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Abstract. A matroid M is sequential or has path width 3 if M is
3-connected and its ground set has a sequential ordering, that is, an
ordering (e1, e2, . . . , en) such that ({e1, e2, . . . , ek}, {ek+1, ek+2, . . . , en})
is a 3-separation for all k in {3, 4, . . . , n − 3}. This paper proves that
every sequential matroid is easily constructible from a uniform matroid
of rank or corank two by a sequence of moves each of which consists
of a slight modification of segment-cosegment or cosegment-segment ex-
change. It is also proved that if N is an n-element sequential matroid,
then N is representable over all fields with at least n− 1 elements; and
there is an attractive family of self-dual sequential 3-connected matroids
such that N is a minor of some member of this family.

1. Introduction

The matroid terminology used here will follow Oxley [6] with the fol-
lowing exceptions. The simplification and cosimplification of a matroid
M will be denoted by si(M) and co(M), respectively. The full closure
fcl(X) of a set X in M is the minimal set Y containing X such that Y
is closed in both M and M∗. We can obtain fcl(X) by beginning with X
and alternately taking the closure and the coclosure of the current set until
no new elements can be added. For a 2-connected matroid M , Cunning-
ham and Edmonds [3] gave a tree decomposition that displays all of its
2-separations. When M is 3-connected, in order to gain control of the 3-
separations so that they could be displayed in a corresponding tree, Oxley,
Semple, and Whittle [8] defined 3-separations (Y1, Y2) and (Z1, Z2) to be
equivalent if {fcl(Y1), fcl(Y2)} = {fcl(Z1), fcl(Z2)}. Their tree decomposition
was only guaranteed to display one representative from each equivalence
class of non-sequential 3-separations, where a 3-separation (X1, X2) of M
is sequential if E(M) ∈ {fcl(X1), fcl(X2)}. One class of 3-connected ma-
troids whose tree decompositions consist of a single vertex are sequential
matroids, that is, those 3-connected matroids for which the ground set has
an ordering (e1, e2, . . . , en) such that {e1, e2, . . . , ei} is 3-separating for all
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i with 0 ≤ i ≤ n. Such an ordering of the ground set is called sequential,
and sequential matroids are also said to have path width three. Hall, Oxley,
and Semple [5] considered the possible sequential orderings of a sequential
matroid N and identified the structures in N that permit these different
sequential orderings.

In this paper, we give a simple constructive description of all sequen-
tial matroids and we use this result to show that every n-element sequen-
tial matroid is representable over all fields with at least n − 1 elements.
In addition, we introduce an attractive family of self-dual sequential ma-
troids such that every sequential matroid is a minor of some member of
this family. One consequence of the main results of this paper is the fol-
lowing theorem. For each non-negative integer m, let Γ2m+1 be the graph
that is constructed as follows: take m + 1 copies of K3 on disjoint ver-
tex sets {u1, v1, w1}, {u2, v2, w2}, . . . , and {um+1, vm+1, wm+1}; for all i in
{1, 2, . . . ,m}, add the edges uiui+1, vivi+1, and wiwi+1; adjoin one additional
vertex v0 and add the edges v0u1, v0v1, and v0w1.

Theorem 1.1. Let M be an n-element binary sequential matroid with n ≥ 5.
Then M is isomorphic to a minor of M(Γ2n−9).

2. Overview

In this section, after some preliminary definitions, we state the main re-
sults of the paper. The proofs of these results will occupy the rest of the
paper. We begin by describing a family of matroids introduced in [7] that
will be of particular importance in this paper. For each k ≥ 3, take a basis
{y1, y2, . . . , yk} of PG(k − 1,R) and a line L that is freely placed relative
to this basis. By modularity, for each i, the hyperplane of PG(k − 1,R)
that is spanned by {y1, y2, . . . , yk} − {yi} meets L. Let xi be the point
of intersection. We shall denote by Θk the restriction of PG(k − 1,R)
to {y1, y2, . . . , yk, x1, x2, . . . , xk}. The reader can easily check that Θ3 is
isomorphic to M(K4). Alternatively, for all k ≥ 3, we can define Θk to
be the matroid with ground set {y1, y2, . . . , yk, x1, x2, . . . , xk} whose cir-
cuits consist of all 3-element subsets of {x1, x2, . . . , xk}; all sets of the form
({y1, y2, . . . , yk}−{yi})∪{xi}, where i ∈ {1, 2, . . . , k}; and all sets of the form
({y1, y2, . . . , yk}−{yj})∪{xg, xh}, where j, g, and h are distinct elements of
{1, 2, . . . , k} [7, Lemma 2.2]. When we want to emphasize its ground set, we
shall sometimes write Θk as Θk(X,Y ) noting that Θk(X,Y )|X ∼= U2,k. As
observed in [7, Lemma 2.1], the matroid Θk is isomorphic to its dual under
the map that interchanges xi and yi for all i. Moreover, by [7, Lemma 2.4],
X is a modular flat and Y is a basis in Θk. We remark that the sets X
and Y here were called A and B in [7]. We shall call the elements xi and yi
partners in Θk. Evidently, for every permutation σ of {1, 2, . . . , k}, the map
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that takes xi and yi to xσ(i) and yσ(i), respectively, is an automorphism of
Θk.

Let M1 and M2 be matroids such that M1|T = M2|T , where T = E(M1)∩
E(M2). Assume that T is a modular flat of M1. The generalized parallel
connection PT (M1,M2) of M1 and M2 across T is the matroid on E(M1)∪
E(M2) whose flats are those subsets Z of E(M1) ∪ E(M2) such that Z ∩
E(M1) is a flat of M1 and Z ∩ E(M2) is a flat of M2.

Two additional operations, based on generalized parallel connection, will
be important here. A segment in a matroid N is a subset Z of E(N) such
that N |Z ∼= U2,k for some k ≥ 3. A cosegment of N is a segment of N∗. Now
let X be a coindependent segment {x1, x2, . . . , xk} of a matroid M . Since
X is a modular line in Θk, the generalized parallel connection PX(Θk,M)
of Θk and M across X exists. Hence the matroid PX(Θk,M)\X is cer-
tainly defined. We denote this matroid by ∆X(M) and call this operation
a segment-cosegment exchange on X. It is shown in [7, Lemma 2.5] that Y
is a cosegment in ∆X(M). When k = 3, a segment-cosegment exchange on
X is a ∆− Y exchange on X.

To define the dual operation to segment-cosegment exchange, let M be a
matroid having a k-element independent cosegment X. Then M∗|X ∼= U2,k

and we define ∇X(M) to be (∆X(M∗))∗, that is, [PX(Θk,M
∗)\X]∗. We call

this operation cosegment-segment exchange on X.

It is sometimes convenient, when performing a segment-cosegment ex-
change or a cosegment-segment exchange, to preserve the ground set of the
original matroid M . This is done by relabelling yi by xi in ∆X(M) or
∇X(M), respectively.

The only sequential matroids with at most two elements are U0,0, U0,1, U1,1,
and U1,2. The next theorem shows how, from every sequential matroid M
with at least three elements, one can obtain a uniform matroid of rank or
corank two. This result enables us to determine precisely the fields over
which M is representable.

Theorem 2.1. Let M be a sequential matroid with |E(M)| ≥ 3. Then a
uniform matroid N that has at least three elements and is of rank or corank
two can be obtained from M by using the following algorithm. Moreover, M
is representable over a field F if and only if |F| ≥ |E(N)| − 1.

(i) Let N = M .
(ii) Take a sequential ordering (e1, e2, . . . , en) of N that begins with a

maximal rank-2 dependent flat X of N or N∗. Let k = |X|.
(iii) If {e1, e2, e3} is a circuit, go to (iv); if {e1, e2, e3} is a cocircuit, go

to (v).
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(iv) If X = E(N), then go to (vi); otherwise replace N by co(∆X(N))
and go to (ii).

(v) If X = E(N), then go to (vii); otherwise replace N by si(∇X(N))
and go to (ii).

(vi) Output N = U2,k and stop.
(vii) Output N = Uk−2,k and stop.

Essentially by reversing the steps in the last theorem, we can obtain all
sequential matroids. A flat F of a matroid M is proper if F 6= E(M).

Theorem 2.2. The class M of sequential matroids with at least three el-
ements coincides with the class of matroids that can be constructed by the
following procedure.

(i) Let M0 = {U2,m, Um−2,m : m ≥ 3}.
(ii) Choose N in M0 and take a sequential ordering (e1, e2, . . . , en) of

N that begins with a maximal rank-2 dependent flat F of N or N∗.
Take a subset X of F with |X| = k ≥ 3.

(iii) If {e1, e2, e3} is a circuit, go to (iv); if {e1, e2, e3} is a cocircuit, go
to (v).

(iv) For a subset X1 of X that is a proper flat of N∗, add PX(Θk, N)\X1

to M0 and go to (ii).
(v) For a subset X1 of X that is a proper flat of N , add (PX(Θk, N

∗))∗/X1

to M0 and go to (ii).

