CONSTRUCTIVE CHARACTERIZATIONS OF 3-CONNECTED MATROIDS OF PATH WIDTH THREE

BRIAN BEAVERS AND JAMES OXLEY

Abstract

A matroid M is sequential or has path width 3 if M is 3 -connected and its ground set has a sequential ordering, that is, an ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ such that $\left(\left\{e_{1}, e_{2}, \ldots, e_{k}\right\},\left\{e_{k+1}, e_{k+2}, \ldots, e_{n}\right\}\right)$ is a 3 -separation for all k in $\{3,4, \ldots, n-3\}$. This paper proves that every sequential matroid is easily constructible from a uniform matroid of rank or corank two by a sequence of moves each of which consists of a slight modification of segment-cosegment or cosegment-segment exchange. It is also proved that if N is an n-element sequential matroid, then N is representable over all fields with at least $n-1$ elements; and there is an attractive family of self-dual sequential 3 -connected matroids such that N is a minor of some member of this family.

1. Introduction

The matroid terminology used here will follow Oxley [6] with the following exceptions. The simplification and cosimplification of a matroid M will be denoted by $\operatorname{si}(M)$ and $\mathrm{co}(M)$, respectively. The full closure $\mathrm{fcl}(X)$ of a set X in M is the minimal set Y containing X such that Y is closed in both M and M^{*}. We can obtain $\operatorname{fcl}(X)$ by beginning with X and alternately taking the closure and the coclosure of the current set until no new elements can be added. For a 2 -connected matroid M, Cunningham and Edmonds [3] gave a tree decomposition that displays all of its 2 -separations. When M is 3 -connected, in order to gain control of the 3 separations so that they could be displayed in a corresponding tree, Oxley, Semple, and Whittle [8] defined 3 -separations $\left(Y_{1}, Y_{2}\right)$ and $\left(Z_{1}, Z_{2}\right)$ to be equivalent if $\left\{\operatorname{fcl}\left(Y_{1}\right), \operatorname{fcl}\left(Y_{2}\right)\right\}=\left\{\operatorname{fcl}\left(Z_{1}\right), \operatorname{fcl}\left(Z_{2}\right)\right\}$. Their tree decomposition was only guaranteed to display one representative from each equivalence class of non-sequential 3 -separations, where a 3 -separation $\left(X_{1}, X_{2}\right)$ of M is sequential if $E(M) \in\left\{\operatorname{fcl}\left(X_{1}\right), \mathrm{fcl}\left(X_{2}\right)\right\}$. One class of 3-connected matroids whose tree decompositions consist of a single vertex are sequential matroids, that is, those 3 -connected matroids for which the ground set has an ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ such that $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ is 3 -separating for all

Date: October 8, 2007.
1991 Mathematics Subject Classification. 05B35.
i with $0 \leq i \leq n$. Such an ordering of the ground set is called sequential, and sequential matroids are also said to have path width three. Hall, Oxley, and Semple [5] considered the possible sequential orderings of a sequential matroid N and identified the structures in N that permit these different sequential orderings.

In this paper, we give a simple constructive description of all sequential matroids and we use this result to show that every n-element sequential matroid is representable over all fields with at least $n-1$ elements. In addition, we introduce an attractive family of self-dual sequential matroids such that every sequential matroid is a minor of some member of this family. One consequence of the main results of this paper is the following theorem. For each non-negative integer m, let $\Gamma_{2 m+1}$ be the graph that is constructed as follows: take $m+1$ copies of K_{3} on disjoint vertex sets $\left\{u_{1}, v_{1}, w_{1}\right\},\left\{u_{2}, v_{2}, w_{2}\right\}, \ldots$, and $\left\{u_{m+1}, v_{m+1}, w_{m+1}\right\}$; for all i in $\{1,2, \ldots, m\}$, add the edges $u_{i} u_{i+1}, v_{i} v_{i+1}$, and $w_{i} w_{i+1}$; adjoin one additional vertex v_{0} and add the edges $v_{0} u_{1}, v_{0} v_{1}$, and $v_{0} w_{1}$.

Theorem 1.1. Let M be an n-element binary sequential matroid with $n \geq 5$. Then M is isomorphic to a minor of $M\left(\Gamma_{2 n-9}\right)$.

2. Overview

In this section, after some preliminary definitions, we state the main results of the paper. The proofs of these results will occupy the rest of the paper. We begin by describing a family of matroids introduced in [7] that will be of particular importance in this paper. For each $k \geq 3$, take a basis $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ of $P G(k-1, \mathbb{R})$ and a line L that is freely placed relative to this basis. By modularity, for each i, the hyperplane of $P G(k-1, \mathbb{R})$ that is spanned by $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}-\left\{y_{i}\right\}$ meets L. Let x_{i} be the point of intersection. We shall denote by Θ_{k} the restriction of $\operatorname{PG}(k-1, \mathbb{R})$ to $\left\{y_{1}, y_{2}, \ldots, y_{k}, x_{1}, x_{2}, \ldots, x_{k}\right\}$. The reader can easily check that Θ_{3} is isomorphic to $M\left(K_{4}\right)$. Alternatively, for all $k \geq 3$, we can define Θ_{k} to be the matroid with ground set $\left\{y_{1}, y_{2}, \ldots, y_{k}, x_{1}, x_{2}, \ldots, x_{k}\right\}$ whose circuits consist of all 3 -element subsets of $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$; all sets of the form $\left(\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}-\left\{y_{i}\right\}\right) \cup\left\{x_{i}\right\}$, where $i \in\{1,2, \ldots, k\}$; and all sets of the form $\left(\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}-\left\{y_{j}\right\}\right) \cup\left\{x_{g}, x_{h}\right\}$, where j, g, and h are distinct elements of $\{1,2, \ldots, k\}[7$, Lemma 2.2]. When we want to emphasize its ground set, we shall sometimes write Θ_{k} as $\Theta_{k}(X, Y)$ noting that $\Theta_{k}(X, Y) \mid X \cong U_{2, k}$. As observed in [7, Lemma 2.1], the matroid Θ_{k} is isomorphic to its dual under the map that interchanges x_{i} and y_{i} for all i. Moreover, by [7, Lemma 2.4], X is a modular flat and Y is a basis in Θ_{k}. We remark that the sets X and Y here were called A and B in [7]. We shall call the elements x_{i} and y_{i} partners in Θ_{k}. Evidently, for every permutation σ of $\{1,2, \ldots, k\}$, the map
that takes x_{i} and y_{i} to $x_{\sigma(i)}$ and $y_{\sigma(i)}$, respectively, is an automorphism of Θ_{k}.

Let M_{1} and M_{2} be matroids such that $M_{1}\left|T=M_{2}\right| T$, where $T=E\left(M_{1}\right) \cap$ $E\left(M_{2}\right)$. Assume that T is a modular flat of M_{1}. The generalized parallel connection $P_{T}\left(M_{1}, M_{2}\right)$ of M_{1} and M_{2} across T is the matroid on $E\left(M_{1}\right) \cup$ $E\left(M_{2}\right)$ whose flats are those subsets Z of $E\left(M_{1}\right) \cup E\left(M_{2}\right)$ such that $Z \cap$ $E\left(M_{1}\right)$ is a flat of M_{1} and $Z \cap E\left(M_{2}\right)$ is a flat of M_{2}.

Two additional operations, based on generalized parallel connection, will be important here. A segment in a matroid N is a subset Z of $E(N)$ such that $N \mid Z \cong U_{2, k}$ for some $k \geq 3$. A cosegment of N is a segment of N^{*}. Now let X be a coindependent segment $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ of a matroid M. Since X is a modular line in Θ_{k}, the generalized parallel connection $P_{X}\left(\Theta_{k}, M\right)$ of Θ_{k} and M across X exists. Hence the matroid $P_{X}\left(\Theta_{k}, M\right) \backslash X$ is certainly defined. We denote this matroid by $\Delta_{X}(M)$ and call this operation a segment-cosegment exchange on X. It is shown in [7, Lemma 2.5] that Y is a cosegment in $\Delta_{X}(M)$. When $k=3$, a segment-cosegment exchange on X is a $\Delta-Y$ exchange on X.

To define the dual operation to segment-cosegment exchange, let M be a matroid having a k-element independent cosegment X. Then $M^{*} \mid X \cong U_{2, k}$ and we define $\nabla_{X}(M)$ to be $\left(\Delta_{X}\left(M^{*}\right)\right)^{*}$, that is, $\left[P_{X}\left(\Theta_{k}, M^{*}\right) \backslash X\right]^{*}$. We call this operation cosegment-segment exchange on X.

It is sometimes convenient, when performing a segment-cosegment exchange or a cosegment-segment exchange, to preserve the ground set of the original matroid M. This is done by relabelling y_{i} by x_{i} in $\Delta_{X}(M)$ or $\nabla_{X}(M)$, respectively.

The only sequential matroids with at most two elements are $U_{0,0}, U_{0,1}, U_{1,1}$, and $U_{1,2}$. The next theorem shows how, from every sequential matroid M with at least three elements, one can obtain a uniform matroid of rank or corank two. This result enables us to determine precisely the fields over which M is representable.

Theorem 2.1. Let M be a sequential matroid with $|E(M)| \geq 3$. Then a uniform matroid N that has at least three elements and is of rank or corank two can be obtained from M by using the following algorithm. Moreover, M is representable over a field \mathbb{F} if and only if $|\mathbb{F}| \geq|E(N)|-1$.
(i) Let $N=M$.
(ii) Take a sequential ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of N that begins with a maximal rank-2 dependent flat X of N or N^{*}. Let $k=|X|$.
(iii) If $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a circuit, go to (iv); if $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a cocircuit, go to (v).
(iv) If $X=E(N)$, then go to (vi); otherwise replace N by $\operatorname{co}\left(\Delta_{X}(N)\right)$ and go to (ii).
(v) If $X=E(N)$, then go to (vii); otherwise replace N by $\operatorname{si}\left(\nabla_{X}(N)\right)$ and go to (ii).
(vi) Output $N=U_{2, k}$ and stop.
(vii) Output $N=U_{k-2, k}$ and stop.

Essentially by reversing the steps in the last theorem, we can obtain all sequential matroids. A flat F of a matroid M is proper if $F \neq E(M)$.

Theorem 2.2. The class \mathcal{M} of sequential matroids with at least three elements coincides with the class of matroids that can be constructed by the following procedure.
(i) Let $\mathcal{M}_{0}=\left\{U_{2, m}, U_{m-2, m}: m \geq 3\right\}$.
(ii) Choose N in \mathcal{M}_{0} and take a sequential ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of N that begins with a maximal rank-2 dependent flat F of N or N^{*}. Take a subset X of F with $|X|=k \geq 3$.
(iii) If $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a circuit, go to (iv); if $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a cocircuit, go to (v).
(iv) For a subset X_{1} of X that is a proper flat of N^{*}, add $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ to \mathcal{M}_{0} and go to (ii).
(v) For a subset X_{1} of X that is a proper flat of N, add $\left(P_{X}\left(\Theta_{k}, N^{*}\right)\right)^{*} / X_{1}$ to \mathcal{M}_{0} and go to (ii).

Next we describe an attractive family of self-dual sequential matroids with the property that every sequential matroid is a minor of some member of the family. The matroids we construct here are based on the matroid Θ_{n}. To begin, we take $M^{\prime}=\Theta_{n}\left(B, A^{\prime}\right)$ and $M^{\prime \prime}=\Theta_{n}\left(B, A^{\prime \prime}\right)$ where $A^{\prime} \cap A^{\prime \prime}=\emptyset$. By [7, Lemma 2.4], B is a modular flat of M^{\prime} and $M^{\prime \prime}$. Hence $\left(P_{B}\left(M^{\prime}, M^{\prime \prime}\right)\right)^{*}$ is well-defined having ground set $A^{\prime} \cup B \cup A^{\prime \prime}$ and rank $n+2$. We shall denote this matroid by Θ_{n}^{2}. Note that Θ_{n}^{2} is well-defined. To see this, observe that, since both M^{\prime} and $M^{\prime \prime}$ are isomorphic to Θ_{n}, each element b of B has a partner a^{\prime} in A^{\prime} and a partner $a^{\prime \prime}$ in $A^{\prime \prime}$. It follows that once M^{\prime} has been labelled, the labelling of $M^{\prime \prime}$ is determined. We shall call a^{\prime} and $a^{\prime \prime}$ the partners of b in Θ_{n}^{2}. Observe that

$$
\begin{equation*}
\Theta_{n}^{2} / A^{\prime \prime}=\Theta_{n}\left(A^{\prime}, B\right) \tag{2.1}
\end{equation*}
$$

To see this, note that $\Theta_{n}^{2} / A^{\prime \prime}=\left(P_{B}\left(M^{\prime}, M^{\prime \prime}\right)\right)^{*} / A^{\prime \prime}=\left(P_{B}\left(M^{\prime}, M^{\prime \prime}\right) \backslash A^{\prime \prime}\right)^{*}=$ $\left(P_{B}\left(M^{\prime}, M^{\prime \prime} \backslash A^{\prime \prime}\right)\right)^{*}=\left(M^{\prime}\right)^{*}=\Theta_{n}\left(A^{\prime}, B\right)$.

