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Tutte proved that if e is an element of a 3-connected matroid M such that neither M\e
nor M /e is 3-connected, then e is in a 3-circuit or a 3-cocircuit. In this paper, we prove a
broad generalization of this result. Among the consequences of this generalization are that
if X is an (n — 1)-element subset of an n-connected matroid M such that neither M\ X nor
M /X is connected, then, provided |E(M)| > 2(n— 1) > 4, X is in both an n-element circuit
and an n-element cocircuit. When n = 3, we describe the structure of M more closely using
A — Y exchanges. Several related results are proved and we also show that, for all fields
F other than GF(2), the set of excluded minors for F-representability is closed under both
A—Y and Y — A exchanges.

1. Introduction

Tutte’s celebrated wheels-and-whirls theorem [28] is one of a number of matroid results
that make structural assertions for a matroid that satisfies a certain extremal connectivity
condition (see, for example, [1, 2, 4, 5, 14, 15, 16, 17, 18, 20, 29]). In particular, Tutte’s
theorem asserts that if M is a 3-connected matroid for which no single-element deletion
or single-element contraction is 3-connected, then M is a wheel or a whirl. The extremal
connectivity condition in this result is clearly global. Tutte [28] also proved the following
result, in which the extremal connectivity condition is local.

Theorem 1.1. Let e be an element of a 3-connected matroid M and suppose that neither
M\e nor M /e is 3-connected. Then e is in a 3-element circuit or a 3-element cocircuit of
M.

f This author’s research was partially supported by a grant from the Louisiana Education Quality Support
Fund through the Board of Regents.
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368 S. Akkari and J. Oxley

In this paper, the focus will be on using local extremal connectivity conditions to
deduce local structural information for a matroid. In particular, we shall prove a broad
generalization of Theorem 1.1. _

The matroid terminology used here will follow Oxley [22]. In particular, if M is a
matroid and T is a subset of its ground set E(M), then cl(T) will denote the closure of
T, and r(T) will denote the rank of T. The simple matroid associated with M will be
denoted by M. The m-element circuits and m-element cocircuits of M will be called simply
m-circuits and m-cocircuits or, when m = 3, triangles and triads.

If k is a positive integer, a partition {X, Y} of E(M) is a k-separation of a matroid M
if min{|X|,|Y|} > k and

rX)+r(Y)—r(M) <k—1.

If n is a positive integer such that M has no k-separations for any k < n, then M is
n-connected [28]. Thus a matroid is 2-connected if and only if it is connected. A survey
of the properties of n-connected matroids can be found in [22, Chapter 8]. One such
property that we shall use frequently is the following well-known result (see, for example,
[17, Lemma 2.2]).

Lemma 1.2. Let M be an n-connected matroid having at least 2(n — 1) elements. Then all
circuits and all cocircuits of M have at least n elements.

If tis a non-negative real number, then [t] and [¢] will denote, respectively, the
greatest integer not exceeding ¢ and the least integer not less than t. The restriction
on the cardinality of E(M) imposed in the last lemma is frequently applied when one
is considering n-connected matroids. It is a very weak restriction [12, 23] for the only
matroids it excludes are those uniform matroids U, such that r € {|k/2|, [k/2]|} and
ke{0,1,2,...,2n— 3}.

We shall assume familiarity with the operations of parallel connection and 2-sum of
matroids (see, for example, [22, Chapter 7]). A related, but more general, operation is
generalized parallel connection. Let M; and M, be matroids such that M;|T = M;|T,
where T = E(M;) N E(M;). Let N = M;|T and suppose that N is a modular flat of M.
The generalized parallel connection Py(My, M,) of M| and M, across N is the matroid on
E(M;)UE(M,) whose flats are those subsets X of E(M;)UE(M;) such that XNE(M;) is a
flat of My, and X N E(M) is a flat of M. This construction was introduced by Brylawski
[7] when M; and M, are simple matroids, but it extends easily to the more general
case considered above (see, for example, [22, Section 12.4]). Brylawski [7, 8] identified
numerous attractive properties of the construction. When |T| = 1, Py(M1, M) is just the
parallel connection P(My, M3) [6] of M; and M,.

This operation of generalized parallel connection is closely related to the graph opera-
tion of cligue-sum that has been used by Robertson and Seymour [24] in their important
work on graph minors. Let G; and G, be graphs whose sets of edge labels are disjoint
except that each has a triangle whose edges are labelled by e, f, and g. Let G be the graph
that is obtained by identifying these two triangles so that edges with the same labels
coincide. Then the cycle matroid of G is precisely the matroid Py(M(G,), M(G,)), where
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N = M(Gy)|{e,f,g} = Ups. The graph G\{e, f, g} that is obtained from G by deleting the
identified edges is the 3-sum of G; and G,. Seymour [26] extended the definition of 3-sum
to the class of binary matroids.

