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Abstract. A matroid M is unbreakable if M is connected and, for each
flat F , the matroid M/F is connected. Equivalently, M is unbreakable if
its dual has no two skew circuits. This paper characterizes unbreakable
matroids in terms of excluded parallel minors and determines all regular
unbreakable matroids.

1. Introduction

This paper explores connected matroids that remain connected upon con-
tracting any flat. These matroids were first investigated [8] as potential ana-
logues to graphs with no two vertex-disjoint cycles; however, and perhaps
unsurprisingly given that the latter definition is entirely dependent on vertex
information, such graphs do not generalize easily to matroids. Nevertheless,
these matroids have proved interesting in their own right, as evidenced by
the attention given to them in [3] and [4]. We follow Oxley [7] for notation
and terminology. A matroid M unbreakable if M is connected and, for every
flat F of M , the matroid M/F is also connected. Thus the matroid U0,1 is
unbreakable. Indeed, because it is the unique unbreakable matroid having
a loop, we restrict attention in our main results to loopless matroids.

For an element e of a matroid M , we call M\e a parallel deletion of M
if e is in a 2-circuit of M . A matroid N is a parallel minor of M if N can
be obtained from M by a sequence of contractions and parallel deletions.
Our first theorem gives several characterizations of unbreakable matroids
including one in terms of excluded parallel minors.

Theorem 1.1. The following statements are equivalent for a loopless ma-
troid M of rank r.

(i) M is unbreakable.
(ii) M∗ has no two skew circuits.
(iii) Every rank-(r−2) flat of M is contained in at least three hyperplanes.
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(iv) M does not have U2,2 as a parallel minor.
(v) si(M) 6∼= U2,2 and M/F is unbreakable for all rank-1 flats F of M .
(vi) For every partition (X,Y ) of E(M), if X ′ is a flat that is properly

contained in X, then u(X ′, Y ) < u(X,Y ).

Unbreakable matroids are linked to the well-studied class of round ma-
troids where a matroid is round if its dual has no two disjoint circuits. In
view of Theorem 1.1, we see that if a loopless matroid is round, then it
is unbreakable; however, an unbreakable matroid need not be round. For
example, R10 has two disjoint cocircuits so it is not round. But, as the next
theorem shows, it is unbreakable. This theorem, which is the main result of
the paper, is proved in Section 3.

Theorem 1.2. A loopless regular matroid is unbreakable if and only if its
simplification is isomorphic to U1,1, to M∗(K3,3), to R10, or, for n ≥ 3, to
M(Cn) or M(Kn).

One might hope for a theorem similar to Theorem 1.2 for unbreakable
representable matroids. Observe that the projective geometry PG(r−1, q) is
round. Moreover, as noted in [7, p.326], so is every matroid that is obtained
from PG(r − 1, q) by deleting at most qr−1 − qr−2 − 1 elements. Hence
all such matroids are unbreakable. Thus, even in the case of unbreakable
binary matroids, we do not have the same kind of characterization as in
Theorem 1.2.

2. Equivalent Characterizations of Unbreakable Matroids

To prove Theorem 1.1, we shall show that (i) implies (iv), that (iv) implies
(iii), that (iii) implies (ii), and that (ii) implies (i). Then we show the
equivalence of (i) and (v), and finally the equivalence of (i) and (vi).

Proof of Theorem 1.1. Let M be a loopless matroid with ground set E. To
show that (i) implies (iv), let M be unbreakable. Then, for X ⊆ E(M),
we see that si(M/X) is not isomorphic to the disconnected matroid U2,2 as
si(M/X) ∼= si(M/cl(X)). Thus M does not have U2,2 as a parallel minor,
so (i) implies (iv).