The dual $\left(K_{5}-e\right)^{*}$ of the graph that is obtained by deleting an edge from K_{5} is the triangular prism graph. Since $\Theta_{3} \cong M\left(K_{4}\right)$, the reader can easily check that

$$
\begin{equation*}
\Theta_{3}^{2} \cong M\left(\left(K_{5}-e\right)^{*}\right)=M^{*}\left(K_{5}-e\right) \tag{2.2}
\end{equation*}
$$

We shall show in Lemma 5.1 that A^{\prime} and $A^{\prime \prime}$ are modular lines of Θ_{n}^{2}. We now inductively define the matroid $\Theta_{n}^{2 m+1}$ for all integers m and n with $m \geq 0$ and $n \geq 3$. The ground set of this matroid is the disjoint union of $2 m+2$ sets $B_{1}, A_{1}, B_{2}, A_{2}, \ldots, B_{m+1}, A_{m+1}$, each of which has exactly n elements. Let $M_{0}=\Theta_{n}\left(A_{1}, B_{1}\right)$. For all i in $\{1,2, \ldots, m\}$, let M_{i} be a copy of Θ_{n}^{2} with ground set $A_{i} \cup B_{i+1} \cup A_{i+1}$ where $M_{i}\left|A_{i} \cong U_{2, n} \cong M_{i}\right| A_{i+1}$. Define $\Theta_{n}^{1}=M_{0}$, and, for all $m \geq 1$, let $\Theta_{n}^{2 m+1}=P_{A_{m}}\left(M_{m}, \Theta_{n}^{2 m-1}\right)$. A straightforward induction argument using partners establishes that $\Theta_{n}^{2 m+1}$ is well-defined. As we shall show in Lemmas 5.5 and $5.9, \Theta_{n}^{2 m+1}$ is isomorphic to its dual and $\Theta_{3}^{2 m+1} \cong M\left(\Gamma_{2 m+1}\right)$.

The matroid $\Theta_{n}^{2 n-9}$ is a universal sequential matroid in a sense that is made precise by the next result.
Theorem 2.3. If M is an n-element matroid for $n \geq 5$, then M is sequential if and only if M is isomorphic to a 3-connected minor of $\Theta_{n}^{2 n-9}$.

A sequential matroid with at least two elements can equivalently be described as a 3 -connected matroid M having a 2 -element subset X such that $\mathrm{fcl}(X)=E(M)$. In view of this, it is natural to consider those 2 -connected matroids M that have an element x such that $\operatorname{fcl}(\{x\})=E(M)$ or, equivalently, that have an ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of $E(M)$ in which $\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}$ is 2-separating for all i with $0 \leq i \leq n$. The next result is an analogue of Theorem 2.3 for such matroids. For $m \geq 1$, let Φ_{m} be the graph that is formed as follows. Begin with a path $v_{1}, b_{1}, v_{2}, b_{2}, \ldots, b_{m-1}, v_{m}$ with edges $b_{1}, b_{2}, \ldots, b_{m-1}$; add a new vertex v_{0} and, for all i in $\{1,2, \ldots, m\}$, add an edge a_{i} joining v_{0} to v_{i}; finally, add an edge b_{m} parallel to a_{m}. Evidently, Φ_{m} is a planar graph that is isomorphic to its dual.
Theorem 2.4. Let M be a 2-connected matroid with $|E(M)|=n \geq 2$. Then M has an element x such that $\operatorname{fcl}(\{x\})=E(M)$ if and only if M is a 2-connected minor of $M\left(\Phi_{n-1}\right)$.

The rest of the paper is structured as follows. The next section contains some definitions together with some basic connectivity results that will be needed to prove the main theorems. That section also contains a proof of Theorem 2.4. In Section 4, we prove Theorems 2.1 and 2.2 and describe another family of sequential matroids of which every sequential matroid is a minor. This family is used in the proof of Theorem 2.3, which is given in Section 5.

3. Preliminaries

This section contains some definitions and lemmas needed to prove the theorems stated in the last section. We shall also prove Theorem 2.4 here.

For a matroid M on a set E, the connectivity function λ_{M} of M is defined, for all subsets Z of E, by $\lambda_{M}(Z)=r(Z)+r(E-Z)-r(M)$. We shall often abbreviate λ_{M} as λ. The set Z or the partition $(Z, E-Z)$ is k-separating if $\lambda(Z)<k$. The partition $(Z, E-Z)$ is a k-separation if it is k-separating and $|Z|,|E-Z| \geq k$; and M is n-connected if, for all j with $1 \leq j \leq n-1$, there are no $(n-j)$-separations in M. A k-separating set Z, or a k-separating partition $(Z, E-Z)$, or a k-separation $(Z, E-Z)$ is exact if $\lambda(Z)=k-1$ and is minimal if $\min \{|Z|,|E-Z|\}=k$. A k-separation $(Z, E-Z)$ is vertical if $r(Z), r(E-Z) \geq k$.

The connectivity function of a matroid M has a number of attractive properties. For example, $\lambda_{M}(Z)=\lambda_{M}(E-Z)$. Moreover, the connectivity functions of M and its dual M^{*} are equal. To see this, it suffices to note the easily verified fact that

$$
\lambda_{M}(Z)=r(Z)+r^{*}(Z)-|Z| .
$$

Now suppose that M is a 3 -connected matroid. Following [5], we use the term 3-sequence for an ordered partition $\left(E_{1}, E_{2}, \ldots, E_{n}\right)$ of $E(M)$ into non-empty sets such that if $i \in\{1,2, \ldots, n-1\}$ and both $\left|\bigcup_{j=1}^{i} E_{j}\right|$ and $\left|\bigcup_{j=i+1}^{n} E_{j}\right|$ exceed one, then $\bigcup_{j=1}^{i} E_{j}$ is exactly 3-separating. If, for some m in $\{1,2, \ldots, n\}$, there is an ordering $\overrightarrow{E_{m}}$ of E_{m}, say $\overrightarrow{E_{m}}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, such that $\left(E_{1}, E_{2}, \ldots, E_{m-1},\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots,\left\{x_{k}\right\}, E_{m+1}, \ldots, E_{n}\right)$ is a 3 -sequence, then we also write this 3 -sequence as $\left(E_{1}, E_{2}, \ldots, E_{m-1}, x_{1}, x_{2}, \ldots, x_{k}\right.$, $\left.E_{m+1}, \ldots, E_{n}\right)$ or ($\left.E_{1}, E_{2}, \ldots, E_{m-1}, \overrightarrow{E_{m}}, E_{m+1}, \ldots, E_{n}\right)$. A 3 -sequence of the form $\left(A, x_{1}, x_{2}, \ldots, x_{m}, B\right)$ such that $|A|,|B| \geq 2$ will be called an (A, B) 3 -sequence. This terminology agrees with [5]. Note, however, that in [4] a ' 3 -sequence' is what we have called here an ' $(A, B) 3$-sequence'.

Evidently if M is a 3-connected matroid and $E(M)=\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$, a sequence ($e_{1}, e_{2}, \ldots, e_{t}$) is a 3 -sequence if and only it is a sequential ordering of $E(M)$. When we refer to a sequential ordering of M of the form $\left(E_{1}, E_{2}, \ldots, E_{n}\right)$, we mean that there are orderings $\overrightarrow{E_{1}}, \overrightarrow{E_{2}}, \ldots, \overrightarrow{E_{n}}$ of $E_{1}, E_{2}, \ldots, E_{n}$ such that $\left(\overrightarrow{E_{1}}, \overrightarrow{E_{2}}, \ldots, \overrightarrow{E_{n}}\right)$ is a sequential ordering of M. A sequential matroid M is also said to have path width three because there is a path P with vertex set $E(M)$ such that the partition of $E(M)$ induced by each edge of P is a 3 -separating partition of $E(M)$.

The next result is elementary. Its proof appears, for example, in [4, Lemma 4.1].

Lemma 3.1. Let $\left(A, e_{1}, e_{2}, \ldots, e_{n}, B\right)$ be an $(A, B) 3$-sequence of a 3-connected matroid. Then, for each i, either
(i) $e_{i} \in \operatorname{cl}\left(A \cup\left\{e_{1}, \ldots, e_{i-1}\right\}\right) \cap \operatorname{cl}\left(\left\{e_{i+1}, \ldots, e_{n}\right\} \cup B\right)$, or
(ii) $e_{i} \in \operatorname{cl}^{*}\left(A \cup\left\{e_{1}, \ldots, e_{i-1}\right\}\right) \cap \operatorname{cl}^{*}\left(\left\{e_{i+1}, \ldots, e_{n}\right\} \cup B\right)$,
but not both.

We call e_{i} a guts or coguts element of $\left(A, e_{1}, e_{2}, \ldots, e_{n}, B\right)$ depending on whether (i) or (ii) of the last lemma holds or, equivalently, on whether e_{i} is in the closure or coclosure of $A \cup\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\}$. It was shown in [4, Lemma 4.6] that this labelling is robust in that if e_{i} is a guts element of some $(A, B) 3$-sequence, then it is a guts element of all $(A, B) 3$-sequences.

The class of sequential matroids is well-behaved. For example, it is clear that the dual of a sequential matroid is sequential. Moreover, we have the following attractive property.

Lemma 3.2. Every 3-connected minor N of a sequential matroid M is sequential. In particular, if \vec{E} is a sequential ordering of M, then the induced ordering on $E(N)$ is sequential.

The last lemma follows immediately from the next lemma, which, in turn, is a consequence of the well-known and easily verified fact that the connectivity function is monotone under taking minors.

Lemma 3.3. Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be an ordering of the ground set of a matroid M. If $\lambda_{M}\left(\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right) \leq k$ for all i and N is a minor of M, then $\lambda_{N}\left(\left\{e_{1}, e_{2}, \ldots, e_{i}\right\} \cap E(N)\right) \leq k$ for all i.

Next we insert the proof of Theorem 2.4. The argument here uses properties of the operation of parallel connection. Later, in the proof of Theorem 2.3, we shall use similar properties of the generalized parallel connection. In a matroid M, if $e \in E(M)$ and $Z \subseteq E(M)$, we write $e \in \mathrm{cl}^{(*)}(Z)$ to indicate that $e \in \operatorname{cl}(Z)$ or $e \in \operatorname{cl}^{*}(Z)$.

Proof of Theorem 2.4. Evidently $\mathrm{fcl}\left(\left\{a_{1}\right\}\right)=E\left(M\left(\Phi_{n-1}\right)\right)=\operatorname{fcl}\left(\left\{b_{n-1}\right\}\right)$ and, by Lemma 3.3, it follows that every 2 -connected minor N of $M\left(\Phi_{n-1}\right)$ has an element whose full closure is $E(N)$.

Now suppose that M has an element x such that $\operatorname{fcl}(\{x\})=E(M)$. We shall argue by induction on n that
2.4.1. M is isomorphic to a minor of $M\left(\Phi_{n-1}\right)$ in which x is mapped to a_{1} or b_{n-1}.