Next we describe an attractive family of self-dual sequential matroids with
the property that every sequential matroid is a minor of some member of the
family. The matroids we construct here are based on the matroid Θn. To
begin, we take M ′ = Θn(B,A′) and M ′′ = Θn(B,A′′) where A′∩A′′ = ∅. By
[7, Lemma 2.4], B is a modular flat of M ′ and M ′′. Hence (PB(M ′,M ′′))∗ is
well-defined having ground set A′ ∪B ∪A′′ and rank n+ 2. We shall denote
this matroid by Θ2

n. Note that Θ2
n is well-defined. To see this, observe that,

since both M ′ and M ′′ are isomorphic to Θn, each element b of B has a
partner a′ in A′ and a partner a′′ in A′′. It follows that once M ′ has been
labelled, the labelling of M ′′ is determined. We shall call a′ and a′′ the
partners of b in Θ2

n. Observe that

(2.1) Θ2
n/A

′′ = Θn(A′, B).

To see this, note that Θ2
n/A

′′ = (PB(M ′,M ′′))∗/A′′ = (PB(M ′,M ′′)\A′′)∗ =
(PB(M ′,M ′′\A′′))∗ = (M ′)∗ = Θn(A′, B).

The dual (K5−e)∗ of the graph that is obtained by deleting an edge from
K5 is the triangular prism graph. Since Θ3

∼= M(K4), the reader can easily
check that

(2.2) Θ2
3
∼= M((K5 − e)∗) = M∗(K5 − e).
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We shall show in Lemma 5.1 that A′ and A′′ are modular lines of Θ2
n.

We now inductively define the matroid Θ2m+1
n for all integers m and n with

m ≥ 0 and n ≥ 3. The ground set of this matroid is the disjoint union
of 2m+ 2 sets B1, A1, B2, A2, . . . , Bm+1, Am+1, each of which has exactly n
elements. Let M0 = Θn(A1, B1). For all i in {1, 2, . . . ,m}, let Mi be a copy
of Θ2

n with ground set Ai ∪ Bi+1 ∪ Ai+1 where Mi|Ai ∼= U2,n
∼= Mi|Ai+1.

Define Θ1
n = M0, and, for all m ≥ 1, let Θ2m+1

n = PAm(Mm,Θ2m−1
n ). A

straightforward induction argument using partners establishes that Θ2m+1
n

is well-defined. As we shall show in Lemmas 5.5 and 5.9, Θ2m+1
n is isomorphic

to its dual and Θ2m+1
3

∼= M(Γ2m+1).

The matroid Θ2n−9
n is a universal sequential matroid in a sense that is

made precise by the next result.

Theorem 2.3. If M is an n-element matroid for n ≥ 5, then M is sequential
if and only if M is isomorphic to a 3-connected minor of Θ2n−9

n .

A sequential matroid with at least two elements can equivalently be de-
scribed as a 3-connected matroid M having a 2-element subset X such that
fcl(X) = E(M). In view of this, it is natural to consider those 2-connected
matroids M that have an element x such that fcl({x}) = E(M) or, equiva-
lently, that have an ordering (e1, e2, . . . , en) of E(M) in which {e1, e2, . . . , ei}
is 2-separating for all i with 0 ≤ i ≤ n. The next result is an analogue of
Theorem 2.3 for such matroids. For m ≥ 1, let Φm be the graph that is
formed as follows. Begin with a path v1, b1, v2, b2, . . . , bm−1, vm with edges
b1, b2, . . . , bm−1; add a new vertex v0 and, for all i in {1, 2, . . . ,m}, add an
edge ai joining v0 to vi; finally, add an edge bm parallel to am. Evidently,
Φm is a planar graph that is isomorphic to its dual.

Theorem 2.4. Let M be a 2-connected matroid with |E(M)| = n ≥ 2.
Then M has an element x such that fcl({x}) = E(M) if and only if M is a
2-connected minor of M(Φn−1).

The rest of the paper is structured as follows. The next section contains
some definitions together with some basic connectivity results that will be
needed to prove the main theorems. That section also contains a proof of
Theorem 2.4. In Section 4, we prove Theorems 2.1 and 2.2 and describe
another family of sequential matroids of which every sequential matroid is
a minor. This family is used in the proof of Theorem 2.3, which is given in
Section 5.

3. Preliminaries

This section contains some definitions and lemmas needed to prove the
theorems stated in the last section. We shall also prove Theorem 2.4 here.
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For a matroid M on a set E, the connectivity function λM of M is defined,
for all subsets Z of E, by λM (Z) = r(Z) + r(E−Z)− r(M). We shall often
abbreviate λM as λ. The set Z or the partition (Z,E−Z) is k-separating if
λ(Z) < k. The partition (Z,E−Z) is a k-separation if it is k-separating and
|Z|, |E−Z| ≥ k; and M is n-connected if, for all j with 1 ≤ j ≤ n− 1, there
are no (n − j)-separations in M . A k-separating set Z, or a k-separating
partition (Z,E−Z), or a k-separation (Z,E−Z) is exact if λ(Z) = k−1 and
is minimal if min{|Z|, |E −Z|} = k. A k-separation (Z,E −Z) is vertical if
r(Z), r(E − Z) ≥ k.

The connectivity function of a matroid M has a number of attractive
properties. For example, λM (Z) = λM (E − Z). Moreover, the connectivity
functions of M and its dual M∗ are equal. To see this, it suffices to note
the easily verified fact that

λM (Z) = r(Z) + r∗(Z)− |Z|.

Now suppose that M is a 3-connected matroid. Following [5], we use
the term 3-sequence for an ordered partition (E1, E2, . . . , En) of E(M) into
non-empty sets such that if i ∈ {1, 2, . . . , n − 1} and both |

⋃i
j=1Ej | and

|
⋃n
j=i+1Ej | exceed one, then

⋃i
j=1Ej is exactly 3-separating. If, for some

m in {1, 2, . . . , n}, there is an ordering
−→
Em of Em, say

−→
Em = (x1, x2, . . . , xk),

such that (E1, E2, . . . , Em−1, {x1}, {x2}, . . . , {xk}, Em+1, . . . , En) is a 3-sequ-
ence, then we also write this 3-sequence as (E1, E2, . . . , Em−1, x1, x2, . . . , xk,

Em+1, . . . , En) or (E1, E2, . . . , Em−1,
−→
Em, Em+1, . . . , En). A 3-sequence of

the form (A, x1, x2, . . . , xm, B) such that |A|, |B| ≥ 2 will be called an (A,B)
3-sequence. This terminology agrees with [5]. Note, however, that in [4] a
‘3-sequence’ is what we have called here an ‘(A,B) 3-sequence’.

Evidently if M is a 3-connected matroid and E(M) = {e1, e2, . . . , et}, a
sequence (e1, e2, . . . , et) is a 3-sequence if and only it is a sequential or-
dering of E(M). When we refer to a sequential ordering of M of the
form (E1, E2, . . . , En), we mean that there are orderings

−→
E1,
−→
E2, . . . ,

−→
En of

E1, E2, . . . , En such that (
−→
E1,
−→
E2, . . . ,

−→
En) is a sequential ordering of M . A

sequential matroid M is also said to have path width three because there is
a path P with vertex set E(M) such that the partition of E(M) induced by
each edge of P is a 3-separating partition of E(M).

The next result is elementary. Its proof appears, for example, in [4,
Lemma 4.1].

Lemma 3.1. Let (A, e1, e2, . . . , en, B) be an (A,B) 3-sequence of a 3-conn-
ected matroid. Then, for each i, either

(i) ei ∈ cl(A ∪ {e1, . . . , ei−1}) ∩ cl({ei+1, . . . , en} ∪B), or
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(ii) ei ∈ cl∗(A ∪ {e1, . . . , ei−1}) ∩ cl∗({ei+1, . . . , en} ∪B),

but not both.

We call ei a guts or coguts element of (A, e1, e2, . . . , en, B) depending on
whether (i) or (ii) of the last lemma holds or, equivalently, on whether ei
is in the closure or coclosure of A ∪ {e1, e2, . . . , ei−1}. It was shown in [4,
Lemma 4.6] that this labelling is robust in that if ei is a guts element of
some (A,B) 3-sequence, then it is a guts element of all (A,B) 3-sequences.

The class of sequential matroids is well-behaved. For example, it is clear
that the dual of a sequential matroid is sequential. Moreover, we have the
following attractive property.

Lemma 3.2. Every 3-connected minor N of a sequential matroid M is
sequential. In particular, if

−→
E is a sequential ordering of M , then the induced

ordering on E(N) is sequential.

The last lemma follows immediately from the next lemma, which, in turn,
is a consequence of the well-known and easily verified fact that the connec-
tivity function is monotone under taking minors.

Lemma 3.3. Let (e1, e2, . . . , en) be an ordering of the ground set of a ma-
troid M . If λM ({e1, e2, . . . , ei}) ≤ k for all i and N is a minor of M , then
λN ({e1, e2, . . . , ei} ∩ E(N)) ≤ k for all i.