In the last example, N was chosen to be a triangle, such a set always being a modular
flat in a simple binary matroid. This special case of the generalized parallel connection will
be the one that will be of most importance here. In this case, we shall write PA(M;, M) for
Py (My, M;). Moreover, we shall be mainly concerned with the case when M; = M(Kj).
When G; and G, are as in the last paragraph, if G; = K4, then taking the 3-sum of G; and
G, amounts to replacing the triangle {e, f,g} of G, by a vertex of degree 3 that is joined
to the three vertices of the triangle. For graphs, this operation is called a A — Y exchange.
If M; and M, are matroids where ground sets meet in a triangle A and M; = M(K,),
then we shall say that P5(M;, M3)\A has been obtained from M, by a A — Y exchange.
Truemper [27] studied this operation and its properties when M> is binary but we shall
drop this restriction on M,. As examples, note that one obtains the matroids Uss, F7, and
(F7)" from Uys, F7, and F7, respectively, by a single A — Y exchange.

In graphs, one studies not only A — Y exchanges but also Y — A exchanges. For
matroids, the latter operation can be defined using duality. If M, is a matroid having a
triad {e, f,g}, then {e, f,g} is a triangle A of M;. Thus PA(M(K4), M;)\A is well-defined.
Hence so is its dual [Pa(M(K4), M;)\A]". The last matroid will be said to be obtained
from M; by a Y — A exchange.

In the next section, we state the main connectivity result of the paper and note some of
its consequences. Section 3 contains some preliminary lemmas needed to prove the main
result, and Section 4 contains the proof. In Section 5, we look more closely at 3-connected
matroids and extend the main result for such matroids. Finally, in Section 6, we prove
that, for all fields F other than GF(2), the set of excluded minors for F-representability is
closed under both A— Y and Y — A exchanges.

2. The main result and some consequences

We begin this section by stating the main connectivity result of the paper. Because the
statement of this result is a little cumbersome, we follow this by extracting some special
cases of the theorem that are of most interest.

Theorem 2.1. Let M be an n-connected matroid having at least 2(n — 1) elements. Suppose
that, for some integer k such that (2/3)(n —2) < k < n— 1, there is a k-element subset Z
of E(M) such that both M\Z and M /Z are (n — k)-separated. Then

(i) Z is in an n-circuit of M ; or

(ii) Z is in an n-cocircuit of M ; or

(iii) k is even and 2n + 2k — 2 < |E(M)| < 6n — 3k — 8; or

(iv) k is odd and 2n + 2k — 2 < |E(M)| < 6n — 3k — 10.

Moreover,
(v) if k=n—1, then both (i) and (ii) hold; and
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(vi) if k = n—2, then (i) holds; or (ii) holds; or n = 4, |[E(M)| = 10, r(M) = 5, and
E(M\Z) has a partition into two 4-circuits of M and another partition into two 4-
cocircuits of M.

The proof of this theorem will be given in Section 4. We now examine some consequences
of the theorem. The first is a well-known result of Tutte [28].

Corollary 2.2. Let e be an element of a connected matroid M. Then M\e or M /e is con-
nected.

Proof. Suppose that both M\e and M /e are disconnected. Then, since every matroid
with fewer than two elements is connected, |E(M\e)| > 2, so |[E(M)| > 3. By (v) of the
theorem, e 1s in both a 2-circuit C and a 2-cocircuit C*. Since |C N C*| cannot be 1, we
must have that C = C*. But now E(M) = C since M is connected and any circuit of M
meeting C must contain C. Thus |E(M)| < 3; a contradiction. ]

Next suppose that n = 3 and k = 1. In that case, part (iv) of the theorem asserts that
6 < |E(M)| <5, so (i) or (ii) holds. Theorem 1.1 now follows from Theorem 2.1 provided
|E(M)| = 4. But if |[E(M)| < 4, the hypotheses of (1.1) fail. ‘

In the case k = n— 1, Theorem 2.1 makes a very strong assertion:

Corollary 2.3. Let n be an integer exceeding two and M be an n-connected matroid having
at least 2(n — 1) elements. If M has an (n — 1)-element subset Z such that both M\Z
and M /Z are disconnected, then M has both an n-circuit containing Z and an n-cocircuit
containing Z.

Next we consider the implications of the last result for graphic matroids. It is well
known that the notions of n-connectedness of a graph G and n-connectedness of its cycle
matroid M(G) do not, in general, coincide. More prec1sely, we have the following result
[10, 13, 19].

Proposition 2.4. Let n be an integer exceeding one. If G is a connected graph with at least
three vertices and G % Ks, then M(G) is an n-connected matroid if and only if Gis an
n-connected graph having no cycles with fewer than n edges.

Using this proposition, we get the next result as a consequence of Theorem 2.1.

Corollary 2.5. Let e and f be distinct edges of a 3-connected simple graph G. Suppose
that neither G\e, f nor G/e, f is both loopless and 2-connected. Then G has both a triangle
containing {e,f} and a degree-3 vertex that is incident with both e and f.

Proof. The last corollary implies that M(G) has both a triangle and a triad containing
{e,f}. There are three possibilities for the subgraph induced by this triad. However, one
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easily checks that, because G is 3-connected, the only acceptable possibility is that the
triad consists of the three edges incident with a degree-3 vertex. L]

In Section 5, we shall prove a generalization of the last corollary for 3-connected
matroids that are not necessarily graphic. For n exceeding three, there are no graphic
matroids satisfying the hypotheses of Corollary 2.3. To see this, suppose that M(G) does
satisfy the hypotheses. Then the corollary implies that, in the graph G, the (n — 1)-element
set Z 1s in both an n-edge cycle and an n-edge cut. But it is straightforward to check that
this cannot happen in an n-connected graph that has no cycles with fewer than n edges.

