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Abstract. Bondy proved that an n-vertex simple Hamiltonian graph with at
least n2/4 edges has cycles of every length unless it is isomorphic to Kn/2,n/2.

This paper considers finding circuits of every size in GF (q)-representable ma-

troids with large numbers of elements. A consequence of the main result is

that a rank-r simple binary matroid with at least 2r−1 elements has circuits
of all sizes or is isomorphic to AG(r − 1, 2) or PG(r − 2, 2)⊕ U1,1.

1. Introduction

A simple graph G with vertex set V (G) is pancyclic if it contains cycles of all
lengths l, for 3 ≤ l ≤ |V (G)|. Bondy [1] proved the following:

Theorem 1.1. Let G be a simple Hamiltonian graph with |V (G)| = n. If |E(G)| ≥
n2/4, then G is pancyclic unless G is isomorphic to Kn/2,n/2.

The exceptional graph Kn/2,n/2 is special in that it has many edges and many
even cycles, but no odd cycles. A similar role is played in binary matroids by affine
geometries, which also have many elements and many even circuits, but no odd
circuits. It is natural to ask whether Bondy’s theorem has an analog for binary or
even for GF (q)-representable matroids. Toward this end, we define a simple rank-r
matroid M to be Hamiltonian if it has a circuit of size r + 1 and to be pancyclic if
it has circuits of all sizes s, for 3 ≤ s ≤ r + 1. We will prove the following:

Theorem 1.2. Let M be a simple rank-r binary matroid. If |E(M)| ≥ 2r−1, then
M is pancyclic unless M is isomorphic to AG(r − 1, 2) or PG(r − 2, 2)⊕ U1,1.

Note that if we add the condition that M is Hamiltonian, then M must be
pancyclic unless it is an affine geometry of even rank. The main result of the paper
is a theorem on the existence of circuits of every size in matroids with no U2,q+2-
minor. This will imply the above result for binary matroids and the following result
for GF (q)-representable matroids.

Theorem 1.3. Let M be a simple rank-r GF(q)-representable matroid.

(i) If |E(M)| ≥ qr−1−1
q−1 + q + 1, then, for all s in {3, 4, . . . , r + 1} and all e in

E(M), there is an s-circuit containing e.
(ii) If |E(M)| ≥ qr−1−1

q−1 + 2, then, for all s in {3, 4, . . . , r + 1} and all but at
most one e in E(M), there is an s-circuit containing e.

(iii) If |E(M)| = qr−1−1
q−1 + 1, then M is pancyclic unless M is isomorphic to

one of the following matroids:
(a) U3,q+2 for q a power of 2,
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(b) PG(r − 2, q)⊕ U1,1 if r ≥ 3, or
(c) AG(r − 1, 2).

Matroid terminology used here follows Oxley [8] with the following exceptions:
the simple matroid associated with a matroid M is denoted by si(M); and if x and
y are elements of a simple matroid M , then xy denotes the line of M spanned by
{x, y}.

2. Main Theorem

The next theorem is the main result of the paper. Note that S(3, 6, 22) is the
rank-4 paving matroid of the unique Steiner system S(3, 6, 22). The blocks of the
Steiner system are the hyperplanes of the matroid.

Theorem 2.1. Let M be a simple rank-r matroid with no U2,q+2-minor, for some
integer q greater than one.

(i) If |E(M)| ≥ qr−1−1
q−1 + q + 1, then, for all s in {3, 4, . . . , r + 1} and all e in

E(M), there is an s-circuit containing e.
(ii) If |E(M)| ≥ qr−1−1

q−1 + 2, then, for all s in {3, 4, . . . , r + 1} and all but at
most one e in E(M), there is an s-circuit containing e.

(iii) If |E(M)| = qr−1−1
q−1 + 1, then M is pancyclic unless M is isomorphic to

one of the following matroids:
(a) U3,q+2,
(b) U2,q+1 ⊕ U1,1,
(c) Nq ⊕ U1,1, where Nq is projective plane of order q,
(d) PG(r − 2, q)⊕ U1,1 if r > 4,
(e) AG(r − 1, 2), or
(f) S(3, 6, 22).

The proof of the theorem uses the following results. The first and second are due
to Kung [5] and Murty [7], respectively. The third is a straightforward consequence
of the second, while the fourth and fifth use standard techniques. The sixth follows
from results of Doyen and Hubaut [3] (see Welsh [9, pp.214-5]) and Lam, Thiel,
and Swiercz [6].

Theorem 2.2. Let q be an integer exceeding one. If M is a rank-r matroid with
no U2,q+2-minor, then |E(M)| ≤ qr−1

q−1 . For r ≥ 4, equality holds in this bound if
and only if M ∼= PG(r − 1, q). When r = 3, equality holds if and only if M is a
projective plane of order q.