Next we insert the proof of Theorem 2.4. The argument here uses prop-
erties of the operation of parallel connection. Later, in the proof of Theo-
rem 2.3, we shall use similar properties of the generalized parallel connec-
tion. In a matroid M , if e ∈ E(M) and Z ⊆ E(M), we write e ∈ cl(∗)(Z) to
indicate that e ∈ cl(Z) or e ∈ cl∗(Z).

Proof of Theorem 2.4. Evidently fcl({a1}) = E(M(Φn−1)) = fcl({bn−1})
and, by Lemma 3.3, it follows that every 2-connected minor N of M(Φn−1)
has an element whose full closure is E(N).

Now suppose that M has an element x such that fcl({x}) = E(M). We
shall argue by induction on n that

2.4.1. M is isomorphic to a minor of M(Φn−1) in which x is mapped to a1

or bn−1.

If n = 2, then M ∼= U1,2
∼= M(Φ1) so (2.4.1) holds. Assume it holds for

n < k and let n = k ≥ 3. Since fcl({x}) = E(M), there is an ordering
(e1, e2, . . . , en) of E(M) such that x = e1 and, for all i ≥ 2, the element
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ei ∈ cl(∗)({e1, e2, . . . , ei−1}). We shall show that (2.4.1) holds when e3 ∈
cl({e1, e2}). If, instead, e3 ∈ cl∗({e1, e2}), then e3 ∈ clM∗({e1, e2}) so we
can apply the same argument to get that M∗ is isomorphic to a minor
of M(Φn−1) in which e1 is mapped to a1 or bn−1. Because there is an
isomorphism between M∗(Φn−1) and M(Φn−1) that interchanges a1 and
bn−1, the required result will follow.

Since e2 ∈ cl(∗)({e1}) and e3 ∈ cl({e1, e2}), the matroid M |{e1, e2, e3}
is isomorphic to U1,3 or U2,3. Each of the last two matroids is isomorphic
to a minor of M(Φ2) in which e1 is mapped to a1 or b2, so the required
result holds for |E(M)| = 3. We may now assume that |E(M)| ≥ 4. Then
one easily checks that λM/e3({e1, e2}) = λM ({e1, e2}) − 1 = 0, so M/e3 is
not 2-connected. Thus, by a result of Brylawski [2] (see also [6, 7.1.16 and
7.1.17]), M is the parallel connection, with basepoint e3, of M |{e1, e2, e3}
and M\e1, e2, and each of the last two matroids is 2-connected. It fol-
lows, by Lemma 3.3, that the sequence (e3, e4, . . . , en) has the property that
{e3, e4, . . . , ei} is 2-separating in M\e1, e2 for all i in {3, 4, . . . , n−1}. Thus,
by the induction assumption, M\e1, e2 is isomorphic to a minor of M(Φn−3)
in which e3 is mapped to either a1 or bn−3.

After combining the two possibilities for M\e1, e2 with the two possibil-
ities for M |{e1, e2, e3}, we get a total of four cases. But, because each of
M\e1, e2 and M |{e1, e2, e3} is graphic, it is straightforward to check that,
in each case, M is isomorphic to a minor of M(Φn−1) in which e1 is mapped
to a1 or bn−1. The theorem follows by induction. �

The next result [4, Lemma 3.2] contains two more elementary properties
of sequential matroids.

Lemma 3.4. Let (e1, e2, . . . , en) be a sequential ordering of a 3-connected
matroid M , and let i < j.

(i) If ej ∈ cl(∗)({e1, e2, . . . , ei}), then

(e1, e2, . . . , ei, ej , ei+1, . . . , ej−1, ej+1, en)

is also a sequential ordering of M .
(ii) If r({e1, e2, . . . , ek}) = 2 and (z1, z2, . . . , zk) is an arbitrary permu-

tation of {e1, e2, . . . , ek}, then (z1, z2, . . . , zk, ek+1, . . . , en) is also a
sequential ordering of M .

One of the most useful features of the connectivity function λ of M is
that it is submodular, that is, for all J,K ⊆ E(M),

λ(J) + λ(K) ≥ λ(J ∩K) + λ(J ∪K).
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This means that if J and K are k-separating, and one of J ∩K or J ∪K
is not (k − 1)-separating, then the other must be k-separating. The next
lemma specializes this fact.

Lemma 3.5. Let M be a 3-connected matroid, and let J and K be 3-
separating subsets of E(M).

(i) If |J ∩K| ≥ 2, then J ∪K is 3-separating.
(ii) If |E(M)− (J ∪K)| ≥ 2, then J ∩K is 3-separating.

Another consequence of the submodularity of λ is the following very useful
result for 3-connected matroids, which has come to be known as Bixby’s
Lemma [1] (see also [6, Proposition 8.4.6]).

Lemma 3.6. Let M be a 3-connected matroid and e be an element of M .
Then either M\e or M/e has no non-minimal 2-separations. Moreover, in
the first case, co(M\e) is 3-connected, while, in the second case, si(M/e) is
3-connected.

Lemma 3.7. For all k ≥ 3, the matroid Θk is sequential. Moreover, if
−→
X

and
−→
Y are arbitrary permutations of X and Y , respectively, then (

−→
X,
−→
Y ) is

a sequential ordering of Θk.

Proof. It was noted in [8] that Θk is 3-connected. Now let
−→
Z be an initial

subsequence of (
−→
X,
−→
Y ). Then either Z ⊆ X or E(Θk) − Z ⊆ Y . Hence

r(Z) = 2 or r∗(E(Θk)− Z) = 2, and we deduce that λ(Z) = 2. �

The next result follows, for example, by [9].

Lemma 3.8. Let M1 and M2 be 3-connected matroids and E(M1)∩E(M2) =
T . Assume that M1|T = M2|T and that T is a rank-2 modular flat of M1.
Then PT (M1,M2) is 3-connected.

Corollary 3.9. Let N be a 3-connected matroid having a rank-2 subset X
such that |X| = k ≥ 3. Then PX(Θk, N) is 3-connected.

Lemma 3.10. Let (e1, e2, . . . , en) be a sequential ordering of a sequential
matroid M . Let A = {e1, e2} and B = {en−1, en}. For 3 ≤ i ≤ n − 2, if
ei is a guts element of the (A,B) 3-sequence (A, e3, e4, . . . , en−2, B) but ei 6∈
cl(A) ∪ cl(B), then si(M/ei) is not 3-connected, so co(M\ei) is sequential.

Proof. The partition ({e1, e2, . . . , ei−1}, {ei+1, ei+2, . . . , en}) is a vertical 2-
separation ofM/ei, so si(M/ei) is not 3-connected. By Lemma 3.6, co(M\ei)
is 3-connected and the lemma follows by Lemma 3.2. �
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Lemma 3.11. Let M1 and M2 be sequential matroids. Let T = E(M1) ∩
E(M2) and assume that M1|T = M2|T and that T is a rank-2 modular flat
of M1. Let M1 and M2 have sequential orderings (

−→
U1,
−→
T1) and (

−→
T2,
−→
U2) where

T1 = T = T2. Then PT (M1,M2) is a sequential matroid having (
−→
U1,
−→
T1,
−→
U2)

as a sequential ordering.

Proof. For each i, let Ei = E(Mi). Then Ei = Ui∪Ti. Let M = PT (M1,M2)
and abbreviate E(M) as E. By Lemma 3.8, M is 3-connected. If r(M1) = 2,
then T = E1, so M = M2 and the result is immediate. Hence, we may
assume that r(M1), r(M2) ≥ 3. Thus E(M1) − T and E(M2) − T span T
in M1 and M2, respectively. Now, since T has rank 2 in M2, the ordering
(
−→
T1,
−→
U2) of E2 is sequential in M2.

To complete the proof, we shall show that (
−→
U1,
−→
T1,
−→
U2) is a sequential

ordering of M . Let
−→
Z be an initial subsequence of (

−→
U1,
−→
T1,
−→
U2) with |Z|, |E−

Z| ≥ 3. By symmetry, we may assume that Z ⊆ U1 ∪ T . Now U1 and U2

span M1 and M2, respectively. Thus, if Z ⊇ U1, then, as E − Z ⊇ U2, we
have

r(Z) + r(E − Z)− r(M) = r(M1) + r(M2)− r(M) = 2.

Now suppose Z ⊆ U1. Then, by submodularity,

r(Z) + r(E − Z)− r(M) = r(Z) + r((E1 − Z) ∪ E2)− r(M)
≤ r(Z) + [r(E1 − Z)

+ r(E2)− r(cl(E1 − Z) ∩ cl(E2))]− r(M)
≤ r(Z) + r(E1 − Z) + r(E2)

−r(T )− [r(M1) + r(M2)− 2]
= r(Z) + r(E1 − Z)− r(M1)
≤ 2.

