3-connected
having a minor isomorphic to N unless M is a wheel or a whirl.
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7 The first conference on matroids

In 1964, Jack Edmonds was working at the National Bureau of Standards in Wash-
ington. He and his colleagues there organized the first conference on matroids. Tutte
gave a series of Lectures on Matroids [36]. These appeared in the conference pro-
ceedings, which were published in the Journal of Research of the National Bureau
of Standards in 1965. Tutte wrote [47, p.8] about that 1964 meeting,

To me that was the year of the Coming of the Matroids. Then and there the theory of
matroids was proclaimed to the mathematical world. And outside the halls of lecture there
arose the repeated cry: ‘What the hell is a matroid?’

The 1965 Journal of Research of the National Bureau of Standards included
Tutte’s paper, Menger’s Theorem for matroids [37]. That important paper was
largely ignored for about 35 years until, in 2002, Geelen, Gerards, and Whittle [10]
recognized its utility. The theorem has been used extensively since then.

For disjoint sets X and Y in a matroid M, define the connectivity between X and
Y by

κM(X ,Y ) = min{r(S)+ r(E−S)− r(M) : X ⊆ S⊆ E−Y}.

Theorem 9 (Tutte, 1965). Let X and Y be disjoint sets in a matroid M. Then
κM(X ,Y ) is the maximum value of κN(X ,Y ) over all minors N of M with ground
set X ∪Y .

Subsequently, Geelen, Gerards, and Whittle [11, Theorem 4.2] proved that this
maximum could be restricted to minors N of M with E(N) = X ∪Y such that
N|X = M|X and N|Y = M|Y . As an example, let {1,2,3} and {4,5,6} be the dis-
joint triangles in a triangular prism graph P. Then, by contracting the three edges
of P that are not in triangles, we get a doubled triangle with edge set {1,2, . . . ,6}.
A consequence of Theorem 9 is that, in an arbitrary 3-connected binary matroid
M, if {1,2,3} and {4,5,6} are disjoint 3-element circuits, then M has a minor on
{1,2, . . . ,6} consisting of the cycle matroid of a doubled triangle.

8 Tutte’s Ph.D. thesis

So far, we have mostly described Tutte’s published work on matroids. But many of
his discoveries were made much earlier and were included in his remarkable Ph.D.
thesis, completed in 1948 [28]. In this section. we discuss some particulars of the
thesis.

In reading the thesis, it must be borne in mind that Tutte’s viewpoint for ma-
troids is dual to the usual one, so that, for example, his “circuits” in nets generalize
bonds (or minimal edge cuts) of graphs, and a matroid is “graphic” if its dual is
graphic in the sense defined above. Similarly, the terminology for deletion and con-
traction aligns with standard usage for graphs but is swapped around for nets; see
the discussion in [9]. There is also much nonstandard terminology, for example,
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“codendroids” for bases, “dendroids” for cobases, and “cyclic elements” for blocks
in graphs and components in matroids.

In Chapter III of the thesis, Tutte presents his extension of Menger’s Theorem to
matroids although it is not until Chapter VII that he deduces Menger’s Theorem for
graphs from his generalization. His paper ‘Menger’s theorem for matroids’ was not
published until 1965 [37].

Chapter IV introduces regular matroids, under the name “simple nets”, approach-
ing them from an unusual direction. Tutte then shows that a matroid of rank r on
n elements is regular (according to his definition) if and only if it has an r×n rep-
resentative matrix over Z such that the determinant of every r× r submatrix is in
{0,1,−1}. It is routine to show that this condition is equivalent to total unimodular-
ity of the matrix. Parts of this chapter were published and extended in [30].

Chapter V, the shortest in the thesis, is about his polynomials. It is the only chap-
ter of the thesis that contains results he published before the thesis was completed in
1948. Its results are generalizations of a subset of those in ‘A ring in graph theory’
(published in 1947) [26]. Whereas [26] is restricted to graphs, this chapter of the the-
sis introduces polynomials for representable matroids. Instead of the V -functions of
[26], we now have chromatic functions, which are called Tutte invariants or Tutte-
Grothendieck invariants by later writers. Tutte’s definition of chromatic functions
only needs deletion, contraction, and the notion of a matroid component. He then
extends the Whitney rank generating function to matroids, which only needs a rank
function. Thus these definitions make no real use of representability, and it is rea-
sonable to regard them as the first extension to matroids of any polynomials in the
Tutte-Whitney family. It would be another twenty years until Henry Crapo [4] for-
mally defined the Tutte polynomial for matroids.

