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1. Introduction

William Thomas Tutte (rhymes with “hut”) was the leading graph and matroid
theorist of his generation. His first mathematical paper appeared in 1940 and his
last in 2000. According to a list published in 1969, between 1940 and 1949, there
were 55 papers published in graph theory, 11 of them by Tutte; in 2000, more than
1500 books and papers appeared that were classified under 05C (graph theory)
on MathSciNet. Like graph theory, matroid theory has grown dramatically from
its introduction in 1935 by Hassler Whitney: MathSciNet shows over 1000 items
published in period 1990–2000 having the word “matroid” in the title or review.
Despite early contributions by Garrett Birkhoff, S. MacLane, and B.L. van der
Waerden, the first major advances in matroid theory were made by Tutte in his
1948 Cambridge Ph.D. thesis [3] which formed the basis of an important sequence
of papers published over the next two decades. Tutte’s work in graph theory and
matroid theory has been profoundly influential on the development of both the
content and direction of these two fields.

To summarize Tutte’s notable contributions, he broke the German Army High
Command’s code [10] during World War II, he advanced graph theory from a sub-
ject with one text (D. König’s) toward its present extremely active state, and he
developed Whitney’s definitions of a matroid into a substantial theory.

Tutte’s contributions to graph and matroid theory were immense, but his ter-
minology was idiosyncratic, frequently at variance with most other researchers.
Hardest of all for a novice approaching Tutte’s work is the fact that he often used
standard terms in graph and matroid theory in ways that differ from their conven-
tional usage. While Tutte’s many theorems are frequently cited today, much of his
terminology has been discarded. In the descriptions of his matroid results that ap-
pear below, the terminology used follows J. Oxley [2] and, with minor variations, is
fairly universally accepted. For his graph theory results, we follow the terminology
of D. West [9]. To describe Tutte’s results and their significance, we shall need to
introduce some of this terminology together with some well-known results.

A graph may be viewed as consisting of a set of points in space, called vertices,
and segments of curves joining pairs of vertices; these curves are called edges and
share only their ends with other edges and vertices of the graph. As an example,
consider the complete graph Kn, which consists of n vertices and

(

n

2

)

edges, with
one edge joining every two distinct vertices. If an edge of a graph joins a vertex to
itself, the edge is called a loop. If two or more edges join the same pair of vertices,
the edges are said to be parallel. A graph is simple if it has no loops and no parallel
edges. The degree of a vertex in a graph is the number of ends of edges meeting
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that vertex. Thus a loop contributes two to the degree of the vertex it meets.
Since each edge has two ends, the sum of the degrees of a graph is always even. A
graph is cubic if every vertex has degree three. A path is an alternating sequence
of vertices and edges, each edge joining the vertex before it to the vertex after it
in the sequence, and with no repeated vertices. A cycle is formed from a path by
adding an edge joining its end vertices. A graph is connected if, between every two
distinct vertices, there is a path. A forest is a graph with no cycles, and a tree is a
connected forest. A graph is said to be Hamiltonian if it has a cycle that includes
all of the vertices of the graph, and such a cycle is called a Hamiltonian cycle.

Abstracting from the collection of linearly independent columns of a matrix, in
1935 Whitney defined a matroid M to consist of a finite set E (or E(M)) and a
collection I (or I(M)) of subsets of E called independent sets with the properties
that the empty set is independent; every subset of an independent set is indepen-
dent; and if one independent set has more elements than another, then an element
can be chosen from the larger set to adjoin to the smaller set to produce another
independent set. A set that is not independent is called dependent and the minimal
such sets are called circuits. For a matrix A over a field F, if E is the set of column
labels on A, and I is the set of subsets of E that label linearly independent sets of
columns, then (E, I) is a matroid, M [A]. Such a matroid is said to be representable

over the field F. If G is a graph, E is its set of edges, and I is the collection of
the edge sets of the forests in G, then (E, I) is a matroid, M(G), called the cycle

matroid of G. Its circuits are the edge sets of the cycles in G. A matroid that
is isomorphic to the matroid M(G) for some graph G is called graphic. Repre-
sentable and graphic matroids were introduced by Whitney and these classes have
profoundly influenced the development of matroid theory ever since.

A graph is planar if it can be drawn in the plane without edges crossing, and it
is a plane graph if it is so drawn in the plane. The drawing separates the rest of the
plane into regions called faces. Every plane graph G has a dual graph G∗, formed
by assigning a vertex of G∗ to each face of G and joining two vertices of G∗ by k
edges if and only if the corresponding faces of G share k edges in their boundaries.
Whitney defined the dual of a graph independently of the graph’s embedding in the
plane and showed that a graph has such a dual if and only if it is a planar graph.

One of the most important qualities possessed by matroids is that every matroid
has a dual. In general, for a matroid M on E, let B be the collection of bases,
that is, maximal independent sets, of M . Clearly B uniquely determines M . The
collection {E −B : B ∈ B} is the set of bases of another matroid on E, namely the
dual M∗ of M . Evidently,

(M∗)∗ = M. (1)

If G is a planar graph and G∗ is a dual graph of G, then (M(G))∗ = M(G∗). If G is
not planar, then (M(G))∗ is still defined but one can show that it is not graphic. So
the class of graphic matroids is not closed under duality since the dual of a member
of the class need not be in the class. It is easy to show that all bases of a matroid
M have the same cardinality; we call this the rank r(M) of M .

We will define further concepts relating to graphs and matroids as we need them.

2. Overview of Tutte’s Life

William Thomas Tutte was born at Fitzroy House in Newmarket, Suffolk, Eng-
land, on May 14, 1917 and died on May 2, 2002, in Waterloo, Ontario. He attended
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Trinity College, Cambridge from 1935 until January, 1941, majoring in chemistry
and earning his bachelor’s degree in 1939 and his master’s in 1941. He spent the
rest of World War II working at Bletchley Park.

