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Abstract

“If a theorem about graphs can be expressed in terms of edges and

circuits only it probably exemplifies a more general theorem about ma-

troids.” This assertion, made by Tutte more than twenty years ago, will

be the theme of this paper. In particular, a number of examples will

be given of the two-way interaction between graph theory and matroid

theory that enriches both subjects.

1 Introduction

This paper aims to be accessible to those with no previous experience of
matroids; only some basic familiarity with graph theory and linear algebra will
be assumed. In particular, the next section introduces matroids by showing
how such objects arise from graphs. It then presents a minimal amount of the-
ory to make the rest of the paper comprehensible. Throughout, the emphasis
is on the links between graphs and matroids.

Section 3 begins by showing how 2-connectedness for graphs extends natu-
rally to matroids. It then indicates how the number of edges in a 2-connected
loopless graph can be bounded in terms of the circumference and the size of a
largest bond. The main result of the section extends this graph result to ma-
troids. The results in this section provide an excellent example of the two-way
interaction between graph theory and matroid theory.

In order to increase the accessibility of this paper, the matroid technicalities
have been kept to a minimum. Most of those that do arise have been separated
from the rest of the paper and appear in two separate sections, 4 and 10, which
deal primarily with proofs. The first of these sections outlines the proofs of
the main results from Section 3.

Section 5 begins a new topic, that of removing a cycle from a graph while
maintaining the connectivity. The seed for the results in this section is a 1974
graph theorem of Mader. Various extensions and non-extensions of this theo-
rem for 2-connected graphs and matroids are described. The topic of removable
cycles continues in Section 6 with the focus moving to the 3-connected case.
Once again, the symbiosis between graph theory and matroid theory should
be apparent throughout this discussion.

Sections 7–10 turn attention to graph minors and their matroid analogues.
In particular, motivated by Robertson and Seymour’s Graph-Minors Project
and a longstanding matroid conjecture of Rota, the theme is the existence
of infinite antichains in graphs and matroids. The ideas of branch-width for
graphs and matroids are introduced and the effects are considered both of
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bounding the branch-width above and of bounding it below. The most tech-
nical material in this discussion appears in Section 10 where some proofs are
outlined. Finally, Section 11 revisits the topic of unavoidable structures, which
were considered in the 2-connected case in Section 3. In particular, the sub-
structures that are guaranteed to appear in all sufficiently large 3-connected
graphs and matroids are specified.

2 The bare facts about matroids

This section gives a basic introduction to matroid theory beginning with a
description of how matroids arise from graphs. The reader who is familiar with
matroids may wish to go directly to Section 3. A more detailed treatment of
the material in this section may be found in [39], the terminology and notation
of which will be followed here.
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Figure 1.

Consider the graph G shown in Figure 1 and let C be the collection of
edge-sets of cycles, simple closed curves, in G. Then

C =
{

{1}, {2, 3}, {2, 4, 5}, {3, 4, 5}, {5, 6, 7}, {2, 4, 6, 7}, {3, 4, 6, 7}
}

.

Let E be the edge-set of G. Then the pair (E, C) is an example of a matroid.
It is called the cycle matroid of G and is denoted by M(G).

Another example of a matroid arises from a matrix. Consider the following
matrix A over GF (2), the field of two elements.













1 2 3 4 5 6 7 8

a 0 1 1 1 0 0 0 0
b 0 1 1 0 1 1 0 0
c 0 0 0 1 1 0 1 0
d 0 0 0 0 0 1 1 1
e 0 0 0 0 0 0 0 1













Let E = {1, 2, ..., 8} and let C be the collection of minimal linearly dependent
subsets of E. Again, (E, C) is a matroid. This matroid is called the vector
matroid M [A] of the matrix A. This matrix is the mod 2 vertex-edge incidence
matrix of the graph G in Figure 1, and its vector matroid equals the cycle
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matroid of G. Because this matrix A is over the field GF (2), the associated
vector matroid is an example of a binary matroid.

In general, a matroid consists of a finite set E, called the ground set, and
a collection C of non-empty incomparable subsets of E, called circuits, that
obey the straightforward elimination axiom: if C1 and C2 are distinct circuits
and e ∈ C1 ∩ C2, then (C1 ∪ C2) − {e} contains a circuit.

The reader will easily verify that this axiom is satisfied by the collection
of edge-sets of cycles in a graph and by the collection of minimal linearly de-
pendent sets of columns of a matrix. Indeed, when Whitney [61] introduced
matroids in 1935, he sought to provide a unifying abstract treatment of de-
pendence in graph theory and linear algebra. Thus, since their introduction,
matroids have been closely tied to graphs. This paper will explore some aspects
of this bond.

Another basic example of a matroid is the uniform matroid Ur,n where r
and n are non-negative integers and r ≤ n. This matroid has ground set
E = {1, 2, ..., n} and has C equal to the set of (r + 1)-element subsets of E.

While the cycle matroid of a graph is most naturally described in terms
of its circuits, it is perhaps more natural to describe the vector matroid of a
matrix in terms of its independent sets. These are the subsets of the ground
set that contain no circuit. In the case of the vector matroid of a matrix,
a set of column labels is independent if and only if the corresponding set of
columns is linearly independent. A matroid is also determined by its bases,
that is, its maximal independent sets. For the cycle matroid of a connected
graph G, the bases are precisely the edge-sets of the spanning trees of G. Thus
all the bases of M(G) have the same cardinality, namely |V (G)| − 1. This
observation generalizes to arbitrary matroids: all bases of a matroid M have
the same cardinality, which is called the rank r(M) of M . A set X spans M if
X contains a basis of M .

One of the fundamental operations in graph theory is the construction of a
planar dual of a plane graph. This is illustrated in Figure 2 for the graph G in
Figure 1. The cycle matroid M(G∗) of G∗ has the same ground set E as M(G).
Its circuits, the edge-sets of cycles of G∗, are {8}, {6, 7}, {4, 5, 6}, {4, 5, 7},
{2, 3, 4}, {2, 3, 5, 6} and {2, 3, 5, 7}. In the original graph G, these sets cor-
respond to minimal edge-cuts or bonds, that is, they are the minimal sets of
edges of G whose removal increases the number of connected components of
the graph. Since the graph G is connected, its bonds are the minimal sets of
edges whose removal disconnects the graph. Because the set C∗ of bonds of G
equals the set of cycles of G∗, the pair (E, C∗) is a matroid. In general, for a
graph G, planar or not, the set of bonds of G is the set of circuits of a matroid
on E, the edge-set of G. This matroid is called the dual matroid of M(G) and
is denoted by M∗(G).
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Figure 2. (a) G and G∗ superimposed (b) G∗

Every matroid M has a dual M∗, which has the same ground set E as M
and has, as its bases, the collection of complements of bases of M . Thus the
rank of M∗, which is called the corank of M and is denoted by r∗(M), equals
|E| − r(M). It is clear that

(M∗)∗ = M.

The circuits of M∗ are called the cocircuits of M . The cocircuits of M are
precisely the complements of the hyperplanes, the latter being the maximal
subsets of E(M) that do not span M . For a graph G, the cocircuits of M(G)
are the bonds of G. It is not difficult to see that a cycle and a bond in a graph
cannot have exactly one common edge. This property extends to matroids
and is often referred to as orthogonality: a circuit and a cocircuit of a matroid
cannot have exactly one common element. It follows from the definition that
the dual of every uniform matroid is also uniform. In particular,

U∗

r,n = Un−r,n.

The cocircuits of Ur,n are all (n − r + 1)-element subsets of the ground set.
Certain operations on a matrix do not alter its vector matroid. These

include elementary row operations, column permutations, and deletion of a
zero row. If M is the vector matroid of an r × n matrix [Ir|D] over a field F,
then M∗ is the vector matroid of the matrix [−DT |In−r], where the columns
of this matrix are labelled in the same order as those of [Ir|D].

The following table summarizes the four different classes of matroids intro-
duced above.
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Name Notation Ground set E Set C of circuits
cycle matroid M(G) edge-set of G edge-sets of
of graph G cycles of G
bond matroid M∗(G) edge-set of G bonds of G
of graph G
vector matroid M [A] column labels minimal linearly
of matrix A of A dependent sets of columns
uniform matroid Ur,n {1, 2, . . . , n} all (r + 1)-element

subsets of {1, 2, . . . , n}

A matroid M with ground set E(M) is graphic if it is isomorphic to the
cycle matroid of some graph, that is, there is a graph G and a bijection φ :
E(M) → E(G) such that a subset X of E(M) is a circuit of M if and only
if φ(X) is the edge set of a cycle of G. A cographic matroid is one that is
isomorphic to the bond matroid of some graph. For a field F, a matroid is
F-representable if it is isomorphic to the vector matroid of some matrix over
F.

Duality is one of the three most basic matroid operations. The other two,
deletion and contraction, are, like the first, extensions of natural graph oper-
ations.
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Figure 3.

The two graphs in Figure 3 are related to the graph G in Figure 1. The
first of these, denoted G\5, is obtained from G by deleting the edge 5; the
second, denoted G/5, is obtained by contracting 5, that is, by shrinking the
edge 5 to a single vertex, or (equivalently) deleting 5 and then identifying its
end-vertices.

To extend these definitions to matroids, we consider how the cycles of G\e
and G/e are related to those of G. In general, if T is a subset of the ground
set E of a matroid M , then M\T , the deletion of T from M , is the matroid
with ground set E − T whose set of circuits is {C ∈ C(M) : C ∩ T = ∅}; the
contraction of T from M , which is denoted M/T , also has E −T as its ground
set, but its circuits are the minimal non-empty members of {C − T : C ∈
C(M)}. It is straightforward to check that both M\T and M/T are actually
matroids and that if e is an edge of a graph G, then M(G)\e = M(G\e), while
M(G)/e = M(G/e). If X is a subset of E, then all the bases of M\(E − X)
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have the same cardinality, which equals the rank of M\(E − X) and is also
called the rank r(X) of X.
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Figure 4.

For graphs, deletion and contraction are related through duality. In par-
ticular, Figure 4 shows that the graphs (G/5)∗ and G∗\5 are equal. This
relationship extends to matroids. Specifically, if T is a subset of the ground
set of a matroid M , then

M∗\T = (M/T )∗, or (equivalently) M\T = (M∗/T )∗.

