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THE BINARY MATROIDS WITH NO 4-WHEEL MINOR
JAMES G. OXLEY

ABSTRACT. The cycle matroids of wheels are the fundamentat building blocks for the
class of binary matroids. Brylawski has shown that a binary matroid has no minor
isomorphic to the rank-3 wheel M(#3) if and only if itis a series-parallel network.

. In this paper we characterize the binary matroids with no minor isomorphic to
M(#,). This characterization is used to solve the critical problem for this class of
matroids and to extend results of Kung and Walton and Welsh for related classes of
binary matroids.

1. Introduction. The purpose of this paper is to study the class of binary matroids
with no minor isomorphic to M(#}), the cycle matroid of the rank-4 wheel. The
motivation for this study derives from the fact that for every 3-comnected binary
matroid M with at least four elements, there is a sequence My, M;, M,,..., M, of
3-connected matroids with M, = M such that each matroid in the sequence is a
single-element deletion or contraction of its successor and, for spme r > 3, M, =
M(#;). This result, a consequence of Tutte’s wheels and whirls theorem [18],
establishes the wheels as the fundamental nontrivial building blocks for the class of
3-connected bmary matroids. Indeed, since every matroid that is not 3-connected is
a direct sum or a 2-sum of two matroids on fewer elements (Theorem 1. 2), these
building blocks are fundamental to the whole class of binary matroids. It is natural
then to consider which binary matroids can arise when, for some r, M(#;) is
excluded as a minor. For r = 3, this question was answered by Brylawski [3] who
identified the class of such matroids as the class of series-parallel networks. In this
paper we charactenze the corresponding class of matroids when r = 4 by listing its
3- connected members. For larger values of r it appears that a similar characteriza-
tion w111 be much more difficult to obtain.

. Thé matr01d ternnnology used here will in general follow Welsh [21]. The ground
set and rank of the matroid M will be denoted by E (M) and 1k M, respectlvely If
T CE (M ), rk T will denote the rank of T. The deletion and contraction of T from
M will be denoted by M \ T and M/T,respectively. If Z is an n—element cn'cult of
M, then we shall call Z an n-circuit; Z is an odd circuit if n is odd and an e even
circuit otherwise.
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64 J. G. OXLEY

A matroid M is 3-connected if it is connected and E(M) cannot be partitioned
into subsets X and Y each having at least two elements such that rk X + 1k Y —
rk M = 1. It is routine to verify that M is 3- connected if and only if its dual M* is
3-connected.

If M, and M, are matroids on the sets S and S U e where e & S, then M, is an
extension of M, if M,\ e = M, and M, is a lift of M, if M} is an extension of
M. Wecall M, a nontrivial extension of M, if e is neither a loop nor a coloop of
M, and e is not in a 2-circuit of M,. Likewise, M, is a nontrivial lift of M, if M} is
a nontrivial extension of M. The following result is well known (see, for example,
[12, Lemma 2.1}). '

(1.1) LeMMA. Let N be a 3-connected matroid having at least three elements and M

be an extension of N. Then M is 3-connected if and only if M is a nontrivial extension
of N. O s

We shall assume familiarity with the operation of parallel connection of matroids;
a detailed discussion of this operation and its properties can be found in [3]. For
matroids M, and M, such that E(M;) N E(M,)= {p}, we shall denote the
parallel connection of M; and M, with respect to the basepomt .p -by
P((M,, p),(M,, p)). The following basic link between 3-connection and parallel
connection was proved by Seymour [15, (2.6)]. :

(1 2) THEOREM A connected matroid M is not 3-connected if and only if there are
matroids M, and M, each of which has at least three elements and is zsomorphzc toa
minor of M such that M = P((M,, p),(M,, p)\ P where p is not a loop ora coloop of
M, orM, 0O

When M decomposes as in this theorem, it is called the 2-sum of M, and M 1

If {x, y} is a circuit of the matr01d M, we say that x and y are in parallel in M.
If, instead {x, y}isa cocircuit of M, then x and y are in series in M. The matro1d
- M’ is a parallel extension of M if M = M’\ T and every element of T isin parallel
with some element of M’ not in T. Series extensions are défined analogously A
matroid .in which each connected component is obtained from a smgle—element
matroid by a sequence of operations each of which is either a series or parallel
extension is called a serzes-parallel network. A detailed investigation of the propertles
of such matroids can be found in [3].