At the end of the war, because of his war work, Tutte was given a Fellowship at
Trinity College, Cambridge. The decision to so honor him was justified: With little
help from his advisor, Shaun Wylie, he completed a 417+xi-page thesis in three
years, graduating in 1948. The thesis is remarkable, both for its contents and for
its omission of his work on Hamiltonian cycles, which he published while he was
writing the thesis.

For the thesis, Tutte invented a class of algebraic structures which he called
“nets” and later learned were equivalent to representable matroids. He developed a
theory of “cleavages” of a 2-connected graph into 3-connected parts, thus deepening
a result of Whitney. He introduced the dichromatic polynomial, now called the
“Tutte polynomial,” one of the more important functions in graph and matroid
theory. In addition, his thesis introduced matroid minors, now the most important
and widely studied of matroid substructures. Finally, he developed this theory
to the point that he was able to characterize graphic matroids by giving a list of
matroids, which he called “gnarls,” such that a matroid is graphic if and only if it
has no gnarl as a minor.

In 1948, H.S.M. Coxeter helped Tutte get a position at the University of Toronto.
Tutte served there until 1962, when the University of Waterloo (founded in 1958)
recruited him. Ralph Stanton, head of the Mathematics Department at that time,
went to Toronto with Gerald Berman to talk to Tutte and his wife Dorothea (mar-
ried 1949). The opportunity appealed to Tutte, both because it offered the pos-
sibility of advancement and because he and Dorothea enjoyed nature and liked
the relatively rural setting of Waterloo. Tutte accepted the position and he and
Dorothea bought a house in the small nearby town of West Montrose, Ont., next to
a covered bridge. They enjoyed showing their lovely garden and nearby scenery, and
they could name every bird and plant in the garden. They liked hiking. Bill often
organized hiking trips and even bought wilderness properties as birthday presents
for Dorothea for them to hike in.

3. Mathematical Beginnings and Blanche Descartes

Not long after he started his undergraduate studies at Cambridge, Tutte was
introduced by his chess-playing friend R. Leonard Brooks to two of Brooks’s fellow
mathematics students, Cedric A.B. Smith and Arthur Stone. The four became
fast friends and Tutte came to refer to the group as “the Gang of Four,” or “the
Four” [7]. The Four joined the Trinity Mathematical Society and devoted many
hours to studying unsolved mathematics problems together.

They were most interested in the problem of squaring a rectangle or square, that
is, of finding squares of integer side lengths that exactly cover, without overlaps, a
rectangle or square of integer side lengths. If the squares are all of different sizes,
the squaring is called perfect. While still undergraduates at Cambridge, the Four
found an ingenious solution involving currents in the wires of an electrical network.
Solving this network, the currents in its wires are the required sizes of the squares.
Their first perfect squared square and the accompanying theory were published in
1940 [4, pp. 10–38]; it was anticipated by one year by a perfect squared square
found empirically by R. P. Sprague.
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About this work, Tutte said, “This [research] soon called for much graph the-
ory. It was linked, through a ‘Smith diagram,’ with the study of 3-connected
planar graphs . . . , and with Kirchhoff’s Laws for electrical circuits. . . . It was
linked through rotor theory . . . with graph symmetry. . . . It was linked through
the tree-number . . . with the theory of graph functions satisfying simple recursion
formulae. . . .” [5, p. xix]

The Gang of Four were typically lively undergraduates. They decided to create
a very special mathematician, Blanche Descartes, a mathematical poetess. She
published at least three papers, a number of problems and solutions, and several
poems. Each member of the Four could add to Blanche’s works at any time, but it
is believed that Tutte was her most prolific contributor.

The Four carefully refused to admit Blanche was their creation. Visiting Tutte’s
office in 1968, Hobbs had the following conversation with him:

Hobbs: “Sir, I notice you have two copies of that proceedings. I wonder if I
could buy your extra copy?”

Tutte: “Oh, no, I couldn’t sell that. It belongs to Blanche Descartes.”

4. Bletchley Park

At about the time Tutte completed his master’s in chemistry in 1941, his Tutor,
Patrick Duff, recommended him to the famous codebreaking group at Bletchley
Park. After training at the Code and Cypher School in London, he was assigned to
the Research Section, and there to a group trying to break the German Army High
Command’s code that the British called “FISH.” It was produced by the Lorenz SZ
40/42 teleprinter cypher attachment, which generated code in the 5-bit 32-letter
Baudot Teleprinter Code alphabet [10]. Unlike the case of the 3- or 4-wheel Enigma
machine, the British did not have a Lorenz code machine, but the clear 12-word
preamble in the early FISH transmissions suggested that it had 12 wheels [10], [6].
Its code was produced letter by letter by a Boolean addition of a letter from the
message and a letter from a key produced by the machine. Thus, the message letter
R (code 01010) might be added to the key letter A (11000), producing the code
letter D (10010).

On August 30, 1941, a clerk in Athens, Greece sent a Lorenz-coded message
of about 4000 characters length. Apparently the receiving office in Vienna didn’t
quite get it, for they asked for a repeat. Proper protocol would require that the
message be sent either exactly as before or with a new setting on the wheels of the
machine, but the clerk re-coded it with the same initial setting as before and sent
it again with some variations in abbreviations, spacing and punctuation. Even in
such circumstances breaking the code is not easy, but eventually Col. John Tiltman
found 3976 characters of the key produced by the machine with that wheel setting.
Tutte sought patterns within this key, and after a few months work he discovered
a repetitive pattern of length 574 = 14 · 41. This indicated that one of the wheels
had 41 teeth. It took still more time to fully find the design of the Lorenz machine,
but he and the others in his section worked out the placement and number of teeth
of the 12 wheels within the machine. Their decoding efforts were paralleled by
German efforts to improve the code, so there was a constant struggle between the
German encrypters and the British codebreakers. The rest of the story is too long
for this article. Suffice it to say that Tutte’s work led to the development of the
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first working electronic computer, Colossus, to run decoding algorithms. By the
end of the war, 10 Colossus machines were in use [10].