A graph H is a minor of a graph G if H can be obtained from G by a
sequence of deletions, contractions, and deletions of isolated vertices. There is
a corresponding notion for matroids with the only difference arising because
arbitrary matroids do not have vertices. Thus a minor of a matroid M is
any matroid that can be obtained from M by a sequence of deletions and
contractions. It is not difficult to check that if X and Y are disjoint subsets
of the ground set of a matroid M , then

M\X/Y = M/Y \X,

and every minor of M is determined by the set of elements that are deleted
and the set of elements that are contracted. Although it is true that if the
graph G1 is a minor of the graph G2, then the matroid M(G1) is a minor of
the matroid M(G2), the converse of this fails. For example, if G1 is the union
of two disjoint copies of K2 with edge sets {1} and {2}, and G2 is a copy of
K3 with edge set {1, 2, 3}, then M(G1) ∼= U2,2 and M(G2) ∼= U2,3. Certainly
M(G1) is a minor of M(G2). However, clearly G1 has four vertices while G2

has three, so G1 is not a minor of G2.
Matroids also arise geometrically as follows. Given a finite set E of points,

such as the seven points of the Fano projective plane (see Figure 5(b)), one
can define a matroid M on E by first choosing a collection of subsets of E
called lines such that two distinct lines share at most one common point. The
circuits of M are all sets of three collinear points and all sets of four points no
three of which are collinear. Such a matroid has rank at most three. When M
is derived in this way from the Fano plane, with the lines of the matroid being
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the seven lines of the projective plane, including {4, 5, 6}, we call M the Fano
matroid F7. Another important example of such a matroid is the non-Fano
matroid F−

7 which is represented geometrically in Figure 5(a). It is obtained
from F7 by relaxing {4, 5, 6}, which is both a circuit and a hyperplane of F7.
In general, if X is a circuit-hyperplane in a matroid M , then one can obtain
a new matroid M ′ from M by relaxing X, that is, by declaring X to be an
independent set but leaving the matroid unchanged otherwise. For example, if
we apply this operation six times to F−

7 , we obtain the uniform matroid U3,7.
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Figure 5.

The Fano matroid is isomorphic to the vector matroid of the matrix whose
columns consist of all non-zero vectors in the 3-dimensional vector space over
GF (2). Hence the Fano matroid is binary where, in general, a matroid M
is binary if M is isomorphic to the vector matroid of some matrix over the
field GF (2). By using the mod-2 vertex-edge incidence matrix, as in the first
example, it is straightforward to show that every graphic matroid is binary.
The Fano matroid and its dual are examples of non-graphic binary matroids.
To see that F7 is non-graphic, it suffices to observe that there is no simple
graph on 4 vertices with exactly 7 edges since the complete graph K4 has only
6 edges. The matroid U2,4 is non-binary because there is no 2 × 4 matrix A
over GF (2) such that U2,4

∼= M [A].
A binary matroid is regular if it has no minor isomorphic to either F7 or

F ∗

7 . Such matroids have numerous attractive properties, some of which appear
in the next result. A totally unimodular matrix is a real matrix all of whose
subdeterminants are in {0, 1,−1}.

Proposition 2.1 The following statements are equivalent for a matroid M .

(i) M is regular.

(ii) For all fields F, there is a matrix AF over F such that M is isomorphic
to the vector matroid of AF.

(iii) M is isomorphic to M [A] for some totally unimodular matrix A.

(iv) M has no minor isomorphic to any of F7, F ∗

7 , or U2,4.

One very special regular matroid R10 is the vector matroid of the matrix
over GF (2) whose columns are the ten distinct 5-tuples with exactly three
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ones. In a result that underlies the proof that totally unimodular matrices
can be recognized in polynomial time, Seymour [50] established that every
regular matroid can be built by sticking together graphic matroids, cographic
matroids, and copies of R10 using operations that mimic sticking two graphs
together at a vertex, along an edge, and across a triangle. This result means
that one’s best hope of obtaining some matroid extension of a graph result is to
be able to extend the result to regular matroids. Some results extend further,
to binary matroids, and others further still to, say, all vector matroids. Thus
although a graph result may fail to extend to all matroids, there are several
natural intermediate classes to which the result may extend.

3 Connectedness, 2-connectedness, and unavoidable

stuctures

One area in which the interaction between graphs and matroids has been
very fruitful is in the consideration of connectivity. Initially there is some
cause for pessimism when we note that the graphs G1 and G2 shown in Figure
6 have the same edge sets and have the same sets of edge-sets of cycles. Thus
M(G1) = M(G2). But G1 is a connected graph while G2 is not. We conclude
that graph connectedness has no matroid generalization. However, if we look
at 2-connectedness, we note that we can describe this property for graphs in
terms of edges and circuits only: a loopless graph G is 2-connected if and
only if, for every two edges e and f of G, there is a cycle containing {e, f}.
Mimicking this result for graphs, we define a matroid to be 2-connected if, for
every two elements, there is a circuit containing both. This terminology follows
Tutte [56]. For many other authors, a matroid with the above property is called
connected. Thus, for matroids, the terms “connected” and “2-connected” mean
precisely the same thing. One very attractive feature of 2-connectedness for
matroids, which is a consequence of orthogonality, is that a matroid is 2-
connected if and only if its dual is. In a matroid M , a maximal subset X
of E(M) for which M\(E(M) − X) is 2-connected is called a (2-connected)
component of M . Thus, for the graph G1 in Figure 6, M(G1) has exactly two
components.
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Figure 6.
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Our discussion of areas of interaction between graphs and matroids will
begin with the consideration of unavoidable structures in graphs. An easy
example of such a result is the observation that a big connected graph has
either a long path or a vertex of high degree. More formally:

Lemma 3.1 For each positive integer n, there is an integer k(n) such that
every connected graph G with at least k(n) edges contains a path with at least
n vertices or a vertex of degree at least n.

As one might expect, if one imposes a stronger connectivity condition on
G, then one can guarantee the presence of a more specific substructure. In
particular, if G is 2-connected, then we have the following result.

Proposition 3.2 Every sufficiently large 2-connected graph contains either a
big cycle or a vertex of high degree.

In a 2-connected loopless graph G, the set of edges incident with a vertex
forms a bond of G. Thus we have the following immediate consequence of the
last result.

Corollary 3.3 Every sufficiently large 2-connected loopless graph contains ei-
ther a big cycle or a big bond.

Our aim is to extend graph results to matroids so it is natural to ask
whether the matroid analogue of the last result holds. Specifically, is it true
that every sufficiently large 2-connected matroid contains either a big circuit
or a big cocircuit? The question was raised informally by Robin Thomas at
the Graph-Minors meeting in Seattle in 1991. It was answered very quickly by
Lovász, Schrijver, and Seymour (in [39]) who proved the following result.

Theorem 3.4 Let M be a 2-connected matroid with at least two elements. If
a largest circuit of M has c elements and a largest cocircuit has c∗ elements,
then M has at most 2c+c∗−1 elements.

Figure 7. G
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An answer to Thomas’s question can also be deduced from work of Tuza
[59] on set systems. A natural question that arises here is whether the bound
in the last theorem can be sharpened for various special classes of matroids
such as the class of graphic matroids. For example, for the cycle matroid of
the graph G shown in Figure 7, c, which is just the circumference of G, equals
8, while c∗ is 4. Thus 2c+c∗−1 = 2048, although G has just 16 edges.

From a matroid perspective, one advantage of the bound in Theorem 3.4
is that it is symmetric in c and c∗. Duality is so fundamental in matroid
theory that it is desirable to retain this property. As a guide to potential
improvements in the bound for graphs, we consider what is already known for
graphs. The following is an old result of Erdős and Gallai [14].

Theorem 3.5 Let G be a simple n-vertex graph. Then

|E(G)| ≤ 1

2
c(n − 1).

Motivated by this result and the desire to obtain a bound symmetric in
c and c∗, the author asked whether, for graphs, the bound 1

2
cc∗ holds. The

graph in Figure 7 shows that such a bound would be sharp. Pou-Lin Wu [62]
proved this bound.

Theorem 3.6 Let G be a 2-connected loopless graph with circumference c. If
c∗ is the size of a largest bond in G, then

|E(G)| ≤ 1

2
cc∗.

The following table compares Wu’s bound with the Erdös-Gallai bound.

Erdős-Gallai Wu

|E(G)| ≤ 1

2
c(n − 1) 1

2
cc∗

NEED G is simple G is 2-connected and loopless

SHARP FOR complete graphs only cycles etc.

We conclude that Wu’s bound, motivated by matroid theory, is often
sharper than the Erdős-Gallai bound. Thus, in Theorem 3.6, we have a graph
result that was motivated by a matroid result and frequently improves on the
previous best graph result.

The natural question that Wu’s theorem raises is whether the same bound
holds for all 2-connected matroids. Wu was not able to extend his proof to
binary matroids. The reader may hope that Seymour’s decomposition theorem
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for regular matroids mentioned above would enable the graph result to be
extended to regular matroids but this was not achieved either. Several authors
[2, 4, 22, 23, 41, 62, 63] considered this problem and, in particular, Reid [41]
proved several attractive results. Eventually, Bonin, McNulty and Reid [2]
conjectured that the same bound holds for all matroids. At that stage, there
was not even a known bound that was polynomial in c and c∗.

Such a polynomial bound can be derived from the next result of Manoel
Lemos and the author [34]. If M is a 2-connected matroid with at least two
elements, then every element e of M is in a circuit and a cocircuit. Let ce

be the size of a largest circuit containing e and let c∗e be the size of a largest
cocircuit containing e.

Theorem 3.7 Let M be a 2-connected matroid with at least two elements. If
e is an element of M , then

|E(M)| ≤ (ce − 1)(c∗e − 1) + 1.

e

Figure 8.

The example given in Figure 8 has ce = 8 and c∗e = 3. Thus (ce − 1)(c∗e −
1) + 1 = 15 = |E(G)|. Hence the bound in this theorem is sharp. All the
matroids that attain this bound were determined in [34]. They are the cycle
matroids of certain special series-parallel networks.