We conclude that if Z ⊆ U1 ∪ T , then (Z,E − Z) is 3-separating and the
lemma follows. �

Lemma 3.12. Let M be a 3-connected matroid, (J,K) be a 3-separation of
M , and Z ⊆ cl(J) ∩ cl(K). If both |J − Z| and |K − Z| exceed two, then

(i) M\Z is connected;
(ii) co(M\Z) is 3-connected; and

(iii) every non-trivial series class of M\Z has exactly two elements, one
in J − Z and the other in K − Z.
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Proof. We have

2 = r(J) + r(K)− r(M)
≥ r(J − Z) + r(K ∪ Z)− r(M)
≥ 2.

Thus equality holds throughout and so cl(J−Z) ⊇ J . Hence cl(J−Z) ⊇ Z.
Likewise, cl(K − Z) ⊇ Z.

We shall prove all three parts simultaneously. Suppose that, for some k
in {1, 2}, the matroid M\Z has an exact k-separation (R,G). Since Z ⊆
cl(J −Z)∩ cl(K−Z), both R and G meet both J −Z and K−Z, otherwise
(R ∪ Z,G) or (R,G ∪ Z) is an exact k-separation of M ; a contradiction.

Since |J−Z| ≥ 3, we may assume that |G∩(J−Z)| ≥ 2. Now λM\Z(G) =
k − 1 and λM\Z(J − Z) = 2. Hence, by the submodularity of λ, we get

λM\Z(G ∩ (J − Z)) + λM\Z(G ∪ (J − Z)) ≤ 2 + k − 1.

Since (E − Z)− (G ∪ (J − Z)) = R ∩ (K − Z), we have

λM\Z(G ∩ (J − Z)) + λM\Z(R ∩ (K − Z)) ≤ 2 + k − 1.

As Z ⊆ cl(R ∪ (K − Z)) ∩ cl(G ∪ (J − Z)), it follows that

λM (G ∩ (J − Z)) + λM (R ∩ (K − Z)) ≤ 2 + k − 1.

Since |G∩ (J −Z)| ≥ 2, we have λM (G∩ (J −Z)) ≥ 2 and so λM (R∩ (K −
Z)) ≤ k − 1. As R ∩ (K − Z) is non-empty, it follows that k 6= 1. Hence
k = 2 and |R ∩ (K − Z)| = 1. Therefore M\Z is connected. Moreover, as
|K − Z| ≥ 3, we have |G ∩ (K − Z)| ≥ 2. Thus we can interchange J and
K in the argument in this paragraph to get that |R ∩ (J − Z)| = 1. Hence
|R| = 2. Therefore R is a cocircuit of M\Z and every non-trivial series class
of M\Z has exactly one element in J−Z and exactly one element in K−Z.
Furthermore, M\Z has no 2-separation (R,G) in which both R and G are
dependent, so co(M\Z) is 3-connected (see, for example, [10, (5.1)]). �

Let n be an integer with n ≥ 3. Let Vn be the rank-3 matroid with a
(2n)-point ground set R ∪ S ∪ f consisting of two distinct n-point lines,
R and S, with R = {t, r1, r2, . . . , rn−1} and S = {t, s1, s2, . . . , sn−1}, and
a point f placed so that {f, ri, si} is a line for all i in {1, 2, . . . , n − 1}.
Evidently, V3

∼= M(K4). We call R and S the distinguished lines of Vn. The
points t and f are called the tip and the focus of Vn. When n ≥ 4, the
distinguished lines, the tip, and the focus of Vn are uniquely determined.
When n = 3, we designate two 3-point lines of Vn as the distinguished lines
and this determines the tip and the focus.

In Vn, both R and S are modular lines. We now describe an important
family Πm

n of matroids. For some m ≥ 1, let M1,M2, . . . ,Mm be copies of
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Vn. Let Ri and Si be the distinguished lines of Mi, and ti and fi be its tip
and its focus. For each i in {1, 2, . . . ,m − 1}, let ϕi be a bijection from Si
to Ri+1. Identify each element of Si with its image under ϕi and let Nm be
the matroid that is constructed as follows: N1 = M1; N2 = PR2(M2, N1);
. . . ; Nm = PRm(Mm, Nm−1). Evidently, Nm depends on the bijections ϕi.
We denote by Πm

n the collection of all possible such matroids Nm.

Lemma 3.13. The matroid Nm is sequential.

Proof. We establish the lemma by proving the following by induction on m:

3.13.1. Nm is 3-connected having a sequential ordering of the form (Zm, Sm).

If m = 1, then (
−−−−→
R1 − t1, f1,

−→
S1) is a sequential ordering of Nm where

−−−−→
R1 − t1 and

−→
S1 are arbitrary orderings of R1 − t1 and S1, respectively. As-

sume the assertion is true for m = k and let m = k + 1. Then Nk+1 =
PRk+1

(Mk+1, Nk). By the induction assumption, Nk is 3-connected having a
sequential ordering of the form (Zk, Sk). Moreover, Mk+1 is 3-connected hav-
ing a sequential ordering of the form (Rk+1, fk+1, Sk+1 − tk+1). Since each
element of Sk is identified with its image in Rk+1 under the bijection ϕk+1,
it follows by Lemma 3.11 that Nk+1 is 3-connected having a sequential or-
dering of the form (Zk, Sk, fk+1, Sk+1−tk+1). As |Sk+1−tk+1| ≥ 2, it follows
that Nk+1 has a sequential ordering of the form (Zk+1, Sk+1). Thus (3.13.1)
holds and hence so does the lemma. �

4. Constructing all sequential matroids

In this section, we prove Theorems 2.1 and 2.2. In addition, we establish
a crucial step in the proof of Theorem 2.3.

Proof of Theorem 2.1. We shall first establish that if we begin at step (ii)
of the algorithm with a sequential matroid N having a sequential ordering
(e1, e2, . . . , en) and pass through the loop in the algorithm once to return to
(ii), then the resulting matroid N ′ has the following properties:

(a) N ′ is sequential;
(b) N ′ is representable over a field F if and only if N is representable

over F ; and
(c) either |E(N ′)| < |E(N)|, or N ′ has a sequential ordering that begins

with a maximal rank-2 flat X ′ of N ′ or (N ′)∗ such that |X ′| > |X|.

To establish this, we observe that N ′ is either co(∆X(N)) or si(∇X(N)).
By duality, it suffices to treat the first case. Then r(X) = 2. Note that,
since X 6= E(N) and N is sequential, we have |E(N)−X| ≥ 3 and r(N) ≥ 3.
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Since 2 = λN (X) = r(X) + r∗(X)− |X|, it follows that X is coindependent
in N . Hence ∆X(N) is well-defined. Now ∆X(N) = PX(Θk, N)\X. By [7,
Corollary 3.7], ∆X(N) and N are representable over exactly the same fields.
Hence (b) holds.

Now recall that E(Θk) = X ∪ Y . Let E(N) − X = Z. We know that
Θk and N are sequential having sequential orderings of the form (Y,X) and
(X,Z), respectively. Since r(X) = 2, Lemma 3.11 implies that PX(Θk, N)
is sequential. Now (Y ∪ X,E(N) − X) is a 3-separation of PX(Θk, N).
Since X = cl(Y ∪ X) ∩ cl(E(N) − X), it follows by Lemma 3.12 that
co(PX(Θk, N)\X) is 3-connected. Thus, by Lemma 3.2, the last matroid
is sequential, that is, co(∆X(N)) is sequential. Finally, we observe that
either |E(co(∆X(N))| < |E(N)|, or co(∆X(N)) = ∆X(N). In the former
case, |E(N ′)| < |E(N)| and (c) holds. In the latter case, ∆X(N) has a
sequential ordering of the form (Y, ek+1, ek+2, . . . , en). Now Y is a union
of triads in ∆X(N) and ek+1 is a coloop of N\X. By [7, Lemma 2.8],
N\X = ∆X(N)\Y . Hence Y ∪ ek+1 spans a rank-2 flat of (N ′)∗, and again
(c) holds. We conclude that (a)-(c) hold.

Because of (c), the algorithm terminates in a finite number of steps yield-
ing the required uniform matroid N of rank or corank 2. Moreover, the
original matroid M is representable over exactly the same fields as N and
so is F-representable if and only if |F| ≥ |E(N)| − 1. �

The following is an immediate consequence of Theorem 2.1.

Corollary 4.1. If a sequential matroid M is representable over a field with
n elements, then M is representable over all fields with at least n elements.

Next we show how, by reversing the steps in Theorem 2.1, we can build
all sequential matroids from uniform matroids of rank or corank two.

Lemma 4.2. Let N be a sequential matroid. Let (e1, e2, . . . , en) be a se-
quential ordering of E(N) in which {e1, e2, . . . , em} is a rank-2 flat for some
m ≥ 3. Let X = {e1, e2, . . . , ek} where 3 ≤ k ≤ m. If X1 ⊆ X and X1 is a
proper flat of N∗, then PX(Θk, N)\X1 is sequential.