5. Fragments and Hamiltonian graphs

A summary of Tutte’s work is simplified by the fact that, in the commentaries
on his selected works [4] and in other published lectures [7, 8], he gave not only
many useful historical facts about the context in which his work was done, but also
numerous insights into his thinking when he was developing his many theorems.
We draw heavily from these works in what follows.

A graph is k-connected if removing k− 1 vertices does not disconnect it. A cycle
with exactly three edges is a triangle. If every face of a plane graph is a triangle,
the graph is a plane triangulation. A cycle C in a plane graph G is separating if G
has vertices both inside and outside C.

Given a cycle C in a graph G, a fragment of C, or a C-fragment, consists either
of an edge (and its ends) not in C but joining two vertices of C, or of a component
Q of G−V (C) together with all edges (and their ends) from vertices of Q to vertices
of C. The vertices a C-fragment shares with C are called its vertices of attachment.

Tutte introduced fragments in his thesis. He used these tools in several of his
graph theory papers, including his 1960 paper “Convex representations of graphs”
and his important paper “How to draw a graph” [4, pp. 364–388]. He used a
generalization of fragments to matroids in proving his characterization of graphic
matroids (1959).

The question of whether a graph has a Hamiltonian cycle is one of the prime
exemplars of an NP-complete problem and is a special case of the well-known trav-
eling salesman problem. Consequently, finding significant classes of graphs that
certainly are or are not Hamiltonian is important. In 1884, P.G. Tait conjectured
that every 3-connected planar cubic graph has a Hamiltonian cycle. If true, a proof
of this conjecture would have also proved the famous Four Color Conjecture.

In his occasional free time at Bletchley Park, Tutte thought about Tait’s conjec-
ture. He discovered a Hamiltonian graph with the remarkable quality that it had
an edge through which all Hamiltonian cycles passed. He then used three copies of
that graph to construct a counter-example to Tait’s conjecture [4, pp. 47–50].

In 1931, H. Whitney had shown that a plane triangulation with no separating
triangle is Hamiltonian. In 1956, using the theory of fragments which he introduced
in his thesis, Tutte extended Whitney’s theorem by showing that every connected
planar graph G with at least one cycle has a cycle C, all of whose fragments have at
most three vertices of attachment. A nontrivial consequence of this is his following:

5.1. Theorem. Every 4-connected planar graph is Hamiltonian.

6. The excluded-minor theorems

The notion of a graph minor was introduced in the 1930s and early 1940s by K.
Wagner and H. Hadwiger. In Tutte’s thesis, he generalized this notion to matroids.
If M is a matroid on a set E and I is its collection of independent sets, then,
for an element e of E, there are two natural matroids on E − {e}: the deletion

M\e of e and the contraction M/e of e. The first has as its independent sets all
members of I that are subsets of E−{e}. To specify the second, let Be be {e} when
{e} is independent, and let Be be ∅ otherwise. Then M/e has as its independent
sets all subsets I of E − {e} for which I ∪ Be ∈ I. These operations of deletion
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and contraction are natural extensions of their namesakes in graph theory. Since an
element e of the cycle matroid M(G) of a graph G is just an edge of G, the matroids
M(G)\e and M(G)/e are the cycle matroids of, respectively, the graph G\e that
is obtained from G by removing the edge e, and the graph G/e that is obtained
from G by identifying the ends of e and then deleting e. Both the graph and the
matroid operations of deletion and contraction commute with themselves and with
each other so that, for a matroid M or graph G, it makes sense to talk about a
matroid or graph of the form M\X/Y or G\X/Y , where X and Y are disjoint
subsets of E. Such a matroid or graph is called a minor of M or of G where, in the
case of graphs, we also allow the deletion of vertices of degree zero in constructing
a minor. Several basic classes of matroids and graphs have the property that every
minor of a matroid or graph in the class is also in the class. Indeed, the remarks
above establish that every minor of a graphic matroid is graphic. We say that the
class of graphic matroids is minor-closed. For another example, the class of planar
graphs is minor-closed.

For any class M of matroids or graphs that is closed under minors, there is a
list of excluded minors, that is, those matroids or graphs that are not in M such
that every deletion and every contraction is in M.

A matroid is binary if it is representable over GF (2). A matroid is regular if it
is representable over R by a totally unimodular matrix A, that is, by a matrix all
of whose subdeterminants are in {0, 1,−1}. In fact, regular matroids are precisely
the matroids that are representable over all fields (see [2, Theorem 6.6.3]), so every
regular matroid is binary.

We know that the class of graphic matroids is not closed under duality. By
contrast, both the classes of regular and binary matroids are closed under duality.
Indeed, if [Ir|D] is an r × n matrix representing M over a field F, then M ∗ is
represented over F by the (n − r) × n matrix [−DT |In−r ] where the order of the
labels on the columns of the last matrix matches the order on the original matrix.
We observe that duality is a natural generalization of orthogonality, since every row
of [Ir|D] is orthogonal to every row of [−DT |In−r].

Every graphic matroid is regular. To see this, let G be a graph, orient its edges
arbitrarily, and then take the vertex-edge incidence matrix of the resulting directed
graph. It is not difficult to show (see [2, Proposition 5.1.3]) that the resulting matrix
A is totally unimodular and that M [A] = M(G). After Tutte recognized the link
between the structures he studied in his thesis and Whitney’s matroids, his “main
preoccupation . . . was the question: ‘When is a matroid graphic?’ ” [7, p.100].
Using the observations above, he divided this problem into three subproblems:

(i) When is a matroid binary?
(ii) When is a binary matroid regular?
(iii) When is a regular matroid graphic?