The last theorem has an attractive similarity to a bound derived from the
width-length inequality [30, 16]. In a matroid M , let e be an element that is
neither a loop, that is, a 1-element circuit, nor a coloop, a 1-element cocircuit.
Let l(M)+1 and w(M)+1 be the cardinalities of a smallest circuit containing e
and a smallest cocircuit containing e. Lehman [30] showed that if M is regular,
then

l(M)w(M) + 1 ≤ |E(M)|. (3.1)

More generally, it follows from a result of Seymour [48] that the last inequality
holds for all binary matroids that have no F ∗

7 -minor using e. In fact, it also
holds for F ∗

7 , although it fails, for example, for AG(3, 2). The last matroid
is the matroid on the points of the three-dimensional affine space over GF (2)
where a set of elements is independent in the matroid if the corresponding set
of points is affinely independent. Equivalently, AG(3, 2) is the vector matroid
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of the matrix over GF (2) whose columns are all the 4-tuples whose coordinates
sum to one over GF (2).

A straightforward consequence of Theorem 3.7 is the following result for
graphs.

Corollary 3.8 Let u and v be distinct vertices in a 2-connected loopless graph
G. Then |E(G)| cannot exceed the product of the length of a longest (u, v)-path
and the size of a largest minimal edge-cut separating u from v.

Guoli Ding, a colleague of the author at Louisiana State University, gave
a short proof of Theorem 3.7 by induction. This proof was then modified by
Manoel Lemos to prove the following strengthening of the theorem. The proof
will be given in the next section.

Theorem 3.9 Let M be a 2-connected matroid with at least two elements. If
e ∈ E(M), then M has ce(M) − 1 cocircuits each containing e such that the
union of these cocircuits is E(M).

Using the bound Theorem 3.7 and quite a bit more work, Lemos and the
author [34] proved Bonin, McNulty and Reid’s conjecture. An outline of the
proof will be given in the next section.

Theorem 3.10 Let M be a 2-connected matroid with at least two elements.
Then

|E(M)| ≤ 1

2
cc∗.

For comparison, a lower bound on |E(M)| in terms of c and c∗ that holds
for all matroids M having non-zero rank and corank is

c + c∗ − 2 ≤ |E(M)|. (3.2)

To see this, observe that c ≤ r(M) + 1 and c∗ ≤ r∗(M) + 1. The bound in
(3.2) is sharp. It is attained, for example, by all uniform matroids of non-zero
rank and corank.

Neumann-Lara, Rivera-Campo, and Urrutia [37] proved the following ex-
tension of Pou-Lin Wu’s result for graphs.

Theorem 3.11 Every 2-connected loopless graph G with circumference c has
a collection of c bonds such that every edge of G lies in at least two of them.

Observe that the last result allows for a bond to be repeated in the collec-
tion. It is natural to ask whether this result extends to matroids.

Question 3.12 Does every 2-connected matroid M have a collection of c(M)
cocircuits such that every element is in at least two of them?

This question is open even for bond matroids of graphs.
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Question 3.13 Let G be a 2-connected loopless graph whose largest bond has
c∗ edges. Does G have a collection of c∗ cycles such that every edge is in at
least two of them?

Pou-Lin Wu [63] completely characterized all the graphs that attain equal-
ity in the bound in Theorem 3.10. They turn out to be certain special series-
parallel networks that are closely related to the graphs that attain equality
in Theorem 3.7. Among arbitrary matroids, the binary affine space AG(3, 2)
also has exactly 1

2
cc∗ elements. It is the only known example of a non-graphic

matroid that attains the bound in Theorem 3.10.

4 Some proofs

In this section, we prove Theorem 3.9 and indicate the main steps in the
proof of Theorem 3.10. Tutte [56] proved the following attractive property of
2-connected matroids that is particularly helpful in induction arguments.

Lemma 4.1 Let e be an element of a 2-connected matroid M . Then M\e or
M/e is 2-connected.

Proof of Theorem 3.9 We argue by induction on ce(M). If ce(M) = 2, then
M is a uniform matroid having rank one, so E(M) is a cocircuit of M and
the result follows. Now suppose that the theorem holds for ce(M) < n and let
ce(M) = n ≥ 3.

Let C∗ be a cocircuit of M that contains e. Clearly C∗ 6= E(M). By
Lemma 4.1, we may remove the elements of C∗ − e from M one at a time by
deletion or contraction so as to always maintain a 2-connected matroid. Thus,
there is a partition {X, Y } of C∗ − e such that M\X/Y is 2-connected. Call
this minor N . By orthogonality, every circuit of M that contains e must also
meet X or Y . It follows that

ce(N) < ce(M).

Since C∗ 6= E(M), the matroid N has at least two elements. Thus, by
the induction assumption, for some k ≤ ce(N) − 1, there are k cocircuits
C∗

1 , C
∗

2 , . . . , C
∗

k of N each containing e such that the union of these cocircuits
is E(N). For each C∗

i , there is a cocircuit D∗

i of M such that C∗

i = D∗

i − X.
Hence C∗, D∗

1, D
∗

2, . . . , D
∗

k are cocircuits of M each containing e and

E(M) = E(N)∪X ∪ Y ⊆ C∗

1 ∪C∗

2 ∪ · · · ∪C∗

k ∪C∗ ⊆ D∗

1 ∪D∗

2 ∪ · · · ∪D∗

k ∪C∗.

Thus we have a family of k + 1 cocircuits of M that covers E(M). Since

k + 1 ≤ (ce(N) − 1) + 1 = ce(N) ≤ ce(M) − 1,
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the result follows by induction. 2

There are two main steps in the proof of Theorem 3.10. These are stated
in the next two lemmas. For a circuit C in a matroid M with |C| ≥ 2, let
c∗(C, M) be the size of a largest cocircuit of M that has exactly two elements
in common with C. The components of a matroid N are the maximal subsets
X of E(N) such that N\(E(N) − X) is 2-connected.

Lemma 4.2 Let M be a 2-connected matroid with at least two elements and
let C be a circuit of M . If every component of M/C is a circuit, then

|E(M)| ≤ |C| + c(M)

⌈

c∗(C, M) − 2

2

⌉

.

Lemma 4.3 Let M be a 2-connected matroid with at least two elements and
let C be a circuit of M . If C = c(M), then

|E(M)| ≤ c(M)

⌈

c∗(C, M)

2

⌉

.

The proof of Lemma 4.3, which uses Theorem 3.7, is by induction on the
number of components of M/C that are not circuits. If this number is zero,
then Lemma 4.3 follows by Lemma 4.2. Using the second of these lemmas, it
is not difficult to prove Theorem 3.10.
Proof of Theorem 3.10 We shall first prove the theorem when c∗(M) is
even. By Lemma 4.3,

|E(M)| ≤ c(M)

⌈

c∗(C, M)

2

⌉

,

for any circuit C of M such that |C| = c(M). As c∗(C, M) ≤ c∗(M), it follows
that

|E(M)| ≤ c(M)

⌈

c∗(C, M)

2

⌉

≤ c(M)

⌈

c∗(M)

2

⌉

=
c(M)c∗(M)

2
,

where the last equality follows since c∗(M) is an even integer.
When c∗(M) is odd, let M ′ be the matroid obtained from M by inserting an

element in parallel with each element of the latter. For graphs, this operation
is certainly well-defined. To see that it is well-defined for matroids in general,
one needs only to perform the routine check that the collection of circuits of
M ′ obeys the circuit elimination axiom. By orthogonality, c∗(M ′) = 2c∗(M).
Thus c∗(M ′) is even and hence

|E(M ′)| ≤
c(M ′)c∗(M ′)

2
.

As |E(M ′)| = 2|E(M)| and c(M ′) = c(M), we get

2|E(M)| ≤ c(M)c∗(M)

and the result follows. 2
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5 Removable circuits

Another area in which the interaction between graphs and matroids has
been quite fruitful is in the consideration of removable circuits. The following
graph result of Mader [35] motivated much of what has been done here.

Theorem 5.1 Let G be a simple k-connected graph with minimum degree at
least k + 2. Then G has a cycle C such that the graph obtained from G by
deleting all the edges of C is k-connected.

We shall consider trying to extend this result to matroids. To do this,
attention will be restricted to the cases when k = 2 and when k = 3. The
reason for doing this is that, although Tutte defined matroid k-connectedness
for all k ≥ 2, we only really have a good collection of tools for working with k-
connected matroids when k is 2 or 3. First consider 2-connected matroids. As
noted earlier, in a 2-connected graph without loops, the set of edges meeting
at a vertex forms a bond. Thus Mader’s theorem immediately implies the
following result.

Corollary 5.2 Let G be a simple 2-connected graph in which every bond has
size at least 4. Then G has a cycle C such that G\C is 2-connected.

Notice that, in the last result, we are deleting the edges but not the vertices
of C. Such a cycle C in a 2-connected graph is called removable. Analogously,
a circuit D of a 2-connected matroid is removable if M\D is 2-connected. The
last corollary is in an ideal form for generalization to matroids.

Question 5.3 Let M be a 2-connected matroid such that

(i) every circuit has size at least 3; and

(ii) every cocircuit has size at least 4.

Does M have a removable circuit?

It is not difficult to see that the answer to this question is negative. For
example, the uniform matroid U3,6 of rank 3 on 6 elements has every circuit
and every cocircuit of size 4. But every deletion of a circuit is isomorphic to
U2,2, which is not 2-connected. When a graph result like this fails to extend
to matroids in general, it is common to restrict attention to binary matroids,
or if it fails even for binary matroids, to restrict attention further to regular
matroids. For binary matroids, Question 5.3 appeared as an unsolved problem
in [39]. In the original version of [20], Goodyn, van den Heuvel and McGuin-
ness made the following conjecture, which would follow if Question 5.3 had an
affirmative answer for the bond matroids of graphs.

Conjecture 5.4 Let G be a 2-connected graph such that
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(i) every bond has size at least 3; and

(ii) every cycle has size at least 4.

Then G has a bond C∗ such that G/C∗ is 2-connected.

The addition of the requirement that G/C∗ is loopless would make this
conjecture equivalent to the existence of an affirmative answer to Question 5.3
for the bond matroids of graphs.