3. Some preliminaries

In this section, we prove two lemmas that will be used in the proof of Theorem 2.1. The
first of these is straightforward; the second is more difficult and will play a crucial role in
the proof of the theorem.

Lemma 3.1. Let {P,Q} be a partition of the ground set of an n-connected matroid M. Then
r(P)+r(Q) — r(M) > min{|P|,|Q],n — 1}.

Proof. By semimodularity, the inequality holds trivially if min{|P|,|Q|,n — 1} = 0. Hence
assume that min{|P|,|Q|,n — 1} > 0. If min{|P|,|Q|} > n— 1, then, since {P,Q} is not an
(n — 1)-separation of M, it follows that ‘

r(P)+r(Q) —r(M) > n—1=min{|P|,|Q|,n — 1}.
If min{|P|,|Q|} = |P| < n— 1, then, since {P,Q} is not a |P|-separation of M, we deduce
that
r(P)+r(Q) —r(M) = |[P| = min{|P[,|Q],n— 1}. O

Lemma 3.2. Let M be an n-connected matroid having at least 2(n — 1) elements. Let Z
be a k-element subset of E(M) for some k in {1,2,...,n — 1} and suppose that M\Z is
(n — k)-separated. Then

(i) Z is in an n-cocircuit of M ;
or
(ii) for every (n— k)-separation {U,V} of M\Z,
(a) min{|U|,|V|} = n; and
(b) if |U| = n, then U is an n-circuit of M.
Moreover, if k =n—1 and Z is in an n-circuit of M, then (i) holds.

Proof. Suppose that M\Z has an (n — k)-cocircuit C*. Then C* U Z contains a cocircuit
of M. But, by Lemma 1.2, this cocircuit has at least n elements. Since |C* U Z| = n, we
deduce that C* U Z is a cocircuit of M that is, (i) holds.
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We may now assume that M\Z has no (n — k)-cocircuits. Let {U, ¥V} be an (n — k)-
separation of M\Z and suppose that r(U) = |U|. Then, as r(M\Z) = r(M) and

r(lU)+r(V)y—rM\Z)<n—k—1,

we deduce that
r(M) —r(V) 2 |Ul — (n—k—1),
that is,
r(M/V)=|U|+k—(n—1). )]

The matroid M/V has U U Z as its ground set, so has |U| + k elements. Moreover,
since M has no cocircuits of cardinality less than n, every cocircuit of M/V has at least
n elements. So every circuit of (M/V)" has at least n elements. But, by (1), (M/V)* has
rank at most n — 1. It follows that (M /V)" is uniform of rank n — 1, so every n-element
subset of U U Z is a circuit of (M/V)*, and hence is a cocircuit of M/V. In particular,
Z is in an n-cocircuit of M/V and hence is in an n-cocircuit of M. Thus M\Z has an
(n — k)-cocircuit; a contradiction. We conclude that if {U, V} is an (n — k)-separation of
M\Z, then r(U) # |U|. Since M has no circuits with fewer than n elements, it follows
that min{|U/|, |V |} > n. Moreover, if min{|U|,|V|} = |U| = n, then U is an n-circuit of M.
Hence if (i) does not hold, (ii) does.

It remains to prove that the last sentence in the lemma is true. Hence suppose that
|Z] =n—1 and that Z is in an n-circuit Z U e of M, but that Z is not in an n-cocircuit
of M. Let {U,V} be a 1-separation of M\Z and suppose, without loss of generality, that
e € U. Then

r(U)+r(V)—r(M\Z) <0 2
and r(M\Z) = r(M). Moreover, since ¢ € U and Z U e is an n-circuit, semimodularity
implies that

rl0uZy<rU)+r(ZUe)—r(e)=rU)+n—2.

Thus, by (2), (UUZ)+r(V)—r(M) < n—2. Since, by (ii), min{|{UUZ|,|V|} > n, we deduce
that {UUZ,V} is an (n— 1)-separation of the n-connected matroid M ; a contradiction. [J

4. The proof of the main theorem

In this section, we shall prove Theorem 2.1. In addition, we note a variant of the theorem
that guarantees the existence of an n-circuit or an n-cocircuit in M but does not ensure
that such a set contains Z.

