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Let n be an integer exceeding one and A4 be a matroid having at least n + 2 
elements. In this paper, we prove that every n-element subset X of E(M) is in an 
(n + 1)-element circuit if and only if (i) for every such subset, M/X is disconnected, 
and (ii) for every subset Y with at most n elements, M/Y is connected. Various 
extensions and consequences of this result are also derived including characteriza- 
tions in terms of connectivity of the 4-point line and of Murty’s Sylvester matroids. 
The former is a result of Seymour. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

Minimally connected matroids are those connected matroids for which 
every single-element deletion is disconnected. Such matroids have been 
investigated by several authors including Murty [20], Seymour [28], 
White [ 341, and Oxley [21, 23, 241. In particular, Seymour’s work on 
these matroids arose in connection with his proof of the excluded-minor 
characterization of the class of ternary matroids. A basic tool in that proof 
is the following characterization of the four-point line [28, Lemma 2.31. 

(1.1) 
element 

THEOREM. U2,4 is the only connected matroid with more than one 
in which every 2-element deletion and every 2-element con traction is 
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disconnected, but every l-element deletion and every l-element contraction is 
connected. 

This paper investigates a matroid property that generalizes minimal 
connectedness and is motivated in part by Seymour’s theorem. Among the 
results that are obtained are a generalization of Seymour’s theorem and 
two connectivity characterizations of Murty’s Sylvester matroids [ 18, 193. 
The latter are those matroids in which every two distinct elements are 
contained in a 3-element circuit. 

The matroid and graph terminology used here will follow Welsh [33] 
and Bondy and Murty [2], respectively, with the following exceptions. If 
M is a matroid, then its ground set, rank, and corank will be denoted by 
E(M), r(M), and r*(M), respectively. If Tc E(M), then T will denote the 
closure of T, and Y~( T) or r(T) will denote the rank of 7’. The deletion and 
contraction of 2’ from A4 will be denoted by M\T and M/T. The m-element 
circuits and m-element cocircuits of M will be referred to as simply 
m-circuits and m-cocircuits. 

If k is a positive integer, a partition {X, Y> of E(M) is a k-separation of 
the matroid M if 1x1 2 k, 1 YI > k, and 

r(X)+r(Y)-r(M)<k-1. 

If equality holds in the last line, then the k-separation (X, Y} is said to be 
exact. If n is a positive integer such that A4 has no k-separation for any 
k < n, then we say that A4 is n-connected [ 311. Thus a matroid is 2-con- 
netted if and only if it is connected. A minimally n-connected matroid is an 
n-connected matroid for which no single-element deletion is n-connected. 
We shall use a number of properties of n-connected matroids including the 
fact that a matroid is n-connected if and only if its dual is n-connected. A 
survey of these properties can be found in [26, Chap. S]. 

Among the matroids that play an important role in this paper are those 
that are derived from Steiner systems. Recall that a Steiner system S(t, k, v) 
is a pair (S, g), where S is a v-element set and 9 is a collection of 
k-element subsets of S called blocks such that every t-element subset of S 
is contained in exactly one block. To exclude trivial cases, we shall assume 
throughout this paper that 2 < t <k < v. The matroid associated with the 
Steiner system (S, 3) has S as its ground set and zZ# as its set of hyper- 
planes. Its rank is t + 1 and every subset of S with fewer than t elements 
is an independent flat (see [33, Chap. 121). 

In general, a Steiner system is not uniquely determined by its parameters 
t, k, and v. However, two of the systems that will appear here, S(3,4,8) 
and S(5,6, 12), are unique (see, for example, [ 35, p. 36)). Throughout this 
paper, the notation S(t, k, v) will be used to refer to both a Steiner system 
with those parameters and the corresponding matroid. The matroid 
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S(3,4,8) is the rank-4 binary afhne space, AG(3,2). On the other hand, 
S(5, 6, 12) is a special ternary matroid having numerous attractive proper- 
ties [25]. 

The primary focus of this paper will be a new matroid connectivity 
property that is defined as follows. Let n be a positive integer. A matroid 
A4 is n-element minimally connected or, for brevity, n-minimally connected if 
it satisfies the following conditions: 

(0 IJWWI >n; 
(ii) M\X is disconnected for every n-element subset X of E(M); and 

(iii) M\ Y is connected for every subset Y of E(M) having fewer than 
n elements. 

Condition (i) is added to ensure that condition (ii) actually takes effect. By 
taking Y to be empty in (iii), we deduce that every n-minimally connected 
matroid is connected. Moreover, since all three matroids on fewer than two 
elements are connected, an n-minimally connected matroid must have at 
least n + 2 elements, that is, in the presence of (ii) and (iii), condition (i) 
implies that [E(M)1 > n + 2. 

The n-minimally connected matroids for n = 1 are just the minimally 
connected matroids which were discussed at the outset. In Section 2, we 
consider the class of 2-minimally connected matroids showing that this 
essentially coincides with the class of duals of Sylvester matroids. In 
addition, we characterize the former class in terms of 3connectedness. 

In Section 3, we consider the class of n-minimally connected matroids for 
n b 3 and show that one of our characterizations of 2-minimally connected 
matroids generalizes to this class while the other does not. We also discuss 
the existence of n-minimally connected matroids. The purpose of Section 4 
is to characterize those matroids A4 for which both M and M* are n-mini- 
mally connected. This result generalizes Theorem 1.1. The paper concludes 
in Section 5 with a discussion of the properties of those n-minimally 
connected matroids that are not (n + 1 )-connected. In particular, such 
matroids are characterized when n is 3. 

2. THE CLASS OF ~-MINIMALLY CONNECTED MATROIDS 

The main result of this section 
2-minimally connected matroids. 

is the following characterization of 

(2.1) THEOREM. The following statements are equivalent for a matroid M 
having at least four elements. 