Manoel Lemos [32] gave the following counterexample to this conjecture
and thereby answered Question 5.3. Begin with K5,5 having as its two ver-
tex classes {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}. For every 3-subset {i, j, k} of
{1, 2, 3, 4, 5} and of {6, 7, 8, 9, 10}, add two new vertices vijk and wijk each
joined to all of i, j, k and nothing else.

Figure 9.

Much of the impetus for the study of removable circuits in graphs seems
to have been provided by a question of Arthur Hobbs as to whether every
2-connected Eulerian graph with minimum degree at least four contains a re-
movable cycle. Robertson (in [24]) and, independently, Jackson [24] answered
Hobbs’s question negatively by producing the modified Petersen graph shown
in Figure 9. Clearly this graph is non-simple. Jackson [24] conjectured in
1980 that it is the existence of a Petersen-graph minor that prevents the above
graph from having a removable circuit.

Conjecture 5.5 Let G be a 2-connected graph with minimum degree at least
four. If G has no minor isomorphic to the Petersen graph, then G has a
removable cycle.

In 1985, Fleischner and Jackson [15] proved the existence of a removable
cycle in a 2-connected planar graph with minimum degree at least four. But
it was not until 1997 that Jackson’s conjecture was proved, by Goddyn, van
den Heuvel, and McGuinness [20].
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Theorem 5.6 Let G be a 2-connected graph with minimum degree at least
four. If G has no minor isomorphic to the Petersen graph, then G has two
edge-disjoint removable cycles.

We now return to the consideration of bonds in 2-connected graphs that
can be contracted to maintain 2-connectedness. The graph in Figure 10 was
identified by Goddyn, van den Heuvel, and McGuinness [20] as one having
no such bond. This graph is not a counterexample to Conjecture 5.4 since it
clearly has numerous bonds of size two. In response to this example, Goddyn,
van den Heuvel, and McGuinness [20] conjectured the following analogue of
Theorem 5.6.

Figure 10.

Conjecture 5.7 Let G be a 2-connected graph such that every cycle has at
least four elements. If G has no minor isomorphic to K5, then G has a bond
C∗ such that G/C∗ is 2-connected.

This conjecture remains open although McGuinness [36] has proved the
following partial result.

Theorem 5.8 Let G be a 2-connected bipartite graph that is not a multiple
edge. If G has no minor isomorphic to K5, then G has a bond C∗ such that
G/C∗ is 2-connected.

We know from Robertson and Jackson’s example that the requirement that
G be simple in Theorem 5.1 is essential. However, Sinclair [51] showed that
one could eliminate this condition if one increases the lower bound on the
minimum degree.

Theorem 5.9 Let G be a 2-connected graph with minimum degree at least 5.
Then G has a removable cycle.

This raises the question as to whether, by increasing the lower bound on
circuit or cocircuit size in Question 5.3, one can guarantee the existence of
a removable circuit in a 2-connected matroid. However, for all r ≥ 2, the
uniform matroid Ur,2r is 2-connected and has no removable circuit although all
its circuits and cocircuits have exactly r + 1 elements. None of these uniform
matroids is binary and the question as to whether the analogue of Theorem 5.9
holds for binary matroids remains open. Specifically, Goddyn and Jackson [19]
asked the following:
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Question 5.10 Does there exist an integer t such that every 2-connected bi-
nary matroid for which every cocircuit has size at least t has a removable
circuit?

Examples given earlier show that such an integer t must exceed four, so
the following is the natural first special case of the last question.

Question 5.11 If M is a 2-connected binary matroid in which every cocircuit
has size at least 5, then does M have a removable circuit?

Although the answer to Question 5.3 is negative, Goddyn and Jackson
[19] were able to prove that 2-connected regular matroids do have removable
circuits. More precisely, they proved the following result.

Theorem 5.12 Let M be a 2-connected binary matroid in which every cocir-
cuit has size at least 5. If M does not minors isomorphic to both F7 and F ∗

7 ,
then M has a circuit C such that M\C is 2-connected and r(M\C) = r(M).

While the examples given above leave open the possibility that a binary
2-connected matroid with no small cocircuits may have a removable circuit,
they suggest that, for matroids in general, a change in direction is needed.
Mader’s original result for a 2-connected graph G includes the hypothesis that
all vertex degrees are at least 4. This implies that

|E(G)| ≥ 2|V (G)|. (5.1)

Recall that the rank of a matroid is the size of a largest set that contains no
circuit. Thus, the rank of the cycle matroid M(G) of a graph G is the number
of edges in a spanning tree of G, that is, |V (G)| − 1. Condition (5.1) implies
that M(G) satisfies the rank condition,

|E| ≥ 2r(M) + 2, (5.2)

where we recall that the rank of a matroid is the size of a largest set that
contains no circuit.

1 2 3 4 t

Figure 11.
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In view of Lemos’s example and the fact that (5.2) is implied by Mader’s
original degree condition, one may guess that a 2-connected simple matroid M
satisfying (5.2) need not have a removable circuit. This turns out to be true
although Lemos’s example cannot be used to establish this since it does not
satisfy (5.2). For an integer t exceeding two, consider the graph K ′′

3,t, shown
in Figure 11, that is obtained from K3,t by adding an edge from one of the
degree-t vertices to each of the other degree-t vertices. The cycle matroid M
of this graph has no removable circuits since every circuit must meet a vertex
of degree three. However,

|E| = 3r(M) − 4.

This prompts one to ask whether the existence of a removable circuit is guar-
anteed if one replaces (5.2) by a stronger condition of the same type. The next
theorem [32] answers this question.

Theorem 5.13 Let M be a 2-connected matroid with at least two elements
and let C ′ be a largest circuit of M. If

|E(M)| ≥ 3r(M) + 3 − c(M),

then M has a removable circuit C that is disjoint from C ′ such that r(M\C) =
r(M). In particular, if C ′ spans M and

|E(M)| ≥ 2r(M) + 2,

then M has a removable circuit.

Observe that when M has a spanning circuit, condition (5.2) is sufficient
to guarantee the existence of a removable circuit. In that case, the bound on
|E(M)| is sharp as one can see by taking M = M(G) where G is obtained
from an n-cycle with n ≥ 2 by replacing all but one of the edges by two edges
in parallel. To see that the first bound on |E(M)| in the last result is sharp,
consider the cycle matroid of K ′′

3,t.
The next result follows by applying the last theorem to graphic matroids.

Corollary 5.14 Let G be a 2-connected loopless graph and C ′ be a largest
cycle in G. If

|E(G)| ≥ 3|V (G)| − c(G),

then G has a removable cycle C that has no common edges with C ′. In partic-
ular, if G is Hamiltonian and

|E(G)| ≥ 2|V (G)|,

then G has a removable cycle.
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The assertion in the last sentence is easily deduced directly as follows. If C ′

is a Hamilton cycle in G, then, since |E(G)| ≥ 2|V (G)|, we have |E(G\C ′)| ≥
|V (G\C ′)|. Hence G\C ′ certainly has a cycle C. This cycle is clearly removable
in G. In the case that G is not Hamiltonian, the assertion of the corollary seems
far less obvious. Theorem 5.13 can also be applied to the bond matroid of a
2-connected loopless graph G in which case it gives a necessary condition for
G to have a bond C∗ such that G/C∗ is 2-connected and loopless.

To summarize what occurred above, we began with Mader’s theorem for
2-connected graphs and tried to get a matroid analogue of it. While our initial
attempts failed, eventually we obtained a rather loose analogue which is not
only a new theorem for matroids but also a new theorem for graphs.

6 Removing circuits from 3-connected matroids

Although we have focussed so far on 2-connected matroids, Mader’s the-
orem, with which we began this discussion, actually holds for k-connected
graphs for all k. We have noted already that it is for k in {2, 3} that Tutte’s
definition of k-connectedness for matroids has been most successfully analyzed.
This leads us to ask whether the last result has an analogue for 3-connected
matroids, although we have yet to define 3-connectedness for matroids. As a
guide to how to do this, we look again at graphs.

1 2
p p

(a) (b)

Figure 12. (a) G (b) G1 and G2

The graph G in Figure 12(a) is 2-connected but not 3-connected. Indeed,
G is the 2-sum of the graphs G1 and G2 shown in Figure 12(b), that is, G
can be obtained from G1 and G2 by identifying the directed edges p1 and p2

and then deleting the resulting edge. The crucial observation here about G,
G1, and G2 is that the edge sets of cycles of G can be specified in terms of
the cycles of G1 and the cycles of G2. Thus, the 2-sum operation for graphs
generalizes to matroids as follows: let M1 and M2 be 2-connected matroids on
disjoint ground sets E1 and E2 each of which has at least three elements and
suppose that p1 ∈ E1 and p2 ∈ E2. The 2-sum M1 ⊕2 M2 of M1 and M2 with
respect to p1 and p2 is the matroid with ground set (E1−p1)∪ (E2−p2) whose
circuits are

• all circuits of M1 avoiding p1;
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• all circuits of M2 avoiding p2; and

• all sets of the form (C1 − {p1})∪ (C2 − {p2}) where Ci is a circuit of Mi

containing pi.

A 2-connected matroid is 3-connected if it cannot be written as a 2-sum
of two other matroids. This definition is able to simultaneously generalize
the corresponding graph notion and to incorporate invariance under duality.
In particular, if G is a graph without isolated vertices and with at least four
vertices, then the cycle matroid M(G) of G is 3-connected if and only if G is
simple and 3-connected. An arbitrary matroid is 3-connected if and only if its
dual is 3-connected.

The next theorem, which was proved by Lemos and Oxley [33], is an ana-
logue of Theorem 5.13 for 3-connected matroids.

Theorem 6.1 Let M be a 3-connected matroid and C ′ be a largest circuit of
M . If

|E(M)| ≥

{

3r(M) + 1 when c(M) = r(M) + 1,

4r(M) + 1 − c(M) otherwise,

then M has a circuit C that is disjoint from C ′ such that M\C is 3-connected
and r(M\C) = r(M).

As with Theorem 5.13, we can apply the last result to graphs to obtain a
new graph result.

