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On the Numbers of Bases and Circuits in Simple Binary Matroids

TAMES. G, OxLEY

Quirk and Seymour have shown that a connected simple graph has at least as many spanning
trees as circuits. This paper extends and strengthens their result by showing that in a simple
binary matroid M the quotient of the number of bases by the number of circuits is at least 2.
Moreover, if M has no coloops and rank r, this quotient exceeds 6{r +1}/19.

1. INTRODUCTION

Welsh [3, pp. 287-288] raised the problem of comparing the numbers b (M) and ¢ (M)
of bases and circuits in a ratroid M, noting that W. Quirk and P. D. Seymour [3,
p. 287] had shown that if M is the cycle matroid of a simple graph, then

b(M)=c(M). (1.1)

This paper extends and strengthens Quirk and Seymour’s result. Two main results are
proved. First, in Section 2, it is shown that if M is a simple binary matroid, then

b(M)=2c(M), - (1.2)

with equality being attained only by the direct sum of the Fano matroid and a free matroid.
The second main result, which will be proved in Section 3, shows that if M has rank
r and no coloops, then '

b(M)>S(r+ e (M), (1.3)

provided again that M is simple and binary. The reason for restricting attention here to
simple binary matroids is that expression (1.1) need not hold for arbitrary simple matroids
or even for loopless graphic matroids. To see, this, consider, for example, the uniform
matroids {5y, for m =6 and U, , for n =4,

We observe here that inequality (1.3) is a sharper bound than expression (1.2) unless
M is the direct sum of a free matroid and a matroid of rank less than six. We have
included expression (1.2) because it is used in the proof of inequality (1.3). Indeed,
without it, one obtains the weaker bound

B(M) > F5(r + 1)e(M).

- . . . [« . .
This raises the question as to how much one may increase the constant 15 in inequality

(1.3). The referee conjectures that , _
B(M) = 3{r + D (M) (1.4)
observing that

bPG(r-1,2))
e+ De(PGr—1,2))

1.

Notice that equality is attained in expression (1.4) by the Fano matroid.

The matroid terminology used here will, in general, follow Welsh [3]. In particular,
if M is a matroid, then E(M) denotes its ground set and.tk M its rank, The sets of
circuits and bases of M will be denoted by € (M) and B (M) respectively and, if e € E (M),
then %.(M) and @B, (M) will denote the sets of circuits and bases of M containing e. A
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circuit or a cocircuit of M having exactly » elements will be called an n-circuit or an
- n-cocirguit respectively. A series class of M is a maximal subset X of E (A such that
if x and y are distinct elements of X, then {x, y}is a 2-cocircuit. A series class is nontrivial
~ if it contains at least two elements. The elements x and y are in series 1f they liein the
same series class. _ '
The matroid obtained from M by deleting all its coloops will be denoted by M. If ..

{x1, X2, .., X} S E(M), then M\xq, X2, . 0., X, and M/xq, X3, . . ., x.n Will denote respec-
tively the deletion and contraction of {xi, x5, ..., x,.} from M. Moreover, the numbers
of bases and circuits of M which contain {x1, x2, ..., xm} will be denoted by L 1.7 & I
and ¢y, x,,...x,. (M) respectively. Hence, if {x:, X2, ..., X} is independent in M, then

bx1,x2,...,xm (M) = b(M/xly Xay+0es xm)-

Frequent use will be made here of the well-known fact (see, for example, {3, pp.
267-2681)) that » (M) satisfies the following deletion—contraction formula.