Lemma 2.3. Let C1 and C2 be circuits of a matroid M with C2 = {e, f, g} and
C1 ∩C2 = {g}. If (C1− g)∪ e is independent in M , then (C1 ∪C2)− g is a circuit.

Lemma 2.4. Let {e, f, g} be a circuit of M , and let Cg be a circuit of si(M/e)
containing g. Then either Cg ∪ e or (Cg − g) ∪ {e, f} is a circuit of M .

Proof. As Cg is a circuit of M/e, either Cg ∪ e or Cg is a circuit of M . We
may assume the latter. Noting that rM ((Cg − g) ∪ e) = rM/e(Cg − g) + rM (e) =
|Cg−g|+1 = |(Cg−g)∪e|, we have that (Cg−g)∪e is independent. By Lemma 2.3,
(Cg − g) ∪ {e, f} ∈ C(M). �
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Lemma 2.5. Let M be a simple rank-r matroid having no U2,q+2-minor where
q ≥ 2. If |E(M)| ≥ qr−1−1

q−1 + a where a ≥ 1 and e ∈ E(M), then |E(si(M/e))| ≥
qr−2−1

q−1 + da
q e.

Proof. As every line of M through e has at most q other points, |E(si(M/e))| ≥
d 1

q ( qr−1−1
q−1 + a − 1)e = d 1

q ((qr−2 + qr−3 + . . . + q + 1) + a − 1)e = dqr−3 + qr−4 +

. . . + q + 1 + a
q e = qr−2−1

q−1 + da
q e. �

Lemma 2.6. Let M be a simple rank-r matroid having no U2,q+2-minor where
q ≥ 2. Suppose |E(M)| = qr−1−1

q−1 + a and |E(si(M/e))| = qr−2−1
q−1 + b. If M/e has

exactly c elements in trivial parallel classes, then c ≤ b + b−a
q−1 . Moreover, if equality

holds, then each nontrivial parallel class of M/e has exactly q elements.

Proof. The following inequalities are equivalent:

|E(M)| ≤ q(|E(si(M/e))| − c) + c + 1
qr−1−1

q−1 + a ≤ q( qr−2−1
q−1 + b− c) + c + 1

qr−2 + qr−3 + . . . + q + 1 + a ≤ (qr−2 + qr−3 + . . . + q) + q(b− c) + c + 1
a ≤ qb− qc + c

(q − 1)c ≤ qb− a

(q − 1)c ≤ (q − 1)b + b− a

c ≤ b + b−a
q−1 .

If equality holds in the last line, then equality must hold in the first line, and so
every nontrivial parallel class of M/e has exactly q members. �

Lemma 2.7. Let M be a simple matroid with rank r ≥ 4. If M has no triangles and
if every single-element contraction of M is a projective space, then M ∼= AG(r−1, 2)
or M ∼= S(3, 6, 22).

Proof. By Doyen and Hubaut [3], if r > 4, then M ∼= PG(r − 1, q) or M ∼=
AG(r − 1, q); and if r = 4, then (i) M ∼= PG(3, q), (ii) M ∼= AG(3, q), (iii) every
single-element contraction of M is a projective plane of order 4, or (iv) every single-
element contraction of M is a projective plane of order 10. Because M has no
triangles, M/e is simple for all e ∈ E(M). Now PG(r − 1, q) has triangles for all q
and AG(r − 1, q) has triangles if q 6= 2. The remaining possibility is AG(r − 1, 2),
all of whose single-element contactions are isomorphic to PG(r − 2, 2). By Lam,
Thiel, and Swiercz [6], there are no projective planes of order 10, and, by Doyen and
Hubaut [3], S(3, 6, 22) is the unique matroid all of whose single-element contractions
are projective planes of order 4. �

Proof of Theorem 2.1. We argue by induction on r to prove all three parts simul-
taneously. The result is easily checked if r = 2. Assume r = 3. If |E(M)| = q + 2,
then either M ∼= U3,q+2, or M has a nontrivial line and at least one other point not
on this line. If there is exactly one point not on the line, then M ∼= U2,q+1 ⊕ U1,1.
If there are at least two points not on the line, then there is a 4-circuit containing
these two points. Thus M has a 3-circuit and a 4-circuit and (iii) holds.