If $n=2$, then $M \cong U_{1,2} \cong M\left(\Phi_{1}\right)$ so (2.4.1) holds. Assume it holds for $n<k$ and let $n=k \geq 3$. Since $\operatorname{fcl}(\{x\})=E(M)$, there is an ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of $E(M)$ such that $x=e_{1}$ and, for all $i \geq 2$, the element
$e_{i} \in \operatorname{cl}^{(*)}\left(\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\}\right)$. We shall show that (2.4.1) holds when $e_{3} \in$ $\operatorname{cl}\left(\left\{e_{1}, e_{2}\right\}\right)$. If, instead, $e_{3} \in \operatorname{cl}^{*}\left(\left\{e_{1}, e_{2}\right\}\right)$, then $e_{3} \in \operatorname{cl}_{M^{*}}\left(\left\{e_{1}, e_{2}\right\}\right)$ so we can apply the same argument to get that M^{*} is isomorphic to a minor of $M\left(\Phi_{n-1}\right)$ in which e_{1} is mapped to a_{1} or b_{n-1}. Because there is an isomorphism between $M^{*}\left(\Phi_{n-1}\right)$ and $M\left(\Phi_{n-1}\right)$ that interchanges a_{1} and b_{n-1}, the required result will follow.

Since $e_{2} \in \operatorname{cl}^{(*)}\left(\left\{e_{1}\right\}\right)$ and $e_{3} \in \operatorname{cl}\left(\left\{e_{1}, e_{2}\right\}\right)$, the matroid $M \mid\left\{e_{1}, e_{2}, e_{3}\right\}$ is isomorphic to $U_{1,3}$ or $U_{2,3}$. Each of the last two matroids is isomorphic to a minor of $M\left(\Phi_{2}\right)$ in which e_{1} is mapped to a_{1} or b_{2}, so the required result holds for $|E(M)|=3$. We may now assume that $|E(M)| \geq 4$. Then one easily checks that $\lambda_{M / e_{3}}\left(\left\{e_{1}, e_{2}\right\}\right)=\lambda_{M}\left(\left\{e_{1}, e_{2}\right\}\right)-1=0$, so M / e_{3} is not 2 -connected. Thus, by a result of Brylawski [2] (see also [6, 7.1.16 and 7.1.17]), M is the parallel connection, with basepoint e_{3}, of $M \mid\left\{e_{1}, e_{2}, e_{3}\right\}$ and $M \backslash e_{1}, e_{2}$, and each of the last two matroids is 2-connected. It follows, by Lemma 3.3, that the sequence $\left(e_{3}, e_{4}, \ldots, e_{n}\right)$ has the property that $\left\{e_{3}, e_{4}, \ldots, e_{i}\right\}$ is 2 -separating in $M \backslash e_{1}, e_{2}$ for all i in $\{3,4, \ldots, n-1\}$. Thus, by the induction assumption, $M \backslash e_{1}, e_{2}$ is isomorphic to a minor of $M\left(\Phi_{n-3}\right)$ in which e_{3} is mapped to either a_{1} or b_{n-3}.

After combining the two possibilities for $M \backslash e_{1}, e_{2}$ with the two possibilities for $M \mid\left\{e_{1}, e_{2}, e_{3}\right\}$, we get a total of four cases. But, because each of $M \backslash e_{1}, e_{2}$ and $M \mid\left\{e_{1}, e_{2}, e_{3}\right\}$ is graphic, it is straightforward to check that, in each case, M is isomorphic to a minor of $M\left(\Phi_{n-1}\right)$ in which e_{1} is mapped to a_{1} or b_{n-1}. The theorem follows by induction.

The next result [4, Lemma 3.2] contains two more elementary properties of sequential matroids.

Lemma 3.4. Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a sequential ordering of a 3-connected matroid M, and let $i<j$.
(i) If $e_{j} \in \operatorname{cl}^{(*)}\left(\left\{e_{1}, e_{2}, \ldots, e_{i}\right\}\right)$, then

$$
\left(e_{1}, e_{2}, \ldots, e_{i}, e_{j}, e_{i+1}, \ldots, e_{j-1}, e_{j+1}, e_{n}\right)
$$

is also a sequential ordering of M.
(ii) If $r\left(\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}\right)=2$ and $\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ is an arbitrary permutation of $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, then $\left(z_{1}, z_{2}, \ldots, z_{k}, e_{k+1}, \ldots, e_{n}\right)$ is also a sequential ordering of M.

One of the most useful features of the connectivity function λ of M is that it is submodular, that is, for all $J, K \subseteq E(M)$,

$$
\lambda(J)+\lambda(K) \geq \lambda(J \cap K)+\lambda(J \cup K)
$$

This means that if J and K are k-separating, and one of $J \cap K$ or $J \cup K$ is not $(k-1)$-separating, then the other must be k-separating. The next lemma specializes this fact.

Lemma 3.5. Let M be a 3-connected matroid, and let J and K be 3separating subsets of $E(M)$.
(i) If $|J \cap K| \geq 2$, then $J \cup K$ is 3-separating.
(ii) If $|E(M)-(J \cup K)| \geq 2$, then $J \cap K$ is 3-separating.

Another consequence of the submodularity of λ is the following very useful result for 3-connected matroids, which has come to be known as Bixby's Lemma [1] (see also [6, Proposition 8.4.6]).

Lemma 3.6. Let M be a 3-connected matroid and e be an element of M. Then either $M \backslash e$ or M / e has no non-minimal 2-separations. Moreover, in the first case, $\operatorname{co}(M \backslash e)$ is 3 -connected, while, in the second case, $\operatorname{si}(M / e)$ is 3 -connected.
Lemma 3.7. For all $k \geq 3$, the matroid Θ_{k} is sequential. Moreover, if \vec{X} and \vec{Y} are arbitrary permutations of X and Y, respectively, then (\vec{X}, \vec{Y}) is a sequential ordering of Θ_{k}.

Proof. It was noted in [8] that Θ_{k} is 3-connected. Now let \vec{Z} be an initial subsequence of (\vec{X}, \vec{Y}). Then either $Z \subseteq X$ or $E\left(\Theta_{k}\right)-Z \subseteq Y$. Hence $r(Z)=2$ or $r^{*}\left(E\left(\Theta_{k}\right)-Z\right)=2$, and we deduce that $\lambda(Z)=2$.

The next result follows, for example, by [9].
Lemma 3.8. Let M_{1} and M_{2} be 3-connected matroids and $E\left(M_{1}\right) \cap E\left(M_{2}\right)=$ T. Assume that $M_{1}\left|T=M_{2}\right| T$ and that T is a rank- 2 modular flat of M_{1}. Then $P_{T}\left(M_{1}, M_{2}\right)$ is 3 -connected.

Corollary 3.9. Let N be a 3 -connected matroid having a rank- 2 subset X such that $|X|=k \geq 3$. Then $P_{X}\left(\Theta_{k}, N\right)$ is 3-connected.

Lemma 3.10. Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a sequential ordering of a sequential matroid M. Let $A=\left\{e_{1}, e_{2}\right\}$ and $B=\left\{e_{n-1}, e_{n}\right\}$. For $3 \leq i \leq n-2$, if e_{i} is a guts element of the $(A, B) 3$-sequence $\left(A, e_{3}, e_{4}, \ldots, e_{n-2}, B\right)$ but $e_{i} \notin$ $\operatorname{cl}(A) \cup \operatorname{cl}(B)$, then $\operatorname{si}\left(M / e_{i}\right)$ is not 3 -connected, so $\operatorname{co}\left(M \backslash e_{i}\right)$ is sequential.

Proof. The partition $\left(\left\{e_{1}, e_{2}, \ldots, e_{i-1}\right\},\left\{e_{i+1}, e_{i+2}, \ldots, e_{n}\right\}\right)$ is a vertical 2separation of M / e_{i}, so si $\left(M / e_{i}\right)$ is not 3-connected. By Lemma 3.6, $\operatorname{co}\left(M \backslash e_{i}\right)$ is 3 -connected and the lemma follows by Lemma 3.2.

Lemma 3.11. Let M_{1} and M_{2} be sequential matroids. Let $T=E\left(M_{1}\right) \cap$ $E\left(M_{2}\right)$ and assume that $M_{1}\left|T=M_{2}\right| T$ and that T is a rank-2 modular flat of M_{1}. Let M_{1} and M_{2} have sequential orderings $\left(\overrightarrow{U_{1}}, \overrightarrow{T_{1}}\right)$ and $\left(\overrightarrow{T_{2}}, \overrightarrow{U_{2}}\right)$ where $T_{1}=T=T_{2}$. Then $P_{T}\left(M_{1}, M_{2}\right)$ is a sequential matroid having $\left(\overrightarrow{U_{1}}, \overrightarrow{T_{1}}, \overrightarrow{U_{2}}\right)$ as a sequential ordering.

Proof. For each i, let $E_{i}=E\left(M_{i}\right)$. Then $E_{i}=U_{i} \cup T_{i}$. Let $M=P_{T}\left(M_{1}, M_{2}\right)$ and abbreviate $E(M)$ as E. By Lemma 3.8, M is 3 -connected. If $r\left(M_{1}\right)=2$, then $T=E_{1}$, so $M=M_{2}$ and the result is immediate. Hence, we may assume that $r\left(M_{1}\right), r\left(M_{2}\right) \geq 3$. Thus $E\left(M_{1}\right)-T$ and $E\left(M_{2}\right)-T$ span T in M_{1} and M_{2}, respectively. Now, since T has rank 2 in M_{2}, the ordering $\left(\overrightarrow{T_{1}}, \overrightarrow{U_{2}}\right)$ of E_{2} is sequential in M_{2}.

To complete the proof, we shall show that $\left(\overrightarrow{U_{1}}, \overrightarrow{T_{1}}, \overrightarrow{U_{2}}\right)$ is a sequential ordering of M. Let \vec{Z} be an initial subsequence of $\left(\overrightarrow{U_{1}}, \overrightarrow{T_{1}}, \overrightarrow{U_{2}}\right)$ with $|Z|, \mid E-$ $Z \mid \geq 3$. By symmetry, we may assume that $Z \subseteq U_{1} \cup T$. Now U_{1} and U_{2} span M_{1} and M_{2}, respectively. Thus, if $Z \supseteq U_{1}$, then, as $E-Z \supseteq U_{2}$, we have

$$
r(Z)+r(E-Z)-r(M)=r\left(M_{1}\right)+r\left(M_{2}\right)-r(M)=2 .
$$

Now suppose $Z \subseteq U_{1}$. Then, by submodularity,

$$
\begin{aligned}
r(Z)+r(E-Z)-r(M)= & r(Z)+r\left(\left(E_{1}-Z\right) \cup E_{2}\right)-r(M) \\
\leq & r(Z)+\left[r\left(E_{1}-Z\right)\right. \\
& \left.+r\left(E_{2}\right)-r\left(\operatorname{cl}\left(E_{1}-Z\right) \cap \operatorname{cl}\left(E_{2}\right)\right)\right]-r(M) \\
\leq & r(Z)+r\left(E_{1}-Z\right)+r\left(E_{2}\right) \\
& -r(T)-\left[r\left(M_{1}\right)+r\left(M_{2}\right)-2\right] \\
= & r(Z)+r\left(E_{1}-Z\right)-r\left(M_{1}\right) \\
\leq & 2 .
\end{aligned}
$$

We conclude that if $Z \subseteq U_{1} \cup T$, then $(Z, E-Z)$ is 3 -separating and the lemma follows.

Lemma 3.12. Let M be a 3-connected matroid, (J, K) be a 3 -separation of M, and $Z \subseteq \operatorname{cl}(J) \cap \operatorname{cl}(K)$. If both $|J-Z|$ and $|K-Z|$ exceed two, then
(i) $M \backslash Z$ is connected;
(ii) $\operatorname{co}(M \backslash Z)$ is 3-connected; and
(iii) every non-trivial series class of $M \backslash Z$ has exactly two elements, one in $J-Z$ and the other in $K-Z$.

Proof. We have

$$
\begin{aligned}
2 & =r(J)+r(K)-r(M) \\
& \geq r(J-Z)+r(K \cup Z)-r(M) \\
& \geq 2 .
\end{aligned}
$$

Thus equality holds throughout and so $\operatorname{cl}(J-Z) \supseteq J$. Hence $\operatorname{cl}(J-Z) \supseteq Z$. Likewise, $\mathrm{cl}(K-Z) \supseteq Z$.

We shall prove all three parts simultaneously. Suppose that, for some k in $\{1,2\}$, the matroid $M \backslash Z$ has an exact k-separation (R, G). Since $Z \subseteq$ $\operatorname{cl}(J-Z) \cap \operatorname{cl}(K-Z)$, both R and G meet both $J-Z$ and $K-Z$, otherwise $(R \cup Z, G)$ or $(R, G \cup Z)$ is an exact k-separation of M; a contradiction.