(i) M is 2-minimally connected. 
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(ii) Mis3 -connected and M\e, f is disconnected for every pair (e, f ) 
of distinct elements. 

(iii) Every p air of distinct elements of M is in a 3-cocircuit. 

This result is important for several reasons. First, it provides the basis of 
an induction argument characterizing n-minimally connected matroids 
which will appear in the next section. Second, it links 2-minimally connec- 
ted matroids and minimally 3-connected matroids. If A4 is a 3-connected 
matroid having at least five elements and e and fare distinct elements of 
A4 for which M\e, f is disconnected, then one easily checks that although 
M\e is connected, it cannot be 3-connected. Therefore, if M satisfies (2.1) 
(ii) and has at least five elements, then A4 is a minimally 3-connected 
matroid for which every single-element deletion is minimally connected. It 
has been shown [21] that all minimally 3-connected matroids contain a 
number of 3-cocircuits. It is not surprising then that the special minimally 
3-connected matroids considered here should have such an abundance of 
3cocircuits. 

The third reason for the importance of Theorem 2.1 is that it yields the 
following two characterizations of Sylvester matroids in terms of connec- 
tivity conditions. It should be noted that Sylvester matroids have also been 
investigated by Bryant, Dawson, and Perfect [3,4, 121 under the name of 
hereditary circuit spaces. 

(2.2) COROLLARY. The following 
M having at least four elements. 

statements are equivalent f or a ma troid 

(i) M is a Sylvester matroid. 

(ii) M is 3 -connected and M/e, f is disconnected for all pairs (e, f ) 
of distinct elements. 

(iii) M* is 2-minimally connected. 

The proof of Theorem 2.1 will use the next two lemmas, the first of which 
is taken from [21, Theorem 2.41. A non-trivial series class in a matroid M 
is a maximal subset X of E(M) such that 1x1 2 2 and every 2-element 
subset of X is a cocircuit. 

(2.3) LEMMA. Let C be a circuit of a connected matroid M such that 
M\e is disconnected for all e in C. Then either M is the circuit C, or C 
contains at least two distinct non-trivial series classes of M. 

(2.4) LEMMA. Let M be a 3-connected matroid having at least four 
elements such that M\e, f is disconnected for every pair (e, f > of distinct 
elements. If C is a circuit of M and g is an element of M not in C, then M 
has a 3-cocircuit that contains g and is contained in C v g. 
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ProoJ: Since M is 3-connected and [E( M)( > 4, A4\g is connected. Now 
C is a circuit of M\g such that (M\g)\e is disconnected for all e in C. 
Therefore, by Lemma 2.3, C contains a 2-cocircuit (a, b) of M\g. As M is 
3-connected having at least four elements, it has no 2cocircuits. Thus 
(a, b, g} is a 3-cocircuit of A4 contained in C u g. 1 

Proof of Thkorem 2.1. It is straightforward to check that (iii) implies 
(i). We shall complete the proof of the theorem by showing that (i) 
implies (ii) and that (ii) implies (iii). Suppose that (i) holds but that M 
is not 3-connected. Then, by [29, (2.6)], for some minors M, and M2 of 
A4 each having at least three elements, M= P((M,;p), (M,;p))\p, where 
P( (M, ; p), (M,; p)) denotes the parallel connection [ 5) of M1 and M2 with 
respect to the basepoint p. Now take e in E(M,) - p and f in E(M,) - p. 
As M\e is connected and M\e = P( (M,\e; p), (M,; p))\p, it follows by 
[22, (1.13)] that M,\e is connected. Similarly, M2\fis connected and so, 
by [22, (1.13)] again, P((M,\e; p), (M,\Jp))\p is connected. As the last 
matroid is equal to M\e, f, we have a contradiction. We conclude that 
(i) implies (ii). 

Now suppose that (ii) holds but that A4 has a subset {e, f> that is not 
contained in a 3-cocircuit. Then M\e, f has no coloops. Since M\e, f 
certainly has no loops, every component of it must contain a circuit having 
at least two elements. As M\e, f is disconnected, we can find two distinct 
components X1 and X, of it. Let g be an element of X, and C be a circuit 
of MI X,. Then, by Lemma 2.4, A4 has a 3-cocircuit {g, a, b > for some sub- 
set (a, b) of C. Therefore M\e, f has a cocircuit C* that contains g and 
is contained in ( g, a, b }. Since M\e, f has no coloops, 1 C* ) b 2. Thus C* 
meets the distinct components X1 and X2 of M\e, J This contradiction 
finishes the proof that (ii) implies (iii), thereby completing the proof of 
Theorem 2.1. 1 

To conclude this section, we remark that a result of Akkari that 
strengthens the equivalence of (ii) and (iii) of (2.1) will appear elsewhere 
[ 11. The proof of that result is considerably longer and more difficult than 
the proof just given. Moreover, we do not need the stronger result for the 
applications to follow. 

3. THE CASE WHEN n EXCEEDS Two 

The following proposition, which is easily proved using elementary 
properties of n-connectedness, identifies an important class of n-minimally 
connected matroids. 

(3.1) PROPOSITION. Suppose that n is an integer exceeding one and M is 
a matroid having at least 2n elements. If M is (n -I- l)-connected and M\X 
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is disconnected for 
connected. 

every n-element subset X of E(M), then A4 is n-minimally 

Theorem 2.1 established that the converse of this lemma holds when n is 
2. However, the converse fails for n = 3. For example, it is not difficult to 
show that AG(3,2) is 3-minimally connected and yet is not 4-connected. 
Thus the equivalence of (i) and (ii) of Theorem 2.1 does not generalize to 
all n >/ 2. The next result shows that, in contrast, the equivalence of (ii) and 
(iii) in (2.1) does generalize. In Section 5, we shall look more closely at 
those n-minimally connected matroids that are not (n + 1 )-connected. In 
particular, we characterize such matroids when n is 3. 