Now let |E(M)| ≥ q + 3. Suppose e ∈ E(M) and |si(M/e)| > 2. Then 3 ≤
|si(M/e)| ≤ q + 1 and there is at least one 2-circuit {f, g} in M/e. As si(M/e) is
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a nontrivial line, it has a triangle C through g. Since {e, f, g} is a triangle of M ,
Lemma 2.4 implies that C ∪ e or (C − g) ∪ {e, f} is a 4-circuit of M containing e.
Thus if |si(M/e)| > 2, then e is in both a 3-circuit and a 4-circuit of M . We deduce
that (i) and (ii) hold unless M has an element e such that |si(M/e)| = 2. Consider
the exceptional case. Then |E(M)| < 2q + 2 and M consists of two lines meeting
in e. Thus M has 3- and 4-circuits through every point except e. Hence, in the
exceptional case, (ii) holds and (i) holds vacuously since |E(M)| < q3−1−1

q−1 + q + 1.
We conclude that the theorem holds when r = 3.

Assume the theorem holds for r < k and let r = k > 3. First, we consider
(i). Suppose that |E(M)| ≥ qr−1−1

q−1 + q + 1 and let e ∈ E(M). Then M has at

least two nontrivial lines through e since |E(si(M/e))| ≤ qr−1−1
q−1 . By Lemma 2.5,

|E(si(M/e))| ≥ qr−2−1
q−1 + 2. Then, by the induction hypothesis, every element but

at most one of si(M/e) is in circuits of all sizes from 3 to k. By choosing a triangle
containing e and an element of si(M/e) that is in circuits of all sizes from 3 to k,
we apply Lemma 2.4 to get circuits in M of all sizes from 4 to k + 1 through e.
Since e is also in a triangle, (i) holds.

Next we consider (ii). Assume |E(M)| = qr−1−1
q−1 + a with 2 ≤ a ≤ q and let

e ∈ E(M). Then, as a ≥ 2, it follows that e is in a triangle of M . Moreover,
|E(si(M/e))| ≥ qr−2−1

q−1 + 1 by Lemma 2.5. If |E(si(M/e))| ≥ qr−2−1
q−1 + q + 1, then

every element of si(M/e) is in circuits of every size from 3 to k. Choose an element g
of si(M/e) that is in a triangle of M with e. By Lemma 2.4, the triangle containing
both e and g and the circuits of every size from 3 to k containing g yield circuits
of M containing e of all sizes from 3 to k + 1.

Suppose that c elements of M/e are in trivial parallel classes. Assume that
|E(si(M/e))| = qr−2−1

q−1 +b with 2 ≤ b ≤ q. Then, by Lemma 2.6, c ≤ b+ b−a
q−1 . Since

b ≥ 2 and a ≤ q, we assert that c ≤ q. To see this, suppose that c ≥ q + 1. Then
b + b−a

q−1 ≥ q + 1, and so (q− 1)b + b− a ≥ (q + 1)(q− 1). Thus qb− a ≥ q2 − 1, and
hence we obtain the contradiction that −1 ≥ 1 − a ≥ q2 − qb = q(q − b) ≥ 0. We
conclude that c ≤ q. Let U be the set of elements of M/e that are in trivial parallel
classes. By the induction hypothesis, all but at most one element, say p, of si(M/e)
is in circuits of all sizes from 3 to k in si(M/e). Assume p is not in a trivial parallel
class of M/e. Adjoin to U all points on the line ep of M . Thus U has at most 2q+1
elements. As |E(M)| = qr−1−1

q−1 +a and r ≥ 4, it follows that |E(M)| ≥ q2+q+1+a.
Thus |E(M) − U | ≥ (q2 + q + 1 + a) − (2q + 1) = q2 − q + a > 0. Hence M has
at least q2 − q + a elements that are in nontrivial parallel classes of M/e and avoid
U . Take g to be one such element that is also in si(M/e). As g is not p, there are
circuits of all sizes from 3 to k containing g in si(M/e), and {e, g} is contained in
a triangle of M . Thus, by Lemma 2.4, M has circuits of all sizes from 3 to k + 1
containing e.

Now assume |E(si(M/e))| = qr−2−1
q−1 + 1. By Lemma 2.6, c ≤ 1 + 1−a

q−1 < 1. Then
every element of M/e is in a nontrivial parallel class. Moreover, by the induction
hypothesis, si(M/e) has circuits of all sizes from 3 to k unless si(M/e) is one of
the exceptions (a)–(f). By Lemma 2.4, we deduce that M has circuits containing
e of all sizes from 3 to k + 1 unless si(M/e) is one of (a)–(f). Now part (ii) holds
unless there are at least two elements f and g of M such that each of si(M/f)
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and si(M/g) is one of (a)–(f). We may assume that g ∈ si(M/f). Because every
element of M/g is in a nontrivial parallel class, g is in a triangle with every other
element of si(M/f). This is not possible in any of (a)–(f), so (ii) holds.