Tutte gives a recipe theorem for the (matroidal) Whitney rank generating func-
tion and defines, without name, the (matroidal) Tutte polynomial. An appropriate
evaluation gives the number of bases, generalizing his observation for the number
of spanning trees of a graph in [26]. Other evaluations give a representable-matroid
analogue of counting q-colourings in a graph. Care is need with Tutte’s terminology
in this chapter, as discussed in [9].

Chapter VI concerns connectivity in binary matroids, extending to them the no-
tion of a 2-separation of a graph. For graphs, some of the theory appears in [39, Ch.
11].

Having worked entirely at the level of representable matroids for Chapters II–
VI, Tutte establishes the relationship with graphs in Chapter VII. He develops the
theory of cycle matroids and cocycle matroids and applies the theory of the previous
chapters to them. Graphic matroids and their duals are shown to be regular. The
Tutte polynomial evaluations of Chapter V are specialized to counting colourings
and spanning trees. The theory of Chapter VI is applied to 2-connected graphs.

Chapters VIII-IX, occupying 140 pages, give Tutte’s excluded-minor characteri-
zation of (the duals of) graphic matroids among binary matroids. The four excluded
minors are called “gnarls” and he calls his result the “gnarl theorem”. It has been
the foundation and inspiration of matroid structure theory ever since, and is a fitting
climax for one of the greatest doctoral theses of twentieth century mathematics.
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9 The move away from matroids

Although Tutte did publish some matroid papers after 1966, these later papers were
in conference proceedings [43, 44] reiterating results from earlier journal papers
or were supplements to earlier papers [41, 42]. Tutte’s 1966 paper On the algebraic
theory of graph colorings [38] proposed a conjecture for binary matroids now called
Tutte’s Tangential 2-Block Conjecture, which can be viewed as an analogue of Had-
wiger’s Conjecture. The same paper included [38, p.22] the following conjecture on
4-flows, now known as ‘Tutte’s 4-Flow Conjecture’. This conjecture remains open
in general.

Conjecture 3. A graph without cut edges or nowhere-zero 4-flows has a Petersen-
graph minor.

For cubic graphs, the last conjecture is equivalent to the assertion that every cubic
graph without a cut edge or a Petersen-graph minor is 3-edge-colourable. A proof of
this has been announced by Robertson, Sanders, Seymour, and Thomas. It appears
in a series of papers including [6], which provides details of the other papers.

In 1981, Seymour [20] reduced Tutte’s Tangential 2-Block Conjecture to the 4-
Flow Conjecture by using his decomposition theorem for regular matroids [18].

By 1967, Tutte had essentially stopped publishing new results in matroid theory.
Why? Looking back on his homotopy theorem for matroids, the excluded-minor
characterization of regular matroids noted above (Theorem 4), Tutte wrote [47, p.8],

One aspect of this work rather upset me. I had valued matroids as generalizations of graphs.
All graph theory, I had supposed would be derivable from matroid theory and so there
would be no need to do independent graph theory any more. Yet what was this homotopy
theorem, with its plucking of bits of circuit across elementary configurations, but a result in
pure graph theory? Was I reducing matroid theory to graph theory in an attempt to do the
opposite? Perhaps it was this jolt that diverted me from matroids back to graphs.

10 Tutte’s contributions

Tutte’s contributions to mathematics were immense. MathSciNet credits him with
160 publications. As of May 17, 2018, MathSciNet also lists 3656 citations for his
papers although it should be noted that this source primarily constructs its list for
the years 2000 onwards. From 1967, he was the Editor-in-Chief of the Journal of
Combinatorial Theory.

Under his leadership the journal flourished. It became such a desirable place to publish that
in time it was partitioned into two, series A and B, with Tutte retaining the leadership of
the latter until his retirement as professor from the University of Waterloo in 1985 [53,
pp.294–95]

To this day, that journal remains preeminent in combinatorics. Tutte was a founding
member of the Department of Combinatorics and Optimization at the University
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of Waterloo, and he had eight Ph.D. students most notably Ron Mullin and Neil
Robertson.

In 2012, British Prime Minister David Cameron wrote a letter to Tutte’s niece
Jeanne Youlden [53, p.286] expressing the gratitude of the United Kingdom for
Tutte’s codebreaking work. Cameron wrote [53, p.286],

We should never forget how lucky we were to have men like Professor Tutte in our darkest
hour and the extent to which their work not only helped protect Britain itself but also shorten
the war by an estimated two years, saving countless lives.