Since $|J-Z| \geq 3$, we may assume that $|G \cap(J-Z)| \geq 2$. Now $\lambda_{M \backslash Z}(G)=$ $k-1$ and $\lambda_{M \backslash Z}(J-Z)=2$. Hence, by the submodularity of λ, we get

$$
\lambda_{M \backslash Z}(G \cap(J-Z))+\lambda_{M \backslash Z}(G \cup(J-Z)) \leq 2+k-1 .
$$

Since $(E-Z)-(G \cup(J-Z))=R \cap(K-Z)$, we have

$$
\lambda_{M \backslash Z}(G \cap(J-Z))+\lambda_{M \backslash Z}(R \cap(K-Z)) \leq 2+k-1 .
$$

As $Z \subseteq \operatorname{cl}(R \cup(K-Z)) \cap \operatorname{cl}(G \cup(J-Z))$, it follows that

$$
\lambda_{M}(G \cap(J-Z))+\lambda_{M}(R \cap(K-Z)) \leq 2+k-1 .
$$

Since $|G \cap(J-Z)| \geq 2$, we have $\lambda_{M}(G \cap(J-Z)) \geq 2$ and so $\lambda_{M}(R \cap(K-$ $Z)) \leq k-1$. As $R \cap(K-Z)$ is non-empty, it follows that $k \neq 1$. Hence $k=2$ and $|R \cap(K-Z)|=1$. Therefore $M \backslash Z$ is connected. Moreover, as $|K-Z| \geq 3$, we have $|G \cap(K-Z)| \geq 2$. Thus we can interchange J and K in the argument in this paragraph to get that $|R \cap(J-Z)|=1$. Hence $|R|=2$. Therefore R is a cocircuit of $M \backslash Z$ and every non-trivial series class of $M \backslash Z$ has exactly one element in $J-Z$ and exactly one element in $K-Z$. Furthermore, $M \backslash Z$ has no 2-separation (R, G) in which both R and G are dependent, so $\operatorname{co}(M \backslash Z)$ is 3-connected (see, for example, [10, (5.1)]).

Let n be an integer with $n \geq 3$. Let V_{n} be the rank- 3 matroid with a (2n)-point ground set $R \cup S \cup f$ consisting of two distinct n-point lines, R and S, with $R=\left\{t, r_{1}, r_{2}, \ldots, r_{n-1}\right\}$ and $S=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$, and a point f placed so that $\left\{f, r_{i}, s_{i}\right\}$ is a line for all i in $\{1,2, \ldots, n-1\}$. Evidently, $V_{3} \cong M\left(K_{4}\right)$. We call R and S the distinguished lines of V_{n}. The points t and f are called the tip and the focus of V_{n}. When $n \geq 4$, the distinguished lines, the tip, and the focus of V_{n} are uniquely determined. When $n=3$, we designate two 3 -point lines of V_{n} as the distinguished lines and this determines the tip and the focus.

In V_{n}, both R and S are modular lines. We now describe an important family Π_{n}^{m} of matroids. For some $m \geq 1$, let $M_{1}, M_{2}, \ldots, M_{m}$ be copies of
V_{n}. Let R_{i} and S_{i} be the distinguished lines of M_{i}, and t_{i} and f_{i} be its tip and its focus. For each i in $\{1,2, \ldots, m-1\}$, let φ_{i} be a bijection from S_{i} to R_{i+1}. Identify each element of S_{i} with its image under φ_{i} and let N_{m} be the matroid that is constructed as follows: $N_{1}=M_{1} ; N_{2}=P_{R_{2}}\left(M_{2}, N_{1}\right)$; $\ldots ; N_{m}=P_{R_{m}}\left(M_{m}, N_{m-1}\right)$. Evidently, N_{m} depends on the bijections φ_{i}. We denote by Π_{n}^{m} the collection of all possible such matroids N_{m}.

Lemma 3.13. The matroid N_{m} is sequential.

Proof. We establish the lemma by proving the following by induction on m :
3.13.1. N_{m} is 3 -connected having a sequential ordering of the form $\left(Z_{m}, S_{m}\right)$.

If $m=1$, then $\left(\overrightarrow{R_{1}-t_{1}}, f_{1}, \overrightarrow{S_{1}}\right)$ is a sequential ordering of N_{m} where $\overrightarrow{R_{1}-t_{1}}$ and $\overrightarrow{S_{1}}$ are arbitrary orderings of $R_{1}-t_{1}$ and S_{1}, respectively. Assume the assertion is true for $m=k$ and let $m=k+1$. Then $N_{k+1}=$ $P_{R_{k+1}}\left(M_{k+1}, N_{k}\right)$. By the induction assumption, N_{k} is 3 -connected having a sequential ordering of the form $\left(Z_{k}, S_{k}\right)$. Moreover, M_{k+1} is 3-connected having a sequential ordering of the form $\left(R_{k+1}, f_{k+1}, S_{k+1}-t_{k+1}\right)$. Since each element of S_{k} is identified with its image in R_{k+1} under the bijection φ_{k+1}, it follows by Lemma 3.11 that N_{k+1} is 3 -connected having a sequential ordering of the form $\left(Z_{k}, S_{k}, f_{k+1}, S_{k+1}-t_{k+1}\right)$. As $\left|S_{k+1}-t_{k+1}\right| \geq 2$, it follows that N_{k+1} has a sequential ordering of the form $\left(Z_{k+1}, S_{k+1}\right)$. Thus (3.13.1) holds and hence so does the lemma.

4. Constructing all sequential matroids

In this section, we prove Theorems 2.1 and 2.2. In addition, we establish a crucial step in the proof of Theorem 2.3.

Proof of Theorem 2.1. We shall first establish that if we begin at step (ii) of the algorithm with a sequential matroid N having a sequential ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and pass through the loop in the algorithm once to return to (ii), then the resulting matroid N^{\prime} has the following properties:
(a) N^{\prime} is sequential;
(b) N^{\prime} is representable over a field F if and only if N is representable over F; and
(c) either $\left|E\left(N^{\prime}\right)\right|<|E(N)|$, or N^{\prime} has a sequential ordering that begins with a maximal rank-2 flat X^{\prime} of N^{\prime} or $\left(N^{\prime}\right)^{*}$ such that $\left|X^{\prime}\right|>|X|$.

To establish this, we observe that N^{\prime} is either $\operatorname{co}\left(\Delta_{X}(N)\right)$ or $\operatorname{si}\left(\nabla_{X}(N)\right)$. By duality, it suffices to treat the first case. Then $r(X)=2$. Note that, since $X \neq E(N)$ and N is sequential, we have $|E(N)-X| \geq 3$ and $r(N) \geq 3$.

Since $2=\lambda_{N}(X)=r(X)+r^{*}(X)-|X|$, it follows that X is coindependent in N. Hence $\Delta_{X}(N)$ is well-defined. Now $\Delta_{X}(N)=P_{X}\left(\Theta_{k}, N\right) \backslash X$. By [7, Corollary 3.7], $\Delta_{X}(N)$ and N are representable over exactly the same fields. Hence (b) holds.

Now recall that $E\left(\Theta_{k}\right)=X \cup Y$. Let $E(N)-X=Z$. We know that Θ_{k} and N are sequential having sequential orderings of the form (Y, X) and (X, Z), respectively. Since $r(X)=2$, Lemma 3.11 implies that $P_{X}\left(\Theta_{k}, N\right)$ is sequential. Now $(Y \cup X, E(N)-X)$ is a 3-separation of $P_{X}\left(\Theta_{k}, N\right)$. Since $X=\operatorname{cl}(Y \cup X) \cap \operatorname{cl}(E(N)-X)$, it follows by Lemma 3.12 that $\operatorname{co}\left(P_{X}\left(\Theta_{k}, N\right) \backslash X\right)$ is 3-connected. Thus, by Lemma 3.2, the last matroid is sequential, that is, $\operatorname{co}\left(\Delta_{X}(N)\right)$ is sequential. Finally, we observe that either $\mid E\left(\operatorname{co}\left(\Delta_{X}(N)\right)\left|<|E(N)|\right.\right.$, or $\operatorname{co}\left(\Delta_{X}(N)\right)=\Delta_{X}(N)$. In the former case, $\left|E\left(N^{\prime}\right)\right|<|E(N)|$ and (c) holds. In the latter case, $\Delta_{X}(N)$ has a sequential ordering of the form $\left(Y, e_{k+1}, e_{k+2}, \ldots, e_{n}\right)$. Now Y is a union of triads in $\Delta_{X}(N)$ and e_{k+1} is a coloop of $N \backslash X$. By [7, Lemma 2.8], $N \backslash X=\Delta_{X}(N) \backslash Y$. Hence $Y \cup e_{k+1}$ spans a rank-2 flat of $\left(N^{\prime}\right)^{*}$, and again (c) holds. We conclude that (a)-(c) hold.

Because of (c), the algorithm terminates in a finite number of steps yielding the required uniform matroid N of rank or corank 2. Moreover, the original matroid M is representable over exactly the same fields as N and so is \mathbb{F}-representable if and only if $|\mathbb{F}| \geq|E(N)|-1$.

The following is an immediate consequence of Theorem 2.1.
Corollary 4.1. If a sequential matroid M is representable over a field with n elements, then M is representable over all fields with at least n elements.

Next we show how, by reversing the steps in Theorem 2.1, we can build all sequential matroids from uniform matroids of rank or corank two.

Lemma 4.2. Let N be a sequential matroid. Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a sequential ordering of $E(N)$ in which $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is a rank-2 flat for some $m \geq 3$. Let $X=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ where $3 \leq k \leq m$. If $X_{1} \subseteq X$ and X_{1} is a proper flat of N^{*}, then $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ is sequential.

Proof. Let $M_{1}=P_{X}\left(\Theta_{k}, N\right)$. Then M_{1} is certainly sequential. Let $X_{1}=$ $\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$ and suppose that X_{1} is a proper flat of N^{*}. We need to show that $M_{1} \backslash X_{1}$ is sequential. By Lemma 3.2, it suffices to show that $M_{1} \backslash X_{1}$ is 3 -connected. Evidently $\mathrm{cl}_{N}(X)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Suppose first that $r(N)=2$. Then $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ is 3-connected unless $\left|\mathrm{cl}_{N}(X)-X_{1}\right| \leq 2$. In the exceptional case, $E(N)-X_{1}$ is independent in N so X_{1} spans N^{*}. Hence X_{1} is not a proper flat of N^{*}.

We may now suppose that $r(N) \geq 3$. By Lemma 3.12, $\operatorname{co}\left(M_{1} \backslash X_{1}\right)$ is 3 -connected. The lemma will follow if we can show that $M_{1} \backslash X_{1}$ has no nontrivial series classes. Assume the contrary, letting S be such a series class. Then, by Lemma 3.12 again, S has exactly one element in Y and exactly one other element, say z, which is in $E(N)-X_{1}$. Thus M_{1} has a cocircuit of the form $S \cup X^{\prime}$ where $X^{\prime} \subseteq X_{1}$. Since N is a restriction of M_{1}, we deduce that N has a cocircuit that contains z and some subset of X_{1}. Hence X_{1} is not a flat of N^{*}; a contradiction.

Note that, up to an obvious relabelling, the matroid $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ in the last result can alternatively be obtained from N by first adding a single element in parallel to each element of $X-X_{1}$ to give the matroid N^{\prime} and then finding $\Delta_{X}\left(N^{\prime}\right)$.

Lemma 4.3. Let N be a 3 -connected matroid and X be a k-element segment in N for some $k \geq 3$. Assume that X_{1} is a subset of X such that $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ is 3 -connected but is not isomorphic to $U_{k, k+2}$. Then either
(i) X_{1} is a proper flat of N^{*}; or
(ii) $X_{1}=X$ and $Y \cup f$ is a cosegment of $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ for some f in $E(N)-X$.

Proof. Suppose that X_{1} is not a proper flat of N^{*}. Since $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ is 3 -connected, $X_{1} \neq E\left(N^{*}\right)$. Then, for some subset X_{2} of X_{1}, there is an element f of $E(N)-X_{1}$ such that $X_{2} \cup f$ is a cocircuit of N. Let H_{1} be the hyperplane $E(N)-\left(X_{2} \cup f\right)$ of N.