Corollary 6.2 Let G be a simple 3-connected graph and C ′ be a largest cycle
of G. Suppose that

|E(G)| ≥

{

3|V (G)| − 2 if G is Hamiltonian,

4|V (G)| − 3 − c(G) otherwise,

Then G has a cycle C that has no common edges with C ′ such that G\C is
3-connected.

7 Minors and infinite antichains

Minors are basic substructures of graphs. Indeed, one of the best-known
theorems in graph theory is Kuratowski’s Theorem [28, 60] characterizing pla-
nar graphs.

Theorem 7.1 A graph G is planar if and only if it has no minor isomorphic
to K5 or K3,3.
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This section begins with a discussion of such excluded-minor theorems for
graphs and matroids. It concludes by considering a problem for matroid mi-
nors that is motivated by a recent celebrated graph result. Once again, the
interaction between graph theory and matroid theory should be evident.

It was noted in Section 2 that, for a graphic matroid M , all single-element
deletions and all single-element contractions are also graphic. It follows that
every minor of M is graphic, and we say that the class of graphic matroids is
minor-closed.

In Section 2, we noted that the matroid U2,4 is not binary and that every
graphic matroid is binary. It follows that U2,4 is not graphic, though it is just as
easy to show this directly. Every single-element deletion of U2,4 is isomorphic to
U2,3, that is, to M(K3). Since U∗

2,4
∼= U2,4, we deduce that every single-element

contaction of U2,4 is isomorphic to U1,3, that is, to M(C∗

3 ) where C∗

3 is the graph
consisting of two vertices joined by three edges. We conclude that U2,4 is an
excluded minor for the class of graphic matroids because it is not in the class,
yet all of its proper minors are in the class. Another excluded minor for the
class is the Fano matroid: every single-element deletion of F7 is isomorphic to
M(K4), while all of its single-element contractions are isomorphic to M(C2

3 ),
where C2

3 is the graph obtained from a 3-cycle by replacing every edge by
two parallel edges. Since the planar duals of K4 and C2

3 are K4 and K2,3,
respectively, it follows that every proper minor of F ∗

7 is also graphic. The
following excluded-minor characterization of the class of graphic matroids,
which was proved by Tutte [54], is a generalization of Theorem 7.1.

Theorem 7.2 A matroid is graphic if and only if it has no minor isomorphic
to any of the matroids U2,4, F7, F ∗

7 , M∗(K5), and M∗(K3,3).

On combining this theorem with its dual and using Kuratowski’s Theorem,
we obtain the following result.

Theorem 7.3 A matroid is isomorphic to the cycle matroid of a planar graph
if and only if it has no minor isomorphic to any of the matroids U2,4, F7, F ∗

7 ,
M∗(K5), M(K5), M∗(K3,3), and M(K3,3).

Next we shall show that, for every field F, the class of F-representable
matroids is minor-closed. To see this, suppose that M = M [A] for some
matrix A over F. If e is an element of M , then M\e is represented by the
matrix that is obtained from A by deleting the column of A labelled by e. To
show that M/e is F-representable, we argue as follows. If the column labelled
by e is zero, then M [A]/e = M [A]\e, and so the contraction of e is certainly
F-representable. If the column labelled by e is non-zero, then we choose a
non-zero entry of this column, say the entry in row i. We now add suitable
multiples of row i to the other rows of A to produce a matrix A′ in which the
column labelled by e is the ith unit vector. It is not difficult to check that
M [A′] = M [A]. The contraction M [A′]/e is represented by the matrix that is
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obtained from A′ by deleting row i and column e. We conclude that the class
of F-representable matroids is minor-closed.

It was noted in Section 2 that the dual of every F-representable matroid is
F-representable. Therefore the dual of every excluded minor for the class of
F-representable matroids is also an excluded minor. Now let F = GF (2). The
excluded-minor characterization of the class of binary matroids was proved by
Tutte [56]. We have already identified the only excluded minor for this class.

Theorem 7.4 A matroid is binary if and only if it has no minor isomorphic
to U2,4.

The classes of GF (3)-representable and GF (4)-representable matroids are
called, respectively, the classes of ternary and quaternary matroids. Proving
the excluded-minor characterizations of these classes was far more difficult than
proving Theorem 7.4. Ralph Reid announced the result for ternary matroids
in 1971 but never published a proof. The first published proofs are due to
Bixby [1] and Seymour [49].

Theorem 7.5 A matroid is ternary if and only if it has no minor isomorphic
to any of the matroids U2,5, U3,5, F7, and F ∗

7 .

The next theorem was even more difficult to obtain than the last. It was
proved by Geelen, Gerards, and Kapoor [17]. The non-Fano matroid, F−

7 ,
which is shown in Figure 5(a), is also equal to the matroid that is represented
over GF (3) by the matrix whose columns consist of all 3-tuples of zeros and
ones except (0, 0, 0)T . The matroid P6 is represented geometrically by six
points placed in the plane so that exactly one 3-element subset is collinear. The
matroids P8 and P=

8 are represented over GF (3) and GF (5) by the matrices
[I4|A1] and [I4|A2] where A1 and A2 are, respectively,









0 1 1 −1
1 0 1 1
1 1 0 1
−1 1 1 0









and









1 1 1 1
1 1 −2 −1
1 −1 0 −1
1 2 1 0









.

All of P6, P8, and P=
8 are isomorphic to their duals. Next we describe a very

attractive geometric representation for the matroid P8. Begin with a cube in 3-
space, its eight vertices being the elements of the matroid. Then, in the plane
of the top face, rotate the face through 45◦ about its centre. The resulting
configuration represents P8, its circuits being all sets of four coplanar points
and all sets of five points no four of which are coplanar. We obtain P=

8 from
P8 by relaxing the top and bottom faces, both of which are circuit-hyperplanes
of the twisted cube P8.

Theorem 7.6 A matroid is quaternary if and only if it has no minor isomor-
phic to any of the matroids U2,6, U4,6, P6, F−

7 , (F−

7 )∗, P8, and P=
8 .
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The last result verifies a special case of a conjecture of Rota [47], which
was made after Theorems 7.4 and 7.5 had been announced. This conjecture is
probably the most important unsolved problem in the study of representable
matroids. It remains open for all q ≥ 5.

Conjecture 7.7 If q is a prime power, then the set of excluded minors for
representability over GF (q) is finite.

Not only are the lists of excluded minors in the last three matroid theorems
finite, but so too are the lists in Theorems 7.2 and 7.3. In each case, there
are only finitely many obstructions to the specified matroid property. Wagner
conjectured that every minor-closed class of graphs has a finite list of excluded
minors (see, for example, [42, p. 155]). We call a set of graphs or a set of
matroids an antichain if no member of the set is isomorphic to a minor of an-
other member of the set. As the culmination of a long series of difficult papers,
Robertson and Seymour [46] proved Wagner’s conjecture by establishing the
following result.

Theorem 7.8 There is no infinite antichain of graphs.

An immediate consequence of this theorem is the following generalization
of Kuratowski’s Theorem.

Theorem 7.9 If S is a surface, then there is a set {G1, G2, . . . , Gn} of graphs
such that an arbitrary graph G can be embedded in S if and only if G has none
of G1, G2, . . . , Gn as a minor.

Given the intimate links between graphs and matroids, it is natural to ask
whether Theorem 7.8 extends to matroids. But, even before that theorem
was proved, it was known that infinite antichains of matroids do exist (see,
for example, [3, p.155]). The set {C3, C4, C5, . . .} of cycles with at least three
vertices is clearly infinite, and no member of this set is isomorphic to a subgraph
of another. We can use this set of graphs, or, indeed, any infinite set of simple
graphs with the last property, to build an infinite antichain of matroids as
follows: embed each Cn in the plane so that no three vertices are collinear,
viewing its vertices as points of a rank-3 matroid and its edges as lines of
the matroid. Then add one extra point on each line to get a matroid Mn

that consists of a ring of n three-point lines. It is not difficult to check that
{M3, M4, M5, . . .} is an infinite antichain of matroids. For each prime power q,
the points of the projective plane PG(2, q) are the points of a rank-3 matroid in
which the circuits are all sets of three collinear points and all sets of four points
with no three collinear. Another infinite antichain of matroids is {PG(2, p) :
p is prime}.

Let Ma,b,c be the class of matroids such that, by deleting at most a elements
and contracting at most b elements, one obtains a matroid in which each
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component has at most c elements. Thus each of the infinite antichains above
is contained in M0,3,1. Ding, Oporowski, and Oxley [10] determined precisely
when Ma,b,c contains an infinite antichain.

Theorem 7.10 The class Ma,b,c contains an infinite antichain if and only if
none of the following holds.

(i) min{a, b} = 0 and max{a, b} = 1;

(ii) min{a, b} = 0, max{a, b} = 2, and c = 2; and

(iii) max{a, b} ≤ 2 and c ≤ 1.

By contrast, insisting on representability over a fixed finite field completely
changes the result.

Theorem 7.11 For all prime powers q and all non-negative integers a, b,
and c, there is no infinite antichain in Ma,b,c in which all the members are
GF (q)-representable.

Yet another infinite antichain of matroids was constructed by Lazarson [29]
to establish the following result which contrasts strikingly with Conjecture 7.7.

Theorem 7.12 If F is a field of characteristic zero, then the set of excluded
minors for F-representability is infinite.

We now know that Theorem 7.8 fails for the class of all matroids. Since
each Mi constucted at the top of this page is R-representable, it also fails for
the class of R-representable matroids. A problem that is currently attracting
much research attention is whether Theorem 7.8 can be generalized to the class
of binary matroids. More generally, we have the following:

Question 7.13 Let q be a prime power. Is there an infinite antichain of
GF (q)-representable matroids?