If A is a matrix with entries in a field F, then the matroid on the set of columns of
A that is induced by linear independence over F will be called the dependence
matroid D(A) of A. A basic tool in this paper is the well-known fact (see, for
example, [5, Theorem 3.7]) that binary matroids are umquely representable, that is, if
A and A’ are r X n matrices over GF(2) such that the map which, for all i in
{1,2,...,n), takes the ith column of 4 to the ith column of 4" is an 1somorphlsm
from D(A) to D(A’), then A’ can be transformed into 4 by a sequence of
operations each of which consists of interchanging two rows or adding one row to.
another.
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Another result that we shall rely on heavily is the following easy consequence of
Seymour’s splitter theorem [15 (7 3)] Forr>2, %" w111 denote the Whll’l of rank 7
21, p. 81]. ' :

(1.3) THEOREM. Let M and N be 3-connected matroids such that N is a minor of M,
|E(N)| > 4, and if N = M(#°,), M has no M(#',_ ,)-minor, while ifN=#k M
has no W **Lminor. Then there is a sequence My, M, M,,..., M, of 3-connected
matroids such that My= N, M,= M and, for all i in {1, 2 .,n}, M, is an
extension or lift of M g o

In §2 of this paper, we state and prove the main theorem of the paper, a
characterization of the binary 3-connected matroids with no M(%#)-minor. We also
characterize a somewhat larger class of 3-connected blnary matroids and, in doi_ng
5o, use the following well-known result of Tutte [17]. The Fano matroid will be
denoted F.. '

(1.4) THEOREM A bznaty matroid is regular zf and only if it has no minor 1somorphzc
-toF7orF* : : : e

~ In §3, we use the main theorem to determme a best—possrble upper bound on the
‘number of elements in a rank-r simple matroid with no M (#)-minor. We then use
this bound to extend a result of Kung [9]. In addition, we extend a result of Murty
[11].

Let M be a loopless matroid that is isomorphic to the dependence matroid. D(4)
of some matrix 4 over GF(q). If 4 has r rows, then r > tk M and the set § of
distinct columns of A4 is a subset of V(r, q). The critical exponent c(M; q) of M is
the least number k of hyperplanes H,, H,,..., H, of V(r,q) such that (N, H)N S
= @, this number being independent of the particular matrix 4 representing M [6].
The problem of determining ¢( M; q) is known as the critical problem [6, Chapter 16]
for M. In the fourth and final section of this paper, We use our main theorem to
solve the critical problem for the<lass of binary matroids with no M (“///4) mmor We
also use results from §3 to solve the critical problem for a related class of bmary
matr01ds thereby extendmg two results of Walton and Welsh [20] '

2. The main result. In this sect1on we state and prove the main result of the paper
a characterization of all binary 3-connected matroids having no M(#/)-minor. We
shall denote by @ the class of all such matroids. It follows from Theorem 1.2 that
one can construct every binary ‘matroid with no M(%#/)-minor by beginning with the
‘members of © and repeatedly using the operat1ons of 2-sum and direct sum.
~ Let r be an integer exceedmg two and A, be the following r X (2r + 1) matrix
over GF(2):

a4 ay a, by" b, by b, <,
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

Jod 44



86 » 1. G.OXLEY

Let Z, be the dependence matroid of A,. Then Z,=F, the Fano matroid.
Moreover, Z* = Z_,,\ b,,;, ¢,+q for all r > 3. Hence, in particular, F;* =.Z} =
Z,\ by, c,. We also note that Z,\ ¢, = AG(3,2). The following is the main result of
the paper. ‘

(2.1) THEOREM. Let M be a binary matroid. Then M is 3- connected ana’ has no
M(#,)-minor lfand only if SRR : o
OM=Z,2Z¥ Z\c,orZ\b, forsomer > 4; or
M= F—,, F* or M(#75); or '
(i) M = Uy, Uy, Uy, Uygor U,

The only pairs of matroids in the above list that have the same rank and corank
are the self-dual matroids Z,\ ¢, and Z \ b,. For r > 4, these matro1ds are not
isomorphic since the latter has a 3-circuit wheéreas the former does not. We conclude
that all the matroids listed are nonisomorphic.