Finally, we consider (iii). Assume that |E(M)| = qr−1−1
q−1 + 1. Suppose first that

M has no triangles. Then, for all e in E(M), we have |E(si(M/e))| = qr−1−1
q−1 , and

so, by Theorem 2.2, every single-element contraction of M is a projective space.
By Lemma 2.7, M ∼= AG(r − 1, 2) or M ∼= S(3, 6, 22).

We may now assume that M has a triangle and that this triangle contains e. If
|E(si(M/e))| ≥ qr−2−1

q−1 + q + 1, then every element of si(M/e) is in circuits of all
sizes from 3 to k. So M has circuits of all sizes from 3 to k + 1 by Lemma 2.4.

If |E(si(M/e))| = qr−2−1
q−1 + b for 2 ≤ b ≤ q, then all but at most one element, say

p, of si(M/e) is in circuits of all sizes from 3 to k. By Lemma 2.6, c ≤ b + b−1
q−1 ≤

b + 1 ≤ q + 1. Let U be the set consisting of those elements of M/e that are in
trivial parallel classes. Assume p is in a nontrivial parallel class and adjoin to U all
points on the line ep. Thus |U | ≤ 2q +2. Since r ≥ 4, we have |E(M)| ≥ q2 + q +2.
Hence |E(M) − U | ≥ (q2 + q + 2) − (2q + 2) = q2 − q > 0. So we may choose g
from E(M)−U in si(M/e) such that {e, g} is in a triangle of M and e, g, and p are
not collinear. Then, since si(M/e) has circuits of all sizes from 3 to k containing g,
Lemma 2.4 imples that M has circuits of all sizes from 3 to k + 1 containing e.

If |E(si(M/e))| = qr−2−1
q−1 + 1, then by Lemma 2.6, c ≤ 1 + 1−1

q−1 = 1, that is, at
most one element of M/e is in a trivial parallel class. Hence M has a 3-circuit.
Moreover, we get a 4-circuit in M by taking two elements from each of two nontrivial
parallel classes of M/e. If si(M/e) has circuits of all sizes from 3 to k, then M has
circuits of all sizes from 3 to k+1 by Lemma 2.4. Thus we may assume that si(M/e)
is one of the exceptions (a)–(f), and next we consider each of these, noting that we
have already shown that M has both 3- and 4-circuits. Suppose first that si(M/e)
is U3,q+2. Then we use Lemma 2.4 to get a circuit of size 5. Suppose next that
si(M/e) is S(3, 6, 22). Then M has 5- and 6-circuits by Lemma 2.4. Next suppose
that si(M/e) is the direct sum of a coloop g and a projective space of rank at least
two. Either g is the unique element of M/e in a trivial parallel class or not. In
the first case, g is also a coloop of M . By Lemma 2.6, each nontrivial parallel class
of M/e has q elements. Thus |E(M\g)| = qr−1−1

q−1 and, by Theorem 2.2, M\g is
a projective space, and M is (c) or (d). Now suppose g is in a nontrivial parallel
class. We now have that M is the parallel connection, with basepoint e, of the line
eg and matroid of rank r − 1, and that the line eg has at least one other point f .
We may use circuits of sizes from 3 to r − 1 of si(M/e) to obtain circuits of M of
sizes 4 to r that contain e and avoid all other points on the line eg. Then, we take
an r-circuit C of M containing e and apply Lemma 2.3 to get that (C − e)∪ {f, g}
is an (r + 1)-circuit of M .

Finally, we consider the case when si(M/e) is a binary affine geometry. Then
q = 2 and so M is binary, as M has no U2,4-minor. In M , there is exactly one
trivial line through e. We can obtain a binary representation for a single-element
extension M ′ of M as follows. If AG(r− 2, 2) is represented by the matrix A, then[
1 1T 0T

0 A A

]
represents M ′, where the first column of this matrix corresponds to

e, and 0 and 1 are vectors of all zeros and all ones, respectively, of appropriate size.
Since A can be chosen so that its columns are all vectors of V (r − 1, 2) with first
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coordinate 1, it follows that M ′\e ∼= AG(r − 1, 2). Thus M ′ is the unique simple
rank-r binary single-element extension of AG(r−1, 2) and hence M is pancyclic. �

The next two lemmas were proved by Kantor [4] (see Welsh [9, p.215]) and
Bose [2] (see Oxley [8, p.206]), respectively.

Lemma 2.8. The matroid S(3, 6, 22) is not representable over any field.

Lemma 2.9. The matroid U3,q+2 is representable over GF (q) if and only if q is
even.

On combining these lemmas with Theorem 2.1, we immediately obtain Theo-
rems 1.2 and 1.3.
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