(3.2) THEOREM. Let n be an integer exceeding one. The following 
statements are equivalent for a matroid A4 having at least n -I- 2 elements. 

(i) A4 is n-minimally connected. 

(ii) Every n-element subset of E(M) is contained in an (n + l)- 
cocircuit. 

Proox To prove that (i) implies (ii), we shall argue by induction on n. 
Thus suppose that (i) holds. If n = 2, then Theorem 2.1 implies that (ii) 
holds. Now assume that (i) implies (ii) if n < k and suppose n = k 3 3. Let 
X be an n-element subset of E(M) and e be an element of X. Evidently M\e 
is (n - 1 )-minimally connected. Therefore, by the induction assumption, 
X - e is in an n-cocircuit C* of M\e. Hence either C* u e or C* is a 
cocircuit of M. Suppose the latter holds and let f be an element of C*. 
Then M\(C* -f) h as at least two elements including a coloop J Thus 
M\( C* - f) is disconnected. Since 1 C* - f 1 < n, this is a contradiction. We 
conclude that C* u e is a cocircuit of M. Since C* u e 2 X, we deduce that 
every n-element subset of E(M) is in an (n + 1 )-cocircuit. Hence, by induc- 
tion, (i) implies (ii). 

Now suppose that M satisfies (ii) and let X be an n-element subset of 
E(M). Since X is in an (n + 1 )-cocircuit, M\X has a coloop. As 
(E(M)1 > n + 2, it follows that M\X is disconnected. To complete the proof 
that M is n-minimally connected, we need to show that M\Y is connected 
for all subsets Y of E(M) with at most n - 1 elements. We show this first 
when I YI = j < n - 2. In that case, by (ii), every (n - j)-element subset of 
M\ Y is contained in a cocircuit. Since I E(M\ Y)l > n - j + 2 and n - j b 2, 
it follows that M\Y is connected. 

Next suppose that I YI = n - 1 but that M\Y is disconnected. Let e and 
f be elements of distinct components of M\ Y and let y be an element of Y. 
Then (Y- y)u (e, f> h as n elements and so is contained in an (n + l)- 
cocircuit, say (Y- y)u {e,f, g}. In M\( Y- y), the set (e,f, g} is a 
cocircuit. But M\ Y does not have a cocircuit containing {e, f }. Therefore, 
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y # g and M\( Y - v) has a cocircuit D u y, where D is a proper subset of 
(e,f, g> and D Z (e, f}. S’ mce every n-element subset of E(M) is in an 
(n + 1 )-cocircuit, M\ Y has no coloops. Thus 1 D 1 # 1 and so 1 DI = 2. 
Without loss of generality, we may assume that D = {e, g}. By cocircuit 
elimination using {e, f, g} and D u y, we deduce that M\( Y - y) has a 
cocircuit D’ u y, where g $ D’ and D’ is a non-empty subset of {e, f, g>. 
Since M\ Y has no coloops, 1 D’I # 1, hence D’ = (e, f }; a contradiction. 
We conclude that M\Y is connected and this completes the proof that (ii) 
implies (i). 1 

The restriction that n exceeds one is needed in the last theorem since, as 
can be seen from the cycle matroid of the graph in Fig. 1, a l-minimally 
connected matroid need not have every element in a 2-cocircuit. Such 
a matroid A4 still has a large number of 2-cocircuits. Indeed, it can be 
shown using Lemma 2.3 that A4 has at least r*(M) + 1 pairwise disjoint 
2-cocircuits [21, Corollary 2.71. 

If n is a positive integer, we shall call a matroid A4 n-cyclic if it has at 
least n elements and every n-element subset of E(M) is contained in an 
(n + 1 )-circuit. If M* is n-cyclic, we shall call A4 n-cocyclic. Now suppose 
that A4 is n-cyclic. Then clearly I E( M)I # n, while if I E( M)I = n + 1, then 
ikfz K,n+I. Moreover, the following result is an immediate consequence 
of Theorem 3.2 and duality. 

(3.3) COROLLARY. Let n be an integer exceeding one and A4 be a matroid 
having at least n -I- 2 elements. Then A4 is n-cyclic if and only if M* is 
n-minimally connected. 

This corollary and its dual will be used frequently in what follows as will 
the following consequence of the dual. 

FIGURE 1 
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(3.4) COROLLARY. Let n be an integer exceeding one. If M is an 
n-minimally connected matroid, then every n-element subset of E(M) is 
coindependen t. 

Evidently an n-cyclic matroid has rank at least n. If such a matroid A4 
has rank equal to n, then it is isomorphic to Un,n +m for some m > 1. Thus 
all n-cyclic matroids of rank n are known. For this reason, when n-cyclic 
matroids are considered in what follows, we shall often assume that their 
ranks exceed n. 

To conclude this section, we make some observations concerning the 
existence of n-minimally connected matroids. A constructive characteriza- 
tion of all l-minimally connected matroids is given in [ 21, Theorem 3.11. 
For n = 2, we know by Corollary 2.2 that if A4 is n-minimally connected, 
then M* is a Sylvester matroid. Numerous examples of Sylvester matroids 
are given by Bryant, Dawson, and Perfect [4]. These include Steiner 
systems S(t, k, v) for t = 2, projective geometries of rank at least two, 
and afine geometries AG(r- 1, q), where Y >, 2 and q 2 3. Murty [19] 
established the following lower bound on the number of elements in a 
Sylvester matroid. 

(3.5) THEOREM. Let M be a Sylvester matroid of rank r where r > 3. 
Then 1 E( M)( > 2’ - 1. Moreover, the only matroid for which equality is 
attained here is PG(r - 1, 2). 