If e is an element of M, then _
b(M)=b(M\e)+b(M\e)
(1.5)
unless {e} is a component of M in which case
B{M)=h(M\e)=b(M/e).
Using this, it is easy to show that if {e,, ¢,} is a cocircuit but not a circuit of M, then
b(M)=2b(M\es, ea) +b(M/ey, e2). (1.6)

This observation is a special case of a general identity for Tutte-Grothendieck mvar}ants
which is discussed in detail in 2],

The main results of this paper compare b(M) and c¢(M) when M ‘is a simple binary
matroid. However, the next result applies to all matroids M which are not free. For
such a matroid, the average circuit size will be denoted y(AM). :

1.1. THEOREM. Let M be a rank-r matroid on a set of n elements and suppose that
r<n. Then

M
b(M)ZInL_—}c(M). (1.7

Moreover, equality holds here if and only if M is isomorphic to Uy @ U, . for some k
mf0,1,2,...,rL

ProoF. Consider the set of ordered pairs (B, C') where B is a basis of M and C is
a fundamental circuit with respect to B. Every basis has precisely n —r fundamental
circuits, so the number of such ordered pairs is (n —r)b(M). On the other hand, if C is
a circuit, then for all elements e of C, the set C'\e extends to a basis of M having C' as
a fundamental circuit, Thus the number of ordered pairs of the required type is at least
as large as )¢ qan |Cl. Hence :
(n—rbM)= ¥ |C|

ce€(M)
= (M )c (M),

and expréssion (1.7) follows imimediately.
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Now suppose that equality holds in expression (1.7) for the matroid M. Then: equahty
also holds for M, the matroid o¥tained from M by deleting all coloops. But, by the
argument given above, this can only occur if, for every c1rcu1t C of M and every element
e of C, the set C\e is contained in a usnigue basis of M. As M has no cologps, it foIIows
that M/(C\e) has rank zero. Therefore C\e is a basis for M and so all circuitsof M

* have cardinality equal to rk A +1. Tt follows that M is uniform and the proof of Théorem
1.1 is complete.

1.2. COrROLLARY. [Let M be a simple matroid which is not freé. Then

(M) =

3 c(M)
=

with equality holding if and only if M =U,_3,.2 @ Uz n_re2.

A special case of the next result will be used in Section 3 to complete the proof of
inequality (1.3},

1.3. THEOREM. Let {e1,€2,...,en} be an independent set Z in a simple binary
matroid M. Then

bél,eg....,em (M) 2 621,22,-.-,8,,, (M)‘ ) (1 ‘8)

Proor. Choose a basis B of M containing Z. Now, if C' is a circuit of M containing
Z, choose an element xc of C and then extend C\xc to a basis B¢ of M contained in
B C. The element x is chosen to be a member of (C nB)\Z provided that this set is -
nonempty; otherwise we choose xc in C\B. Notice that in both cases B¢ will contain
Z. We show next that if B’ is a basis containing Z, then there are at most two circuits
C for which B’ can equal Be Assuine that Cy, Cy, . . ., Cx are distinct circuits, but that
Be,, Be,, - - ., Be, can all be chosen to equal B'. Let i and j be different elements of
{1,2,..., k} I both (C; "B\Z and (C; n B)\Z are nonempty, then C)\B = C;\B and so
CiAC;c B; a contradiction. If both (C;"BN\Z and {(C;nB}\Z are empty, then, as
(CAB)A(CAB)| =2,|C;/AC)| = 2, contrary to the fact that M issimple. It follows that & = 2.

We now show that if Be, = B, where C) # C», then an alternative choice of bases
may be made to avoid this. From above, we may assume that (CinBN\Z # =
(CanBW\Z. Then C\B = (Cr\x \B. Since }C1AC21 =3 and {CiAC)\B| =1, we get that
(CinBW\Z |>2 Hence there are at least two elements which may be chosen as the
element xc, and so there is a candidate for B, which is different from Bg,. Since this
alternative choice of B¢, cannot also equal B¢ for a circuit Cg {Cy, Cy}, expression (1.8)
follows.

For small values of m, the preceding result has been strengthened and it has been
determined precisely when equality is attained in expression (1.8). However, these results
will not be needed here and so they have been omitted.