Suppose first that $f \in \operatorname{cl}_{N}(X)$. Then

$$
\lambda_{N}\left(X_{2} \cup f\right)=r\left(X_{2} \cup f\right)+\left(r^{*}\left(X_{2} \cup f\right)-\left|X_{2} \cup f\right|\right)=2+(-1)=1,
$$

so we have a contradiction to the fact that N is 3 -connected unless $\left|H_{1}\right| \leq 1$. Consider the exceptional case. We must have $r(N)=2$. Thus $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ is 3-connected having rank k, so $\left|E(N)-X_{1}\right| \geq 2$. But $\left|E(N)-X_{1}\right| \leq$ $\left|H_{1}\right|+1 \leq 2$, so $\left|E(N)-X_{1}\right|=2$. Thus $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ has $k+2$ elements and rank k, so $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1} \cong U_{k, k+2}$; a contradiction.

We may now assume that $f \notin \operatorname{cl}_{N}(X)$. Then $r(N) \geq 3$. Since $X_{2} \cup f$ is a cocircuit of N, by orthogonality with the triangles contained in $\operatorname{cl}_{N}(X)$, we deduce that $\left|\mathrm{cl}_{N}(X)-X_{2}\right| \leq 1$. We have $X_{2} \subseteq X_{1} \subseteq X \subseteq \operatorname{cl}_{N}(X)$. Suppose that $X=X_{2}$. Take $\left\{y_{1}, y_{2}\right\} \subseteq Y$. Then $Y-\left\{y_{1}, y_{2}\right\}$ is a flat of Θ_{k} of rank $k-2$. Thus $\left(Y-\left\{y_{1}, y_{2}\right\}\right) \cup H_{1}$ is a flat of $P_{X}\left(\Theta_{k}, N\right)$. But $r\left(\left(Y-\left\{y_{1}, y_{2}\right\}\right) \cup H_{1}\right)=r\left(H_{1}\right)+\left|Y-\left\{y_{1}, y_{2}\right\}\right|$ since each 3-element subset of Y is a triad of $P_{X}\left(\Theta_{k}, N\right)$. Thus $\left(Y-\left\{y_{1}, y_{2}\right\}\right) \cup H_{1}$ is a hyperplane of $P_{X}\left(\Theta_{k}, N\right)$. The complementary cocircuit is $\left\{y_{1}, y_{2}, f\right\} \cup X_{2}$, so $\left\{y_{1}, y_{2}, f\right\}$ is a cocircuit of $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ and (ii) holds.

It remains to consider the case when $X_{2} \neq X$. Then $X=\operatorname{cl}_{N}(X)$ and $\operatorname{cl}_{N}(X)-X_{2}=\{g\}$ for some element g. Thus Θ_{k} has a hyperplane H_{2} that meets X in $\{g\}$. Moreover, $H_{2}=\left(Y-g^{\prime}\right) \cup g$ for some g^{\prime} in Y. Thus $H_{1} \cup H_{2}$ is a hyperplane of $P_{X}\left(\Theta_{k}, N\right)$ and $(X-g) \cup g^{\prime} \cup f$ is the complementary cocircuit. Hence $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ has $\left\{g^{\prime}, f\right\}$ as a cocircuit. This contradicts the fact that $P_{X}\left(\Theta_{k}, N\right) \backslash X_{1}$ is 3-connected.

We are now ready to prove our construction yields the class of sequential matroids.

Proof of Theorem 2.2. It follows by Lemma 4.2 that every matroid produced by the prescribed procedure is sequential. Now let M be an arbitrary sequential matroid. Then, by using the algorithm in Theorem 2.1, we obtain a uniform matroid of rank or corank two. Up to duality, a typical step in this algorithm consists of replacing N by $\operatorname{si}\left(\nabla_{X}(N)\right)$ for some maximal cosegment X of N. Now consider how we can recover N from $\operatorname{si}\left(\nabla_{X}(N)\right)$. We know by Lemma 3.12 and duality that each non-trivial parallel class of $\nabla_{X}(N)$ contains exactly one element of Y. Now $\nabla_{X}(N)=\left(P_{X}\left(\Theta_{k}, N^{*}\right) \backslash X\right)^{*}$. Hence $\operatorname{si}\left(\nabla_{X}(N)\right)=\left(P_{X}\left(\Theta_{k}, N^{*}\right) \backslash X\right)^{*} \backslash W$ where, for some $Y_{0} \subseteq Y$ with $\left|Y_{0}\right|=|W|$, each element of Y_{0} is parallel to a unique element of W, and $W \cap Y=\emptyset$.

Recall that $\Theta_{k}(X, Y)$ denotes the copy of Θ_{k} in which X is a segment and Y is a cosegment. By [7, Corollary 2.12], when we maintain the same ground set after each segment-cosegment and cosegment-segment exchange, we have that $N=\Delta_{X}\left(\nabla_{X}(N)\right)$. This means, in the notation we are using, that

$$
N=P_{Y}\left(\Theta_{k}(Y, X),\left(P_{X}\left(\Theta_{k}(X, Y), N^{*}\right) \backslash X\right)^{*}\right) \backslash Y .
$$

In $\left(P_{X}\left(\Theta_{k}(X, Y), N^{*}\right) \backslash X\right)^{*}$, each element of Y_{0} is parallel to an element of W. Thus $N \cong P_{Y}\left(\Theta_{k}(Y, X),\left(P_{X}\left(\Theta_{k}(X, Y), N^{*}\right) \backslash X\right)^{*} \backslash W\right) \backslash Y_{1}$ where $Y_{1}=$ $Y-Y_{0}$, that is, $N \cong P_{Y}\left(\Theta_{k}(Y, X), \operatorname{si}\left(\nabla_{X}(N)\right)\right) \backslash Y_{1}$ where this isomorphism relabels each member of Y_{0} by the parallel element from W. Now we may assume that N is not uniform of corank 2 otherwise N is already in \mathcal{M}_{0}. Since N is 3-connected, by Lemma 4.3, either Y_{1} is a proper flat of $\left(\operatorname{si}\left(\nabla_{X}(N)\right)\right)^{*}$, or X is not a maximal cosegment of $P_{Y}\left(\Theta_{k}(Y, X), \operatorname{si}\left(\nabla_{X}(N)\right)\right) \backslash Y_{1}$, that is, of N. This contradiction means that the steps described in the theorem essentially correspond to reversing the steps in the algorithm in Theorem 2.1 and this completes the proof.

The next result will be important in our proof of Theorem 2.3, which appears in the next section. It provides an alternative to the latter result by giving another family of sequential matroids of which every sequential matroid is a minor. In the next theorem, we consider a field $\operatorname{GF}(q)$ over which an n-element sequential matroid M is representable. By Theorem 2.1,
we can find such a field simply by choosing $q \geq n-1$. But M may also be representable over smaller fields and we want our result to cover these fields too.

Theorem 4.4. Let M be an n-element sequential matroid and suppose that M is representable over $G F(q)$. For $\mu \in\{n, q+1\}$, if $n \geq 6$, then M is a minor of a member of Π_{μ}^{n-5} unless $M \cong U_{n-2, n}$, in which case, M is a minor of a member of Π_{μ}^{n-4}. If $n \in\{3,4,5\}$, then M is a minor of a member of Π_{μ}^{1}.

Proof. Let $r(M)=r$. As M is representable over $G F(q)$, we may view M as a restriction of $P G(r-1, q)$. We shall denote the closure of a set X in $P G(r-1, q)$ by $\langle X\rangle$.

Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a sequential ordering of M. Let $A=\left\{e_{1}, e_{2}\right\}$ and $B=\left\{e_{n-1}, e_{n}\right\}$ and consider the $(A, B) 3$-sequence $\left(A, e_{3}, e_{4}, \ldots, e_{n-2}, B\right)=$ (A, \vec{X}, B). Break $\left(A, e_{3}, e_{4}, \ldots, e_{n-2}, B\right)$ up according to the presence of coguts elements as $\left(G_{0}, c_{1}, G_{1}, c_{2}, \ldots, c_{s}, G_{s}\right)$, where $G_{0}=\operatorname{cl}\left(\left\{e_{1}, e_{2}\right\}\right)$ and $G_{s}=\operatorname{cl}\left(\left\{e_{n-1}, e_{n}\right\}\right)$, the elements $c_{1}, c_{2}, \ldots, c_{s}$ are the coguts elements of \vec{X}, and, for all i in $\{1,2, \ldots, s-1\}$, the set of guts elements lying between c_{i} and c_{i+1}, which may be empty, is G_{i}.

If $s=0$, then $M \cong U_{2, n}$, so $q \geq n-1$ and M is a minor of V_{n} and of V_{q+1}. Hence M is a minor of a member of Π_{μ}^{1}. Now suppose that $s \geq 1$. We shall show that M is a minor of a member of Π_{μ}^{s}.

First we show the following.
4.4.1. For each i in $\{1,2, \ldots, s-1\}$, the set G_{i} is a subset of the line G_{i}^{\prime} of $P G(r-1, q)$ that is the intersection of $\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup c_{i}\right\rangle$ and $\left\langle c_{i+1} \cup G_{i+1} \cup \cdots \cup G_{s}\right\rangle$.

We have

$$
r+2=r\left(G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup c_{i} \cup G_{i}\right)+r\left(c_{i+1} \cup G_{i+1} \cup \cdots \cup G_{s}\right) .
$$

But $G_{i} \subseteq \operatorname{cl}_{M}\left(G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup c_{i}\right) \cap \operatorname{cl}_{M}\left(c_{i+1} \cup G_{i+1} \cup \cdots \cup G_{s}\right)$. Thus

$$
\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup c_{i}\right\rangle \cap\left\langle c_{i+1} \cup G_{i+1} \cup \cdots \cup G_{s}\right\rangle
$$

is a rank-2 flat G_{i}^{\prime} of $\operatorname{PG}(r-1, q)$ containing G_{i}. Hence (4.4.1) holds.
We shall let G_{0}^{\prime} and G_{s}^{\prime} be the lines of $P G(r-1, q)$ spanned by G_{0} and G_{s}, respectively.
4.4.2. For each i in $\{0,1, \ldots, s-1\}$, there is a unique point t_{i} of $P G(r-1, q)$ in $\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i}\right\rangle \cap\left\langle G_{i+1} \cup c_{i+2} \cup \cdots \cup G_{s}\right\rangle$ and $G_{i}^{\prime} \cap G_{i+1}^{\prime}=\left\{t_{i}\right\}$.

We have $r\left(G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i} \cup c_{i+1}\right)=r\left(G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i}\right)+1$. Thus

$$
r\left(G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup c_{i} \cup G_{i}\right)+r\left(G_{i+1} \cup c_{i+2} \cup \cdots \cup G_{s}\right)=r+1 .
$$

Hence $\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i}\right\rangle \cap\left\langle G_{i+1} \cup c_{i+2} \cup \cdots \cup G_{s}\right\rangle$ is a point t_{i}. Now $\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i}\right\rangle \supseteq G_{i}^{\prime}$ and $\left\langle G_{i+1} \cup c_{i+2} \cup \cdots \cup G_{s}\right\rangle \supseteq G_{i+1}^{\prime}$. Hence $G_{i}^{\prime} \cap G_{i+1}^{\prime} \subseteq\left\{t_{i}\right\}$. But $\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i+1}\right\rangle$ has rank one more than $\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i}\right\rangle$, so

$$
\left\langle G_{0} \cup c_{1} \cup G_{1} \cup \cdots \cup G_{i+1}\right\rangle \cap\left\langle G_{i+1} \cup c_{i+2} \cup \cdots \cup G_{s}\right\rangle
$$

has rank 2 and contains and so equals G_{i+1}^{\prime}. This intersection also contains t_{i}, so $t_{i} \in G_{i+1}^{\prime}$. Similarly, $t_{i} \in G_{i}^{\prime}$. Thus (4.4.2) holds.

Next observe that
4.4.3. G_{i}^{\prime} meets G_{i+j}^{\prime} for some $j \geq 2$ if and only if $t_{i}=t_{i+1}=\cdots=t_{i+j-1}$.