To find n-minimally connected matroids for n 2 3, we look for the duals 
of n-cyclic matroids with at least n + 2 elements. No matroid of the latter 
type is regular: 

(3.6) PROPOSITION. Let n be an integer exceeding one and M be an 
n-cyclic matroid having at least n + 2 elements. Then M is not regular. 

Proof. If T is a j-element subset of E(M) where n - j 2 1, then M/T is 
(n - j)-cyclic having at least (n - j) + 2 elements. Therefore, it suffices to 
prove the proposition in the case that n = 2. Assume that we are in this case 
and suppose also that M is regular. Let r(M) = r. If r < 2, then, as A4 is 
simple, it has a 4-point line as a minor; a contradiction. Hence r 2 3. There- 
fore, by [ 141, as M is simple and regular, IE(M)j < (‘; ‘). But, by 
Theorem 3.5, 1 E(M)/ 2 2’ - 1. Thus 2’ - 1 < (r l ‘). Since r > 3, this is a 
contradiction. i 

The next result is the analogue of Theorem 3.5 for 3-cyclic matroids. 

(3.7) PROPOSITION. Let M be a 3-cyclic matroid of rank r, where r b 4. 
Then /E(M)1 2 2’-‘. Moreover, the only matroid for which equality if 
attained here is AG(r - 1, 2). 
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ProoJ: If e E E(M), then M/e is a Sylvester matroid of rank r - 1. Since 
r - 1 2 3, it follows by Theorem 3.5 that IE(M/e)l 2 2’- ’ - 1 with equality 
holding here if and only if M/e r PG(r - 2,2). Therefore, [E(M)1 2 2’- ‘. 

Now suppose that IE(M)I = 2’- ‘. Then, from the above, every single- 
element contraction of A4 is binary. But r(M) > 4. Therefore, by Crapo and 
Rota’s Scum Theorem [ 111 and Tutte’s excluded-minor characterization of 
binary matroids [30], M is binary. Let [Z, I A] be a representation for A4 
over GF(2), where the columns of I, are labelled by the elements of a basis 
B of M. Since M is 3-cyclic, for every 3-element subset X of B, there is an 
element e, of E(M) - B such that Xu e, is a 4-circuit of M. Thus every 
member of V(r, 2) with exactly three ones is a column of A. A 
straightforward induction argument can now be used to show that every 
member of V(r, 2) with an odd number of ones is a column of [I, I A]. For 
instance, if B = { 1, 2 ,..., r> and f = e,, where X= { 1, 2, 3}, then (f, 4, 5) is 
contained in a 4-circuit C of A4. The element of V(r, 2) corresponding to 
the fourth member of C has ones as its first five coordinates and zeros 
elsewhere. 

The number of members of V(r, 2) with an odd number of ones is exactly 
2’- ‘. Hence the columns of [Z, I A] are precisely the members of Z’(r, 2) 
with an odd number of ones. Thus ME AG(r - 1,2). 1 

Apart from the binary afhne geometries AG(r - 1,2) for r b 3, examples 
of 3-cyclic matroids include truncations of these binary afine geometries to 
some rank exceeding three, and Steiner systems s(t, k, v) for t = 3. Other 
less symmetric 3-cyclic matroids can be obtained in several ways. For 
example, one can delete at most k - 4 elements from an S(3, k, V) and still 
have a 3-cyclic matroid. Alternatively, let (Hi, H,, . . . . H,,,} be a subset of 
the set of blocks of an S(3, k, V) and suppose that an S(3, k’, k) exists. If 
we replace each Hi by the blocks of an S(3, k’, k) on Hi, then the blocks 
of the original S(3, k, v) along with the blocks of each S(3, k’, k) are easily 
seen to be the hyperplanes of a 3-cyclic matroid. 

By combining and iterating these two operations of deleting elements 
and replacing blocks, one can obtain further 3-cyclic matroids. These 
examples will all have rank four. Indeed, for all n 2 3, we know of no 
examples of n-cyclic matroids of rank exceeding n + 1 except for the binary 
affine geometries and their truncations that were noted above. For n > 4, 
the n-cyclic matroids of rank equal to n + 1 include the Steiner systems 
S(n, k, U) and those matroids obtained by deleting at most k-n - 1 
elements from such a system. However, relatively few Steiner systems 
S( t, k, U) with t > 4 are known and none at all is known for t > 6 (see 
Cameron [S] and Denniston [ 131). Thus for n 2 4, the set of known 
n-cyclic matroids is small, and it would be of interest to find more 
examples of such matroids particularly if these examples have rank 
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exceeding n + 1. In Section 5, we shall show that all examples of the latter 
type must be (n + 1)-connected. 

It is clear that Proposition 3.7 can be extended to give a lower bound on 
the number of elements in an n-cyclic matroid of rank exceeding n for all 
n > 4. In particular, a 4-cyclic matroid of rank Y exceeding 4 must have at 
least 2’- * + 1 elements. By using Proposition 3.7 again, it is not difficult to 
show that equality is never attained in this bound. To close this section, we 
remark that, for n 2 4, Proposition 3.6 can be strengthened to give that no 
n-cyclic matroid with more than n + 1 elements is binary. The proof of this 
is an easy consequence of the fact that, in a binary matroid, the symmetric 
difference of two distinct circuits contains a circuit. 