2. ARBITRARY SIMPLE BINARY MATROIDS
The purpose of this section is to prove the following result. The Fano matroid will be
denoted by F. _

2.1. THEOREM. Let M be a simple binary matroid. Then
H(M) = 2c(M). o (2.1)
Moreover, equality holds here if and only if M=F,
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To prove this theorem, we shall use a sequence of lemmas, the first four of which are
devoted to establishing the theorem for matroids of rank less than five, The number of
 k-circuits in a matroid M will be denoted by D).

2.2, LemMA. LetMbea simple binary matroid éf rank r. Then

1
'”( M)= = b{M).

ProOF. Every(r + 1)-circuit of M contains exactly r + 1 bases and, as M is simple and
binary, no ba31s is in more than one such circuit. _

2.3. LEMMA. Let M be arank-3 binary matroid having no loops or coloops and suppose
that, for some element e of M, M\e is simple. Then

MY+ M) + 2 (M) < T5lb. (M) + 26 (M \e)).

Moreover, equality is attained here only if M is isomorphic to the matroid in Figure 1 where
e Is as shown.

FIGURE 1

PrROOF. As M\e is simple, either M is simple, or M has just one 2-circuit, which
must contains e. Since M has rank 3 and is binary having no loops or coloops, the simple
matroid associated with M is F;, M(Ks), Usa, or the parallel connection of two three-
point lines. It is routine to complete the proof of the lemma simply by checking each
of these cases.

2.4, LEMMA, Let M be a simple binary rank-4 matroid having no coloops. Then
M)+ M) = 10 (M), (2.2)

with equality being attained only if M is isomorphic ta the matroid G7 consisting of three
3-point lines all sharing a common pomr

PrOOF. We argue by induction on |E (M ). If M has elements e and f which are in
series, then M/f satisfies the hypotheses of Lemma 2.3. Therefore

e (MYf\ey+MYE) +co (MIF) < T6(b. (M/f) + 25 (M/f\e)). (2.3)

But {e, f} is a 2-cocircuit of M and so, by proposition (1.6}, the right-hand side of
expression (2.3) equals £5b (M), Moreover, it is straightforward to check that the left-hand
side of expression (2.3) equals c*(M)+c*(M) and so expression (2.2) holds if M has a
2-cocircuit. Furthermore, by Lemma 2.3, equality holds in expression (2.3) only if M/f
is isomorphic to the matroid in Figure 1. But ¢ and f are in series in M and so, if equality
holds, then M =G4,
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We may now assume that M has no 2-cocircuits. Then the induction assumption.may
be applied to M \e for all elements e of M. Evidently, for some element f, M\fz G5. Hence

Y (PO\e)+AMe)<E T b(Me)

ee E(M) e E(M)

In Y, cumn b (M\e), each basis of M is counted once for each element of its complement.
Thus "

T b(M\e)=(EM)|—-rk M)b(M)

ecE(M)
={|E(M)|-4)b(M)
and, on arguing similarly for circuits, we obtain that
(EGD)]|~4)c* M)+ (EMD|=3)c* (M) < TH(E M) - 46 (M)..
The required result follows on dividing this inequality throughout by |[E(M)—4.

2.5. LEMMA. Let M be a simple binary matroid of rank not exceeding 4. Then
b(M)=2c (M), (2.4)
with equality being attained only if M =F57 or F;® U 1. |

PrROOF. It is easy to check that if M =F; or F;@® Uy,s, then b(M) =2c(M). We now
show that for all other simple binary matroids of rank less than five the inequality in
expression (2.4) is strict. If e is a coloop of M, then ¢ (M\e)=c(M) and b{M\e)=b(M)
so we may assume that M has no coloops. Therefore, if rk M <4, then M is isomorphic
to M(K.), Usas, Uss, Uso or the parallel connection of two three-point lines. In each
case, it is easy to check that 5 (M) > 2c(M).