Proof. Let M1 = PX(Θk, N). Then M1 is certainly sequential. Let X1 =
{e1, e2, . . . , es} and suppose that X1 is a proper flat of N∗. We need to show
that M1\X1 is sequential. By Lemma 3.2, it suffices to show that M1\X1

is 3-connected. Evidently clN (X) = {e1, e2, . . . , em}. Suppose first that
r(N) = 2. Then PX(Θk, N)\X1 is 3-connected unless |clN (X) − X1| ≤ 2.
In the exceptional case, E(N) − X1 is independent in N so X1 spans N∗.
Hence X1 is not a proper flat of N∗.
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We may now suppose that r(N) ≥ 3. By Lemma 3.12, co(M1\X1) is
3-connected. The lemma will follow if we can show that M1\X1 has no non-
trivial series classes. Assume the contrary, letting S be such a series class.
Then, by Lemma 3.12 again, S has exactly one element in Y and exactly
one other element, say z, which is in E(N)−X1. Thus M1 has a cocircuit of
the form S ∪X ′ where X ′ ⊆ X1. Since N is a restriction of M1, we deduce
that N has a cocircuit that contains z and some subset of X1. Hence X1 is
not a flat of N∗; a contradiction. �

Note that, up to an obvious relabelling, the matroid PX(Θk, N)\X1 in
the last result can alternatively be obtained from N by first adding a single
element in parallel to each element of X −X1 to give the matroid N ′ and
then finding ∆X(N ′).

Lemma 4.3. Let N be a 3-connected matroid and X be a k-element seg-
ment in N for some k ≥ 3. Assume that X1 is a subset of X such that
PX(Θk, N)\X1 is 3-connected but is not isomorphic to Uk,k+2. Then either

(i) X1 is a proper flat of N∗; or
(ii) X1 = X and Y ∪ f is a cosegment of PX(Θk, N)\X1 for some f in

E(N)−X.

Proof. Suppose that X1 is not a proper flat of N∗. Since PX(Θk, N)\X1

is 3-connected, X1 6= E(N∗). Then, for some subset X2 of X1, there is an
element f of E(N)−X1 such that X2 ∪ f is a cocircuit of N . Let H1 be the
hyperplane E(N)− (X2 ∪ f) of N .

Suppose first that f ∈ clN (X). Then

λN (X2 ∪ f) = r(X2 ∪ f) + (r∗(X2 ∪ f)− |X2 ∪ f |) = 2 + (−1) = 1,

so we have a contradiction to the fact that N is 3-connected unless |H1| ≤ 1.
Consider the exceptional case. We must have r(N) = 2. Thus PX(Θk, N)\X1

is 3-connected having rank k, so |E(N) − X1| ≥ 2. But |E(N) − X1| ≤
|H1|+ 1 ≤ 2, so |E(N)−X1| = 2. Thus PX(Θk, N)\X1 has k + 2 elements
and rank k, so PX(Θk, N)\X1

∼= Uk,k+2; a contradiction.

We may now assume that f 6∈ clN (X). Then r(N) ≥ 3. Since X2 ∪ f is
a cocircuit of N , by orthogonality with the triangles contained in clN (X),
we deduce that |clN (X) − X2| ≤ 1. We have X2 ⊆ X1 ⊆ X ⊆ clN (X).
Suppose that X = X2. Take {y1, y2} ⊆ Y . Then Y − {y1, y2} is a flat of
Θk of rank k − 2. Thus (Y − {y1, y2}) ∪ H1 is a flat of PX(Θk, N). But
r((Y − {y1, y2}) ∪H1) = r(H1) + |Y − {y1, y2}| since each 3-element subset
of Y is a triad of PX(Θk, N). Thus (Y − {y1, y2}) ∪H1 is a hyperplane of
PX(Θk, N). The complementary cocircuit is {y1, y2, f} ∪X2, so {y1, y2, f}
is a cocircuit of PX(Θk, N)\X1 and (ii) holds.
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It remains to consider the case when X2 6= X. Then X = clN (X) and
clN (X)−X2 = {g} for some element g. Thus Θk has a hyperplane H2 that
meets X in {g}. Moreover, H2 = (Y −g′)∪g for some g′ in Y . Thus H1∪H2

is a hyperplane of PX(Θk, N) and (X − g) ∪ g′ ∪ f is the complementary
cocircuit. Hence PX(Θk, N)\X1 has {g′, f} as a cocircuit. This contradicts
the fact that PX(Θk, N)\X1 is 3-connected. �

We are now ready to prove our construction yields the class of sequential
matroids.

Proof of Theorem 2.2. It follows by Lemma 4.2 that every matroid produced
by the prescribed procedure is sequential. Now let M be an arbitrary se-
quential matroid. Then, by using the algorithm in Theorem 2.1, we obtain a
uniform matroid of rank or corank two. Up to duality, a typical step in this
algorithm consists of replacingN by si(∇X(N)) for some maximal cosegment
X of N . Now consider how we can recover N from si(∇X(N)). We know
by Lemma 3.12 and duality that each non-trivial parallel class of ∇X(N)
contains exactly one element of Y . Now ∇X(N) = (PX(Θk, N

∗)\X)∗.
Hence si(∇X(N)) = (PX(Θk, N

∗)\X)∗\W where, for some Y0 ⊆ Y with
|Y0| = |W |, each element of Y0 is parallel to a unique element of W , and
W ∩ Y = ∅.

Recall that Θk(X,Y ) denotes the copy of Θk in which X is a segment
and Y is a cosegment. By [7, Corollary 2.12], when we maintain the same
ground set after each segment-cosegment and cosegment-segment exchange,
we have that N = ∆X(∇X(N)). This means, in the notation we are using,
that

N = PY (Θk(Y,X), (PX(Θk(X,Y ), N∗)\X)∗)\Y.
In (PX(Θk(X,Y ), N∗)\X)∗, each element of Y0 is parallel to an element of
W . Thus N ∼= PY (Θk(Y,X), (PX(Θk(X,Y ), N∗)\X)∗\W )\Y1 where Y1 =
Y − Y0, that is, N ∼= PY (Θk(Y,X), si(∇X(N)))\Y1 where this isomorphism
relabels each member of Y0 by the parallel element from W . Now we may as-
sume that N is not uniform of corank 2 otherwise N is already inM0. Since
N is 3-connected, by Lemma 4.3, either Y1 is a proper flat of (si(∇X(N)))∗,
or X is not a maximal cosegment of PY (Θk(Y,X), si(∇X(N)))\Y1, that is,
of N . This contradiction means that the steps described in the theorem es-
sentially correspond to reversing the steps in the algorithm in Theorem 2.1
and this completes the proof. �

The next result will be important in our proof of Theorem 2.3, which
appears in the next section. It provides an alternative to the latter result
by giving another family of sequential matroids of which every sequential
matroid is a minor. In the next theorem, we consider a field GF (q) over
which an n-element sequential matroid M is representable. By Theorem 2.1,
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we can find such a field simply by choosing q ≥ n− 1. But M may also be
representable over smaller fields and we want our result to cover these fields
too.

Theorem 4.4. Let M be an n-element sequential matroid and suppose that
M is representable over GF (q). For µ ∈ {n, q + 1}, if n ≥ 6, then M is
a minor of a member of Πn−5

µ unless M ∼= Un−2,n, in which case, M is a
minor of a member of Πn−4

µ . If n ∈ {3, 4, 5}, then M is a minor of a member
of Π1

µ.

Proof. Let r(M) = r. As M is representable over GF (q), we may view M
as a restriction of PG(r − 1, q). We shall denote the closure of a set X in
PG(r − 1, q) by 〈X〉.

Let (e1, e2, . . . , en) be a sequential ordering of M . Let A = {e1, e2} and
B = {en−1, en} and consider the (A,B) 3-sequence (A, e3, e4, . . . , en−2, B) =
(A,
−→
X,B). Break (A, e3, e4, . . . , en−2, B) up according to the presence of

coguts elements as (G0, c1, G1, c2, . . . , cs, Gs), where G0 = cl({e1, e2}) and
Gs = cl({en−1, en}), the elements c1, c2, . . . , cs are the coguts elements of
−→
X , and, for all i in {1, 2, . . . , s− 1}, the set of guts elements lying between
ci and ci+1, which may be empty, is Gi.

If s = 0, then M ∼= U2,n, so q ≥ n − 1 and M is a minor of Vn and of
Vq+1. Hence M is a minor of a member of Π1

µ. Now suppose that s ≥ 1. We
shall show that M is a minor of a member of Πs

µ.

First we show the following.

4.4.1. For each i in {1, 2, . . . , s − 1}, the set Gi is a subset of the line G′i
of PG(r − 1, q) that is the intersection of 〈G0 ∪ c1 ∪ G1 ∪ · · · ∪ ci〉 and
〈ci+1 ∪Gi+1 ∪ · · · ∪Gs〉.

We have

r + 2 = r(G0 ∪ c1 ∪G1 ∪ · · · ∪ ci ∪Gi) + r(ci+1 ∪Gi+1 ∪ · · · ∪Gs).