One aspect of Tutte’s creative work has yet to be touched on here. The Four
invented a mathematical poetess named ‘Blanche Descartes’. Any one of them could
add works under her name but Tutte was believed to be the primary contributor.

The Four carefully refused to admit Blanche was their creation. Visiting Tutte’s office in
1968, [Tutte’s fifth Ph.D. student Arthur] Hobbs had the following conversation with him:
Hobbs: “Sir, I notice you have two copies of that proceedings. I wonder if I could buy your
extra copy?”
Tutte: “Oh, no, I couldn’t sell that. It belongs to Blanche Descartes.” [13, p.4]

At the conference banquet celebrating Tutte’s eightieth birthday, he recited the
following poem written by Ms Descartes especially for the occasion. The second
author, on requesting a copy of the poem from Professor Tutte, was handed the
original handwritten version.

The Three Houses Problem

In central Spain in mainly rain
Three houses stood upon the plain.
The houses of our mystery
To which from realms of industry
Came pipes and wires to light and heat
And other pipes with water sweet.
The owners said, “Where these things cross
Burn, leak or short, we’ll suffer loss
So let a graphman living near
Plan each from each to keep them clear.”
Tell them, graphman, come in vain,
They’ll bear the cross that must remain
Explain the planeness of the plain.

Blanche Descartes

Acknowledgements Part of this paper was presented by the second author at the Tutte Centenary
Retreat (https://www.matrix-inst.org.au/events/tutte-centenary-retreat/) held at the MAThematical
Research Institute (MATRIx), Creswick, Victoria, Australia, 26 Nov. – 2 Dec. 2017. The authors
gratefully acknowledge the support of MATRIx for this retreat.



18 Graham Farr and James Oxley

References

1. Ball, W.W. Rouse: Mathematical Recreations and Essays. First edition, Macmillan, London
(1892) (Revised and updated by H.S.M. Coxeter, Thirteenth edition, Dover, New York (1987)

2. BBC 2011: Code-Breakers: Bletchley Park’s Lost Heroes. Documentary, October, 2011. Pro-
ducer/Director Julian Carey

3. Brooks, R.L., Smith, C.A.B., Stone, A.H., Tutte, W.T.: The dissection of rectangles into
squares. Duke Math. J. 7, 312–340 (1940)

4. Crapo, H.H.: The Tutte polynomial. Aequationes Math. 3, 211–229 (1969)
5. Descartes, B.: The three houses problem. Recited by W.T. Tutte, Tutte Eightieth Birthday

Conference Dinner, University of Waterloo, 1997
6. Edwards, K., Sanders, D.P., Seymour, P., Thomas, R.: Three-edge colouring doublecross cubic

graphs. J. Combin. Theory Ser. B 119, 66–95 (2016)
7. Farr, G.E.: Tutte-Whitney polynomials: some history and generalizations. In: Grimmett, G.,

McDiarmid, C. (eds.) Combinatorics, Complexity, and Chance, pp. 28–52. Oxford University
Press, Oxford (2007)

8. Farr, G.: Remembering Bill Tutte: another brilliant codebreaker from World War II, 12
May, 2017 http://theconversation.com/remembering-bill-tutte-another-brilliant-codebreaker-
from-world-war-ii-77556

9. Farr, G.E., The history of Tutte-Whitney polynomials, with commentary on the classics, in: J.
Ellis-Monaghan and I. Moffatt (eds.), Handbook of the Tutte polynomial, CRC Press, 2019.

10. Geelen, J.F., Gerards, A.M.H., Whittle, G.: Branch-width and well-quasi-ordering in matroids
and graphs. J. Combin. Theory Ser. B 84, 270–290 (2002)

11. Geelen, J., Gerards, B., Whittle, G.: Excluding a planar graph from GF(q)-representable ma-
troids. J. Combin. Theory Ser. B 97, 971–998 (2007)

12. Harper, N.: Keeping secrets. University of Waterloo Magazine, Spring, 2015
https://uwaterloo.ca/magazine/spring-2015/features/keeping-secrets Cited

13. Hobbs, A.M., Oxley, J.G.: William T. Tutte, 1917–2001. Notices Amer. Math. Soc. 51, 320–
330 (2004)

14. Jaeger, F.: On nowhere-zero flows in multigraphs. In: Nash-Williams, C.St.J.A., Sheehan, J.
(eds.) Proceedings of the Fifth British Combinatorial Conference, pp. 373–378. Congressus
Numerantium, No. XV, Utilitas Math., Winnipeg (1976)

15. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283
(1930)

16. Oxley, J.: Matroid Theory. Second edition. Oxford University Press, New York (2011)
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