Now suppose that tk M =4, Then, by Lemmas 2.2 and 2.4,

c(M)= M)+ (M) +c (M)
< Tob (M) +3b (M) =3b(M).
In fact, the inequality here is strict since equality can only occur if M = (G and, in that
case, ¢> (M) =0. '

It was noted above that &(F7)=2c(F;). Hence, if M =F,, then b(M)=2c(M). We
shall now prove that if M is simple and binary, then

b(M)>2c(M) provided Mz F;. (2.3)

For the remainder of this section, N will denote a minimal counterexample to inequality
(2.5). Evidently N has no coloops. Moreover, by Lemma 2.5 rk N 5. We shall show
next that rk N = 5. Two preliminary lemmas will be required.

2.6. Lemma. If tk N =v, then

N> T V),

k=3

Proor. For all elements ﬁgf N, N'e is not a counterecample to inequality (2.5), so
either 5(N\e)=>2c(N\e), or N\e =F;. In both cases

2e(N\e)=b(N\e),
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and so _ ,
| 2 Y cNe)< T b(NVe), 26

eEEUU ecsE(N)

whe/rg\ the inequality here may be taken to be strict since for at least one element f of
N, N\fz F;, From inequality (2.6)- we get that

2 Y (EWI-ICh< T (EN)-1BD.
Ce%(N) ) BeB(N)

Since N has no coloops, it follows that

r+1

2 kés (BN =k)e* N) < (BN =r)b(N).

Hence ¥; 5 (r = k)e*(N) < (|[E(N)| = r)Eb (N) —c(N)). But 6(N) =2¢(N) and so

T ket ) <o.

k=3

Therefore
r—1 r—1
CTHNY> T k)N = Y (N
k=3 k=3

2.7, LeMMA.  Let M be a simple binary matroid of rank r. Then
re’ (M) =< b(M).

Proor. We argue by induction on |E(M)|. If M has a coloop e, then we obtain the
required result by using Lemma 2.2, for
N
(r—11+1

If M has no coloops, then the result follows by applying the inductive hypothesis to M\e
for all elements ¢ and then adding the resulting inequalities and dividing by |[E(A)|—r.

(M) =" (M\e) < b(M\e)=%b(M).

2.8. ProrosITION. Tk N =35.

Proor. Since rk N =3, it suffices to show that rk N<5. Let tk N =r. Then, by
Lemma 2.6.

CNY =Y c*(N) e (N} -+ ()

E=3
<¢ (NY+2¢77Y(NY.
Thus, by Lemmas 2.2 and 2.7
(N)<(~1-+—2—)b(N) | | .(2 7
¢ ror+1 ’ : '
But 35 (N)=<c(N), hence
| 11,2
2 r 1

It follows that 7*—5r—2 <0, and so r <5 and the proposition is proved.
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We observe here fhat if it can be shown that
| SN =B, @8

then inequality (2.7) may be strengthened to give that ¢ (N)<35(N) and this contradicts
the fact'that N is a counterexample to inequality (2.5). Therefore to complete the proof
of Theorem 2.1, it suffices to prove expressmn (2.8). To do this we shall use the next
four lemmas.

2.9. LEMMA. Let M be a rank-3 binary matroid having no loops or coloops. Suppose
that e and [ are distinct elements of M such that M\e, f is simple. Then

(M) +cs (M) < 5(bo s (M) +2b, (M\F)). (2.9)

Proor. We observe first that
co (M\F) =3, (M\F), (2.10)

since every 4-circuit of M\f containing e ‘contains exactly 3 members of &, (M\f), and
every member of 9. (M\f) is in at most one such 4-circuit. Hence to prove the lemma
it suffices to show that

€2 (M) < dbes (M) +3b. (MYF). E (2.11)

Because M\e, f is simple and M is binary, the left-hand side is at most one, and expression
(2.11) certainly holds unless it is one. Assume therefore that {e, f, g} is a circuit for some
element g. As M has no coloops, it has at least two bases containing ¢ and f and at least
two bases containing ¢ and g; that is, b.;(M}=2 and b, (M\f)=2. T hus expression
(2.11) holds unless &, (M\f) = 2. But, in that case, by expression (2.10), ¢5(M\f)=0 and
expression (2.9) foliows immediately.