But Gi ⊆ clM (G0 ∪ c1 ∪G1 ∪ · · · ∪ ci) ∩ clM (ci+1 ∪Gi+1 ∪ · · · ∪Gs). Thus

〈G0 ∪ c1 ∪G1 ∪ · · · ∪ ci〉 ∩ 〈ci+1 ∪Gi+1 ∪ · · · ∪Gs〉

is a rank-2 flat G′i of PG(r − 1, q) containing Gi. Hence (4.4.1) holds.

We shall let G′0 and G′s be the lines of PG(r − 1, q) spanned by G0 and
Gs, respectively.

4.4.2. For each i in {0, 1, . . . , s−1}, there is a unique point ti of PG(r−1, q)
in 〈G0 ∪ c1 ∪G1 ∪ · · · ∪Gi〉 ∩ 〈Gi+1 ∪ ci+2 ∪ · · · ∪Gs〉 and G′i ∩G′i+1 = {ti}.
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We have r(G0 ∪ c1 ∪G1 ∪ · · · ∪Gi ∪ ci+1) = r(G0 ∪ c1 ∪G1 ∪ · · · ∪Gi) + 1.
Thus

r(G0 ∪ c1 ∪G1 ∪ · · · ∪ ci ∪Gi) + r(Gi+1 ∪ ci+2 ∪ · · · ∪Gs) = r + 1.

Hence 〈G0 ∪ c1 ∪G1 ∪ · · · ∪Gi〉 ∩ 〈Gi+1 ∪ ci+2 ∪ · · · ∪Gs〉 is a point ti. Now
〈G0 ∪ c1 ∪G1 ∪ · · · ∪Gi〉 ⊇ G′i and 〈Gi+1 ∪ ci+2 ∪ · · · ∪Gs〉 ⊇ G′i+1. Hence
G′i ∩G′i+1 ⊆ {ti}. But 〈G0 ∪ c1 ∪G1 ∪ · · · ∪Gi+1〉 has rank one more than
〈G0 ∪ c1 ∪G1 ∪ · · · ∪Gi〉, so

〈G0 ∪ c1 ∪G1 ∪ · · · ∪Gi+1〉 ∩ 〈Gi+1 ∪ ci+2 ∪ · · · ∪Gs〉

has rank 2 and contains and so equals G′i+1. This intersection also contains
ti, so ti ∈ G′i+1. Similarly, ti ∈ G′i. Thus (4.4.2) holds.

Next observe that

4.4.3. G′i meets G′i+j for some j ≥ 2 if and only if ti = ti+1 = · · · = ti+j−1.

This follows because ti is the unique point of intersection of 〈G0 ∪ c1 ∪
G1 ∪ · · · ∪Gi〉 and 〈Gi+1 ∪ ci+2 ∪ · · · ∪Gs〉.

We now define a sequence of sets of distinguished points beginning with
D0 = E(M) ∪ t0. Assume that D0, D1, . . . , Di−1 have been defined. To
define Di, we introduce a function αi. We let αi(ci) = ti−1; for each element
x of Di−1 ∩ (G′i−1 − ti−1), let αi(x) be the element of G′i that also lies on
the line spanned by {x, ci}. Define

Di = (Di−1 − ci −G′i−1) ∪ ti−1 ∪ {αi(x) : x ∈ Di−1 ∩ (G′i−1 − ti−1)} ∪ ti
where, if i = s, we take ts = ts−1.

The next two assertions are straightforward consequences of this defini-
tion.

4.4.4. D0 ∩G′i ⊆ D1 ∩G′i ⊆ · · · ⊆ Di ∩G′i.

4.4.5. Ds ∩G′i ⊆ Ds−1 ∩G′i ⊆ · · · ⊆ Di+1 ∩G′i = {ti}.

We show next that

4.4.6.

|Di ∩G′i| ≤

{
|E(M)− (Gi+1 ∪Gi+2 ∪ · · · ∪Gs)| − (s− i) + 1 if i < s

|E(M)| if i = s.

We argue by induction on i. If i = 0, then Di ∩G′i is (E(M) ∩G′0) ∪ t0,
which equals G0 ∪ t0, so the result follows. Assume that (4.4.6) holds for
i < j and let i = j.
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Suppose first that j < s. Then Dj ∩ G′j is contained in the union of
{tj−1, tj} ∪Gj and the set {αj(x) : x ∈ Dj−1 ∩ (G′j−1 − tj−1)}. Thus

|Dj ∩G′j | ≤ 2 + |Gj |+ |Dj−1 ∩G′j−1| − 1

= |Gj |+ |Dj−1 ∩G′j−1|+ 1.

But, by the induction assumption,

|Dj−1 ∩G′j−1| ≤ |E(M)− (Gj ∪Gj+1 ∪ · · · ∪Gs)| − (s− (j − 1)) + 1.

Hence

|Dj ∩G′j | ≤ |Gj |+ |E(M)− (Gj ∪ · · · ∪Gs)| − (s− j) + 1

≤ |E(M)− (Gj+1 ∪ · · · ∪Gs)| − (s− j) + 1,

where the last step follows since Gj , Gj+1, . . . , Gs are disjoint.

Finally, observe that if j = s, then tj = tj−1, so we can decrease the
bound on |Dj ∩G′j | by one to get |Ds ∩G′s| ≤ |E(M)|. Hence (4.4.6) holds.

Now let D̂s = D0∪D1∪· · ·∪Ds. Then ts−1 is certainly in D̂s. Moreover,

4.4.7. |D̂s ∩G′i| ≤ µ for all i in {0, 1, . . . , s}.

This is immediate if µ = q + 1. If µ = n, it follows from (4.4.6) because
D̂s∩G′i = (D0∪D1∪ · · · ∪Ds)∩G′i = Di∩G′i, where the last equality holds
by (4.4.4) and (4.4.5).

Now suppose that |D̂s ∩ G′s| = m. Take µ − m points of G′s − D̂s and
adjoin these elements to D̂s continuing to call the resulting set D̂s. We now
have |D̂s∩G′s| = µ. For each element z of (D̂s∩G′s)− ts−1, there is a unique
point βs(z) of G′s−1 on the line through z and cs. Some of these elements
are already in D̂s. Adjoin the other such points to D̂s letting the resulting
set be D̂s−1. Evidently

|D̂s−1 ∩G′s| = µ.

We assert that

4.4.8. |D̂s−1 ∩G′s−1| = µ.

By construction, it is clear that |D̂s−1∩G′s−1| ≥ µ. Assume this inequality
is strict. Then there is a point y of D̂s−1 ∩G′s−1 that does not lie on a line
through cs and some element of (D̂s ∩ G′s) − ts−1. Then y ∈ [(D0 ∪ D1 ∪
· · · ∪Ds)∩G′s−1]− ts−1 so, by (4.4.4) and (4.4.5), y ∈ Ds−1 ∩ (G′s−1− ts−1).
Thus the construction of Ds produces a point αs(y) of G′s that lies on the
line through y and cs. Hence αs(y) ∈ (Ds ∩ G′s) − ts−1 and we have a
contradiction that establishes (4.4.8).
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Now using D̂s−1 ∩G′s−1 in place of D̂s ∩G′s, we can construct a new set
D̂s−2 by adjoining points of G′s−2 to D̂s−1. The same argument used above
guarantees that

µ = |D̂s−2 ∩G′s−2| = |D̂s−1 ∩G′s−1| = |D̂s ∩G′s|.

Repeating this process, we eventually obtain a set D̂0 such that

|D̂0 ∩G′i| = µ for all i in {0, 1, . . . , s}.

Finally, we consider the matroid M̂ that equals PG(r − 1, q)|D̂0. Note
that M̂ consists of s + 1 lines, L0, L1, . . . , Ls, each containing exactly µ
points, along with s additional points, c1, c2, . . . , cs. Moreover, for all i in
{0, 1, . . . , s}, we have Li−1∩Li = {ti−1} and, for each point e of Li−1− ti−1,
there is a unique point e′ of Li such that {e, ci, e′} is a line of M̂ .

Now clearly M̂ |(Ls−1 ∪ cs ∪ Ls) ∼= Vµ and Ls−1 is a modular line of this
restriction. It follows by a result of Brylawski [2] (see also [6, Proposi-
tion 12.4.15]) that M̂ is the generalized parallel connection across Ls−1 of
M̂ |(Ls−1 ∪ cs ∪Ls) and M̂\[(Ls− ts−1)∪ cs]. A routine induction argument
establishes that M̂ is in Πs

µ. We conclude that M is a minor of a member
of Πs

µ.

We have 1 ≤ s ≤ n−|G0∪Gs| ≤ n−4. If s = n−4, then M ∼= Un−2,n, so
q ≥ n− 1 and µ ≥ n. Thus if M 6∼= Un−2,n, we may assume that s ≤ n− 5.
The theorem follows without difficulty. �

5. The Universal Sequential Matroid

In this section, we shall prove an extension of Theorem 2.3. We begin with
a result needed in the definition of Θ2m+1

n . Recall that Θ2
n = (PB(M ′,M ′′))∗

where M ′ = Θn(B,A′) and M ′′ = Θn(B,A′′).