Proof of Theorem 2.1. Let {U,V} and {X, Y} be (n — k)-separations of M\Z and M/Z,
respectively. Then

r(U)+r(V)—r(M\Z) <n—k—1 1)
and
rmjz(X) +rmjz(Y)—r(M/Z) <n—k—1. (2)
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By Lemma 1.2, Z is both independent and coindependent in M. Thus r(M\Z) = r{(M)
and r(Z) = k. Substituting into (1) and (2), we deduce that

rl0)y+rV)—riM)<n—k—1 3)
and
rXUuZ)+r(YUZ)—r(M)<n-—1. 4)
Adding (3) and (4), we get
FUO)+rXuZ)]+r(V)+r(YUZ) —2r(M) <2n—k—2. (5)

Thus, by semimodularity,
FUNX)+r(UUXUZD)]+[r(VNY)+r(VUYUZ)] —2r(M) <2n—k—2.
Regrouping terms, we get
rUNX)+r(VUYUZ)—r(M)]+[r(VNY)+r(UUXUZ)—r(M)] <2n—k—2. (6)

Now each of {UNX,VUY UZ} and {V¥NY,UUXUZ} is a partition of E(M). Thus,
by Lemma 3.1,

rUNnX)+r(VUYUZ)—r(M) > min{lUNX|,|VUYUZ|,n—1}
min{|U N X|,n — 1}, (7)

and
r(VNY)+r(UUXUZ)—rM) = min{[VNY,JUUXUZn—1}
= min{|]VNY|,n—1}. (8)
On combining (6), (7), and (8), we deduce that
min{|{UNX|,n— 1} +min{{VNY|,n—1} <2n—k—2. 9)

But the roles of U and V are indistinguishable in the above argument, so we may
interchange U and V in the last inequality to get

min{|VNX|,n—1}+min{jUNY|,n—1} <2n—k—2. (10)

Lemma 4.1.
(i) [WUNX|<n—1—[k/2]or ¥V NY|<n—1-[k/2]; and
(i) VNX|<n—1=[k/2] or [UNY|<n—1-[k/2].

Proof. By symmetry, it suffices to prove (i). Suppose first that |[U N X| > n — 1. Then, by
©).
min{|[VNY,n—1} <n—k—1,

so certainly

|VnY|sn—1—[§].
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- Thus we may assume that |U N X| < n—1 and, similarly, that |V N Y| < n— 1. Then, by
),
min{|{lUNX},|VNY|} < %(2n—k—2),

SO

min{|UﬁX|,|VﬂY|}Sn—1—[%]. ]

Now suppose that M has neither an n-circuit nor an n-cocircuit containing Z. Then,
by Lemma 3.2 and its dual,

min{{U|,|V|} > n (11)
and
min{|X|,|Y|} > n. (12)
By Lemma 4.1(i), we may assume, without loss of generality, that
k
|UnX|Sn—1—H. (13)
Then, by (11),
k
wny|> [-2-]+1 (14)
and, by (12),
Vx| = [%] F1 (15)

But, by Lemma 4.1(ii), [UN Y| or |V N X]| is at most n — 1 — [k/2]. Thus

31+ 1sn-1-[3]

$0
k
2 H <n—2.
2
Hence, if k = n—1, then M has either an n-circuit or an n-cocircuit containing Z. Indeed,

by Lemma 3.2 and its dual, M has both an n-circuit and an n-cocircuit containing Z.
We may now assume that k < n — 2. Next we note that [k/2] +1 < n—1, so, by (14),

min{|{UNY},n—1} > [g] F1. (16)

Hence, by (10) and (16),
min{|VNX|,n—1} < 2n—k—-2—min{jlUNY|,n—1}
k
< 2n—k—2—([§]+1)

= 23— [%]
Thus
VNX|<2n—3— [32—"] 17)
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unless

' 3k
| n—1szn—3—[7]. (18)
But, by assumption, k > (2/3)(n — 2), so (18) fails. Therefore (17) holds.

Similarly, by using (10) with (15), we get that

|UﬂY|$2n—3—[§2l~(]. (19)
By Lemma 4.1(ii),
|UﬂY|Sn—1—[§] (20)
or
|VmX|Sn—1—[§]. 1)

If (20) occurs, then, by interchanging X and Y in the argument used to give (17), we
deduce that
|VmY|<2n—3—[3—k]. (22)
- 2
If (21) occurs, then, by interchanging U and V in the argument used to give (19), we
again deduce that (22) holds.

If (20) holds, then, on combining it with (13), we get that

|U|szn—2—2[§].

Moreover, by (17) and (22),

4 s4n——6—2[37k].
Thus, as
|E(M)| = |U| + V| +|Z| = |U| +|V| +k,
we get that
k1 13k
|E(M)| < 6n—8 —2[51 -2[—2—] +k 23)

If (21) holds, then, by (13), |X| < 2n — 2 — 2[k/2] and, by (19) and (22), |Y| < 4n—
6 — 2[3k/2] and again (23) holds. The upper bounds on |E(M)| in (iii) and (iv) follow
immediately from (23).

To prove the lower bounds on [E(M)| in (iii) and (iv), we note that, by (3),

riM) >r(U)+r(V)—(n—k—1). (24)
Since min{|U|, |V |} > n, it follows that
min{r(U),r(V)} =n— 1. (25)

Hence, by (24),
r(M)=n—1+k. (26)
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Now, as {X, Y} is an (n — k)-separation of M /Z, it is an (n— k)-separation of M*\Z (see,
for example, [22, Proposition 8.1.5]). Hence we have the following analogue of (24):

M) > (X) 4+ (Y) = (n—k—1).