2.10. LeMMA. Let e be an element of a rank-4 loopless binary matroid M such that
Me is simple and M/ e has no coloops. Then

cHM) <3b,(M).

PrROOF. We argue by induction on |E(M)!. The result is immediate if e is a coloop |
of M. Now suppose that E(M)—{e} contains elements f and g which are in series in M.
Then it is not difficult to check that, on applying the preceding lemma to M/g, we obtain
the required result. Thus we may assume that E(M)—{e} contains no 2-cocircuits of M.
Hence the inductive hypothesis may be applied to M\f for all f in E(M)—{e}. The
lemma follows on summing the resulting inequalities over all such f.

2.11. LemMmA, Let ¢ be an element of a rank-4 binary matroid M such that M\e is
simple and M has no loops or coloops. Then

cHMY+3c(M\e) < b(Me).

Proor. Partition the set of bases of M not containing ¢ into subsets 98, and %,
where %, consists of those bases B for which the fundamental circuit of e with respect
to B has cardinality 4.

Now, as M has no coloops, every 4-circuit of M containing e is the fundamental
circuit of ¢ with respect to at least two members of %,. Hence

¢ (M)=<3|B,|. (2.12)
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If C is a 5-circuit of M\e, then there is at most oné 4-circuit C’ such that C'--C ={e}
and so at least one of the bases of M\e contained in C is in 932.7Thus
. S(M\e) <%, (2.13)
Moreover, by Lemma 2.3, ' '
(MY £8b(M\e) = 49| +|Ba)). (2.14)

Hence
cHM)+3c7(Me) = cH(M)+3c° (Me) +3c°(M\e)

<398 | +39B,| +3(1B: |+ Ba))
on applying expressions (2.12), (2.13) and (2.14). The required result follows immediately.

2.12. LEMMA. [Let M be a simple rank-5 binary matroid having no coloops. Then
¢ (M) < b (M).

PrOOF. We argue by induction on |E(M)|. If, for every element ¢ of M, M\e has
no coloops, then the result follows by applying the inductive hypothesis to M \e for every
e and then adding the resulting inequalities.

It follows that we may assume that M has a 2-cocircuit {e, f}. Then, on applying Lemma
2.11 to M/f, we get that

cLAM)+3c (Me, f)<b(Me, ). (2.15)
Furthermore, applying Lemma 2.10 to M/f gives that |
MY <db, (M)
and so
200 /AM) < 3bo (M) (2.16)
On adding expressions {2.15) and (2.16) and using proposition (1.6) we get that
33 (M) <=3b (M),

thereby completing the proof of the lemma.

Since N, a minimal counterexample to inequality'(Z.S), has rank 5 and no coloops,
the last lemma implies that ¢’ (N) <£b(N); that is, expression (2.8) holds, and, as noted
earlier, Theorem 2.1 follows immediately.

3. SiMPLE BINARY MATrROIDS WitHOUT COLOOPS

The purpose of this section is to prove the following result:

3.1. THEOREM. Let M be a rank-r simple binary matroid having no coloops. Then
19
6(r+1)

c(M)< b | (3.1)

PrROOF. We argue by induction on |E (M)|. Suppose, first, that M has rio 2-cocircuits.
Then, by the induction assumption, for all elements ¢ of M,

19
6(r+1)

‘c(M\e)< b{M\e).
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Therefore

)X c(M\e.)'<6 ? - .Y b(M\e),

ccEM) (r+1YecEan
that is,

C-Eg(,M |E(M)|—IC|)<6( 1)

Arguing now as in the proof of Lemma 2.6, we get that 35 ¢ “(M) <c (M) and hence,
by Lemmas 2.2 and 2.7,

(EMD)] = 1r)b(M).