The first of these questions is the simplest and has numerous answers. One
of those given by Tutte involves excluded minors. If A is a matrix over a field
F and e labels a column of A, then M [A]\e is represented over F by the matrix
that is obtained by deleting the column labelled e. If e labels a zero column, then
M [A]/e = M [A]\e; otherwise, by elementary row operations, we can transform
A into a matrix A′, in which e labels a unit vector. It follows from elementary
linear algebra that M [A′] = M [A], that is, these elementary row operations do not
alter the matroid. Now M [A]/e is the matroid that is represented by the matrix
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that is obtained from A′ by deleting both the column labelled by e and the row
containing the unique non-zero entry of e. We deduce from these observations that
the class of F-representable matroids is minor-closed. In particular, the class of
binary matroids is minor-closed. By observing that if the matrix A above is totally
unimodular, then so is the matrix A′, we deduce that the class of regular matroids
is also minor-closed.

Tutte’s excluded-minor answer to (i) is contained in the next theorem. It involves
a particular uniform matroid where, for 0 ≤ r ≤ n, the uniform matroid Ur,n is the
matroid on {1, 2, . . . , n} whose independent sets consist of all subsets of {1, 2, . . . , n}
with at most r elements.

6.1. Theorem. A matroid is binary if and only if it has no minor isomorphic to

U2,4.

The answers to Tutte’s subproblems (ii) and (iii) were again given in terms of
excluded minors but were considerably more difficult to derive. The Fano matroid,
F7, is the matroid that is represented over GF (2) by the matrix consisting of the
seven non-zero vectors of length 3, that is, by the matrix

A =





1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1



.

Geometrically, F7 can be represented as in Figure 1 where the independent sets
consist of all sets of at most three points such that no three are collinear. Observe
that the curve through 4, 5, and 6 in the diagram is to indicate that these three
points are collinear.

1

2 3

4 5

6

7

Figure 1. The Fano matroid F7.

It is straightforward to show that the Fano matroid is not regular but that all of
its proper minors are, so F7 is an excluded minor for the class of regular matroids.
There is another excluded minor for the class of regular matroids that is easily
derived from F7, namely its dual F ∗

7 .
Tutte noted that deletion, contraction, and duality are related by the following

beautiful identity:
(M\e)∗ = M∗/e. (2)

Combining this with (1), we get

(M/e)∗ = M∗\e. (3)
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We conclude, since the class of regular matroids is closed under duality, that F ∗
7 is

another excluded minor for this class. Tutte answered subproblem (ii) by proving
the following:

6.2. Theorem. A binary matroid is regular if and only if it has no minor isomor-

phic to F7 or F ∗
7 .

On combining this with the answer to subproblem (i), one obtains the following:

6.3. Corollary. A matroid is regular if and only if it has no minor isomorphic to

U2,4, F7, or F ∗
7 .

Tutte developed a geometry in which the circuits of the matroid were “points”
and he used this in the development of a homotopy theorem for matroids by which
he proved Theorem 6.2. He commented [8, p.7]: “I do not find the homotopy
theorem in the later literature. Perhaps it is mentioned with a warning that it is
terribly long and then the author tells of some shorter, slicker proof of the excluded
minor conditions. That is the way of Mathematics.” Theorem 6.2 is a brilliant
result and was always recognized as such but, as Tutte suggests, most readers were
frightened off by the proof technique. The best currently known proof was given by
A.M.H. Gerards in 1989 and relies only on some elementary ideas of linear algebra.
But the latter did not appear till some thirty years after Tutte’s landmark result.

Tutte attacked subproblem (iii) by analogy with the proof by fragments of K.
Kuratowski’s Theorem that a graph can be drawn in the plane if and only if it does
not have K5 or K3,3 as a minor. Here K3,3 is the three-houses, three-utilities graph
in which every house is joined to every utility by an edge. Tutte’s work on (iii)
culminated in the following very pleasing generalization of Kuratowski’s Theorem.

6.4. Theorem. A regular matroid is graphic if and only if it has no minor isomor-

phic to M∗(K5) or M∗(K3,3).

Theorems 6.1, 6.2, and 6.4, done in the context of nets, first appeared in Tutte’s
1948 Cambridge Ph.D. thesis [3] a decade before their publication in a journal.
These theorems were the cornerstones of Tutte’s “Lectures on matroids” presented
in 1964 at the first matroid theory conference, which was organized by Jack Ed-
monds and was held at the National Bureau of Standards. They are among Tutte’s
best-known contributions to matroid theory.

Tutte’s work with graph minors was eventually taken up his former student Neil
Robertson in collaboration with P.D. Seymour. Beginning in the 1980s, they have
produced an extraordinary sequence of papers describing the structure of graphs.
Perhaps their most powerful result so far is the Graph-Minor Theorem.

6.5. Theorem. In every infinite set of graphs, there are two such that one is a

minor of the other.

To illustrate the usefulness of this theorem, consider the very old question of
characterizing graphs that can be drawn in a surface of genus g without crossing
edges. Kuratowski’s Theorem established that there are exactly two excluded mi-
nors for the plane. A similar, more recent, theorem lists the 35 excluded minors for
the graphs that can be drawn in the projective plane. But the number of excluded
minors grows quickly with the genus, and it is not obvious that the list is even
finite for other values of g. To show that it is, suppose we have an infinite list L of
excluded minors for a surface. Then, by the Graph-Minor Theorem, one member
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of L is a minor of another. Since this is impossible by the minimality of excluded
minors, L must be finite.

A matroidal conjecture related to the Graph Minor Theorem is given at the end
of Section 8.