Since
min{r’(X),r’ (Y)} > n—1, (27)
it follows that
rM)=n—1+k (28)

The lower bound on |E(M)| follows immediately on combining (26) and (28).
To prove (vi), suppose that kK = n—2 but that neither (i) nor (ii) holds. Then (iv) cannot
occur, since it asserts that 4n — 6 < |E(M)| < 3n — 4. Thus (iii) occurs, so

4n—6 < |E(M)| < 3n—2 (29)

and n is even. Hence n = 4 and |E(M)| = 3n — 2. Therefore |X| = |Y| = |U| = |V| = 4,
so, by Lemma 3.2 and its dual, X and Y are both 4-cocircuits of M, and U and V are
both 4-circuits of M. Moreover, since equality holds in (29), equality also holds in (26),
that is, r(M) = 5. U

By making minor modifications to this proof, one can obtain the following result.

Theorem 4.2. Let M be an n-connected matroid having at least 2(n — 1) elements. Suppose
that, for some positive integer k such that %(n —3) <k <n—1, there is a k-element subset
Z of E(M) such that both M\Z and M/Z are (n — k)-separated. Then

(i) M has an n-circuit; or

(ii) M has an n-cocircuit; or

(iii) k is even and 2n+ 2k + 2 < |E(M)| < 6n — 3k —10; or
(iv) k is odd and 2n+2k + 2 < |[E(M)| < 6n — 3k — 12.
Moreover,

(v) if k=n—3, then (i) or (ii) holds.

On taking n = 4 in (v) of this theorem, we obtain the following result of Wong [29,
Theorem 4.1]. :

Corollary 4.3. Let M be a 4-connected matroid with at least six elements. Suppose that M
has an element e such that neither M\e nor M /e is 4-connected. Then M has a 4-circuit or
a 4-cocircuit.

Proof of Theorem 4.2. This follows the proof of Theorem 2.1 up to inequalities (11) and
(12). Then, by using Lemma 3.2 and its dual, one can sharpen these inequalities to get

min{|U},|V|} = n+1
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a f' e'

Figure 1

and
min{|X|,|Y|} = n+ 1.

Moreover, inequalities (25) and (27) can also be sharpened by one. The theorem is
obtained by following the implications of these sharpened inequalities throughout the
proof and using Theorem 2.1. Ul

5. An extension of Theorem 2.1 for 3-connected matroids

In Section 2, we noted that when n = 3 Theorem 2.1 can be used to give a detailed
description of the local structure around the elements e and f when the matroid M
is graphic. In this section, we use the operation of generalized parallel connection to
extend that theorem to arbitrary matroids. The following theorem establishes that if a
3-connected matroid M has clements e and f such that both M\e,f and M/e, f are
disconnected, then M can be obtained from one of its minors by an operation that is very
close to a A — Y exchange.

Theorem 5.1. Let e and f be distinct elements of a 3-connected matroid M. Suppose that
(i) {e,f} is in both a triangle {e,f,a} and a triad {e,f,z} of M.

Then either '

(ii) M is isomorphic to Uy, or

(iii) M is isomorphic to Py(M(K4), M /z)\{e,f}, where A = {e,f,a}.

In particular, if both M\e,f and M /e, f are disconnected, then (i) holds, hence so does one
of (ii) and (iii).

Proof. Corollary 2.3 implies that if both M\e,f and M/e, f are disconnected, then (i)
holds. Hence it suffices to prove that if (i) holds, then one of (ii) and (iii) holds. If M has
a triangle that is also a triad, then M = U,4 (see, for example, [22, Proposition 8.1.7]).
Thus we may assume that z is not on the line containing {e, f, a}, so a s z. Before proving
the rest of the theorem, we shall make some notational changes. The matroid M/z has
{e,f,a} as a triangle. Let M, be the matroid obtained from M/z by relabelling e and f
as ¢ and f', respectively. Let M; be M(K4) labelled as in Figure 1. Let A = {¢, f',a}. We
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shall complete the proof of the theorem by showing that M = Pa(M1, Mx)\{¢’,f'}. To do
this we shall prove the following.

Lemma 5.2. Every flat of M is a flat of Pa(M,, Ma)\{¢',f'}.

This will mean that M is a quotient [9, 11] of Pa(M;, M2)\{¢, f'}. Since these matroids
have the same rank and the same ground set, it will follow that the two matroids are
equal (see, for example, [22, Corollary 7.3.4]).

The proof of Lemma 5.2 will use the following two lemmas.

Lemma 5.3. Let X be a flat of M that avoids {e,f,z}. Then
cy(XUz) € XU{e,f,z}.

Proof. Since E(M)— {e, f,z} is a hyperplane of M, it follows that X is a flat of M\e, f, z.
But z is a coloop of M\e, f, so M/z\e,f = M\e,f,z. Hence X is a flat of (M/z)\e, f.
Thus clp/, (X) € X U{e,f}, so cly(X Uz) = X U{e,f,z}. L]

Lemma 54. The set {e,f,z} is a cocircuit of Py(My, Mp)\{€, f'}.