4. THE n-CYCLIC, n-Cocucuc MATROIDS 

The main goal of this section is to generalize Theorem 1.1 by deter- 
mining, for all n > 3, those matroids M such that both M and M* are 
n-minimally connected or, equivalently, such that M is both n-cyclic and 
n-cocyclic. The Steiner systems S(n, n + 1,2n + 2) with n 2 2 will feature 
prominently here and we now note some properties of such matroids. First, 
Mendelsohn [ 161 has shown that in every such matroid, the complement 
of every block is a block. Hence the matroid associated with an 
S(n, n + 1, 2n + 2) is identically self-dual. Second, the only Steiner systems 
S(n, n + 1,2n + 2) that are known to exist are S(3,4,8) and S(5,6, 12), 
and, as noted in the introduction, there is a unique system of each of 
these types. Finally, by the well-known divisibility conditions for Steiner 
systems (see, for example, [ 8, p. 47]), a necessary condition for an 
S(n, n + 1, 2n + 2) to exist is that n + 2 is prime. This condition is, however, 
not a sufficient condition for existence; for example, Mendelsohn and Hung 
[ 171 have shown that there is no S(9, 10,20). 

Evidently every S(n, n + 1,2n + 2) is n-cyclic. Since such a matroid is 
identically self-dual, it is also n-cocyclic. Another matroid that is both 
n-cyclic and n-cocyclic is Un,2n. The main result of this section is that these 
are the only examples of matroids that are both n-cyclic and n-cocyclic. 

(4.1) THEOREM. Let M be a connected matroid having at least n 
elements, where n is an integer exceeding one. Suppose that, for all n-element 
subsets X of E(M), both M\X and M/X are disconnected, but, for all subsets 
Y of E(M) with fewer than n elements, both M\ Y and M/Y are connected. 
Then M is isomorphic to U,,*,, or S(n, n + 1,2n + 2), where the latter can 
only occur if n + 2 is a prime. 

Since we know about the existence and uniqueness of the matroids 
S(n, n + 1, 2n + 2) for all n with 2 < n < 10, we can specify, for all such n, 
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precisely which matroids have the property that both they and their duals 
are n-minimally connected. For n = 2, this is the content of Theorem 1.1. 
For n = 3, the result is as follows. 

(4.2) COROLLARY. U3,6 and AG(3, 2) are the only matroids M with at 
least three elements such that M\X and M/X are disconnected for all 
3-element subsets X of E(M), but M\Y and M/Y are connected for all 
subsets Y of E(M) with at most two elements. 

As AG(3,2) is not 4-connected, an immediate consequence of this is the 
following: 

(4.3 )COROLLARY. U3,6 is the only 4-connected matroid M with at least 
three elements such that M\X and M/X are disconnected for all 3-element 
subsets X of E(M). 

The proof of Theorem 4.1 will require a number of prelim inary lemmas, 
the first of which is a straigh tforward consequence of circuit elimination. 

(4.4) LEMMA. Let I be an independent set in a matroid M. If I, and I2 are 
distinct subsets of I, then E(M) - I does not contain an element e such that 
both I, v e and I2 v e are circuits of M. 

Evidently every circuit in an n-cyclic matroid A4 has at least n + 1 
elements. We show next that the same is true for every cocircuit provided 
r(M)>n+l. 

(4.5) LEMMA. Let A4 be an n-cyclic matroid having rank at least n + 1. 
Then every cocircuit C* of A4 has at least n + 1 elements. 

Proof Let e be an element of C* and B be a basis of the hyperplane 
E(M) - C* of M. Then JBI = r(M) - lb n. If X is an (n - 1)-element subset 
of B, then there is an element e, of E(M) such that X u e u e, is a circuit. 
As E(M) - C* is a flat, e, E C* - e. By Lemma 4.4, if X and Y are distinct 
(n--)-element subsets of B, then e,#e,. Thus IC*-ela(H!,) and so 
IC*l&z+l. 1 

The next 
matroid. 

lemma puts tight bounds on the rank of an n-cyclic, n-cocyclic 

(4.6) LEMMA. Suppose n > 2 and let M be a matroid that is both n-cyclic 
and n-cocyclic. Then r(M) = r*(M). Moreover, r(M) is n or n + 1, so I E( M) I 
is 2n or 2n + 2. 

Proof Let r(M)=r and r*(M) = r*, and assume, without loss of 
generality, that r 2 r *. As every n-element subset of E(M) is coindependent, 
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r* > n. Now let B be a basis of M. As M is n-cyclic, for every n-element 
subset X of B, there is an element e, of E(M) - B such that Xu e, is a 
circuit of A4. By Lemma 4.4, if X and Y are distinct n-element subsets 
of B, then e, # e,. Thus r* = [E(M) - BI 2 (L). But r >, Y*. Hence Y > (I;). 
As Y 2 n 2 2, it follows that r is n or n + 1. In the first case, since Y 2 Y* > n, 
we deduce that Y = Y *. In the second case, n + 1 = Y > Y* > (I;) = Y and, 
again, r= Y*. 1 

We shall 
this section. 

need just one more lemma before proving the main result of 

(4.7) LEMMA. Suppose n > 2 and let A4 be a rank-(n + 1) matroid that is 
both n-cyclic and n-cocyclic. Then, for every circuit C of A4, 1 Cl = n + 1, and 
E(M) - C is a cocircuit of ii4. 

ProoJ As M is n-cyclic, 1 Cl 2 n + 1. Moreover, as r(M) = n + 1, we 
must have that (Cl 6 n + 2. Therefore, since Lemma 4.6 implies that 
I E(M)1 = 2n + 2, we deduce that E(M) - C contains an n-element subset X. 
As A4 is n-cocyclic, there is an element e of E(M) - X such that Xu e is a 
cocircuit. Since I (Xu e) n C( cannot be one, e 4 C. Thus Xu e = E(M) - C 
and ICI =n+l. 1 

Proof of Theorem 4.1. Let M be a matroid that is both n-cyclic and 
n-cocyclic. Then, by Lemma 4.6, r(M) = r*(M) and r(M) is n or n + 1. 
In the lirst case, since every n-element subset of E(M) is in an (n + l)- 
circuit, M % Un,Zn. Now suppose that r(M) = n + 1. Then /E(M)1 = 2n + 2. 
Moreover, as A4 is n-cyclic, if X is an n-element subset of E(M), then X is 
contained in an (n + 1)-circuit C. By Lemma 4.7, C is a hyperplane of A4. 
Thus C = z and so C is the unique hyperplane of M containing X. We 
conclude that M is an S(n, n + 1,2n + 2). 