This follows because t_{i} is the unique point of intersection of $\left\langle G_{0} \cup c_{1} \cup\right.$ $\left.G_{1} \cup \cdots \cup G_{i}\right\rangle$ and $\left\langle G_{i+1} \cup c_{i+2} \cup \cdots \cup G_{s}\right\rangle$.

We now define a sequence of sets of distinguished points beginning with $D_{0}=E(M) \cup t_{0}$. Assume that $D_{0}, D_{1}, \ldots, D_{i-1}$ have been defined. To define D_{i}, we introduce a function α_{i}. We let $\alpha_{i}\left(c_{i}\right)=t_{i-1}$; for each element x of $D_{i-1} \cap\left(G_{i-1}^{\prime}-t_{i-1}\right)$, let $\alpha_{i}(x)$ be the element of G_{i}^{\prime} that also lies on the line spanned by $\left\{x, c_{i}\right\}$. Define

$$
D_{i}=\left(D_{i-1}-c_{i}-G_{i-1}^{\prime}\right) \cup t_{i-1} \cup\left\{\alpha_{i}(x): x \in D_{i-1} \cap\left(G_{i-1}^{\prime}-t_{i-1}\right)\right\} \cup t_{i}
$$

where, if $i=s$, we take $t_{s}=t_{s-1}$.
The next two assertions are straightforward consequences of this definition.
4.4.4. $D_{0} \cap G_{i}^{\prime} \subseteq D_{1} \cap G_{i}^{\prime} \subseteq \cdots \subseteq D_{i} \cap G_{i}^{\prime}$.
4.4.5. $D_{s} \cap G_{i}^{\prime} \subseteq D_{s-1} \cap G_{i}^{\prime} \subseteq \cdots \subseteq D_{i+1} \cap G_{i}^{\prime}=\left\{t_{i}\right\}$.

We show next that
4.4.6.

$$
\left|D_{i} \cap G_{i}^{\prime}\right| \leq \begin{cases}\left|E(M)-\left(G_{i+1} \cup G_{i+2} \cup \cdots \cup G_{s}\right)\right|-(s-i)+1 & \text { if } i<s \\ |E(M)| & \text { if } i=s\end{cases}
$$

We argue by induction on i. If $i=0$, then $D_{i} \cap G_{i}^{\prime}$ is $\left(E(M) \cap G_{0}^{\prime}\right) \cup t_{0}$, which equals $G_{0} \cup t_{0}$, so the result follows. Assume that (4.4.6) holds for $i<j$ and let $i=j$.

Suppose first that $j<s$. Then $D_{j} \cap G_{j}^{\prime}$ is contained in the union of $\left\{t_{j-1}, t_{j}\right\} \cup G_{j}$ and the set $\left\{\alpha_{j}(x): x \in D_{j-1} \cap\left(G_{j-1}^{\prime}-t_{j-1}\right)\right\}$. Thus

$$
\begin{aligned}
\left|D_{j} \cap G_{j}^{\prime}\right| & \leq 2+\left|G_{j}\right|+\left|D_{j-1} \cap G_{j-1}^{\prime}\right|-1 \\
& =\left|G_{j}\right|+\left|D_{j-1} \cap G_{j-1}^{\prime}\right|+1 .
\end{aligned}
$$

But, by the induction assumption,

$$
\left|D_{j-1} \cap G_{j-1}^{\prime}\right| \leq\left|E(M)-\left(G_{j} \cup G_{j+1} \cup \cdots \cup G_{s}\right)\right|-(s-(j-1))+1 .
$$

Hence

$$
\begin{aligned}
\left|D_{j} \cap G_{j}^{\prime}\right| & \leq\left|G_{j}\right|+\left|E(M)-\left(G_{j} \cup \cdots \cup G_{s}\right)\right|-(s-j)+1 \\
& \leq\left|E(M)-\left(G_{j+1} \cup \cdots \cup G_{s}\right)\right|-(s-j)+1,
\end{aligned}
$$

where the last step follows since $G_{j}, G_{j+1}, \ldots, G_{s}$ are disjoint.
Finally, observe that if $j=s$, then $t_{j}=t_{j-1}$, so we can decrease the bound on $\left|D_{j} \cap G_{j}^{\prime}\right|$ by one to get $\left|D_{s} \cap G_{s}^{\prime}\right| \leq|E(M)|$. Hence (4.4.6) holds.

Now let $\widehat{D_{s}}=D_{0} \cup D_{1} \cup \cdots \cup D_{s}$. Then t_{s-1} is certainly in $\widehat{D_{s}}$. Moreover, 4.4.7. $\left|\widehat{D_{s}} \cap G_{i}^{\prime}\right| \leq \mu$ for all i in $\{0,1, \ldots, s\}$.

This is immediate if $\mu=q+1$. If $\mu=n$, it follows from (4.4.6) because $\widehat{D_{s}} \cap G_{i}^{\prime}=\left(D_{0} \cup D_{1} \cup \cdots \cup D_{s}\right) \cap G_{i}^{\prime}=D_{i} \cap G_{i}^{\prime}$, where the last equality holds by (4.4.4) and (4.4.5).

Now suppose that $\left|\widehat{D_{s}} \cap G_{s}^{\prime}\right|=m$. Take $\mu-m$ points of $G_{s}^{\prime}-\widehat{D_{s}}$ and adjoin these elements to $\widehat{D_{s}}$ continuing to call the resulting set $\widehat{D_{s}}$. We now have $\left|\widehat{D_{s}} \cap G_{s}^{\prime}\right|=\mu$. For each element z of $\left(\widehat{D_{s}} \cap G_{s}^{\prime}\right)-t_{s-1}$, there is a unique point $\beta_{s}(z)$ of G_{s-1}^{\prime} on the line through z and c_{s}. Some of these elements are already in $\widehat{D_{s}}$. Adjoin the other such points to $\widehat{D_{s}}$ letting the resulting set be $\widehat{D_{s-1}}$. Evidently

$$
\left|\widehat{D_{s-1}} \cap G_{s}^{\prime}\right|=\mu
$$

We assert that
4.4.8. $\left|\widehat{D_{s-1}} \cap G_{s-1}^{\prime}\right|=\mu$.

By construction, it is clear that $\left|\widehat{D_{s-1}} \cap G_{s-1}^{\prime}\right| \geq \mu$. Assume this inequality is strict. Then there is a point y of $\widehat{D_{s-1}} \cap G_{s-1}^{\prime}$ that does not lie on a line through c_{s} and some element of $\left(\widehat{D_{s}} \cap G_{s}^{\prime}\right)-t_{s-1}$. Then $y \in\left[\left(D_{0} \cup D_{1} \cup\right.\right.$ $\left.\left.\cdots \cup D_{s}\right) \cap G_{s-1}^{\prime}\right]-t_{s-1}$ so, by (4.4.4) and (4.4.5), $y \in D_{s-1} \cap\left(G_{s-1}^{\prime}-t_{s-1}\right)$. Thus the construction of D_{s} produces a point $\alpha_{s}(y)$ of G_{s}^{\prime} that lies on the line through y and c_{s}. Hence $\alpha_{s}(y) \in\left(D_{s} \cap G_{s}^{\prime}\right)-t_{s-1}$ and we have a contradiction that establishes (4.4.8).

Now using $\widehat{D_{s-1}} \cap G_{s-1}^{\prime}$ in place of $\widehat{D_{s}} \cap G_{s}^{\prime}$, we can construct a new set $\widehat{D_{s-2}}$ by adjoining points of G_{s-2}^{\prime} to $\widehat{D_{s-1}}$. The same argument used above guarantees that

$$
\mu=\left|\widehat{D_{s-2}} \cap G_{s-2}^{\prime}\right|=\left|\widehat{D_{s-1}} \cap G_{s-1}^{\prime}\right|=\left|\widehat{D_{s}} \cap G_{s}^{\prime}\right|
$$

Repeating this process, we eventually obtain a set $\widehat{D_{0}}$ such that

$$
\left|\widehat{D_{0}} \cap G_{i}^{\prime}\right|=\mu \text { for all } i \text { in }\{0,1, \ldots, s\}
$$

Finally, we consider the matroid \widehat{M} that equals $P G(r-1, q) \mid \widehat{D_{0}}$. Note that \widehat{M} consists of $s+1$ lines, $L_{0}, L_{1}, \ldots, L_{s}$, each containing exactly μ points, along with s additional points, $c_{1}, c_{2}, \ldots, c_{s}$. Moreover, for all i in $\{0,1, \ldots, s\}$, we have $L_{i-1} \cap L_{i}=\left\{t_{i-1}\right\}$ and, for each point e of $L_{i-1}-t_{i-1}$, there is a unique point e^{\prime} of L_{i} such that $\left\{e, c_{i}, e^{\prime}\right\}$ is a line of \widehat{M}.

Now clearly $\widehat{M} \mid\left(L_{s-1} \cup c_{s} \cup L_{s}\right) \cong V_{\mu}$ and L_{s-1} is a modular line of this restriction. It follows by a result of Brylawski [2] (see also [6, Proposition 12.4.15]) that \widehat{M} is the generalized parallel connection across L_{s-1} of $\widehat{M} \mid\left(L_{s-1} \cup c_{s} \cup L_{s}\right)$ and $\widehat{M} \backslash\left[\left(L_{s}-t_{s-1}\right) \cup c_{s}\right]$. A routine induction argument establishes that \widehat{M} is in Π_{μ}^{s}. We conclude that M is a minor of a member of Π_{μ}^{s}.

We have $1 \leq s \leq n-\left|G_{0} \cup G_{s}\right| \leq n-4$. If $s=n-4$, then $M \cong U_{n-2, n}$, so $q \geq n-1$ and $\mu \geq n$. Thus if $M \nsubseteq U_{n-2, n}$, we may assume that $s \leq n-5$. The theorem follows without difficulty.

5. The Universal Sequential Matroid

In this section, we shall prove an extension of Theorem 2.3. We begin with a result needed in the definition of $\Theta_{n}^{2 m+1}$. Recall that $\Theta_{n}^{2}=\left(P_{B}\left(M^{\prime}, M^{\prime \prime}\right)\right)^{*}$ where $M^{\prime}=\Theta_{n}\left(B, A^{\prime}\right)$ and $M^{\prime \prime}=\Theta_{n}\left(B, A^{\prime \prime}\right)$.
Lemma 5.1. The sets A^{\prime} and $A^{\prime \prime}$ are modular lines of Θ_{n}^{2}.

Proof. Clearly A^{\prime} is a rank-2 flat of Θ_{n}^{2}. By [2, Theorem 3.3] (see also [6, Proposition 6.9.2(iii)]), A^{\prime} is modular provided that $r\left(A^{\prime}\right)+r(F)=r\left(\Theta_{n}^{2}\right)$ for all flats F of Θ_{n}^{2} avoiding A^{\prime} such that $F \cup A^{\prime}$ spans Θ_{n}^{2}. Now, for all such flats F, we must have $r\left(\Theta_{n}^{2}\right)>r(F) \geq r\left(\Theta_{n}^{2}\right)-2$. Since $r\left(A^{\prime}\right)=2$, it suffices to show that $r(F) \neq r\left(\Theta_{n}^{2}\right)-1$. Assume the contrary. Then $E\left(\Theta_{n}^{2}\right)-F$ is a cocircuit of Θ_{n}^{2}, so $E\left(\Theta_{n}^{2}\right)-F$ is a circuit C of $P_{B}\left(M^{\prime}, M^{\prime \prime}\right)$ containing A^{\prime}. But A^{\prime} is independent in $P_{B}\left(M^{\prime}, M^{\prime \prime}\right)$, so C properly contains A^{\prime}. Now, for all b in B, if a^{\prime} is the partner of b in A^{\prime}, then $\left(A^{\prime}-a^{\prime}\right) \cup b$ is a circuit of $P_{B}\left(M^{\prime}, M^{\prime \prime}\right)$. Hence $b \notin C$ so $C \cap B=\emptyset$. Since $C \supsetneqq A^{\prime}$, we deduce
that $C \cap A^{\prime \prime} \neq \emptyset$. As $A^{\prime \prime}$ is a cosegment of $P_{B}\left(M^{\prime}, M^{\prime \prime}\right)$, by orthogonality, $\left|C \cap A^{\prime \prime}\right| \geq\left|A^{\prime \prime}\right|-1$. But, if $a^{\prime \prime} \in A^{\prime \prime}$, then $\left(A^{\prime \prime}-a^{\prime \prime}\right) \cup A^{\prime}$ properly contains the circuit $\left(A^{\prime \prime}-a^{\prime \prime}\right) \cup\left(A^{\prime}-a^{\prime}\right)$ of $P_{B}\left(M^{\prime}, M^{\prime \prime}\right)$, where a^{\prime} and $a^{\prime \prime}$ are the partners of some element b of B. We conclude that the circuit C does not exist, so A^{\prime} is indeed a modular flat of Θ_{n}^{2}.