Proof. Certainly {e,f,z} is a cocircuit of Pa(Mj,M;). Suppose that {e,f,z} is not
a cocircuit of Px(Mi,M>)\{¢,f’}. In that case, {e,f,z} is a union of cocircuits of
Py(My, M)\{€, f'}. We deduce that {e, f} and {z} are cocircuits of P5(M1, Ma)\{e',f'} by
considering intersections with the circuit {e, f,a} of Pa(M;, Mo)\{¢, f'}. Hence

r(Ps(M, My)\{e,f,€,f',z}) <r(Pa(M1,M3)) —2 =r(M) — 2.
But

PA(MI’MZ)\{eafs e',f’,z} = MZ\elaf/ = M/Z\eaf = M\e,f,Z.
Since {e, f,z} is a cocircuit of M, it follows that

r(PA(Mi,M2)\{e, f, e’,f’,z}) =r(M) — 1.

This contradiction completes the proof of Lemma 5.4. L

Proof of Lemma 5.2. Let F be a flat of M. Then one of the following five possibilities
must occur:

(i) ze Fanda€F,
(W) ze Fanda ¢ F;
(ii)) z ¢ F and |{e,f} N F| = 0;
(iv)z ¢ Fand [{e,f} NF|=1;
(v) z¢ Fand |{e,f} NF|=2.
To prove Lemma 5.2, we shall show that, in each case, F is a flat of Po(M;, Mo)\{€, f'}.
Throughout this argument, if X is a subset of E(M/z), then X’ will denote the corre-
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sponding subset of E(M;). Hence X’ is obtained from X by, if necessary, relabelling e as
¢ and relabelling f as f'.

(i) F—zisaflat F; of M/z. Since a € F and {e, f,a} is a circuit of M, the flat F; either
contains or avoids {e,f}. Consider z U F; U F|. This set meets E(M,) in Fj, a flat
of M,. Moreover, z U Fi U F| meets E(M;) in either E(M;) or {a,z}, depending on
whether F does or does not contain {e, f}. Hence z U F; U F{ meets E(M;) in a flat of
M;. We conclude that z U F; U F] is a flat of Pa(M1, M3). Thus (zU F; U Fy) —{€,f"}
is a flat of Po(M;, Mo)\{€, f'}, that is, F is a flat of Po(M;, Mo)\{¢',f'}.

(ii) F —z is again a flat F; of M/z and z U F; U F| again meets E(M;) in Fj, a flat of
M,. But, since a € F, at most one of e and f is in F, so z U F; U F] meets E(M;) in
{e,z,¢}, {f,z,f'}, or {z}. Each of the last three sets is a flat of M;. Thus z U F; U F]
is a flat of Po(M;, M>), so, as in case (i), F is a flat of Pa(M;, Mo)\{¢,f'}.

() clpr(F U z) is a flat of M containing z. Thus, by case (i) or (i1), cly(F U z) is a flat
of Pa(My, Mo)\{€, f'}. But, by Lemma 5.3, clyy(FUz) € FU {e, f,z}, and, by Lemma
5.4, {e,f,z} is a cocircuit of Pa(M1, Mo)\{€, f'}. Thus cly(FUz)—{e,f,z} is a flat of
PA(My, My)\{€',f'}; that is, F is a flat of Pa(M;, Mo)\{€¢, f'}.

(iv) We may assume, without loss of generality, that F N {e,f} = {e}. Since {e,f,z} is a
cocircuit of M meeting the flat F in {e}, we deduce that F —e is a flat of M. Then,
by Lemma 5.3, clyy(F —e) Uz) = (F —e) U {e,f,z}. Certainly e ¢ clyy(F —e) and z ¢
cly ((F —e)Ue). Thus, by the Mac Lane-Steinitz exchange property, e ¢ cly ((F —e)Uz).
Hence cly (F —e)Uz) < (F—e)U{f,z}. Thus cly/,(F—e) = (F—e)Uf, 5o clp, (F —e)
is F—e or (F—e) U f'. Consider F U cly,(F — e). This meets E(M>) in cly, (F — e),
a flat of M, and meets E(M;) in {e} or {e, f'}, each of which is a flat of M;. Thus
F Ucly,(F —e) is a flat of PA(My, M>), so [F Ucly,(F —e)] —{¢,f'} is a flat of
PA(MI,Mz)\{eI,f,}; that is, F is a flat of PA(Ml,Mz)\{e,,f/}.

(v) F =2 {e,f} so a € F. Moreover, F — {e,f} is a flat of M, so, by Lemma 5.3, cly((F —
{e.f)Uz) < (F—{e. 1)) Ufe,f,2}. Now e ¢ cly(F—{e, 1}) and z ¢ clas (F —{e, }) Ue),

50, by the Mac Lane-Steinitz exchange property, e ¢ cly ((F — {e, f}) U z). Similarly
f ¢ cly((F — {e,f}) Uz). Hence cly,,(F — {e,f}) = F — {e, f}. Thus F N E(M>), which
equals F — {e,f}, is a flat of M; and F N E(M;), which equals {e, f,a}, is a flat of
M;. Therefore F is a flat of PA(M, M>), so F is a flat of PA(M;, My)\{¢',f'}.