5. THE CONNECTIVITY OF n-Cwxrc MATROIDS 

Proposition 3.1 noted that if A4 is an (n + 1)-connected matroid with 
(E(M)\ > 2n, and M\X is disconnected for every n-element subset X of 
E(M), then A4 is n-minimally connected. We also observed earlier that the 
converse of this proposition fails for n = 3. In this section, we shall show 
that if r*(M) > n + 1, then the converse holds. We also consider what 
happens if r*(M) = n + 1 and, in particular, characterize those matroids for 
which the converse fails in the case when n = 3. The arguments here will be 
given for n-cyclic matroids rather than for n-cocyclic matroids since we 
prefer to argue in terms of bases and rank rather than in terms of cobases 
and corank. Moreover, since the set of n-cyclic matroids of rank n is 
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vJn,n+m : m 2 1 }, we shall concentrate in this section on n-cyclic matroids 
of rank at least n + 1. The next lemma, a preliminary to the main result of 
the section, shows that such a matroid A4 is n-connected. The main result 
will show that if r(M) exceeds n + 1, then A4 is (n + 1 )-connected. 

(5.1) LEMMA. Let A4 be an n-cyclic matroid having rank at least n + 1. If 
(X, Y} is a k-separation of A4 with 1 XJ 2 1 YI and k d n, then (x, E(M) - I> 
is an exact k-separation of M, k = n, and s is a hyperplane of A4. Therefore 
A4 is n-connected. 

ProoJ: Since {X, Y> is a k-separation of M with 1x1 > 1 YI, we have 

and 

r(X)+r(Y)-r(M)<k-1. (2) 

Now, as every n-element subset of E(M) is independent and k d n, we 
deduce that r( Y) > k ,and so, by (2), 

r(X) < r(M) - 1. (3) 

Next we consider (x, E(M) - x}. By ( 1 ), 

IFI 2 1x12 IYI 2 /E(M)-z). (4) 

Now, by Lemma 4.5, every cocircuit of A4 contains at least n + 1 elements. 
Hence, by (3), 

(E(M)-Fl2n+l2k+l. (5) 

Therefore, since (2) implies that 

r(x) + r(E(M) -F) - r(M) <k - 1, (6) 

we conclude that (x, E(M) - x} is a k-separation of M. 
Assume next that F is not a hyperplane of M. Then E(M) - F contains 

a cocircuit C* and an element e that is not in C*. By (4) and (5), 
1x1 2 n + 1. Therefore z contains an (n - 2)-element subset Z and an 
element f that is not in 2. As M is n-cyclic, it has an element gf such that 
Zu(e,f,gf}isacircuit.SinceBisaflatofMand(Zu(e,f})-8=(e), 
the element gf is not in 1. Moreover, since the circuit 2 u (e, f, gf > cannot 
have exactly one element in common with the cocircuit C*, this cocircuit 
does not contain gJ Hence gf E E(M) - (Xu C* u e). If f and h are distinct 
elements of I- Z, then, as Z u {f; h} has exactly n elements, it is 
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independent. Therefore, as e $ X, the set 2 u (f; h, e) is also independent. 
Now, applying Lemma 4.4 to the subsets Z u (J; e> and Z u (h, e> of 
Zu{S,h,e), we deduce that gf#g,. Thus (E(M)-(XuC*ue)la 
18-- ZJ = 1x1 - (n - 2). Since Lemma 4.5 implies that IC*l 2 n + 1, it 
follows that [E(M) -XI > 1x1 + 4, a contradiction to (4). We conclude that 
X is a hyperplane of M. 

Finally, we note that, since r(X) = r(M) - 1, a consequence of (6) is 
that r(E(M) - x) < k. But I,??(M) - xl 3 n + 1, so, as M is n-cyclic, 
r(E(M) - x) > n. Since k < n, it follows that n > k 2 r(E(M) - x) 2 n. Thus 
k = n and equality holds in (6). Hence (x, E(M) - x> is an exact n-separa- 
tion of A4 and M is n-connected. B 

The next theorem, the main result of this section, shows that if M has 
corank exceeding n + 1, then A4 is n-minimally connected if and only if 
M\X is minimally (n + 1 - j)-connected for all j-element subsets X of E(M) 
and all j in (0, 1, . . . . n - 1 }. 

(5.2) THEOREM. Let n be an integer exceeding one. The following 
statements are equivalent for a matroid A4 having rank exceeding n + 1. 

(i) M is n-cyclic. 

(ii) Mis (n+l) -connected and M/X is disconnected for all n-element 
subsets X of E(M). 

Prooj Assume that (ii) holds. By Corollary 3.3 and the dual of 
Proposition 3.1, to show that (i) holds, it suffices to show that /E(M)1 b 2n. 
As M is (n + 1 )-connected, it has no k-separation for any k < n + 1. If M 
has a k-separation for some k > n + 1, then / E(M)( > 2k and hence 
I E(M)1 > 2n. If M has no such k-separation, then, by [27, 151, M is 
isomorphic to Um,2m _ 1, Urn,+, , or Um,2m + 1 for some m. But r(M) > n + 1, 
so again I E(M)1 b 2n. We conclude that (ii) implies (i). 