7. Colorings, flows, and the Tutte polynomial

Perhaps Tutte’s most long-lasting legacy will be the polynomial that bears his
name. Tutte’s work in this area began with Chapter 5 of his thesis. It was published
in terms of graphs in his 1947 paper “A ring in graph theory” [4, pp. 55–69]. In
a connected graph G, a spanning tree is a tree that contains all of the vertices of
G. The spanning trees of G coincide with the edge-sets of bases of the matroid
M(G). Let b(G) denote the number of spanning trees of G. In their 1940 paper
“The dissection of rectangles into squares” [4, pp. 10–38], the Gang of Four had
noted a formula that implies that, for all non-loop edges e of G,

b(G) = b(G\e) + b(G/e). (4)

Recall that G\e is obtained from G by deleting e, while G/e is obtained from G
by identifying the ends of e and then deleting e. Tutte wrote [7, p.53]: “When
I was doing my Ph.D. research I began to collect other functions of graphs that
satisfied similar recursions.” For a graph G and a positive integer λ, let P (G; λ)
be the number of colorings of the vertices of G using {1, 2, . . . , λ} such that if
two vertices are joined by an edge, they receive different colors. The smallest
positive integer n for which P (G; n) is non-zero is called the chromatic number

of G. George D. Birkhoff introduced P (G; λ) in 1912–13. R.M. Foster made the
elementary observation that if e is an edge of G, then

P (G; λ) = P (G\e; λ) − P (G/e; λ). (5)

Using this, it is easily shown that the function P is a polynomial in λ; it is called
the chromatic polynomial of G.

Now orient the edges of G arbitrarily and let H be an abelian group. An H-flow

on G is an assignment of non-zero members of H to the edges of G such that,
at every vertex, the total flow into the vertex equals the total flow out from the
vertex, where all calculations are done in H . Tutte showed [4, pp. 55–69] that the
number of such H-flows depends not on the specific group H but only on the order
of H . In particular, if |H | = m, then the number of H-flows equals the number of
Zm-flows. We call the latter flows m-flows and let F (G; m) be the number of such
flows. Tutte showed that

F (G; m) = F (G/e; m) − F (G\e; m). (6)

The polynomial F is called the flow polynomial of G.
These observations led Tutte in [4, pp. 55–69] to discuss a function f on graphs

that is invariant under isomorphism:

f(G1) = f(G2) if G1
∼= G2; (7)

and satisfies the rule,

f(G) = f(G\e) + f(G/e) for all non-loop edges e of G. (8)

He also considered functions satisfying the additional condition that

f(H + K) = f(H)f(K) (9)
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where H + K is the graph that is the union of the disjoint graphs H and K. Tutte
proved that a graph function satisfying (7)–(9) is uniquely determined once its value
is known, for all k, on the graphs consisting of a single vertex and k loops.

A cut edge of a connected graph is an edge whose removal disconnects the graph.
Tutte’s paper [4, pp. 55–69] also introduced a 2-variable polynomial, which Tutte
called the dichromatic polynomial and which is now known as the Tutte polynomial.
This polynomial satisfies (8) provided e is not a cut edge of G. It also satisfies
(7) and (9) and, indeed, it is the universal graph invariant satisfying these three
conditions in a sense that will shortly be made precise.

In a matroid M , if X ⊆ E(M), then M\(E(M) − X) is a matroid on the set
X . Its rank is r(X). Much of the theory described above extends to matroids and
was developed for representable matroids in Tutte’s Ph.D. thesis. However, Tutte
never published his work for matroids and it was not until 1969 that H.H. Crapo
published a fully general matroid form of this theory. For a matroid M on a set E,
the Tutte polynomial T (M ; x, y) of M is

∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

This polynomial has the attactive property that

T (M ; x, y) = T (M∗; y, x),

where M∗ is the dual of the matroid M . Moreover, for a graph G with k(G)
components,

P (G; λ) = λk(G)(−1)|V (G)|−k(G)T (M(G); 1 − λ, 0)

and
F (G; m) = (−1)|E(G)|−|V (G)|+k(G)T (M(G); 0, 1− m).

An element e of a matroid is a loop if {e} is a circuit of the matroid. The Tutte
polynomial has the properties that

f(M1) = f(M2) if M1
∼= M2; (10)

f(M) = f(M\e) + f(M/e) if e is not a loop in M or M ∗; (11)

and
f(M) = f(M\e)f(M\(E(M)− {e})) if e is a loop of M or M ∗. (12)

In his thesis, Tutte showed that the Tutte polynomial is a universal matroid invari-
ant satisfying (10)–(12) in that if the value of f on the two one-element matroids
U1,1 and U0,1 are x and y, respectively, then f(M) = T (M ; x, y) for all matroids
M . Tutte never published this result, and it was rediscovered by T.H. Brylawski
and published in 1972.

The applications of the Tutte polynomial extend well beyond graphs into such
diverse areas as coding theory, percolation theory, electrical network theory, statis-
tical mechanics, and knot theory. While Tutte essentially confined his interest to
spanning trees and chromatic and flow polynomials, in view of the importance of
polynomial invariants for knots, the link between one such invariant and the Tutte
polynomial is worth describing. Consider a link diagram as illustrated in Figure 2(a)
where the crossings alternate between under and over as the link is traversed. Such
a link diagram is called alternating. Now the faces in such a link diagram can be
colored black and white in such a way that adjacent faces receive different colors
and the infinite face is colored white (see Figure 2(b)). This coloring as called the
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Tait coloring of the diagram D. Let S(D) have vertices corresponding to the black
faces and an edge joining two such vertices when they are the opposite faces of
a crossing (see Figure 2(c)). In 1985, Vaughn Jones introduced a single-variable
polynomial for links that now bears his name. For this and other contributions to
knot theory, Jones was awarded a Fields Medal in 1990. If L is an alternating link,
D is the corresponding link diagram, and S(D) is the graph constructed as above,
then M.B. Thistlethwaite showed that, up to an easily derived factor, the Jones
polynomial of L is given by an evaluation of the Tutte polynomial of S(D) along
the hyperbola xy = 1.

��

��

��

��

� �	 	


 
� �

(a) (b) (c)

Figure 2

Tutte further developed the ideas introduced in [4, pp. 55–69] in his paper “A
contribution to the theory of chromatic polynomials” [4, pp. 157–168]. This paper
contained two interesting conjectures. The first, which was settled by F. Jaeger in
1975, asserted that there is a fixed integer n such that every graph without a cut
edge has an n-flow. Jaeger proved this with n = 8 and, subsequently, Seymour
proved it for n = 6. Tutte’s second conjecture, the 5-Flow Conjecture, is that every
graph without a cut edge has a 5-flow. The Petersen graph P10 is obtained from
the dodecahedron by identifying antipodal vertices and then replacing each pair
of parallel edges by a single edge. It has no 4-flow so 5 is best-possible in Tutte’s
conjecture. The 5-Flow Conjecture has now been open for almost fifty years.