This completes the proof of Lemma 5.2. L]

By the remarks following Lemma 5.2, this finishes the proof of Theorem 5.1. L]

Next we note an example showing that one possible strengthening of Theorem 5.1
fails. Let M be the cycle matroid of the 4-spoked wheel and let e and f be diametrically
opposite rim edges. Then M\e, f is disconnected and neither M /e nor M/f is 3-connected.
However, {e, f} is in neither a triangle nor a triad of M.

Seymour [25, Lemma 2.3] showed that U,4 is the only 3-connected matroid M with
|[E(M)| > 4 such that M\Z and M/Z are disconnected for all 2-element subsets Z of
E(M). We conclude this section by using Theorem 5.1 to prove an extension of this result.
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Theorem 5.5. Let M be a 3-connected matroid with |[E(M)| > 4 and suppose that M has a

* circuit C such that, for all 2-element subsets Z of C, both M\Z and M /Z are disconnected.

Then either

(i) M= U2’4,' or

(ii) |C| = 3 and M has a triad {a,b,c} such that M*|{(C U {a,b,c}) = M(K4) and M =
PA(M*|(C U {a,b,c}), M*\C), where A = {a,b, c}.

Proof. We begin by establishing that |C| = 3. By Lemma 1.2, it suffices to show that
|C| < 4. Assume that |C|] > 4 and let v, w, x, and y be distinct elements of C. Then,
by Theorem 5.1, M has elements a, b, and ¢ such that {v,w,a} and {v,x,b} are triads
and {v,y,c} is a triangle of M. Now ¢ ¢ C, otherwise the circuit {v,y,c} is a proper
subset of the circuit C. Since the circuit {v, y,c} cannot have exactly one common element
with either of the cocircuits {v,w,a} or {v,x,b}, we deduce that a = b = ¢. By cocircuit
elimination and the fact that M is 3-connected, it follows that {v,w,x} is a cocircuit of
M. But this cocircuit meets the circuit {,y,c} in a single element. This contradiction
completes the proof that |C| = 3.

If |[E(M)| = 4, then certainly M = U, 4. Thus suppose that |E(M)| > 5. Let C = {d, e, f}.
By Theorem 5.1, there are triads {d,e,a}, {d, f,b}, and {e, f,c} of M. If a, b, and ¢ are not
distinct, cocircuit elimination implies that {d,e, f} is a triad of M. Since {d,e, f} is also
a triangle, this contradicts the fact that |E(M)| > 5 (see, for example, [22, Proposition
8.1.7]). Thus we may assume that a, b, and c are distinct.

Consider M*|{a,b,c,d,e, f}. This matroid has {d,e,a}, {d,f,b}, and {e, f,c} among its
circuits, hence it is spanned by {d,e,f}. But {d,e, f} is also a cocircuit of M* and so is
a union of cocircuits of M*|{a, b,c,d,e, f}. By considering intersections with the circuits
{d,e,a}, {d,f,b}, and {e, f,c}, we deduce that {d,e, f} is a cocircuit of M*|{a,b,c,d,e, f}.
Thus {d,e,f} cannot also be a circuit of M*|{a,b,c,d,e, f}. Hence {d,e, f} is a basis of
M*|{a,b,c,d,e, f}, and {a,b,c} is a hyperplane of this restriction. It now follows without
difficulty that {a,b,c} is a circuit of this restriction, so {a,b,c} is a triad of M, and
M*{a,b,c,d,e, f} = M(Ka).

Finally, we note that M*/{a,b,c} has {d,e, f } as both a parallel class and a cocircuit,
and hence as a separator. Thus, by [7; 22, Proposition 12.4.15],

M* = Po(M'|{a,b,c,d, e, f}, M°\C),
where A = {a,b,c}. O

For graphs, Theorem 5.5 asserts the following.

Corollary 5.6. Let C be a cycle of a 3-connected simple graph G and suppose that, for
every pair of distinct edges x and y of C, neither G\x,y nor G/x,y is both loopless and
2-connected. Then C is a 3-cycle each of whose vertices has degree three. Moreover, the
three edges of G that have exactly one endpoint in V(C) form an edge cut (see Figure 2).

We remark that, in Figure 2, the vertices vy, v, and v3 all have degree three, and the
vertices vy, vs, and vg are distinct unless G = Ky, in which case all three coincide.
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Figure 2 The structure of G in Corollary 5.6.
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Figure 3

6. The excluded minors for F -representability

The operation of generalized parallel connection across a triangle has featured prominently
in the connectivity results of the earlier sections. In this section, we prove a representability
result involving this operation, namely that, for all fields F with at least three elements,
the set of excluded minors for F-representability is closed under both A—-Y and Y — A
exchanges.

Theorem 6.1. Suppose that M is an excluded minor for representability over a field F where
F ¥ GF(2). If {a,b, c} is a triangle A of M, then PA(M(K4), M)\A is an excluded minor for
representability over F.

Proof. Let M(K4) be labelled as in Figure 3 and write P for P(M(K4), M). Since M is
an excluded minor for F-representability, M is 3-connected. Also, as F % GF(2), it follows



382 S. Akkari and J. Oxley

that M 2 U,4. Thus the triangle A of M is not a triad of M. Hence r(M\A) = r(M) =r,
say, so

r(M) +1<r(M\A)+1<r(P\A) <r(P) =r(M)+r(M(Ks)) —r(A) =r(M) + 1.