We defined $\Theta_{n}^{2 m+1}$ in Section 2. The latter has B_{1} as an n-element cosegment. We now define $\Theta_{n}^{2 m}$ to be $\Theta_{n}^{2 m+1} \backslash B_{1}$. Thus $\Theta_{n}^{0} \cong U_{2, n}$. Using the notation in the definition of $\Theta_{n}^{2 m+1}$, this implies that $\Theta_{n}^{2}=\Theta_{n}^{3} \backslash B_{1}=M_{1}$. But M_{1} is a copy of Θ_{n}^{2} with ground set $A_{1} \cup B_{2} \cup A_{2}$, so the notation is consistent. In general, for all $m \geq 2$,

$$
\Theta_{n}^{2 m}=P_{A_{m}}\left(M_{m}, \Theta_{n}^{2 m-1}\right) \backslash B_{1}=P_{A_{m}}\left(M_{m}, \Theta_{n}^{2 m-1} \backslash B_{1}\right)=P_{A_{m}}\left(M_{m}, \Theta_{n}^{2 m-2}\right)
$$

The matroid $\Theta_{n}^{2 m+1}$ has a number of attractive properties, many of which are summarized in the next result.

Lemma 5.2. (i) $r\left(\Theta_{n}^{2 m+1}\right)=(m+1) n$ and $\left|E\left(\Theta_{n}^{2 m+1}\right)\right|=2(m+1) n$;
(ii) $\Theta_{n}^{2 m+1} \backslash\left(B_{k+2} \cup A_{k+2} \cup \cdots \cup A_{m+1}\right)=\Theta_{n}^{2 k+1}$;
(iii) $\Theta_{n}^{2 m+1}$ has $B_{1}, B_{2}, \ldots, B_{m+1}$ as cosegments and $A_{1}, A_{2}, \ldots, A_{m+1}$ as segments;
(iv) $\Theta_{n}^{3} / A_{2} \cong\left(\Theta_{n}^{2}\right)^{*}$;
(v) $\Theta_{n}^{2 m+1}$ has $B_{1} \cup B_{2} \cup \cdots \cup B_{m+1}$ as a basis;
(vi) A_{i} is a modular flat of $\Theta_{n}^{2 m+1}$ for all i in $\{1,2, \ldots, m+1\}$;
(vii) $\Theta_{n}^{2 m+1} \backslash B_{1} / A_{1} \cong \Theta_{n}^{2 m-1}$.

Proof. Parts (i) and (ii) follow easily by induction and by the definition, respectively. Part (iii) follows from the fact that M_{0} has B_{1} as a cosegment and A_{1} as a segment, while, for all $i \geq 1$, the matroid M_{i} has A_{i} and A_{i+1} as segments and B_{i+1} as a cosegment.

For (iv), we have

$$
\Theta_{n}^{3} / A_{2}=P_{A_{1}}\left(M_{1}, \Theta_{n}^{1}\right) / A_{2}=P_{A_{1}}\left(M_{1} / A_{2}, \Theta_{n}^{1}\right)
$$

But, by (2.1), M_{1} / A_{2} has A_{1} as a segment and B_{1} as a cosegment and is isomorphic to Θ_{n}. Thus

$$
\Theta_{n}^{3} / A_{2}=P_{A_{1}}\left(\Theta_{n}, \Theta_{n}^{1}\right) \cong\left(\Theta_{n}^{2}\right)^{*}
$$

We prove (v) by induction. Clearly B_{1} is a basis of Θ_{n}^{1}. Assume that $B_{1} \cup B_{2} \cup \cdots \cup B_{m}$ is a basis of $\Theta_{n}^{2 m-1}$. Hence $\Theta_{n}^{2 m+1}$ has a basis containing $B_{1} \cup B_{2} \cup \cdots \cup B_{m}$ and contained in $B_{1} \cup B_{2} \cup \cdots \cup B_{m} \cup A_{m} \cup B_{m+1} \cup A_{m+1}$. As $\left|B_{1} \cup B_{2} \cup \cdots \cup B_{m+1}\right|=r\left(\Theta_{n}^{2 m+1}\right)$ and $\operatorname{cl}\left(B_{1} \cup B_{2} \cup \cdots \cup B_{m}\right) \supseteq A_{m}$, while $\operatorname{cl}\left(B_{1} \cup B_{2} \cup \cdots \cup B_{m} \cup A_{m} \cup B_{m+1}\right) \supseteq A_{m+1}$, we deduce that $B_{1} \cup B_{2} \cup \cdots \cup B_{m+1}$ is a basis of $\Theta_{n}^{2 m+1}$.

To prove (vi), we argue by induction on m. We know that A_{1} is a modular flat of M_{0}. Assume that $A_{1}, A_{2}, \ldots, A_{m}$ are modular flats of $\Theta_{n}^{2 m-1}$. Then, by [2] (see [6, Proposition 12.4.14(ii)]), $P_{A_{m}}\left(M_{m}, \Theta_{n}^{2 m-1}\right)=$ $P_{A_{m}}\left(\Theta_{n}^{2 m-1}, M_{m}\right)$. Thus, by [2] (see [6, Proposition 12.4.14(iii)]), $E\left(M_{m}\right)$ and $E\left(\Theta_{n}^{2 m-1}\right)$ are modular flats of $\Theta_{n}^{2 m+1}$. Thus, by [2] (see [6, Proposition 6.9.7]), since $A_{1}, A_{2}, \ldots, A_{m}$ are modular flats of $\Theta_{n}^{2 m-1}$, and A_{m+1} is a modular flat of M_{m}, we deduce that $A_{1}, A_{2}, \ldots, A_{m}$, and A_{m+1} are modular flats of $\Theta_{n}^{2 m+1}$.

To prove (vii), we argue by induction on m that $\Theta_{n}^{2 m+1} \backslash B_{1} / A_{1} \cong \Theta_{n}^{2 m-1}$ with the cosegments and segments of the former being $B_{2}, B_{3}, \ldots, B_{m+1}$ and $A_{2}, A_{3}, \ldots, A_{m+1}$, respectively. The result holds for $m=1$ by (2.1). Assume it holds for $m<k$ and let $m=k \geq 2$. Then

$$
\begin{aligned}
\Theta_{n}^{2 k+1} \backslash B_{1} / A_{1} & =P_{A_{k}}\left(M_{k}, \Theta_{n}^{2 k-1}\right) \backslash B_{1} / A_{1} \\
& =P_{A_{k}}\left(M_{k}, \Theta_{n}^{2 k-1} \backslash B_{1} / A_{1}\right) \\
& \cong P_{A_{k}}\left(M_{k}, \Theta_{n}^{2 k-3}\right) \text { by the induction assumption; } \\
& \cong \Theta_{n}^{2 k-1}
\end{aligned}
$$

The following lemma provides a useful link between $\Theta_{n}^{2 m}$ and $\Theta_{n}^{2 m-1}$. In the notation above, for k in $\{2 m, 2 m+1\}$, let $A_{k+1}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\}$ and $B_{k+1}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right\}$, where a_{i}^{\prime} is a partner of b_{i}^{\prime}.
Lemma 5.3. If $k \geq 1$, then $\Theta_{n}^{k} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n-1}^{\prime}\right\}$ has a_{1}^{\prime} and a_{n}^{\prime} in series with b_{n}^{\prime} and b_{1}^{\prime}, respectively. Moreover,

$$
\Theta_{n}^{k} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n-1}^{\prime}\right\} /\left\{a_{1}^{\prime}, a_{n}^{\prime}\right\} \cong \begin{cases}\Theta_{n}^{k-1} & \text { if } k=2 m \\ \left(\Theta_{n}^{k-1}\right)^{*} & \text { if } k=2 m+1\end{cases}
$$

Proof. By the definition of Θ_{n}^{k}, the result follows easily by induction once we have shown it for k in $\{1,2\}$, and it is not difficult to check for $k=1$. Now let $k=2$. We have $\Theta_{n}^{2}=\left(P_{B_{2}}\left(\Theta_{n}\left(B_{2}, A_{1}\right), \Theta_{n}\left(B_{2}, A_{2}\right)\right)\right)^{*}$. So
$\Theta_{n}^{2} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n-1}^{\prime}\right\}=\left(P_{B_{2}}\left(\Theta_{n}\left(B_{2}, A_{1}\right), \Theta_{n}\left(B_{2}, A_{2}\right) /\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n-1}^{\prime}\right\}\right)\right)^{*}$. But $\Theta_{n}\left(B_{2}, A_{2}\right) /\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n-1}^{\prime}\right\}$ is obtained from $\Theta_{n} \mid B_{2}$ by adding a_{1}^{\prime} and a_{n}^{\prime} in parallel to b_{n}^{\prime} and b_{1}^{\prime}, respectively. Thus

$$
\Theta_{n}\left(B_{2}, A_{2}\right) /\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n-1}^{\prime}\right\} \backslash\left\{a_{1}^{\prime}, a_{n}^{\prime}\right\} \cong U_{2, n}
$$

Hence

$$
\Theta_{n}^{2} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{n-1}^{\prime}\right\} /\left\{a_{1}^{\prime}, a_{n}^{\prime}\right\}=\left(\Theta_{n}\left(B_{2}, A_{1}\right)\right)^{*}=\Theta_{n}\left(A_{1}, B_{2}\right)
$$

and the lemma follows.

The next result is an immediate consequence of Lemma 3.11.

Lemma 5.4. The matroid $\Theta_{n}^{2 m+1}$ is sequential. Moreover, every ordering of its ground set of the form $\left(B_{1}, A_{1}, B_{2}, A_{2}, \ldots, B_{m+1}, A_{m+1}\right)$ is sequential.

We know that Θ_{n} is isomorphic to its dual. We show next that the same is true for $\Theta_{n}^{2 m+1}$
Lemma 5.5. The matroid $\Theta_{n}^{2 m+1}$ is isomorphic to its dual.

Proof. We argue by induction on m. We know that the assertion is true for $m=0$. Assume it true for $m<k$ and consider $\left(\Theta_{n}^{2 k+1}\right)^{*}$. From Lemma 5.4, this matroid is sequential having $\left(A_{k+1}, B_{k+1}, A_{k}, \ldots, A_{1}, B_{1}\right)$ as a sequential ordering where $A_{k+1}, A_{k}, \ldots, A_{1}$ are cosegments and $B_{k+1}, B_{k}, \ldots, B_{1}$ are segments. Thus $\left(\Theta_{n}^{2 k+1}\right)^{*} / B_{2}$ has $B_{1} \cup A_{1}$ and $A_{k+1} \cup B_{k+1} \cup \cdots \cup A_{2}$ as separators. Now

$$
\left(\Theta_{n}^{2 k+1}\right)^{*} \mid\left(B_{2} \cup A_{2} \cup \cdots \cup A_{k+1}\right)=\left(\Theta_{n}^{2 k+1} /\left(A_{1} \cup B_{1}\right)\right)^{*}=\left(\Theta_{n}^{2 k+1} / A_{1} \backslash B_{1}\right)^{*}
$$

where the last step follows from the fact that B_{1} is a separator of $\Theta_{n}^{2 k+1} / A_{1}$. By Lemma 5.2(vii) and the induction assumption, $\left(\Theta_{n}^{2 k+1} / A_{1} \backslash B_{1}\right)^{*} \cong \Theta_{n}^{2 k-1}$, and $\left(\Theta_{n}^{2 k+1} / A_{1} \backslash B_{1}\right)^{*}$ has $A_{2}, A_{3}, \ldots, A_{k+1}$ and $B_{2}, B_{3}, \ldots, B_{k+1}$ as cosements and segments, respectively. Thus, by Lemma $5.2(\mathrm{vi}), B_{2}$ is a modular flat of $\left(\Theta_{n}^{2 k+1}\right)^{*} \mid\left(B_{2} \cup A_{2} \cup \cdots \cup A_{k+1}\right)$. Also

$$
\begin{aligned}
\left(\Theta_{n}^{2 k+1}\right)^{*} \mid\left(B_{1} \cup A_{1} \cup B_{2}\right) & =\left(\Theta_{n}^{2 k+1} /\left(A_{2} \cup B_{3} \cup \cdots \cup A_{k+1}\right)\right)^{*} \\
& =\left(\Theta_{n}^{2 k+1} \backslash\left(B_{3} \cup A_{3} \cup \cdots A_{k+1}\right) / A_{2}\right)^{*} \\
& =\left(\Theta_{n}^{3} / A_{2}\right)^{*} \\
& \cong \Theta_{n}^{2}
\end{aligned}
$$

where the last step follows by Lemma 5.2(iv). Note that $\left(\Theta_{n}^{3} / A_{2}\right)^{*}$ has B_{1} and B_{2} as segments and A_{1} as a cosegment.