The Four Color Problem, that every loopless planar graph has chromatic num-
ber at most four, was a dominating influence on graph theory for more than a
century following its introduction by F. Guthrie in 1852. In his 1966 paper “On
the algebraic theory of graph colorings,” following a suggestion of O. Veblen, Tutte
developed what he called a “geometrical version of the Four Color Problem.” The
ideas he introduced were further developed by Crapo and G.-C. Rota in their 1970
consideration of the critical problem for matroids. Let G be a graph. Since we
are interested in coloring vertices so that every two adjacent vertices are colored
differently, we may assume that G is simple. Now suppose that M(G) has rank
r. Take a binary representation of M(G), that is, a matrix A over the 2-element
field GF (2) such that M [A] ∼= M(G). Then we are effectively viewing M(G) as
being embedded in the r-dimensional vector space V (r, 2). In a 1966 paper, Tutte
showed that the graph G has a 4-coloring if and only if there are (r−1)-dimensional
subspaces H1 and H2 of the embedding space V (r, 2) such that H1 ∩H2 avoids the
edges of G. He defined a k-block to be a set F of non-zero vectors in V (r, 2) of rank
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exceeding k such that F meets every subspace of V (r, 2) of dimension r− k. Hence
a k-block is a special type of embedded matroid. A k-block is minimal if no proper
subset of it is also a k-block. For instance, Tutte showed that the minimal 1-blocks
are the cycle matroids of odd cycles.

A tangential k-block is a k-block for which no proper minor without loops is also
a k-block. Because the Petersen graph P10 has no 4-flow, M∗(P10) is a 2-block.
Indeed, it is a tangential 2-block. Evidently, K5 is not 4-colorable and M(K5) is
a tangential 2-block. Moreover, the Fano matroid is a tangential 2-block. Tutte
conjectured that the only tangential 2-blocks are F7, M(K5), and M∗(P10). He
proved this conjecture for tangential 2-blocks of rank at most 6, and B.T. Datta,
in 1976 and 1981, proved the cases of rank 7 and 8. The most significant advance
toward the resolution of this conjecture was made in 1981 by Seymour, who proved
that a tangential 2-block that is not isomorphic to F7 or M(K5) has a graphic dual.
He used the Four Color Theorem and his 1980 decomposition of regular matroids in
his proof of this result. A consequence of this theorem is that Tutte’s Tangential 2-
Block Conjecture is equivalent to the following extension of the 5-Flow Conjecture
known as the 4-Flow Conjecture.

7.1. Conjecture. Suppose that a graph G without cut edges has no 4-flow. Then

G has a subgraph contractible to P10.

Although this conjecture remains open in general, in 1999, N. Robertson, D.
Sanders, P. Seymour, and R. Thomas settled it in the important special case when
G is a cubic graph.

8. Connectivity in matroids

Tutte developed a theory of connection in graphs [4, pp. 229–243] that he subse-
quently generalized to matroids. This theory has had very important implications
in the burgeoning field of matroid structure theory. Concerning the definition of
k-connection given earlier, Tutte writes in [4, p.226] that he now refers to this
property as “vertical k-connection [where, in this context, ‘vertical’ is the adjective
from the noun ‘vertex’] having come to think of another kind of connection as more
natural.” Tutte’s theory of connection, which is defined in the next paragraph, is
preserved under duality. By contrast, the dual of a vertically 3-connected graph
need not be vertically 3-connected. For example, adding an edge in parallel to one of
the edges of the complete graph K4 produces a vertically 3-connected graph whose
planar dual has a degree-2 vertex and so is certainly not vertically 3-connected.

If m is a positive integer, Tutte [4, pp. 499–522] defined {X, E(M)−X} to be an
m-separation of M if both |X | and |E(M)−X | are at least m and ξ(X, E(M)−X) ≤
m, where

ξ(X, E(M) − X) = r(X) + r(E(M) − X) − r(M) + 1.

Thus, for example, if A is a matrix in block form
[

A1 0
0 A2

]

and X1 and X2 label the

columns of
[

A1

0

]

and
[

0
A2

]

, respectively, then {X1, X2} is a 1-separation of M [A].
This last kind of separation was considered by Whitney. But Tutte went beyond
1-separations, defining a matroid to be n-connected if, for all m with 1 ≤ m ≤ n−1,
the matroid has no m-separation. In particular, for a graph G with at least four
vertices, M(G) is 3-connected if and only if G is both (vertically) 3-connected and
simple. In his 1961 paper “A theory of 3-connected graphs” [4, pp. 229–243], Tutte
proved a graph result, which, for us, is most usefully stated in the matroid language
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above. An n-wheel Wn is the graph that is obtained from a cycle Cn with n edges
by adding a new vertex v and then joining v to every vertex of Cn. The cycle Cn

is called the rim of the wheel. Note that, in particular, W3
∼= K4.

8.1. Theorem. Let G be a graph with at least four vertices and no isolated vertices.

Suppose that M(G) is 3-connected but that, for all edges e of G, neither M(G)\e
nor M(G)/e is 3-connected. Then G is isomorphic to a wheel.

Some five years later, Tutte extended the last result from graphic matroids to
matroids in general. The extension required the introduction of a new class of
matroids. This class is constructed from the wheels using the following general
method. If C is a circuit of a matroid M such that E(M) − C is a circuit of M ∗,
then |C| = r(M) and there is a new matroid M ′ that has B(M) ∪ {C} as its set
of bases. We say that M ′ has been obtained from M by relaxing C. In particular,
the rim Cn of the wheel Wn is a circuit of M(Wn) whose complement is a circuit of
M∗(Wn). The matroid M(Wn) is also called an n-wheel. Relaxing Cn in M(Wn)
gives the n-whirl W n. In his very important paper “Connectivity in matroids” [4,
pp. 499–522], Tutte proved the following:

8.2. Theorem. Let M be a 3-connected matroid with at least four elements. If, for

all elements e of M , neither M\e nor M/e is 3-connected, then M is a wheel or a

whirl.