This question and Rota’s conjecture appear quite similar. But they are
different. Question 7.13 asks about the existence of an infinite set of matroids
within the class of GF (q)-representable matroids such that no member of the
set is a minor of another member of the set. Conjecture 7.7 asserts that, within
the set of matroids that are not GF (q)-representable, there are only finitely
many minor-minimal members. Indeed, it is not clear how settling one of
Question 7.13 and Conjecture 7.7 would assist in settling the other. We have
remarked already on the importance of Conjecture 7.7. In the context of this
paper, describing how graphs and matroids interact, Question 7.13 is the most
important open problem for it seeks to obtain a natural matroid extension of
what is probably the most difficult theorem ever proved in graph theory.
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8 Branch-width and infinite antichains

Recently, Geelen, Gerards, and Whittle [18] have proved an important
partial result towards resolving Question 7.13 in the negative. One interesting
feature of their result is that it can be used to give an alternative proof of
the corresponding result for graphs, which was an important early step [43] in
the derivation of Theorem 7.8. To explain this new matroid result, we shall
need to define branch-width for matroids. This is an analogue of its namesake
for graphs. The latter is closely related to the more widely used notion of
tree-width. Robertson and Seymour [45] proved that a family of graphs has
bounded branch-width if and only if it has bounded tree-width. Although
neither of these notions has yet been defined here, we mention this result for
the reader who is already familiar with the concept of tree-width. In order to
simplify the somewhat complex discussion to follow, we shall restrict attention
to branch-width.

Before defining branch-width for matroids, we return to 2- and 3-connected-
ness for matroids and consider what these concepts mean in terms of the rank
function. A matroid M is 2-connected if and only if, for every partition {X, Y }
of E(M), there is a circuit meeting both X and Y , or, equivalently,

r(X) + r(Y ) − r(M) ≥ 1.

In other words, M is 2-connected if and only if it has no 1-separation where,
for a positive integer k, a partition {X, Y } of the ground set of a matroid M
is a k-separation of M if

r(X) + r(Y ) − r(M) + 1 ≤ k and

min{|X|, |Y |} ≥ k.

For n ≥ 2, a matroid M is n-connected if there is no k in {1, 2, . . . , n − 1}
such that M has a k-separation. This definition implies, for example, that an
n-connected matroid with at least 2n−2 elements has no circuits or cocircuits
of size less than n. The Fano and non-Fano matroids, which are shown in
Figure 5, are both examples of 3-connected matroids that are not 4-connected.

The quantity r(X) + r(Y ) − r(M) + 1, which, following Tutte [58], we
denote by ξ(M ; X, Y ), also features prominently in the definition of branch-
width. The degree-one vertices of a tree are called leaves. A ternary tree
is a tree in which all vertices except the leaves have degree three. A branch-
decomposition of a matroid M consists of a ternary tree T with exactly |E(M)|
leaves together with a labelling of these leaves so that each is labelled by a
different element of E(M). For each edge e of such a branch-decomposition T
of M , the graph T\e has exactly two components. Thus the set of leaves of
T , and hence E(M), is partitioned into two subsets X and Y , say. The width
of the edge e is defined to be ξ(M ; X, Y ) and the width of T is the maximum
of the widths of the edges of T . If |E(M)| ≥ 2, the branch-width bw(M) of M
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is the minimum, over all such labelled ternary trees T , of the width of T . If
|E(M)| ≤ 1, then its branch-width is zero.

The next result [6] summarizes some basic properties of branch-width.

Proposition 8.1 Let M be a matroid. Then

(i) bw(M∗) = bw(M);

(ii) bw(N) ≤ bw(M) for every minor N of M ;

(iii) if |E(M)| ≥ 3 and e ∈ E(M), then both bw(M\e) and bw(M/e) are in
{bw(M) − 1, bw(M)};

(iv) if M has a component with at least two elements, then bw(M) is the
maximum of the branch-widths of its components;

(v) bw(M) ≤ 2 if and only if every component of M is isomorphic to a
series-parallel network; and

(vi) if M is n-connected and n ≥ 3, then bw(M) ≥ n if and only if |E(M)| ≥
3n − 5.

The last part of this proposition says, loosely speaking, that if a matroid
is highly connected and has a lot of elements, then its branch-width is also
high. To try to convey some intuition for what it means for branch-width
to be small, we observe that a vector matroid has small branch-width if and
only if it can be obtained from small matroids by sticking these together in a
tree-like structure across subspaces of the underlying vector space.

Theorem 7.8 and Proposition 8.1(v) imply that there is no infinite an-
tichain of matroids of branch-width at most two. The antichain of rank-3
matroids obtained from {C3, C4, C5, . . .} following Theorem 7.9 implies that
there are infinite antichains of representable matroids of branch-width at most
four. Geelen, Gerards, and Whittle [18] improved this by showing that infi-
nite antichains of representable matroids arise within the class of matroids of
branch-width three.

Theorem 8.2 There is an infinite antichain of matroids each of which has
branch-width three and is representable over all infinite fields.

The main result of Geelen, Gerards, and Whittle [18] is the following theo-
rem which is an important step towards resolving Question 7.13. This theorem
extends Theorem 7.11 since, by Proposition 8.1, every member of Ma,b,c has
branch-width at most a + b + c.

Theorem 8.3 For all prime powers q and all positive integers n, there is no
infinite antichain of GF (q)-representable matroids each having branch-width
at most n.
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The techniques developed to prove the last result are very interesting and
will be discussed in Section 10. In addition, the last theorem can be used to
prove the following graph result of Robertson and Seymour [43], a significant
early step in the proof of Theorem 7.8.

Theorem 8.4 For all positive integers n, there is no infinite antichain of
graphs all having branch-width at most n.

To this point, the notion of branch-width has only been defined here for
matroids although we have briefly mentioned the corresponding notion for
graphs. One may hope that these two notions coincide but this has yet to be
proved. Before proceeding further with this discussion, we shall define branch-
width for graphs. The definition mimics that of branch-width for matroids but
replaces a matroid M and its connectivity function ξ(M ; X, Y ) by a graph G
and its connectivity function η(G; X, Y ). The latter is defined, when {X, Y } is
a partition of E(G), to be the number of vertices common to G[X] and G[Y ],
the subgraphs of G induced by the edges in X and Y . Now

ξ(M(G); X, Y ) = η(G; X, Y ) + ω(G) − ω(G[X]) − ω(G[Y ]) + 1 (8.1)

where ω(H) is the number of components of a graph H . Thus if β(G) is the
branch-width of a connected graph G, then

bw(M(G)) ≤ β(G). (8.2)

The last inequality is strict, for example, when G is the graph that is
obtained from K2 by adding a loop at each vertex. In that case, bw(M(G)) = 1
and β(G) = 2. In addition, the inequality fails when G consists of the disjoint
union of k copies of K2 for some k ≥ 2. In that case, β(G) = 0 but bw(M(G)) =
1. The examples in which equality fails to hold in (8.2) seem very specialized.
Indeed, Geelen, Gerards, and Whittle (private communication, 2000) have
proposed the following conjecture, towards which some partial results were
previously established by Dharmatilake [5].

Conjecture 8.5 Let G be a graph that cannot be obtained from a forest by
adjoining loops. Then

bw(M(G)) = β(G).

To obtain Theorem 8.4 from Theorem 8.3, one combines (8.2) with a well-
known consequence of a result of Higman [21] that if there is no infinite an-
tichain within a class G of connected finite graphs, then there is no infinite
antichain within the class of finite graphs for which every component is in G.
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9 The implications of large branch-width

Theorem 8.3 is a significant step in trying to generalize to matroids one of
the major achievements of the Graph-Minors Project, Theorem 7.8. An im-
portant part of the proof of the last result involves determining what happens
in a graph when the branch-width is large. The n × n grid is the graph with
vertex-set {(i, j) : i, j ∈ {1, 2, . . . , n}} such that (i, j) and (i′, j′) are adjacent
if and only if |i − i′| + |j − j′| = 1. The next result follows immediately by
combining two theorems of Robertson and Seymour [44, 45].

Theorem 9.1 For each positive integer n, there is an integer k(n) such that
every graph of branch-width at least k(n) has a minor isomorphic to the n× n
grid.

A matroid generalization of the last result has recently been conjectured by
Johnson, Robertson, and Seymour. In order to state it, we shall require some
more definitions. The cycle and bond matroids of a graph have already been
defined. There is another interesting, but less-well-studied, matroid that arises
from a graph G. The cycle matroid of G can be defined as the graph on E(G)
for which the circuits are the edge-sets of all subgraphs that are subdivisions
of a loop. The bicircular matroid of G is the matroid on E(G) in which the
circuits are the edge-sets of all subgraphs that are subdivisions of one of the
following three graphs: two vertices joined by three edges; two loops at the
same vertex; two loops at distinct vertices that are joined by a single edge. The
n×n griddle is the bicircular matroid of the n×n grid. The n×n girdle is the
dual of the n × n griddle. Johnson, Robertson, and Seymour’s [26] conjecture
is as follows.

Conjecture 9.2 For each positive integer n, there is an integer k(n) such that
every matroid of branch-width at least k(n) has a minor isomorphic to one of
Un,2n, the cycle matroid of the n×n grid, the n×n griddle, or the n×n girdle.

By using Theorems 7.4 and 7.5, it is straightforward to check that none
of U3,6, the 3 × 3 griddle, and the 3 × 3 girdle is binary or ternary. Thus,
for example, the following is the specialization of the last conjecture to binary
matroids.

Conjecture 9.3 For each positive integer n, there is an integer k(n) such that
every binary matroid of branch-width at least k(n) has a minor isomorphic to
the cycle matroid of the n × n grid.

If true, this conjecture would generalize Theorem 9.1 provided Conjec-
ture 8.5 is also true. Some progress has been made towards Conjecture 9.3 by
Johnson, Robertson, and Seymour [25].
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10 Some proof outlines

In this section, we provide some of the details of the proofs of Theorems 7.9,
8.3, and 8.2. Theorem 7.8 occurs in the twentieth of a sequence of long and dif-
ficult papers. An outline of the proof appears in [7, Chapter 12]. By contrast,
the proof of Theorem 7.9, Kuratowski’s Theorem for arbitrary surfaces, is far
more accessible and, next, we indicate the main steps in this proof. By The-
orem 8.4, whose proof is relatively short, a counterexample to Theorem 7.9
would contain graphs of arbitrarily high branch-width. By Theorem 9.1, of
which a short self-contained proof has been given by Diestel, Jensen, Gor-
bunov, and Thomassen [8], such graphs contain arbitrarily large grid-minors.
Finally, Thomassen [53] has given a short proof that a minor-minimal graph
that does not embed on a surface does not contain a large grid minor.