(M) < (—2—+1) b(M). (3.2)
r+1 r
If r =6, then
2 1 19

+ —=
rrl r e+ D)

and so (3.2)implies (3.1). If r < 5, then3<[19/6(r + 1)] and so, by Theorem 2.1, inequality
(3.1) holds.

We may now assume that M has a nontrivial series class {e1, €3, ..., e} ff m =3, or
m =2 and {e,, €3} is not in a 3-circuit, then M/ e, is simple and c(M Y=c(M/e). Moreover,
by the induction assumption,

C(M/€1)<§b(M/€1)
6r

Therefore we may complete the proof in this case by showing that

19 19

—gb(M/ex)\ S+ 1)

But this inequality is equivalent to each of the folIowmg:
| (r+1)b(M/er) <r(b(M/eq)+b(M\e1));
b(M/e)<rb(M\ey);
bM< (r +1)b(M\ey).

b(M}. (3.3)

We now verify the last of these inequalities, thereby establishing expression (3.3). The
collection of bases of M may be partitioned into two subsets 9%, and %, where a basis

B isin B, if [B{es, €2, ..., en}|=m—1,andisin B, if B 2{e;, €2, ..., ek
Now let B, be an arbitrary basis of M \e,. Then clearly B; 2{¢, €1, ..., €. }. Replacing
{e2, €3, ..., emt in B; by any {(m —1)-element subset of {ey, €2, ..., e} gives a member

of %Bi. Moreover every member of %; can be obtained in this way from exactly one
basis of Af\e,. Therefore

| 1] = mb (M \ey). (3.4)

The fundamental circuit of ¢; with respect to B; in the matroid M contains at most
r—m+1 elements other than ey, ey, . . ., e,,. Foreach such element.y; (B, u{el})\{y} is
a member of %,. Moreover, every member of %, arises im this way from some basis of
M\e,. Therefore

|Bo| < (r —m + 13 (M\ey), (3.5)

and expression (3.3) follows.immediately on combining expressions (3.4} and (3.5).
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It remains to consider the case when M has a series class {e, ¢,} which is contained
in a 3-circuit {es, ey, p}. If this 3-circuit is a component of M, then inequality (3.1) follows
without difficulty from the induction assumption. The remaining alternative is that M is
* the parallel connection of M;=M\e,, e, and M,=Ml{e,, e,, p} with respect to the
basepoint p {1} and p is not a coloop in M;. In that case, by proposition {1.6),

b(M)=2b(M\es, €2)+b(M]e1, €) = 2 (My) + by (M).

Moreover,
cM)y=cM)+c,(M)+1 =2¢(M,)—c(M\p)+1,
and
tkM=rkM, +1.
Thus

Sb(M)~(tk M + 1)c (M)

S28 (M) + b, (M) — (rk My +2)(2c (M) — ¢ (M\p) + 1)

2(6b (M) — (rk My + 1)e (M) ,

+%b, (M) — 2 (M) + 2¢ (M\p) + 1k (My)e (Mi\p) -tk My —2
=6 b, (My) —2¢, (M) + rk (My)c (My\p) —rk My 2,

il

il

where the last step follows from the induction assumption. Now consider ¢{M1\p). If
this is zero, then M, is an m-circuit for some m =3, But we have assumed that M has
no series classes with more than two elements. Hence M is the parallel connection of
two three-point lines and, for this matroid, inequality {3.1} holds. Thus we may assume
that ¢ (M\p) =1, and therefore

TH(M)— @k M +1)c (M) =$b, (M) —2¢, (M) —2 = 2(b, (M) — ¢, (M1)),

since b,(M;)=2. But, by Theorem 1.3, b,(M)=c,(M,), so inequality (3.1) holds and
the proof of Theorem 3.1 is complete.
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