We show that (iv) implies (iii) by proving the contrapositive. Suppose F
is a rank-(r− 2) flat of M contained in fewer than three hyperplanes of M .
This implies that F is contained in exactly two hyperplanes. Call them H1

and H2. Then F = H1 ∩H2 and r(M/F ) = 2, so M/F must consist of two
disjoint rank-1 flats, that is, si(M/F ) ∼= U2,2. Thus (iv) implies (iii).
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Now suppose that (iii) holds. To show that (ii) holds, let D1 and D2 be
cocircuits of M , and let Hi = E −Di for each i in {1, 2}. Then

uM∗(D1, D2) = rM∗(D1) + rM∗(D2)− rM∗(D1 ∪D2)

= |D1|+ |D2| − 2− [rM (H1 ∩H2) + |D1 ∪D2| − r(M)]

= |D1 ∩D2| − 2− rM (H1 ∩H2) + r(M)

≥ |D1 ∩D2| − 2− (r(M)− 2) + r(M)

= |D1 ∩D2|.

Since equality holds only when rM (H1∩H2) = r(M)−2, we need only argue
that, in this case, |D1 ∩D2| 6= 0. Let F = H1 ∩H2. As F is in at least three
distinct hyperplanes by assumption, cl({e} ∪ F ) 6∈ {H1, H2} for some e in
E − F . Thus |D1 ∩D2| = |E − (H1 ∪H2)| ≥ 1. Hence (iii) implies (ii).

Next, suppose that (ii) holds, but (i) does not. Then M has a flat F such
that M/F is disconnected. Now, M/F = [M∗|(E − F )]∗, so M∗|(E − F )
is disconnected. By, for example, [7, Exercise 2.1.13(a)], E − F is a union
of circuits of M∗. Thus M∗|(E − F ) = M1 ⊕M2 where each of E(M1) and
E(M2) is a union of circuits of M∗. Hence M∗ has two skew circuits, a
contradiction. Thus (ii) implies (i).

To show that (i) implies (v), assume M is unbreakable. Then M/F is
connected for all flats F of M . In particular, M is connected, so si(M) 6∼=
U2,2. Moreover, M/F is unbreakable for all rank-one flats F of M . Thus (i)
implies (v). Now assume (v) holds. Then it is straightforward to see that
M is unbreakable provided M is connected. As M/F is connected for every
rank-1 flat F of M but si(M) 6∼= U2,2, it follows that M is connected. Hence
(v) implies (i).

Next, we show that (i) implies (vi). Let M be unbreakable and suppose
that (X,Y ) partitions E and that X ′ is a flat of M properly contained in
X. Seeking a contradiction, assume that u(X ′, Y ) = u(X,Y ). Thus

r(X ′) = r(X)− r(X ∪ Y ) + r(X ′ ∪ Y ) = r(X)− r(M) + r(X ′ ∪ Y ). (1)

Now we consider M ′ = M/X ′. Then

uM ′(X −X ′, Y ) = rM ′(X −X ′) + rM ′(Y )− rM ′((X −X ′) ∪ Y )

= rM (X)− rM (X ′) + rM ′(Y )− (r(M)− rM (X ′))

= rM (X) + rM (Y ∪X ′)− rM (X ′)− r(M)

= 0, by (1).

Hence M/X ′ is disconnected, a contradiction. Thus (i) implies (vi).

Now assume that (vi) holds, but (i) does not. Then there is a flat F
of M such that M/F is not connected. Let (XF , YF ) be a 1-separation of
M/F . Consider (XF ∪ F, YF ), a partition of E(M). We will show that
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uM (XF ∪ F, YF ) = uM (F, YF ). Observe that

0 = uM/F (XF , YF )

= rM (XF ∪ F )− rM (F ) + rM (YF ∪ F )− r(M).

Thus rM (XF ∪ F )− r(M) = rM (F )− rM (YF ∪ F ), so

uM (XF ∪ F, YF ) = rM (XF ∪ F )− r(M) + rM (YF )

= rM (F )− rM (YF ∪ F ) + rM (YF )

= uM (F, YF ).

This contradicts (vi), so (vi) implies (i). Hence the theorem holds. �

The following is an immediate consequence of Theorem 1.1.