There are three main tools in Robertson and Seymour’s proof of Theo-
rem 8.4:

(i) a lemma on rooted trees that generalizes Kruskal’s theorem [27] that, un-
der the relation of topological containment, there is no infinite antichain
of trees;

(ii) Menger’s Theorem; and

(iii) a theorem of Thomas [52] on linked tree-decompositions, that is, tree-
decompositions with a certain Menger-like property.

Geelen, Gerards, and Whittle’s proof of Theorem 8.3 has the same basic struc-
ture. It uses (i) together with a matroid generalization of Menger’s Theorem
due to Tutte [57], and a new linked-branch-decomposition theorem. We shall
concentrate here on the last two of these and refer the reader to [43] or [18]
for the details of (i).

Tutte’s matroid generalization of Menger’s Theorem is a relatively old re-
sult whose significance appears not to have been appreciated until relatively
recently. In addition to being used by Geelen, Gerards and Whittle, it also
plays a role in the proof of Johnson, Robertson, and Seymour’s partial result
towards Conjecture 9.3. We state the theorem next and then derive Menger’s
Theorem as a corollary of it.

Theorem 10.1 Let S and T be disjoint non-empty subsets of a matroid M .
Then the minimum value of ξ(M ; X, Y ) over all subsets X and Y such that
X ⊇ S and Y ⊇ T equals the maximum value of ξ(N ; S, T ) over all minors N
of M having ground set S ∪ T .

Corollary 10.2 Let s and t be distinct non-adjacent vertices in a graph G.
Then the minimum number of vertices needed to separate s from t equals the
maximum number of internally disjoint paths joining s and t.
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Proof Suppose that the minimum number of vertices needed to separate s
from t is m. The non-trivial part of the corollary is to establish that G has
m internally disjoint paths joining s and t. Clearly this holds if m ≤ 1. Thus
we may assume that m ≥ 2. There is no loss of generality in assuming that
G is connected. Let S and T be the sets of edges incident with s and t,
respectively. Then G[S] and G[T ] are connected and it is not difficult to check
that the minimum value of ξ(M(G); X, Y ) can be achieved by some X and
Y such that G[X] and G[Y ] are connected. For this choice of X and Y , we
have, by (8.1), that η(G; X, Y ) = ξ(M(G); X, Y ). As G[X] and G[Y ] must
have at least m common vertices, we deduce that ξ(M(G); X, Y ) ≥ m. Since
it is not difficult to construct X ′ and Y ′ with X ′ ⊇ S and Y ′ ⊇ T such that
η(G; X ′, Y ′) = m, we deduce, by (8.1), that ξ(M(G); X ′, Y ′) ≤ m. Since
ξ(M(G); X, Y ) ≤ ξ(M(G); X ′, Y ′), we conclude that ξ(M(G); X, Y ) = m.
Thus, by Theorem 10.1, G has a minor H with edge set S ∪ T such that
ξ(M(H); S, T ) = m. Thus, since H [S] and H [T ] are both connected, ω(H) ≤ 2
and, by (8.1), m = η(H ; S, T )+ω(H)−1. If ω(H) = 2, then η(H ; S, T ) = 0 and
we obtain the contradiction that m = 1. Thus ω(H) = 1, so η(H ; S, T ) = m,
that is, H [S] and H [T ] have m common vertices. Since S and T must be the
sets of edges incident with s and t in H , it follows that H has m internally
disjoint paths joining s and t. Therefore so does G. �

The third main tool in the proof of Theorem 8.3 is the analogue of Thomas’s
linked-tree-decomposition result. Geelen, Gerards, and Whittle were able to
avoid many of the technicalities of Thomas’s proof by using branch-width
rather than tree-width. In addition, they took advantage of the similarities
between the functions ξ(M ; X, Y ) and η(G; X, Y ). Since Y is the complement
of X, each of ξ and η can be viewed as a function of the variable X. As such,
each is both submodular and symmetric where, in general, a function λ on the
set of subsets of a set E is submodular if λ(A) + λ(B) ≥ λ(A∪B) + λ(A∩B)
for all A, B ⊆ E; and λ is symmetric if λ(A) = λ(E − A) for all A ⊆ E.
Submodular functions have arisen earlier in the paper, though not explicitly,
for a basic property of the rank function of a matroid is that it is submodular.

One can define a branch-decomposition of an arbitrary symmetric submod-
ular function λ on a set E in just the same way as it was defined for ξ. A
subset X of E is displayed by a branch-decomposition T if there is an edge
e of T such that the sets of vertex labels that occur (on the leaves of T ) in
the two components of T\e are X and E − X. The width of such an edge
is the common value of λ(X) and λ(E − X). This leads to the definition of
the branch-width of λ. Let f and g be two edges in a branch-decomposition
T of λ and let F and G be, respectively, the component of T\f avoiding g
and the component of T\g avoiding f . Each edge on the shortest path P in
T containing f and g displays a subset of E that contains F and avoids G.
Thus the widths of the edges of P are upper bounds on λ(F, G), the minimum
value of λ(X) taken over all X such that F ⊆ X ⊆ E − G. We say that
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F and G are linked if λ(F, G) actually equals the minimum of the widths of
the edges of P . A branch-decomposition is linked if all of its edge pairs are
linked. Such a branch-decomposition enables one to use Tutte’s matroid form
of Menger’s Theorem, for it means that there will be no small separations be-
tween two disjoint displayed sets other than those that can be seen from the
branch-decomposition. Geelen, Gerards and Whittle’s result is the following.

Theorem 10.3 An integer-valued symmetric submodular function that has
branch-width n has a linked branch-decomposition of width n.

To conclude this section, we shall prove Theorem 8.2. The proof will be
geometric and will involve a fundamental class of matroids called spikes. Geo-
metrically, an n-spike with tip consists of n three-point lines all passing through
a common point but otherwise placed as freely as possible in rank-n space.
More formally, for n ≥ 3, a rank-n matroid M is an n-spike with tip p if it
satisfies the following two conditions:

(a) E(M) is the union of n three-element circuits, L1, L2, . . . , Ln, all of which
contain the element p; and

(b) for all k in {1, 2, . . . , n−1}, the union of any k of L1, L2, . . . , Ln has rank
k + 1.

Thus, for example, each of F−

7 and F7 in Figure 5 is a 3-spike with tip 1. In
general, if M is an n-spike with tip p, then

(i) (Li ∪ Lj) − {p} is a circuit of M for all distinct i and j;

(ii) apart from L1, L2, . . . , Ln and those sets listed in (i), every non-spanning
circuit of M avoids p, is a circuit-hyperplane, and contains a unique
element from each of L1 − {p}, L2 − {p}, . . . , Ln − {p};

(iii) M/p can be obtained from an n-element circuit by replacing each element
by two elements in parallel; and

(iv) if {x, y} = Li −{p} for some i, then each of M\p/x and (M\p\x)∗ is an
(n − 1)-spike with tip y.

Spikes play an important role in matroid structure theory and will be dis-
cussed further in the next section. Sometimes spikes are considered with their
tips deleted (and still called spikes) because such matroids equal their duals.
We show next how spikes can be used to prove Theorem 8.2.

Proof of Theorem 8.2 From property (iii) of spikes and Proposition 8.1(v),
it follows that, for n ≥ 3, every n-spike has branch-width three. We complete
the proof by identifying a special class of n-spikes.
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For n ≥ 4, let Mn be the n-spike with tip p such that Li = {p, ai, bi} for
all i and Mn has exactly two circuit-hyperplanes, namely {a1, a2, . . . , an} and
{b1, b2, . . . , bn}. We shall show that {Mn : n ≥ 5} is an antichain in which all
the members are representable over every infinite field.

To see that {Mn : n ≥ 5} is an antichain, we shall consider the minors of
some Mn with n ≥ 6. To produce a matroid of lower rank, we may assume
that some element of Mn is contracted. But, from (iii) above, contracting the
tip produces a matroid that does not have any Mk as a minor. By symmetry,
all other single-element contractions of Mn are isomorphic to Mn/a1. The last
matroid is obtained from an (n−1)-spike by adding b1 in parallel with the tip.
Thus if some Mk is a proper minor of Mn, then it is a minor of the (n − 1)-
spike M/a1\b1. But the last matroid has a unique circuit-hyperplane, namely
{a2, a3, . . . , an}. Thus every proper spike-minor of Mn of rank at least five has
at most one circuit-hyperplane, and {Mn : n ≥ 5} is indeed an antichain.

Next we describe geometrically how to construct a matrix that repre-
sents Mn over an arbitrary infinite field F. For each vector in V (n, F) the
n-dimensional vector space over F, we shall consider the corresponding point
of the projective space PG(n − 1, F). This will enable us to argue geometri-
cally. For each i in {1, 2, . . . , n − 1}, let bi correspond to the ith unit vector
in V (n, F). Let an, p, and bn correspond, respectively, to the nth unit vector,
the all-ones vector, and the vector with zero as its last entry and every other
entry equal to one. Then {b1, b2, . . . , bn} is a circuit in the resulting matroid.
For each i in {1, 2, . . . , n − 1}, we now need to add ai to the line spanned by
bi and p so that {a1, a2, . . . , an} and {b1, b2, . . . , bn} are the only circuits of
the form {d1, d2, . . . , dn} with di in {ai, bi} for all i. If we add a1, a2, . . . , an−1

one at a time, then, at each stage, there are only finitely many points on the
line spanned by p and bi that, if they were used for ai would create unwanted
circuits. (Equivalently, there are only finitely many 1-dimensional subspaces
of V (n, F) in the 2-dimensional subspace spanned by p and bi such that, if ai

were chosen in one of them, unwanted circuits would be created.) By choosing
ai to avoid these points, which can certainly be done since F is infinite, we
avoid all such unwanted circuits. Since an was chosen at the outset, a little
extra care must be employed in placing an−2. Its placement will immediately
determine an−1 since we want {a1, a2, . . . , an} to be a circuit. This creates
additional restrictions on the placement of an−2 since we need to avoid not
only unwanted circuits involving an−2 but also unwanted circuits involving the
resulting an−1. But, once again, the number of restrictions is finite and we can
place an−2 to produce the desired matrix representation of Mn. 2

11 Unavoidability revisited

Section 3 began with a discussion of unavoidable structures in graphs and
developed the thread of an interesting interaction that occurs between graphs
and matroids in the 2-connected case. There has been a similarly successful
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interaction in the 3-connected case, and this is described briefly in this section.
Corollary 3.3, which asserts that every large loopless 2-connected graph

has a big cycle or a big bond, can be restated in terms of minors as follows.
Recall that Cn denotes an n-edge cycle, and let C∗

n be the graph consisting of
two vertices that are joined by n edges.