Thus equality holds throughout the last line and r(P\A) =7 + 1.
Now assume that P\A is F-representable. Then, since P\A is clearly simple, we may
view it as a restriction of PG(r, F). Since

r({d,e,f}) + r(M\A) = 3 +r(M) =r(P\A) + 2,

the flats in PG(r, F) that are spanned by {d,e,f} and E(M\A) meet in a line, L say. Let
d, b',and ¢’ be the points of intersection of L and the lines of PG(r, F) spanned by {d, e},
{d,f}, and {e, f}, respectively. Let

P' = PG(r, F)|(E(P\A) U {d,}',c'})

and let
M = P’\{d,e,f}.

Clearly P’ is F-representable, so M’ is F-representable. Moreover, {d,e, f} is a cocircuit
of P’. We shall show that M is isomorphic to M’ under the function v that fixes every
element of E(M\A) and maps a, b, and ¢ to d, b/, and ¢/, respectively.

Now P’/d\c' is obtained from M’\c¢' by adding e in parallel with ¢’ and adding f in
parallel with b’. Thus P’/d\{a',b',c'} is isomorphic to M'\¢' under the function « that
fixes every element of M\A and maps e to ¢’ and f to b'.

Similarly, P /d\c is obtained from M\c by adding e in parallel with a and adding f in
parallel with b. Thus P/d\{a, b, c} is isomorphic to M\c under the function B that fixes
every element of M\A and maps e to a and f to b.

Now observe that

P'/d\{d,V,c'} = P\{d,V,c'}/d = P\A/d = P\{a,b,c}/d = P/d\{a,b,c).

Hence the function «f~! is an isomorphism between M\c and M'\c’ that fixes every
element of M\A and maps a to @ and b to b'. Clearly af~! is the restriction of y to
E(M\c). By a similar argument, the restrictions of p to each of E(M\a) and E(M\b) are
isomorphisms. Since {a, b, c} is a circuit of M while its image under y, namely {d’,b’,c'},
is a circuit of M’, we conclude that v is indeed an isomorphism between M and M’. But
M’ is F-representable, so M is F-representable. This contradiction implies that P\A is
not F-representable.

To complete the proof that P\A is an excluded minor for F-representability, it suffices
to show that every single-element deletion and every single-element contraction of P\A
is F-representable. First we note, from above, that P/d\c is obtained from M\c by
two parallel extensions. Hence P /d\c is F-representable, so (P\A)/d is F-representable.
Similarly, both (P\A)/e and (P\A)/f are F-representable. Moreover, (P\A)\d has {e, f}
as a 2-cocircuit and, indeed, is equal to the 2-sum, with basepoint ¢, of M\q,b and a
triangle on {e, f,c}. Thus (P\A)\d is F-representable and, similarly, so are (P\A)\e and

(PAA)\S.
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Now suppose that x € E(M\A). Then P5(M(K3), M)\x = P5o(M(K4), M\x). Moreover,
each of M(Ky4) and M\x is F-representable and, since M(Ky) is binary, it is uniquely
F-representable (see, for example, [22, Proposition 10.1.3]). So Pa(M(K4), M)\x is F-
representable [8, Proposition 7.6.11]. Hence (P\A)\x is F-representable. Similarly, if x €
E(M)—clp(A), then Pa(M(K4), M)/x = Po(M(K4), M /x). By [8, Proposition 7.6.11] again,
PA(M (K4),A717x) 1s F-representable. Thus P /x and, hence (P\A)/x, is F-representable. It
remains to show that, for x € cly/(A) — {a, b, c}, the matroid (P\A)/x is F-representable.
But P /x is isomorphic to the parallel connection, with basepoint ¢, of M/x and a 4-point
line on {d, e, f,c}. Hence P /x is F-representable and so too is (P\A)/x. ]

We now know that if |F| > 3, the set #F of excluded minors for F-representability is
closed under A—Y exchanges. On combining this result with the well-known fact that .4
is closed under duality, we immediately deduce that .# is closed under Y — A exchanges:

Corollary 6.2. Suppose that M is an excluded minor for representability over a field F
where F % GF(2). If {a,b,c} is a triad of M, then {a,b,c} is a triangle A of M" and
[Pa(M(K4), M*)\A]" is an excluded minor for representability over F.

For |F| > 3, 4 r has only been completely determined when |F| = 3 [3, 25]:
Mera) = {Uas, Uss, F7, F1}.

As noted in the introduction, each of Uss and F; can be obtained from U,s and F; by a
single A — Y exchange. It is well known that .#gr() contains Uyg, Ps, and Uyg, where Pg
is the 6-element rank-3 matroid consisting of a single 3-point line with three other points
off that line. Applying a A— Y exchange to U,¢ gives Pg, and applying a A — Y exchange
to Pg gives Usg. The non-Fano matroid F; is also in M Grw- Its dual (F7)* is obtained
from it by a single A — Y exchange. The only remaining known member of #gr is an
8-element rank-4 matroid [21] with no triangles or triads, so one cannot perform either a
A — 'Y exchange or a Y — A exchange on it.
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