Corollary 2.1. A loopless parallel minor of an unbreakable matroid is un-
breakable.

3. Unbreakable Regular Matroids

To determine the unbreakable regular matroids, we will find the unbreak-
able graphic and cographic matroids and then apply Seymour’s Decomposi-
tion Theorem. We will use the following elementary result.

Lemma 3.1. If M is an unbreakable matroid and N is a loopless matroid
such that si(N) ∼= M , then N is unbreakable.

Proposition 3.2. A non-empty loopless graphic matroid M is unbreakable
if and only if si(M) ∼= M(Cn) or si(M) ∼= M(Kn) for some n ≥ 2.

Proof. One easily checks that if si(M) ∼= M(Cn) or si(M) ∼= M(Kn) for some
n ≥ 2, then M is unbreakable. Now, suppose that M is unbreakable and
simple and let G be a connected graph such that M(G) ∼= M . If |V (G)| < 3,
then G ∼= K2 so we may assume that |V (G)| ≥ 3.

Suppose that G is 3-connected and that G 6∼= Kn. For two non-adjacent
vertices, v1 and v2, in G, we see that G − {v1, v2} is connected, and
si(M(G/E(G − {v1, v2}))) ∼= U2,2. Thus M is not unbreakable. We may
now suppose that G is not 3-connected. Assume that G 6∼= Cn. Then G
can be written as the 2-sum of two 2-connected graphs G1 and G2 across a
common edge p having endpoints u and v. Then G1, say, has a vertex w and
a path joining u and v that avoids w. Let w′ be a vertex not in V (G1). Let S
be the set of all edges not incident with w or w′. Then si(M(G/S)) ∼= U2,2.
Thus M is not unbreakable. �

Lovász [6] (see also [1, Theorem III.2.2]) proved the following result.
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Theorem 3.3. Let G be a loopless graph with no two vertex-disjoint cycles.
Suppose every vertex of G has degree at least three and no vertex meets every
cycle. Then

(a) G has three vertices and multiple edges join every pair of vertices;
or

(b) G is a K4 in which one triangle may have multiple edges; or
(c) G ∼= K5; or
(d) G ∼= K5\e where some of the edges not adjacent to the missing edge

may be multiple edges; or
(e) G is a wheel whose spokes may be multiple edges; or
(f) G is obtained from K3,p for some p ≥ 3 by possibly adding some of

the edges joining two vertices in the first vertex class.

Proposition 3.4. Let M be a loopless matroid that is cographic but not
graphic. Then M is unbreakable if and only if si(M) ∼= M∗(K3,3).

Proof. Let M = M∗(G) for some graph G. By Theorem 1.1(ii), M is un-
breakable if and only if all cycles of G share at least two vertices. From
Theorem 3.3, we deduce, since M is not graphic, that G can be obtained
from K3,3 by possibly replacing some edges by paths. �

The proof of Theorem 1.2 will use two more lemmas. An element in a
matroid is free if it is not a coloop and the only circuits containing it are
spanning. Thus a loopless matroid with a free element is connected.

Lemma 3.5. If a loopless matroid M has a free element, then M is un-
breakable.

Proof. Suppose p is a free element of M but M is not unbreakable. Then
M has a flat F such that M/F is disconnected. Let BF be a basis of F
where p ∈ BF if p ∈ F . If p /∈ F , then BF ∪ p is independent. Thus B
has a basis that contains both BF and p. As M is connected, by a result of
Cunningham [2] and Krogdahl [5] (see also [7, Proposition 4.3.2]), for some
e in E(M) − B, the fundamental circuit C(e,B) contains p. As p is free,
C(e,B) = B ∪ e. Thus C(e,B)− BF is a spanning circuit of M/F , so this
matroid is connected, a contradiction. �

Lemma 3.6. Let M1 and M2 be loopless matroids with E(M1) ∩ E(M2) =
{p} and r(Mi) ≥ 2 for each i. The 2-sum of M1 and M2 with respect to the
basepoint p is unbreakable if and only if p is free in both M1 and M2.