A consequence of the last two theorems is that every non-trivial 3-connected
matroid or graph can be built up one element at a time from a wheel or a whirl so
that all intermediate matroids or graphs are 3-connected, where the two allowable
building-up operations are the reverses of deletion and contraction.

An important result developed by Tutte during his consideration of separation
and connection in matroids appears in the 1965 paper “Menger’s Theorem for
matroids.” The significance of this result has only recently been realized more than
thirty years after its publication. We follow J. Geelen and G. Whittle (2002) in
describing how this result can be used and its link to Menger’s Theorem. Let G
be a graph with edge set E and suppose X ⊆ E. The vertex boundary of X is the
set of vertices that meet both X and E −X . Now let X and Y be disjoint subsets
of E, each having vertex boundary of size k. We can contract X onto Y if it is
possible to find a minor of G with edge set X ∪ Y such that the vertex boundary
of X has size k in the minor. Menger’s Theorem for graphs implies that X can
be contracted onto Y if and only if G has no vertex cut of size less than k that
separates X and Y . Rather than describe Tutte’s matroid result in full generality,
we consider it in the special case of a rank-r matroid M represented over a field F.
Effectively, we can view E(M) as a multiset of elements of the vector space V (r, F).
For a subset X of E(M), the subspace boundary is the intersection of the spans of X
and E(M)−X . The rank of this subspace boundary is ξ(X, E(M)−X)− 1. Now
suppose that X and Y are disjoint subsets of E(M) such that both ξ(X, E(M)−X)
and ξ(Y, E(M) − Y ) equal k. Tutte’s theorem asserts that the subspace boundary
of X can be contracted onto the subspace boundary of Y provided that M has no
smaller separations separating X from Y , that is, provided ξ(X ′, Y ′) ≥ k for all
partitions {X ′, Y ′} of E(M) with X ′ ⊇ X and Y ′ ⊇ Y . This result has played an
important role in two 2002 papers, of Geelen and Whittle and of Geelen, Gerards,
and Whittle, which attack what are currently the two central problems in matroid
theory:
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(i) Rota’s 1971 conjecture that, for all finite fields F, the set of excluded minors
for representability over F is finite; and

(ii) the conjecture that, for all finite fields F, every infinite sequence of ma-
troids representable over F contains two matroids one of which is a minor
of another. This conjecture is inspired by Robertson and Seymour’s Theo-
rem 6.5.

9. Tutte’s further contributions to graph theory

Space prevents our thoroughly explaining Tutte’s many other contributions to
graph theory. Here we summarize some of these other results.

Factors of graphs

While he was working on his thesis, Tutte also studied the problem of charac-
terizing all graphs G that have a subgraph having exactly one edge at each of the
vertices of G. Such a subgraph is called a 1-factor. Tutte successfully solved this
problem [4, pp. 93–97], thus generalizing J. Petersen’s more than 50-year-old result
for cubic graphs.

9.1. Theorem. Given a graph G and subgraph H of G, let o(H) be the number of

components of H having an odd number of vertices. Then G has a 1-factor if and

only if o(G\X) ≤ |X | for every subset X ⊆ V (G).

In 1952, Tutte generalized the 1-factor theorem by characterizing, for each func-
tion f from the vertices of graph G to the set of non-negative integers, those graphs
G which have a subgraph whose degree at each vertex v of G is f(v). These sub-
graphs are now called “f -factors.”

Tree packing

For a given integer k, which graphs G have k edge-disjoint spanning trees? One
obvious condition is that, given any partition of the vertices into m cells, each
spanning tree must include enough edges between cells to connect them together;
this minimum number is m− 1. So for k trees, there must be k(m− 1) such edges.
In 1961, Tutte [4, pp. 216–225], and independently and simultaneously C.St.J.A.
Nash-Williams, proved that this condition also suffices. The resulting theory of
edge-disjoint packings of graphs with trees has found applications in matroid theory,
rigidity of frameworks, electrical circuit theory, and survivability of networks.

Chromatic polynomials and the golden number

During the decade 1879–1890, the Four Color Problem was thought to have been
settled by A.B. Kempe (rhymes with “hemp”), using an ingenious device now called
a “Kempe chain.” In 1890, P.J. Heawood found a flaw in Kempe’s proof and showed
that Kempe’s idea proved the five color theorem. He extended the work to higher
genus surfaces. With the problem wide open again, G.D. Birkhoff introduced the
function P (G; λ) as a tool for attacking it, and in 1946, he and D.C. Lewis published
a very long paper which has formed the basis for much subsequent work.

The Four Color Problem was finally settled by K. Appel and W. Haken in 1976,
using Kempe chains and a discharging method developed from Euler’s polyhedron
formula. But the proof is not fully satisfying because it relies on the treatment of
more than 10,000,000 cases by a computer. A later proof by Robertson, Sanders,
Seymour, and Thomas is easier to follow but still relies in an essential manner on
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the use of the computer. Thus work on the Four Color Theorem continues today,
with the hope of finding a humanly readable proof.

