ON BIPARTITE RESTRICTIONS OF BINARY MATROIDS

JAMES OXLEY

ABSTRACT. In a 1965 paper, Erdős remarked that a graph G has a bipartite subgraph that has at least half the number of edges of G. The purpose of this note is to prove a matroid analogue of Erdős's original observation. It follows from this matroid result that every loopless binary matroid has a restriction that uses more than half of its elements and has no odd circuits; and, for $2 \leq k \leq 5$, every bridgeless graph G has a subgraph that has a nowhere-zero k-flow and has more than $\frac{k-1}{k}|E(G)|$ edges.

1. INTRODUCTION

The matroid terminology used in this note will follow Oxley [9]. The results considered here relate to the critical problem of Crapo and Rota [5]. The reader is referred to the survey paper of Brylawski and Oxley [4] for the theoretical background to these results that is not included here. We shall require only a minimal amount of this theory. Let M be a matroid. Its simplification is denoted by $\text{si}(M)$. When M is $GF(q)$-representable and loopless having rank r, we say that M is affine over $GF(q)$ or q-affine if $\text{si}(M)$ is isomorphic to a restriction of the affine geometry $AG(r-1, q)$. Equivalently, M is affine over $GF(q)$ if, whenever there is a subset T of the projective geometry $PG(r-1, q)$ such that $\text{si}(M)$ is isomorphic to $PG(r-1, q)/T$, there is a hyperplane H of $PG(r-1, q)$ such that H avoids T. It is well known that if G is a graph, then $M(G)$ is affine over $GF(q)$ if and only if G is q-colourable. In particular, G is bipartite if and only if $M(G)$ is affine over $GF(2)$. On the other hand, $M^*(G)$ is affine over $GF(q)$ if and only if G has a nowhere-zero q-flow. An arbitrary binary matroid is affine if and only if all of its circuits have even cardinality. We follow Welsh [13] in calling such a matroid bipartite.

2. THEOREM AND SOME CONSEQUENCES

Erdős’s observation [7] that every loopless graph has a bipartite subgraph that has at least half the number of edges of G was sharpened by Edwards [6], and Erdős, Gyárfás, and Kohayakawa [8] gave simpler proofs of Edwards’s results. The following theorem generalizes Erdős’s original result to matroids. For a matroid M and for k in $\{0, 1, \ldots, r(M)\}$, let $h_k(M)$ denote the number of flats of M of rank $r(M) - k$.
Theorem 2.1. Let k be a non-negative integer, P be a matroid of rank at least $k + 1$, and T be a subset of $E(P)$ that contains no loops. Let $d = \max_{e \in T} h_k(P/e)$. Then P has a flat F of rank $r(P) - k$ such that

$$\frac{|T - F|}{|T|} \geq 1 - \frac{d}{h_k(P)}. $$

Proof. Let $r(P) = r$. Construct the bipartite graph G with vertex classes V_1 and V_2 where V_1 is the set of rank-$(r - k)$ flats of P, and V_2 is T. An element e of T is adjacent to a rank-$(r - k)$ flat F of P if and only if $e \in F$.

If $e \in T$, then the number of rank-$(r - k)$ flats of P containing e is the same as the number of rank-$(r - 1 - k)$ flats of P/e. As $d = \max_{e \in T} h_k(P/e)$, we deduce that the vertex e of V_2 has degree at most d in G. Hence $|E(G)| \leq d|T|$. Since $|V_1| = h_k(P)$, it follows that V_1 contains a vertex of degree at most $\frac{d|T|}{h_k(P)}$. Thus P has a rank-$(r - k)$ flat F that avoids at least $|T| - \frac{d|T|}{h_k(P)}$ elements of T. Thus

$$\frac{|T - F|}{|T|} \geq 1 - \frac{d}{h_k(P)}. $$

Corollary 2.2. Let M be a loopless non-empty $GF(q)$-representable matroid. Then M has a q-affine restriction N such that

$$|E(N)| > \frac{2q-1}{q}|E(M)|. $$

Proof. Let the size of a largest parallel class of M be t and $r = r(M)$. Replace each element of $PG(r - 1, q)$ by t elements in parallel, letting the resulting matroid be P. Then M can be viewed as a restriction of P. Let $T = E(M)$. Applying the theorem with $k = 1$, we get that there is a hyperplane H of P such that

$$\frac{|T - H|}{|T|} \geq \frac{h_1(P) - \max_{e \in T} h_1(P/e)}{h_1(P)}. $$

Clearly $h_1(P) = h_1(PG(r - 1, q)) = \frac{q^r - 1}{q - 1}$ while, for all elements e of P, by symmetry, $h_1(P/e) = h_1(PG(r - 2, q)) = \frac{q^r - 1}{q - 1}$. Thus

$$\frac{h_1(P) - \max_{e \in T} h_1(P/e)}{h_1(P)} = \frac{q^r - q^{r-1}}{q^r - 1} = \frac{q - 1}{q} \left(1 - \frac{q^r}{q^r - 1} \right) > \frac{q - 1}{q}. $$

Since $si(M|(T - H))$ is the ground set of a restriction of $AG(r - 1, q)$, we obtain the required result.