Proof. Suppose M1 ⊕2 M2 is unbreakable, but p is not free in M1. Let C
be a non-spanning circuit of M1 containing p, and let F = clM (C − p).
Then M/F is disconnected, a contradiction. To prove the converse, suppose
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that p is free in both M1 and M2. By Lemma 3.5, both M1 and M2 are
unbreakable. Suppose M has a flat F such that M/F is disconnected. Let
M ′ be the parallel connection P (M1,M2). Then the closure of F in M ′ is
F or F ∪ p. In the latter case, F spans E(Mj) − p for j = 1, say. Then
M/F can be obtained by contracting a flat of M2/p and so it is connected,
a contradiction. Thus F does not span p in M ′ so F = F1 ∪ F2 where Fi is
a flat of Mi avoiding p. As Mi/Fi is connected containing p, it follows that
(M1/F1)⊕2 (M2/F2), that is M/F , is connected, a contradiction. �

We can now prove the main result of the paper.

Proof of Theorem 1.2. By Propositions 3.2 and 3.4, we need only show that
R10 is unbreakable to ensure that each of the listed matroids is unbreakable.
As R10 has rank five and its smallest circuit has four elements, R10 has no
skew circuits. Since R10 is self-dual, it is unbreakable, by Theorem 1.1(ii).

Now let M be an unbreakable regular matroid that is not listed in the
theorem so that |E(M)| is a minimum among such matroids. Then M is
simple. By Seymour’s Regular Matroids Decomposition Theorem [9], as M
is connected, M can be obtained using 2- and 3-sums from graphic matroids,
cographic matroids, and copies of R10.

Suppose M is the 2-sum with basepoint p of M1 and M2 where each Mi

has at least three elements and has rank at least two. By Lemmas 3.6 and
3.5, p is free in each Mi, so each Mi is unbreakable and hence is a member
of the specified list of unbreakable matroids. But the only such matroids
having a free element are those whose simplification is a circuit, and a 2-sum
of circuits is a circuit. This contradiction implies that M is 3-connected.

Suppose M ∼= M1 ⊕3 M2. By Seymour’s Theorem, each of M1 and M2 is
isomorphic to a loopless minor of M . It follows that each Mi is a loopless
parallel minor of M and so, by Corollary 2.1, each is unbreakable. Thus
each Mi must be one of the previously identified unbreakable matroids and
must contain a triangle. As M is not graphic, we may assume that si(M1) ∼=
M∗(K3,3) and that either si(M2) ∼= M∗(K3,3) or si(M2) ∼= M(Kn) for some
n ≥ 4. Let {a1, a2, a3} be the common triangle T of M1 and M2. Suppose
that si(M2) ∼= M∗(K3,3). For each i, take a triangle Ti of Mi that meets T
in {ai} where u(Ti, T ) = 1. Then one easily checks that M/cl((T1 − a1) ∪
(T2 − a2)) is disconnected, a contradiction.

We may now assume that si(M2) ∼= M(Kn) for some n ≥ 4. Let P be the
generalized parallel connection of M1 and M2 across the triangle T . If M1 or
M2 has an element x in parallel to some element of T , then there are elements
y and z of E(M1) − clM1(T ) such that {x, z} is independent in M/y and
{x, z} ⊆ clP/y(T ). Then M/cl({x, y, z}) is disconnected, a contradiction.
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Thus we may assume that no such element x exists, so P is simple. Then,
taking {y, z} in E(M1)−clM1(T ) such that {y, z} is a flat of M1 that is skew
to T , we deduce that {y, z} is a flat of M and, in M/{y, z}, the elements
of E(M1)− (T ∪ {y, z}) form two skew 2-circuits. Then M/{y, z} = M(G)
where G is obtained from Kn\e by adding an edge in parallel to each of f
and g for some triangle {e, f, g} of Kn. By Proposition 3.2, M(G) is not
unbreakable, a contradiction. �
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