Lemma 5.1. The sets A′ and A′′ are modular lines of Θ2
n.

Proof. Clearly A′ is a rank-2 flat of Θ2
n. By [2, Theorem 3.3] (see also [6,

Proposition 6.9.2(iii)]), A′ is modular provided that r(A′) + r(F ) = r(Θ2
n)

for all flats F of Θ2
n avoiding A′ such that F ∪A′ spans Θ2

n. Now, for all such
flats F , we must have r(Θ2

n) > r(F ) ≥ r(Θ2
n)−2. Since r(A′) = 2, it suffices

to show that r(F ) 6= r(Θ2
n) − 1. Assume the contrary. Then E(Θ2

n) − F is
a cocircuit of Θ2

n, so E(Θ2
n) − F is a circuit C of PB(M ′,M ′′) containing

A′. But A′ is independent in PB(M ′,M ′′), so C properly contains A′. Now,
for all b in B, if a′ is the partner of b in A′, then (A′ − a′) ∪ b is a circuit
of PB(M ′,M ′′). Hence b 6∈ C so C ∩ B = ∅. Since C % A′, we deduce
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that C ∩ A′′ 6= ∅. As A′′ is a cosegment of PB(M ′,M ′′), by orthogonality,
|C ∩A′′| ≥ |A′′| − 1. But, if a′′ ∈ A′′, then (A′′ − a′′) ∪A′ properly contains
the circuit (A′′ − a′′) ∪ (A′ − a′) of PB(M ′,M ′′), where a′ and a′′ are the
partners of some element b of B. We conclude that the circuit C does not
exist, so A′ is indeed a modular flat of Θ2

n. �

We defined Θ2m+1
n in Section 2. The latter has B1 as an n-element coseg-

ment. We now define Θ2m
n to be Θ2m+1

n \B1. Thus Θ0
n
∼= U2,n. Using the

notation in the definition of Θ2m+1
n , this implies that Θ2

n = Θ3
n\B1 = M1.

But M1 is a copy of Θ2
n with ground set A1 ∪ B2 ∪ A2, so the notation is

consistent. In general, for all m ≥ 2,

Θ2m
n = PAm(Mm,Θ2m−1

n )\B1 = PAm(Mm,Θ2m−1
n \B1) = PAm(Mm,Θ2m−2

n ).

The matroid Θ2m+1
n has a number of attractive properties, many of which

are summarized in the next result.

Lemma 5.2. (i) r(Θ2m+1
n ) = (m+ 1)n and |E(Θ2m+1

n )| = 2(m+ 1)n;
(ii) Θ2m+1

n \(Bk+2 ∪Ak+2 ∪ · · · ∪Am+1) = Θ2k+1
n ;

(iii) Θ2m+1
n has B1, B2, . . . , Bm+1 as cosegments and A1, A2, . . . , Am+1 as

segments;
(iv) Θ3

n/A2
∼= (Θ2

n)∗;
(v) Θ2m+1

n has B1 ∪B2 ∪ · · · ∪Bm+1 as a basis;
(vi) Ai is a modular flat of Θ2m+1

n for all i in {1, 2, . . . ,m+ 1};
(vii) Θ2m+1

n \B1/A1
∼= Θ2m−1

n .

Proof. Parts (i) and (ii) follow easily by induction and by the definition,
respectively. Part (iii) follows from the fact that M0 has B1 as a cosegment
and A1 as a segment, while, for all i ≥ 1, the matroid Mi has Ai and Ai+1

as segments and Bi+1 as a cosegment.

For (iv), we have

Θ3
n/A2 = PA1(M1,Θ1

n)/A2 = PA1(M1/A2,Θ1
n).

But, by (2.1), M1/A2 has A1 as a segment and B1 as a cosegment and is
isomorphic to Θn. Thus

Θ3
n/A2 = PA1(Θn,Θ1

n) ∼= (Θ2
n)∗.

We prove (v) by induction. Clearly B1 is a basis of Θ1
n. Assume that

B1 ∪B2 ∪ · · · ∪Bm is a basis of Θ2m−1
n . Hence Θ2m+1

n has a basis containing
B1∪B2∪· · ·∪Bm and contained in B1∪B2∪· · ·∪Bm∪Am∪Bm+1∪Am+1.
As |B1∪B2∪· · ·∪Bm+1| = r(Θ2m+1

n ) and cl(B1∪B2∪· · ·∪Bm) ⊇ Am, while
cl(B1∪B2∪· · ·∪Bm∪Am∪Bm+1) ⊇ Am+1, we deduce thatB1∪B2∪· · ·∪Bm+1

is a basis of Θ2m+1
n .
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To prove (vi), we argue by induction on m. We know that A1 is a
modular flat of M0. Assume that A1, A2, . . . , Am are modular flats of
Θ2m−1
n . Then, by [2] (see [6, Proposition 12.4.14(ii)]), PAm(Mm,Θ2m−1

n ) =
PAm(Θ2m−1

n ,Mm). Thus, by [2] (see [6, Proposition 12.4.14(iii)]), E(Mm)
and E(Θ2m−1

n ) are modular flats of Θ2m+1
n . Thus, by [2] (see [6, Proposi-

tion 6.9.7]), since A1, A2, . . . , Am are modular flats of Θ2m−1
n , and Am+1 is a

modular flat of Mm, we deduce that A1, A2, . . . , Am, and Am+1 are modular
flats of Θ2m+1

n .

To prove (vii), we argue by induction on m that Θ2m+1
n \B1/A1

∼= Θ2m−1
n

with the cosegments and segments of the former being B2, B3, . . . , Bm+1 and
A2, A3, . . . , Am+1, respectively. The result holds for m = 1 by (2.1). Assume
it holds for m < k and let m = k ≥ 2. Then

Θ2k+1
n \B1/A1 = PAk

(Mk,Θ2k−1
n )\B1/A1

= PAk
(Mk,Θ2k−1

n \B1/A1)
∼= PAk

(Mk,Θ2k−3
n ) by the induction assumption;

∼= Θ2k−1
n .

�

The following lemma provides a useful link between Θ2m
n and Θ2m−1

n . In
the notation above, for k in {2m, 2m + 1}, let Ak+1 = {a′1, a′2, . . . , a′n} and
Bk+1 = {b′1, b′2, . . . , b′n}, where a′i is a partner of b′i.

Lemma 5.3. If k ≥ 1, then Θk
n\{a′2, a′3, . . . , a′n−1} has a′1 and a′n in series

with b′n and b′1, respectively. Moreover,

Θk
n\{a′2, a′3, . . . , a′n−1}/{a′1, a′n} ∼=

{
Θk−1
n if k = 2m,

(Θk−1
n )∗ if k = 2m+ 1.

Proof. By the definition of Θk
n, the result follows easily by induction once

we have shown it for k in {1, 2}, and it is not difficult to check for k = 1.
Now let k = 2. We have Θ2

n = (PB2(Θn(B2, A1),Θn(B2, A2)))∗. So

Θ2
n\{a′2, a′3, . . . , a′n−1} = (PB2(Θn(B2, A1),Θn(B2, A2)/{a′2, a′3, . . . , a′n−1}))∗.

But Θn(B2, A2)/{a′2, a′3, . . . , a′n−1} is obtained from Θn|B2 by adding a′1 and
a′n in parallel to b′n and b′1, respectively. Thus

Θn(B2, A2)/{a′2, a′3, . . . , a′n−1}\{a′1, a′n} ∼= U2,n.

Hence

Θ2
n\{a′2, a′3, . . . , a′n−1}/{a′1, a′n} = (Θn(B2, A1))∗ = Θn(A1, B2)

and the lemma follows. �

The next result is an immediate consequence of Lemma 3.11.
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Lemma 5.4. The matroid Θ2m+1
n is sequential. Moreover, every ordering

of its ground set of the form (B1, A1, B2, A2, . . . , Bm+1, Am+1) is sequential.

We know that Θn is isomorphic to its dual. We show next that the same
is true for Θ2m+1

n

Lemma 5.5. The matroid Θ2m+1
n is isomorphic to its dual.

Proof. We argue by induction on m. We know that the assertion is true for
m = 0. Assume it true for m < k and consider (Θ2k+1

n )∗. From Lemma 5.4,
this matroid is sequential having (Ak+1, Bk+1, Ak, . . . , A1, B1) as a sequential
ordering where Ak+1, Ak, . . . , A1 are cosegments and Bk+1, Bk, . . . , B1 are
segments. Thus (Θ2k+1

n )∗/B2 has B1 ∪ A1 and Ak+1 ∪ Bk+1 ∪ · · · ∪ A2 as
separators. Now

(Θ2k+1
n )∗|(B2 ∪A2 ∪ · · · ∪Ak+1) = (Θ2k+1

n /(A1 ∪B1))∗ = (Θ2k+1
n /A1\B1)∗

where the last step follows from the fact that B1 is a separator of Θ2k+1
n /A1.