Now assume that (i) does not imply (ii). Let n be the least integer 
exceeding one for which (i) holds but (ii) does not, and, for this n, let M 
be a matroid that satisfies (i) but not (ii). Then M is not (n + 1 )-connected. 
By Theorem 2.1 and Corollary 3.3, n > 2. Moreover, by Lemma 5.1, M has 
an exact n-separation (X, Y> in which X is a hyperplane. Clearly, 

r( Y) = n. (7) 

We show next that Y is a flat of M. Suppose that e EX. Then M/e is 
(n - 1 )-cyclic and has rank exceeding (n - 1) + 1. Thus, by the choice of n, 
M/e is n-connected and so 

h.f,,(X- 4 + bj, (Y) b r(M/e) + n - 1, 
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that is, 

r(X) + r( Y u e) 2 r(M) + n. 

But r(X) = r(M) - 1, so r( Y u e) 3 n + 1. We conclude, by (7), that Y is 
indeed a flat of M. 

Next we give a lower bound on 1 YI. 

(5.3) LEMMA. IYJ a(;-+:)+ 1>2n-5. 

Proof. Since X is a hyperplane of A4 and r(M) > n + 1, X has an 
(n + l)-element independent subset, say Z. Now choose an element e from 
Y. Then, for every (n - 1 )-element subset J of Z, there is an element yJ such 
that Ju e u y, is a circuit of M. As this circuit cannot have exactly one 
element in common with the cocircuit Y, it follows that Y~E Y - e. By 
Lemma 4.4, if J and K are distinct (n - 1 )-element subsets of Z, then 
y, # y,. Thus 

I Y-4 b (ZT:) and so IYI a(:‘:)+ 1. 

It is now straightforward to complete the proof of the lemma by showing 
that (iTi)+ 1>,2n--5. 1 

Since Y is a flat of M of rank n and n < r(M) - 1, the set X contains a 
cocircuit C* and an element e that is not in C*. Let Z be an (n - 2)-element 
subset of Y. Then, for every element y of Y-Z, there is an element f, of 
E(M) such that Zu {e, u,f,> is a circuit of M. This circuit cannot have 
exactly one element outside of the flat Y, nor can it have exactly one 
element in the cocircuit C *. Thus fv E X- e and f, 4 C*. If y and z are 
distinct elements of Y - Z and fy =fi, then, by circuit elimination, 
CW 1~ u,f,>b~W~ {e,zJy))l- e contains a circuit of M. As Y is a flat 
and Zu { y, z} G Y, this circuit does not contain f,. Hence it has at most n 
elements; a contradiction. Therefore fy # fi and so I Y - I[ < IX- (C* u e)l, 
that is, ) YI - (n - 2) < (X- C*l - 1. By Lemma 5.3, I YI - (n - 2) 2 n - 3, 
and hence 

IX-C*1 an-2. 

By the last inequality, X- C* has an (n-2)-element subset A. Now 
choose f in Y and c in C*. Then A4 has an element g such that 
A u (c, f, g> is a circuit. This circuit cannot have exactly one element in 
common with Y or with C*. Therefore, g E Yn C*. But Yn C* is empty 
and this contradiction completes the proof that (i) implies (ii) thereby 
finishing the proof of the theorem. 1 

On combining 
following: 

Lemma 5.1 and Theorem 5.2, we immediately obtain the 

582b/52/2-12 
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(5.4) COROLLARY. Assume that A4 is an n-cyclic matroid having rank at 
least n + 1 and suppose that M is not (n + 1 )-connected. Then r(M) = n + 1 
and M has an exact n-separation (X, Y) in which 1x1 >/ 1 Y\ and X is a 
hyperplane. 

The remaining results in this section concentrate on the case when n = 3. 
In particular, we explicitly describe the structure of those 3-cyclic matroids 
of rank at least 4 that are not 4-connected. 

(5.5) LEMMA. Let (X, Y] be a 3-separation of a S-cyclic matroid M and 
suppose that X is a flat of M. Then 1 Y[ 3 1 XI. 

Prooj Choose elements x and y in X and Y, respectively. Then, as M 
is 3-cyclic, for all e in X - x, there is an element g, in E(M) such that 
{x, y, e, ge} is a 4-circuit. As X is a flat, g, E Y - y. Now suppose that 
g, = gf for some pair (e, f } of distinct elements of X- x. Then, by circuit 
elimination, ((x, y, e, g,} u {x, y, f, gr }) - g, contains a circuit. Since this 
circuit has at least four elements, it must be (x, y, e, f ). Thus y E X. Since 
X is a flat, this is a contradiction. We conclude that g, # gs and hence that 
WI wu* I 

(5.6) LEMMA. Let M be a 3-cyclic matroid that is not 4-connected. Then 
r(M) = 4. Moreover, M has a 3-separation {X, r> in which I XI = ( Y( and 
both X and Y are hyperplanes. 

Proof: By Corollary 5.4, r(M) = 4 and M has a 3-separation (X, Y} in 
which I Xl > I Yl and X is a hyperplane. As X is a flat, Lemma 5.5 implies 
that I YJ 2 I XI. Thus, by Lemma 5.1, { F, E(M) - y} is a 3-separation 
of M and H is a hyperplane. By Lemma 5.5 again, jE(M) - PI 3 1 PI. On 
combining the above inequalities and using the fact that E(M) - YG X, 
we obtain that \ 

Thus Y = y, so Y is a hyperplane. 1 

We can, in fact, give a more precise description of the 3-cyclic matroids 
that have rank at least four and are not 4-connected. To do this, we begin 
by looking at the one concrete example we know of such a matroid, 
namely AG(3,2). It is well known that this matroid can be constructed by 
sticking together two copies of the Fano matroid I;7 along a line and then 
deleting the points of that line (see Fig. 2). More precisely, AG( 3,2) is the 
modular sum [6, p. 1861 of two copies of F7 across a 3-point line. A 
generalization of this construction produces all 3-cyclic matroids of rank 4 
that are not 4-connected. 
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FIGURE 2 