The bound in Corollary 2.2 can be restated as

$$|E(N)| \geq \frac{2q-1}{q}|E(M)| + \frac{1}{q}. $$

This bound is sharp with equality being attained when $M \cong PG(r - 1, q)$ since a largest affine restriction of this matroid is isomorphic to $AG(r - 1, q)$.

Corollary 2.2 has some interesting consequences. Taking $q = 2$, we immediately get the following result which implies Erdős’s result. Welsh [13]
showed that a binary matroid is bipartite if and only if its ground set can be written as a disjoint union of cocircuits.

Corollary 2.3. Let M be a loopless non-empty binary matroid. Then M has a bipartite restriction that has more than half the elements of M.

Corollary 2.4. Let G be a loopless non-empty graph and k be a positive integer. Then G has a k-colourable subgraph that has more than $\frac{k-1}{k}|E(G)|$ edges.

Proof. Suppose that G has n vertices and that its largest parallel class has size t. Then we can view G as a subgraph of the graph K^t_n that is obtained from K_n by replacing each edge by t parallel edges. There is an obvious one-to-one correspondence between the flats of $M(K^t_n)$ and those of $M(K_n)$. Moreover, the flats of $M(K_n)$ of rank $n-k$ correspond to the partitions of $V(K_n)$ into exactly k classes where an edge of K_n is in the flat if and only if both ends lie in the same class. The number of such partitions is $S(n,k)$, the Stirling number of the second kind. Moreover, the complement of a flat of rank $n-k$ is a complete k-partite graph. As $n-k = r(M(K_n)) - (k-1)$, when we apply Theorem 2.1 substituting $M(K_n)$ for P and $k-1$ for k, we find that the right-hand side of the inequality is $\frac{S(n,k)-S(n-1,k)}{S(n,k)}$. But $S(n,k) = S(n,k-1) + kS(n-1,k)$. Thus

$$\frac{S(n,k) - S(n-1,k)}{S(n,k)} = \frac{S(n,k-1) + (k-1)S(n-1,k)}{S(n,k-1) + kS(n-1,k)} > \frac{k-1}{k}.$$

Since the last result is derived from such a general matroid result, it is not surprising that a stronger graph result is known. Andersen, Grant, and Linial [1] showed that, for all positive integers k, every loopless graph G has a k-colourable subgraph H with

$$|E(H)| \geq \frac{k-1}{k}|E(G)| + \alpha_k(|V(G)| - 1)$$

where $\alpha_k = 1/k$ when $k \geq 3$, while $\alpha_2 = 1/4$.

Next we consider some variants on the results above that use the following special case of a result of Asano, Nishizeki, Saito, and Oxley [2].

Lemma 2.5. Let M be a $GF(q)$-representable matroid and X be a subset of $E(M)$. Then X is minimal with the property that $M \setminus X$ is q-affine if and only if X is minimal with the property that M/X is q-affine.

Applying the last result to the theorem, we immediately obtain the following.

Corollary 2.6. Let M be a loopless non-empty $GF(q)$-representable matroid. Then there is a contraction N of M that is q-affine and satisfies

$$|E(N)| > \frac{2-1}{q}|E(M)|.$$
The next result is obtained from the last corollary by taking \(q = 2 \) and using duality.

Corollary 2.7. Let \(M \) be a non-empty binary matroid without coloops. Then \(M \) has a restriction \(N \) having more than half the elements of \(M \) such that every cocircuit of \(N \) has even cardinality.

Finally, we note another consequence of Corollary 2.6 and duality, this one involving nowhere-zero \(k \)-flows. We state it only for \(k \) at most five because Seymour [11] has proved that every bridgeless graph has a nowhere zero 6-flow. That result is the best partial result towards Tutte’s 5-Flow Conjecture [12], that every bridgeless graph has a nowhere-zero 5-flow.

Corollary 2.8. Let \(G \) be a bridgeless graph and suppose \(k \in \{2, 3, 4, 5\} \). Then \(G \) has a subgraph \(H \) that has a nowhere-zero \(k \)-flow and has more than \(\frac{k-1}{k} |E(G)| \) edges.

A bridgeless graph has a nowhere-zero 2-flow if and only if its edge set is a disjoint union of cycles or, equivalently, every vertex has even degree. By the last result, every bridgeless graph \(G \) has a subgraph \(H \) that is a disjoint union of cycles such that \(|E(H)| > \frac{1}{2} |E(G)| \). This bound can be significantly strengthened. Indeed, Bermond, Jackson, and Jaeger [3, Lemma 3.2] have proved that one can always find such a subgraph \(H \) with \(|E(H)| \geq \frac{2}{3} |E(G)| \). The latter bound is sharp since, by Petersen’s Theorem [10], equality holds for every cubic bridgeless graph \(G \).

Acknowledgements

The author thanks Dominic Welsh for helpful comments on this note and Bill Jackson for drawing his attention to [3].

References

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA

E-mail address: oxley@math.lsu.edu