By Lemma 5.2(vii) and the induction assumption, (Θ2k+1
n /A1\B1)∗ ∼= Θ2k−1

n ,
and (Θ2k+1

n /A1\B1)∗ has A2, A3, . . . , Ak+1 and B2, B3, . . . , Bk+1 as cose-
ments and segments, respectively. Thus, by Lemma 5.2(vi), B2 is a modular
flat of (Θ2k+1

n )∗|(B2 ∪A2 ∪ · · · ∪Ak+1). Also

(Θ2k+1
n )∗|(B1 ∪A1 ∪B2) = (Θ2k+1

n /(A2 ∪B3 ∪ · · · ∪Ak+1))∗

= (Θ2k+1
n \(B3 ∪A3 ∪ · · ·Ak+1)/A2)∗

= (Θ3
n/A2)∗

∼= Θ2
n

where the last step follows by Lemma 5.2(iv). Note that (Θ3
n/A2)∗ has B1

and B2 as segments and A1 as a cosegment.

By [2] (see [6, Proposition 12.4.15], (Θ2k+1
n )∗ is the generalized parallel

connection across B2 of the restrictions of (Θ2k+1
n )∗ to B2 ∪A2 ∪ · · · ∪Ak+1

and B1 ∪A1 ∪B2. Thus (Θ2k+1
n )∗ = PB2(Θ2k−1

n ,Θ2
n) where B2 is a segment

of both Θ2k−1
n and Θ2

n. Hence (Θ2k+1
n )∗ ∼= Θ2k+1

n . �

Using Lemmas 5.4 and 3.10, we get the following result.

Lemma 5.6. If the 3-connected matroid M is obtained from Θ2m+1
n by con-

tracting elements of B1 ∪ B2 ∪ · · · ∪ Bm+1 and simplifying, then M is se-
quential.

The main result of this section is the following converse to the last lemma.

Theorem 5.7. Let M be an n-element sequential matroid and suppose that
M is representable over GF (q). For µ ∈ {n, q + 1}, if n ≥ 5, then M is
isomorphic to a minor of Θ2n−9

µ , while if n ∈ {3, 4}, then M is isomorphic to
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a minor of Θ1
µ. More specifically, a minor isomorphic to M can be obtained

from Θ2n−9
µ or Θ1

µ by contracting elements of ∪iBi and simplifying, and
deleting elements of ∪iAi and cosimplifying.

The proof of this theorem will use the following result.

Lemma 5.8. Every matroid in Πm
µ is a minor of Θ2m+1

µ obtained by con-
tracting elements of B1 ∪B2 ∪ · · · ∪Bm+1 and simplifying.

Proof. The unique member of Π1
µ is Vµ and this matroid is easily seen to be

obtained from Θ3
µ by simplifying the matroid we get by contracting all but

two elements of B1 and all but one element of B2. In particular, we may
assume that A2 is one of the distinguished n-point lines of Vµ.

Now, as our induction assumption, we suppose that every matroid M
in Πm

µ is isomorphic to a minor of Θ2m+1
µ that is obtained by contracting

elements of B1∪B2∪· · ·∪Bm+1 and simplifying. In addition, suppose that,
under this isomorphism, Sm is mapped to Am+1 where, in constructing M ,
the last copy of Vµ that is adjoined has Rm and Sm as its distinguished lines.

Next we assume that M ∈ Πm+1
µ . Then M = PRm+1(Vµ, N) where

N ∈ Πm
µ and the copy of Vµ has Rm+1 and Sm+1 as its distinguished lines.

By construction, Rm+1 coincides with Sm. Moreover, by the induction as-
sumption, N is isomorphic to a minor of Θ2m+1

µ under which Sm is mapped
to Am+1. Hence we can relabel Rm+1 as Am+1. Let t and f be the tip
and the focus of the distinguished copy of Vµ. Now take a copy of Θ2

µ on
Am+1∪Bm+1∪Am+2 letting f be an element of Bm+1 and letting tm+1 and
tm+2 be the partners of f in Am+1 and Am+2, respectively. By contracting
Bm+1 − f from this copy of Θ2

µ, we obtain a copy of Vµ with an element
added in parallel to the tip. This parallel pair is {tm+1, tm+2}. By deleting
tm+1, we ensure that Am+2 labels one of the distinguished lines of this copy
of Vµ, and the lemma follows by induction. �

Proof of Theorem 5.7. If n ∈ {3, 4, 5}, then clearly M is isomorphic to a
minor of Θ1

µ. Now suppose that n ≥ 6. If M ∼= Un−2,n, then q + 1 ≥ n,
so µ ≥ n. Thus M is isomorphic to a minor of Θ1

µ and hence to a minor
of Θ2n−9

µ . If M 6∼= Un−2,n, then, by Theorem 4.4, M is isomorphic to a
minor of Πn−5

µ . But, by Lemma 5.8, every member of Πn−5
µ is a minor of

Θ2(n−5)+1
µ , that is, of Θ2n−9

µ . We conclude that the second sentence of the
theorem holds. It remains to establish that the assertion in the last sentence
of the theorem is true. If n ∈ {3, 4}, then M is uniform of rank 1 or 2 and
the asserted result holds.
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Assume that n ≥ 5. Then M ∼= Θ2n−9
µ \X/Y . We shall show that if

e ∈ Ai∩Y , then we can remove e in a cosimplification step. This will suffice
to prove the required result because there is an isomorphism between Θ2n−9

µ

and its dual that interchanges ∪n−4
i=1 Ai and ∪n−4

i=1 Bi. Let Ai = {a′1, a′2, . . . , a′µ}
and e = a′µ. Then {a′1, a′2, . . . , a′µ−1} is a parallel class of Θ2n−9

µ /a′µ so M

is isomorphic to a minor of Θ2n−9
µ /a′µ\{a′2, a′3, . . . , a′µ−1}. One possibility

here is that i = n − 4. Suppose i < n − 4. Then the last matroid is the
parallel connection, with basepoint a′1, of Θ2i−1

µ /a′µ\{a′2, a′3, . . . , a′µ−1} and
[Θ2n−9

µ |(Ai∪Bi+1∪· · ·∪An−4)]/a′µ\{a′2, a′3, . . . , a′µ−1}. In this case, because
M is 3-connected, it is isomorphic to a minor of one of the two matroids
involved in this parallel connection.

First letM be isomorphic to a minor of Θ2i−1
µ /a′µ\{a′2, a′3, . . . , a′µ−1} where

we allow i = n− 4. By Lemma 5.3, Θ2i−1
µ \{a′2, a′3, . . . , a′µ−1} has a′1 and a′µ

in non-trivial series classes. Hence, when we remove a′µ, we can do so as
part of a cosimplification.

Now suppose that M is isomorphic to a minor of

[Θ2n−9
µ |(Ai ∪Bi+1 ∪ · · · ∪An−4)]/a′µ\{a′2, a′3, . . . , a′µ−1}.

Observe that [Θ2n−9
µ |(Ai ∪ Bi+1 ∪ · · · ∪ An−4)] ∼= Θ2(n−4−i)

µ . Thus, by
Lemma 5.3,

[Θ2n−9
µ |(Ai ∪Bi+1 ∪ · · · ∪An−4)]\{a′2, a′3, . . . , a′µ−1}

has a′1 and a′µ in non-trivial series classes and, after these elements are

contracted, we obtain a matroid isomorphic to Θ2(n−i)−9
µ . Again, when we

remove a′µ, we can do so as part of a cosimplification. �

Theorem 2.3 follows by combining Lemma 5.6 and Theorem 5.7. The
graph Γ2m+1 in the next lemma was defined in Section 1.

Lemma 5.9. Θ2m+1
3

∼= M(Γ2m+1).

Proof. Evidently Γ1
∼= K4 so Θ1

3
∼= M(Γ1). By (2.2), Θ2

3
∼= M((K5 − e)∗)

and the lemma follows without difficulty from this. �

In Θ2m+1
3 , the set B1 corresponds to v0u1, v0v1, v0w1; each Ai corresponds

to {uivi, viwi, wiui}; and, for all i in {1, 2, . . . ,m}, the set Bi+1 corresponds
to {uiui+1, vivi+1, wiwi+1}.

By combining Theorem 5.7 and Lemma 5.9, we immediately obtain the
next result, which implies Theorem 1.1.
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Corollary 5.10. Let M be an n-element binary sequential matroid. Then
M is graphic being a minor of Θ2n−9

3 when n ≥ 5; and a minor of Θ3 when
n ∈ {3, 4}.

Corollary 5.11. Let M be an n-element graphic sequential matroid with
n ≥ 4. Then M ∼= M(G) where G is a minor of Γ2n−9.

We remark that we have made no attempt to find the minimum value
of m such that every n-element graphic sequential matroid is a minor of
Γ2m+1. In this regard, observe that, from considering vertex degrees, one
can show that the wheel with 2k spokes is a minor of Γ2k−3 but is not a
minor of Γ2k−5.
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