Birkhoff’s chromatic polynomials represented a different approach to the Four
Color Theorem. Sometime around the beginning of 1968, Ruth Bari gave Tutte a
copy of her thesis, which contained the chromatic polynomials of about 100 planar
graphs. Later, Dick Wick Hall sent his collection of 900 chromatic polynomials of
planar graphs to Tutte. Tutte asked Gerald Berman to use his newly developed
computer program for finding zeros of polynomials to find the zeros of these func-
tions. Examining the resulting stack of 11× 15 fanfold printouts, which was many
inches thick, Tutte noticed that almost all of the polynomials had a zero near 1.618.
Moreover, the chromatic polynomials of the more complicated plane triangulations
had zeros closely approximating 2.618. Recognizing that this number is approxi-
mately 1 plus the golden mean τ = (1 +

√
5)/2, a zero of x2 − x − 1, he initiated

a study of chromatic polynomials evaluated at this number. He discovered that
|PT (τ + 1)| ≤ τ5−k for any 2-connected plane triangulation T with k vertices [4,
pp. 571–578]. In [4, pp. 581–595], he went further, showing that τ + 1 is never a
zero of a chromatic polynomial of a plane 2-connected triangulation, and that

PT (τ + 2) =
√

5 · τ3(k−3) · P 2
T (τ + 1).

To find a number this close to 4 at which chromatic polynomials of plane triangu-
lations are positive was particularly exciting, since the Four Color Theorem can be
stated as “P (G; 4) > 0 for every plane graph G.”

Enumeration of graphs

A near-triangulation of the plane is a plane graph in which all but one face is a
triangle. The remaining face may or may not be a triangle and, in Tutte’s research,
is taken as the infinite face. A triangulation is strict if it has no separating cycle
with exactly two edges, and a strict triangulation is simple if it has no separating
triangle.

Joining the enumerationists, Tutte said, “It occurred to me once that it might be
possible to get results of interest in the theory of map-colourings without actually
solving the [Four Colour] Problem. For example, it might be possible to find the
average number of 4-colourings, on vertices, for planar triangulations of a given
size.

“One would determine the number of triangulations of 2n faces, and then the
number of 4-coloured triangulations of 2n faces. Then one would divide the second
number by the first to get the required average” [7, p. 114].

To attack this problem, he eliminated all symmetry of a plane triangulation or
near-triangulation by rooting the graph. He chose a root vertex v, a root edge A
incident with v, and a root face F incident with A. He then set up generating
functions for the numbers of rooted plane triangulations and related graphs, with
the coefficients depending on the number of vertices in the graph. He found re-
cursions satisfied by these functions and solved the recursions, obtaining some very
nice results. For example, if an is the number of distinct rooted triangulations or
near-triangulations on 2n vertices, and if

g(x) =

∞
∑

n=0

anxn,
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then

g(x) = 2

∞
∑

n=0

(4n + 1)!xn

(n + 1)!(3n + 2)!
.

Similarly, Tutte found that the number of rooted 2-connected plane cubic graphs
with 2n vertices is

pn =
2n(3n)!

(n + 1)!(2n + 1)!
.

Moreover, he found that the average number of Hamiltonian cycles in a rooted
2-connected plane cubic graph is

3(2n)![(2n + 2)!]2

2n+2[(n + 1)!]2(n + 2)!(3n)!
∼ 8

√
3√

π
√

n

(

32

27

)n

.

Turning to colorings, he said [7, p. 125], “I now knew the number of general
rooted triangulations with 2n faces. Why not also find the number of λ-colored
ones, for an arbitrary positive integer λ?” Letting N denote a general rooted plane
near-triangulation, he considered

f(z, λ) =
∑

N

zr(N)P (N ; λ),

where r(N) is the number of non-root triangular faces of N . He found a differential
equation satisfied by a related function H in a variable t = z2. He said [7, pp. 127–
128], “The coefficients of successive powers of t in H can be calculated from this
equation. I am tempted to say that the problem of finding the number of 4-coloured
rooted triangulations with 2n faces is now solved; it is the appropriate coefficient in
the power series H defined as that solution of [the differential equation] in which the
coefficients of t0 and t1 are zero. But we still need an asymptotic approximation.
For that we can perhaps now look to the theory of differential equations.”

What we have said here only touches the surface of his work in this area, rep-
resented by more than 25 papers written over a period of more than 30 years.

Reconstruction

Let G be an unlabeled graph without loops and with at least three vertices.
For each vertex v of G, we make a card showing G − v, formed by erasing v and
every edge incident with v. Given only the resulting deck of |V (G)| cards, can we
reconstruct G? For example, if G is a path of length two, then two of the three cards
show two vertices joined by an edge and the third card shows two isolated vertices.
Since each edge appears in all but two of the cards (and so exactly once in this
deck of three cards), we conclude that there are two edges and the vertex removed
to form the third card meets both edges. Hence G is a path. The conjecture is that
any loopless graph with at least three vertices can be reconstructed from the deck
of vertex-deleted subgraphs; this is known as the Reconstruction Conjecture.

Label the vertices of a graph G with the integers 1, 2, . . . , n. The adjacency

matrix A(G) is an n×n matrix in which entry (i, j) is 1 if the vertices labeled i and
j are adjacent and is 0 otherwise. For a loopless graph, the main diagonal of A(G)
is all zeros. For such a graph, the characteristic polynomial of G is det(A(G)−λIn),
and its spectrum is the set of zeros, including multiplicities, of the characteristic
polynomial. These are independent of the labelling of the vertices of G.
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Since the Reconstruction Conjecture has proved to be extremely intractable,
the question has arisen, “Which graph properties are reconstructible?” Even this
problem remained open for the chromatic polynomial, the chromatic number, the
characteristic polynomial, the spectrum, and the number of Hamiltonian cycles of a
graph until, in [4, pp. 528–547] and in a 1979 paper entitled “All the King’s Horses,”
Tutte showed that all five of these properties are reconstructible by showing the
Tutte polynomial is reconstructible.

10. Conclusion

As a result of William Thomas Tutte’s contributions to graph theory and matroid
theory, both subjects have many results bearing his name. With his code-breaking
efforts, he made what has been called the “greatest intellectual feat of the whole
war” [1]. Among his many honors, he was awarded the Tory Medal in 1975, the
Killam Prize in 1982, and the CRM-Fields Prize in 2001. He was elected a Fellow
of the Royal Society of Canada (1958), a Fellow of the prestigious Royal Society of
London (1987), and an Officer of the Order of Canada (2001).
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