Let m be an integer exceeding one. Suppose that G is a complete graph 
having vertex set {x1, x2, . . . . x2m >, and let (pl, p2, . . . . p2m _ I > be a parti- 
tion 7~ of E(G) into perfect matchings, that is, n is a l-factorization of G. 
Then it is not difficult to see that one obtains a rank-3 paving matroid 
Kb) on (~1, x2, . . . . xZm, pl, p2, . . . . p2,,, _ i ) by taking the dependent lines 
to be {A, pi, . . . . p2,,- 1 > together with all sets of the form (xi, xj, pk) such 
that, in the l-factorization rr of G, the edge Xixj is in the perfect matching 
pk. In this matroid, the line (pl, p2, . . . . p2,,- i > will be called the 
distinguished line. It is modular because it meets every other line and Nm(n) 
has rank 3. This means that we can form the generalized parallel connec- 
tion [6, p. 185-j of two matroids of the form N,(n) by identifying the 
points on the distinguished line of one with the points on the distinguished 
line of the other. To form the corresponding modular sum, one deletes 
these 2m - 1 composite points. This modular sum is certainly 3-cyclic of 
rank 4 and, because its ground set is the union of two rank-3 flats, it is not 
4-connected. We show that every 3-cyclic matroid of rank 4 that is not 
4-connected can be constructed in this way. 

(5.7) THEOREM. Let A4 he a 3-cyclic matroid that has rank at least four 
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and is not 4-connected. Then r(M) = 4 and 1 E(M) 1 = 4m for some integer m 
exceeding one. Moreover, A4 is the modular sum across their distinguished 
(2m - 1 )-point lines of two matroids of the form N,,,(X). 

Before proving this theorem, we remark that it is well known (see, for 
example, [ 10, p. 2361) that Kzm has a l-factorization. Thus, for all m > 2, 
there is at least one matroid of the form N,(n). For m in (2,3 >, there is, 
up to isomorphism, only a single l-factorization of K,, (see, for example, 
[9, p. 56]), but for larger values of m, there is more than one [ 321. Indeed, 
the number f(m) of non-isomorphic 1-factorizations of K,, satisfies the 
equation lim, ~ Ix) ln(f(m))/m2 In(m) = 4 [7, p. 661. 

Proof of Theorem 5.7. By Lemma 5.6, M has rank 4 and there is a par- 
tition {X, Y} of E(M) into hyperplanes such that 1x1 = ) YI. Since X and Y 
are both flats, every 4-circuit of A4 meets both X and Y in an even number 
of elements. 

(5.8) LEMMA. If (x,, x2} c X, then there is a partition { Y1, Y,, . . . . Y,,,) 
of Y into 2-element subsets such that Yi v (x,, x2) is a circuit of A4 for all 
i in { 1, 2, . . . . m >. Moreover, A4 has no other circuits that contain (x1, x2 ) 
and meet Y. 

Proof Suppose y E Y. Then (x1, x2, y} is in a 4-circuit of A4, the fourth 
element of which must be in Y. If {x,, x2, y, z} and {x1, x2, y, w} are 
circuits of A4, where z and w  are distinct elements of Y - y, then, by circuit 
elimination, {x2, y, z, w  } contains a circuit C of il4. Since C must have size 
at least four, C= {x2, y, z, w}. But this is a contradiction since C meets Y 
in an odd number of elements. The lemma follows immediately. 1 

An easy consequence of this lemma is that I YI = 2m. Thus, as (XI = I YI, 
we conclude that I E(M)\ = 4m. Moreover, by interchanging X and Y in the 
last lemma, we deduce that every 2-element subset { yl, y,) of Y induces 
a partition (X,, X2, . . . . xIm} of X into 2-element subsets such that 
(Xiv (yl, y2): 1 <i<m) is the set of 4-circuits that contain (yl, y2} and 
meet X. It is not difficult to see that the following lemma completes the 
proof of Theorem 5.7. 

(5.9) LEMMA. Suppose that ( y,, y2, y3, y4 > is a subset of Y such that 
both (yI, y2, x1, x2) and {y,, y4, x1, x2} are circuits of Mfor some subset 
{x1, x2} of X. If { yl, y2, x3, x4} is a circuit for some (x3, x4} c X, then so 
is IY3, Y4, x39 x4). 

ProoJ: Assume that ( y3, y4, x3, x4} is not a 4-circuit of M. Then, 
as M is 3-cyclic, for some x5 in X- x4, the set { y3, y,, x3, x5} is a 
circuit. By the strong circuit elimination axiom, ( ( y, , y,, x3, x4} u 
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( y3, y4, x3, x5}) - x3 contains a circuit C containing x5. As Y is a flat, x5 
cannot be the only element in C- Y. Therefore, x4 E C. Moreover, by 
Lemma 5.8, ICI = 4. By Lemma 5.8 again, M does not have two distinct 
circuits meeting both X and Y that have exactly three common elements. 
Therefore, C does not contain ( y,, y2} or { y,, y4}. Assume, without loss of 
generality, that C= (yl, y3, x4, x5>. Then, by the strong elimination axiom 
using this circuit and (y3, y,, x3, x5), we deduce that (yl, y,, y,, xj, x4) 
contains a circuit C’ containing x4. Arguing as for C, we deduce that 
x3 E C’ and IC’I = 4. Since C’ cannot have exactly three elements in 
common with (yI, y2, x3, x4>, we deduce that C’= {y3, y4, x3, x4). This 
contradiction completes the proof of Lemma 5.9 and thereby that of 
Theorem 5.7. 1 
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