Corollary 11.1 For each positive integer n, there is an integer k(n) such
that every 2-connected loopless graph with at least k(n) edges has a minor
isomorphic to Cn or C∗

n.

The matroid generalization of this is an immediate consequence of Theo-
rem 3.4. The cycle matroids of Cn and C∗

n are isomorphic to Un−1,n and U1,n,
respectively.

Corollary 11.2 For each positive integer n, there is an integer k(n) such that
every 2-connected matroid with at least k(n) elements has a minor isomorphic
to Un−1,n or U1,n.

It is natural to ask what can be said about unavoidable minors in graphs
and matroids when the connectivity is increased. One of the best-known and
most important 3-connected graphs is the n-spoked wheel Wn. For n ≥ 3, this
graph is formed from an n-cycle, the rim, by adding an extra vertex and joining
this to each vertex on the rim. The following result of Tutte [55] means that
every simple 3-connected graph can be built from a wheel by adding edges or
splitting vertices so that one maintains a 3-connected simple graph throughout.

Theorem 11.3 Let n be an integer exceeding two. The following are equiva-
lent for a simple 3-connected graph G with n + 1 vertices.

(i) For all edges e of G, neither G\e nor G/e is both simple and 3-connected.

(ii) G ∼= Wn.

In view of this result, it is probably not surprising to see wheels occur
among the set of unavoidable minors of 3-connected graphs. The following
result was proved by Oporowski, Oxley, and Thomas [38].

Theorem 11.4 For each integer n exceeding two, there is an integer k(n)
such that every 3-connected simple graph with at least k(n) edges has a minor
isomorphic to Wn or K3,n.

Obtaining a matroid generalization of the last result proved to be quite
difficult and followed a somewhat familiar pattern. The first generalization
proved was to binary matroids [11]. We denote by Jn and 1 the n × n and
1 × n matrices of all ones. The vector matroid of the matrix [In|Jn − In|1]
over GF (2) is an n-spike with tip corresponding to the column 1. In general,
M [In|Jn − In|1] is the unique binary spike of rank n. When n = 3, this binary
spike is the Fano matroid F7.
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Theorem 11.5 For each integer n exceeding two, there is an integer k(n) such
that every 3-connected binary matroid with at least k(n) elements has a minor
isomorphic to one of M(Wn), M(K3,n), M∗(K3,n), or M [In|Jn − In|1].

For 3-connected matroids in general, one would expect the list of unavoid-
able minors to grow and to include, in particular, the whirls, which we now
define. In M(Wn), the rim is a circuit-hyperplane. By relaxing this, we ob-
tain the rank-n whirl, Wn. One of the fundamental results for 3-connected
matroids, and another striking example of the successful generalization of a
graph result to matroids, is Tutte’s Wheels-and-Whirls Theorem [58], which
is stated next.

Theorem 11.6 Let n be an integer exceeding two. The following are equiva-
lent for a 3-connected matroid M of rank n.

(i) For all elements e of M , neither M\e nor M/e is 3-connected.

(ii) M is isomorphic to M(Wn) or Wn.

The next result [12] extends Theorem 11.5 to arbitrary 3-connected ma-
troids. Its proof, which required the development of some new tools, is outlined
in [40].

Theorem 11.7 For every integer n exceeding two, there is an integer k(n)
such that every 3-connected matroid with at least k(n) elements has a minor
isomorphic to one of M(Wn), Wn, M(K3,n), M∗(K3,n), U2,n+2, Un,n+2, or an
n-spike.

One may wonder whether the story stops with the 3-connected case. For
matroids, the last result is as far as the theory has been developed. But,
for graphs, Oporowski, Oxley, and Thomas [38] determined the families of
unavoidable minors in the 4-connected case. Although their technique could
possibly be extended to prove the corresponding result for 5-connected graphs,
this has not been done. Moreover, a new technique will be needed to extend
the result for k-connected graphs with k ≥ 6. Let n ≥ 3. We denote by Dn

the graph that is obtained from Wn by adding a new vertex and joining it to
every vertex of the rim. The zig-zag circular ladder Zn is obtained from two
vertex-disjoint cycles u1u2 . . . un and v1v2 . . . vn by joining each ui to both vi

and vi+1, where vn+1 = v1. The zig-zag Möbius ladder Vn is obtained from
a cycle w1w2 . . . w2n+1 by joining each wi to both wi+n and wi+n+1, where
all subscripts are interpreted modulo 2n + 1. Hence Z3 is the graph of the
octahedron and V3

∼= K5.

Theorem 11.8 For each integer n exceeding three, there is an integer k(n)
such that every 4-connected simple graph with at least k(n) edges has a minor
isomorphic to one of Dn, Zn, Vn, or K4,n.
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Oporowski, Oxley, and Thomas also proved slightly stronger versions of
Theorems 11.4 and 11.8 by establishing the corresponding results for topolog-
ical minors.

We close this section with one further interesting development in this area
that relates to graphs but not matroids. Corollary 11.1 can be strengthened
as follows (see, for example, [38]). Notice that the magnitude condition is
now one on vertices rather than edges, and the condition that the graph be
loopless has been dropped. Similar modifications can be made to the other
graph results appearing earlier in this section.

Theorem 11.9 For each positive integer n, there is an integer k(n) such that
every 2-connected graph with at least k(n) vertices has a minor isomorphic to
Cn or K2,n.

Instead of having two possible unavoidable classes, we could seek a result
in which there was just a single such class. The following is an immediate
consequence of Theorem 11.4. For a graph H , a graph G has an H-minor if
G has a minor isomorphic to H .

Corollary 11.10 For each positive integer n, there is an integer k(n) such
that every 3-connected graph with at least k(n) vertices has a K1,n-minor.

Note that, while the goal of reducing to a single class of unavoidable minors
has been achieved, we have lost the property that the members of that class
maintain the connectivity of the starting graphs. The natural extension of
the last result to 3-connected matroids would be that every sufficiently large
3-connected matroid M has a big cocircuit. We know that this fails even when
M is regular since M(K3,n) has no circuits of size exceeding six so its dual has
no cocircuits of size exceeding six.

Ding [9] has determined the connectedness needed to ensure that every
sufficiently large graph has a big K2,n-minor.

Theorem 11.11 For each positive integer n, there is an integer k(n) such
that every 5-connected graph with at least k(n) vertices has a K2,n-minor.

Ding has also conjectured the following natural extension of the last result,
but he believes that he may not be the first to have conjectured this.

Conjecture 11.12 For each positive integer n, there is an integer k(n) such
that every 7-connected graph with at least k(n) vertices has a K3,n-minor.

Finally, Ding has significantly extended the last conjecture as follows.

Conjecture 11.13 There are functions f(m) and g(m, n) defined for all pos-
itive integers m and n such that the following hold:

(i) f(m) → ∞ as m → ∞;

(ii) g(m, n) → ∞ as n → ∞ for all fixed m; and

(iii) every m-connected graph with at least n vertices has a Kf,g-minor.
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12 Conclusion

This paper highlights several broad areas in which interesting interactions
occur between graphs and matroids. These relate to bounding the size of 2-
connected matroids, finding removable circuits in 2- and 3-connected graphs
and matroids, finding infinite antichains in matroids and graphs, and finding
unavoidable classes of graph and matroid minors. Graph theorems that “can
be expressed in terms of edges and circuits only” [56] are always going to
suggest new matroid results. One of the aims of this paper has been to show
that, by taking a matroid perspective on graphs, one can frequently produce
new results not only for matroids but also for graphs.

Acknowledgements

The author thanks Bogdan Oporowski and Geoff Whittle for helpful dis-
cussions during the preparation of this paper. The author’s work was partially
supported by grants from the National Security Agency.

References

[1] R.E. Bixby, On Reid’s characterization of the ternary matroids, J. Com-
bin. Theory Ser. B 26 (1979), 174–204.

[2] J. Bonin, J. McNulty, and T. J. Reid, The matroid Ramsey number
n(6, 6), Combin. Probab. Comput. 8 (1999), 229–235.

[3] T. Brylawski, Constructions, in Theory of Matroids (eds. N. White), En-
cyclopedia of Math. and Its Applications, 26, Cambridge University Press,
Cambridge (1986), pp. 127–223.

[4] T. Denley and T. J. Reid, On the number of elements in matroids with
small circuits and small cocircuits, Combin. Probab. Comput. 8 (1999),
529–537.

[5] J.S. Dharmatilake, Binary matroids of branch-width 3, Ph. D. thesis, Ohio
State University, 1994.

[6] J.S. Dharmatilake, A min-max theorem using matroid separations, in Ma-
troid Theory (eds. J.E. Bonin, J.G. Oxley, B. Servatius), Contemporary
Math., 197, Amer. Math. Soc., Providence (1996), pp. 333–342.

[7] R. Diestel, Graph Theory , Springer-Verlag, New York (1997).

[8] R. Diestel, T.R. Jensen, K.Y. Gorbunov, and C. Thomassen, Highly con-
nected sets and the excluded grid theorem, J. Combin. Theory Ser. B 75
(1999), 61–73.



38 James Oxley

[9] G. Ding, Graphs with no K2,n minor, Colloquium talk, Louisiana State
University, 2000.

[10] G. Ding, B. Oporowski, and J. Oxley, On infinite antichains of matroids,
J. Combin. Theory Ser. B 63 (1995), 21–40.

[11] G. Ding, B. Oporowski, J. Oxley, and D. Vertigan, Unavoidable minors of
large 3-connected binary matroids, J. Combin. Theory Ser. B 66 (1996),
334–360.

[12] G. Ding, B. Oporowski, J. Oxley, and D. Vertigan, Unavoidable minors of
large 3-connected matroids, J. Combin. Theory Ser. B 71 (1997), 244–
293.
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