By [2] (see [6, Proposition 12.4.15], $\left(\Theta_{n}^{2 k+1}\right)^{*}$ is the generalized parallel connection across B_{2} of the restrictions of $\left(\Theta_{n}^{2 k+1}\right)^{*}$ to $B_{2} \cup A_{2} \cup \cdots \cup A_{k+1}$ and $B_{1} \cup A_{1} \cup B_{2}$. Thus $\left(\Theta_{n}^{2 k+1}\right)^{*}=P_{B_{2}}\left(\Theta_{n}^{2 k-1}, \Theta_{n}^{2}\right)$ where B_{2} is a segment of both $\Theta_{n}^{2 k-1}$ and Θ_{n}^{2}. Hence $\left(\Theta_{n}^{2 k+1}\right)^{*} \cong \Theta_{n}^{2 k+1}$.

Using Lemmas 5.4 and 3.10, we get the following result.
Lemma 5.6. If the 3 -connected matroid M is obtained from $\Theta_{n}^{2 m+1}$ by contracting elements of $B_{1} \cup B_{2} \cup \cdots \cup B_{m+1}$ and simplifying, then M is sequential.

The main result of this section is the following converse to the last lemma.
Theorem 5.7. Let M be an n-element sequential matroid and suppose that M is representable over $G F(q)$. For $\mu \in\{n, q+1\}$, if $n \geq 5$, then M is isomorphic to a minor of $\Theta_{\mu}^{2 n-9}$, while if $n \in\{3,4\}$, then M is isomorphic to
a minor of Θ_{μ}^{1}. More specifically, a minor isomorphic to M can be obtained from $\Theta_{\mu}^{2 n-9}$ or Θ_{μ}^{1} by contracting elements of $\cup_{i} B_{i}$ and simplifying, and deleting elements of $\cup_{i} A_{i}$ and cosimplifying.

The proof of this theorem will use the following result.
Lemma 5.8. Every matroid in Π_{μ}^{m} is a minor of $\Theta_{\mu}^{2 m+1}$ obtained by contracting elements of $B_{1} \cup B_{2} \cup \cdots \cup B_{m+1}$ and simplifying.

Proof. The unique member of Π_{μ}^{1} is V_{μ} and this matroid is easily seen to be obtained from Θ_{μ}^{3} by simplifying the matroid we get by contracting all but two elements of B_{1} and all but one element of B_{2}. In particular, we may assume that A_{2} is one of the distinguished n-point lines of V_{μ}.

Now, as our induction assumption, we suppose that every matroid M in Π_{μ}^{m} is isomorphic to a minor of $\Theta_{\mu}^{2 m+1}$ that is obtained by contracting elements of $B_{1} \cup B_{2} \cup \cdots \cup B_{m+1}$ and simplifying. In addition, suppose that, under this isomorphism, S_{m} is mapped to A_{m+1} where, in constructing M, the last copy of V_{μ} that is adjoined has R_{m} and S_{m} as its distinguished lines.

Next we assume that $M \in \Pi_{\mu}^{m+1}$. Then $M=P_{R_{m+1}}\left(V_{\mu}, N\right)$ where $N \in \Pi_{\mu}^{m}$ and the copy of V_{μ} has R_{m+1} and S_{m+1} as its distinguished lines. By construction, R_{m+1} coincides with S_{m}. Moreover, by the induction assumption, N is isomorphic to a minor of $\Theta_{\mu}^{2 m+1}$ under which S_{m} is mapped to A_{m+1}. Hence we can relabel R_{m+1} as A_{m+1}. Let t and f be the tip and the focus of the distinguished copy of V_{μ}. Now take a copy of Θ_{μ}^{2} on $A_{m+1} \cup B_{m+1} \cup A_{m+2}$ letting f be an element of B_{m+1} and letting t_{m+1} and t_{m+2} be the partners of f in A_{m+1} and A_{m+2}, respectively. By contracting $B_{m+1}-f$ from this copy of Θ_{μ}^{2}, we obtain a copy of V_{μ} with an element added in parallel to the tip. This parallel pair is $\left\{t_{m+1}, t_{m+2}\right\}$. By deleting t_{m+1}, we ensure that A_{m+2} labels one of the distinguished lines of this copy of V_{μ}, and the lemma follows by induction.

Proof of Theorem 5.7. If $n \in\{3,4,5\}$, then clearly M is isomorphic to a minor of Θ_{μ}^{1}. Now suppose that $n \geq 6$. If $M \cong U_{n-2, n}$, then $q+1 \geq n$, so $\mu \geq n$. Thus M is isomorphic to a minor of Θ_{μ}^{1} and hence to a minor of $\Theta_{\mu}^{2 n-9}$. If $M \not \not U_{n-2, n}$, then, by Theorem $4.4, M$ is isomorphic to a minor of Π_{μ}^{n-5}. But, by Lemma 5.8, every member of Π_{μ}^{n-5} is a minor of $\Theta_{\mu}^{2(n-5)+1}$, that is, of $\Theta_{\mu}^{2 n-9}$. We conclude that the second sentence of the theorem holds. It remains to establish that the assertion in the last sentence of the theorem is true. If $n \in\{3,4\}$, then M is uniform of rank 1 or 2 and the asserted result holds.

Assume that $n \geq 5$. Then $M \cong \Theta_{\mu}^{2 n-9} \backslash X / Y$. We shall show that if $e \in A_{i} \cap Y$, then we can remove e in a cosimplification step. This will suffice to prove the required result because there is an isomorphism between $\Theta_{\mu}^{2 n-9}$ and its dual that interchanges $\cup_{i=1}^{n-4} A_{i}$ and $\cup_{i=1}^{n-4} B_{i}$. Let $A_{i}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{\mu}^{\prime}\right\}$ and $e=a_{\mu}^{\prime}$. Then $\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}$ is a parallel class of $\Theta_{\mu}^{2 n-9} / a_{\mu}^{\prime}$ so M is isomorphic to a minor of $\Theta_{\mu}^{2 n-9} / a_{\mu}^{\prime} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}$. One possibility here is that $i=n-4$. Suppose $i<n-4$. Then the last matroid is the parallel connection, with basepoint a_{1}^{\prime}, of $\Theta_{\mu}^{2 i-1} / a_{\mu}^{\prime} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}$ and $\left[\Theta_{\mu}^{2 n-9} \mid\left(A_{i} \cup B_{i+1} \cup \cdots \cup A_{n-4}\right)\right] / a_{\mu}^{\prime} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}$. In this case, because M is 3 -connected, it is isomorphic to a minor of one of the two matroids involved in this parallel connection.

First let M be isomorphic to a minor of $\Theta_{\mu}^{2 i-1} / a_{\mu}^{\prime} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}$ where we allow $i=n-4$. By Lemma 5.3, $\Theta_{\mu}^{2 i-1} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}$ has a_{1}^{\prime} and a_{μ}^{\prime} in non-trivial series classes. Hence, when we remove a_{μ}^{\prime}, we can do so as part of a cosimplification.

Now suppose that M is isomorphic to a minor of

$$
\left[\Theta_{\mu}^{2 n-9} \mid\left(A_{i} \cup B_{i+1} \cup \cdots \cup A_{n-4}\right)\right] / a_{\mu}^{\prime} \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}
$$

Observe that $\left[\Theta_{\mu}^{2 n-9} \mid\left(A_{i} \cup B_{i+1} \cup \cdots \cup A_{n-4}\right)\right] \cong \Theta_{\mu}^{2(n-4-i)}$. Thus, by Lemma 5.3,

$$
\left[\Theta_{\mu}^{2 n-9} \mid\left(A_{i} \cup B_{i+1} \cup \cdots \cup A_{n-4}\right)\right] \backslash\left\{a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{\mu-1}^{\prime}\right\}
$$

has a_{1}^{\prime} and a_{μ}^{\prime} in non-trivial series classes and, after these elements are contracted, we obtain a matroid isomorphic to $\Theta_{\mu}^{2(n-i)-9}$. Again, when we remove a_{μ}^{\prime}, we can do so as part of a cosimplification.

Theorem 2.3 follows by combining Lemma 5.6 and Theorem 5.7. The graph $\Gamma_{2 m+1}$ in the next lemma was defined in Section 1.
Lemma 5.9. $\Theta_{3}^{2 m+1} \cong M\left(\Gamma_{2 m+1}\right)$.

Proof. Evidently $\Gamma_{1} \cong K_{4}$ so $\Theta_{3}^{1} \cong M\left(\Gamma_{1}\right)$. By $(2.2), \Theta_{3}^{2} \cong M\left(\left(K_{5}-e\right)^{*}\right)$ and the lemma follows without difficulty from this.

In $\Theta_{3}^{2 m+1}$, the set B_{1} corresponds to $v_{0} u_{1}, v_{0} v_{1}, v_{0} w_{1}$; each A_{i} corresponds to $\left\{u_{i} v_{i}, v_{i} w_{i}, w_{i} u_{i}\right\}$; and, for all i in $\{1,2, \ldots, m\}$, the set B_{i+1} corresponds to $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, w_{i} w_{i+1}\right\}$.

By combining Theorem 5.7 and Lemma 5.9, we immediately obtain the next result, which implies Theorem 1.1.

Corollary 5.10. Let M be an n-element binary sequential matroid. Then M is graphic being a minor of $\Theta_{3}^{2 n-9}$ when $n \geq 5$; and a minor of Θ_{3} when $n \in\{3,4\}$.
Corollary 5.11. Let M be an n-element graphic sequential matroid with $n \geq 4$. Then $M \cong M(G)$ where G is a minor of $\Gamma_{2 n-9}$.

We remark that we have made no attempt to find the minimum value of m such that every n-element graphic sequential matroid is a minor of $\Gamma_{2 m+1}$. In this regard, observe that, from considering vertex degrees, one can show that the wheel with $2 k$ spokes is a minor of $\Gamma_{2 k-3}$ but is not a minor of $\Gamma_{2 k-5}$.

Acknowledgements

The second author was supported by the National Security Agency.

References

[1] Bixby, R. E., A simple theorem on 3-connectivity, Linear Algebra Appl. 45 (1982), 123-126.
[2] Brylawski, T. H., Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc 203, 1-44.
[3] Cunningham, W. H. and Edmonds, J., A combinatorial decomposition theory, Canad. J. Math. 32 (1980), 734-765.
[4] Hall, R., Oxley, J., and Semple, C., The structure of equivalent 3-separations in a 3-connected matroid, Adv. Appl. Math. 35 (2005), 123-181.
[5] Hall, R., Oxley, J., and Semple, C., The structure of 3 -connected matroids of path width three, European J. Combin. 28 (2007), 964-989.
[6] Oxley, J. G., Matroid Theory, Oxford University Press, New York, 1992.
[7] Oxley, J., Semple, C., and Vertigan, D., Generalized $\Delta-Y$ exchange and k-regular matroids, J. Combin. Theory Ser. B 79 (2000), 1-65.
[8] Oxley, J., Semple, C., and Whittle, G., The structure of the 3-separations of 3connected matroids, J. Combin. Theory Ser. B, 92 (2004), 257-293.
[9] Oxley, J. and Wu, H., On matroid connectivity, Discrete Math. 146 (1995), 321-324.
[10] Seymour, P. D., Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305-359.

Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, Texas, USA

E-mail address: beaversbd@sfasu.edu

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana, USA

E-mail address: oxley@math.lsu.edu