To prove Theorem 2.1, we shall first characterize a somewhat larger class ¥ of
3-connected binary matroids, namely those such matroids having no Py- or Pg*-minor.
Here P, denotes the extension of M(%#7) for which a binary representation is shown
in Figure 1. The same figure also shows a Euchdean representa‘uon for Py. In
addition to the planes shown, there is one further 4-po1nt plane 1t contams the four
circled points.

(2.2) THEOREM. Let M be a binary matroid. Then M is 3- connected havzng no mznor
isomorphic to Py or P if and only if C ‘

(1) M is regular and 3-connected; RN

GWM=Z,,Z* Z \c, orZ\b forsomer > 4; or

A1) M = Fj or FF. I :

PROOF. Ev1dently neither F, nor F7* has a mmor 1s0morph10 to Py or Pg* The fact
that no regular matroid has su,ch a minor follows, using Theorem 1.4 and ~duality,
from the observation that the contraction of (1 0,0, l)T from Py has an F;-minor.
We now show that none of the matroxds listed i in (i) hasa Py or a, P9 -minor. Smce
both P, and P have M(#,) as a minor, it suffices to show that none of the
matroids in (ii) has an M (W )-minor. We shall use the followmg :

2. 3) LemMa. T he automorphzsm group of Z is’ trans:twe on . {al, a,,
,a,, by, by, ..., bY}. Moreover, for r > 4, every automorphism of Z, fzxes c,-

PROOF. Interchangmg rows i and J of A mduces an automorphmm of Z that
swaps a; with a; and b; with b,. Moreover, the automorphism of Z, that'is mduced
by replacing row i of 4, by the sum of rows i, 1 and r foreach i in {2,3,...,r — 1}
swaps a, with b, and a, with b;. We conclude that the automorphism group of Z, is
transitive on {a,, a,,...,4,, by, b,,..., b }. The fact that, for r > 4, every automor-
phism fixes c, follows immediately from the observauon that, for such r, ¢, is the
unique element of Z, that is in r 3-circuits. O

(2.4) LEMMA. Z, has no M(¥%,)-minor.
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- PROOF. This is immediate for r = 3. Now suppose that r = 4. If M(#,) is a
minor of Z,, it is a single-element deletion of Z,. But, by the préceding lemma, Z,
has precisely two nonisomorphic single-element deletions, namely Z,\ b, and
Z,\ ¢y As Z,\ by, ¢, = F;¥, neither Z,\ b, nor Z,\ c, is isomorphic to M(#3).
Thus the lemma holds for r < 4.

Now assume the lemma holds for Z, and consider Z, ., where r > 4. Suppose that

Z, ., hasan M(#,)-minor. Then, since 1k Z,+1 > 1tk M(#), the Scum Theorem [6]
1mp11es that for some element z of Z,.1, Z,41/7 has an M(1//4) -minor. Now

Z,.1/a,,, 1s a parallel extensmn of Z, and therefore has 1o, M(#, )-minor. Hence
z'# z,,,. Therefore, by the precedmg lemma, z & {a;,a,,...,a,,,,
b, b,,..., ,H} Thus z = ¢, . Tt is routine to check that Z i1/ Criq = M( +1)
where C? ; is the graph obtained by replacing every element of an (» + 1) circuit by

two elements in parallel. Since M(C? ;) clearly has no M(#;)-minor, we have a
contradiction. The lemma now follows by induction. . O .. .

‘The last lemma completes the proof that none of the matroids hsted in (2. 2)
(1)—(ii1) has a Py or a Pg*-minor. We now prove that if M has no such minor and is
3-connected and binary, then M i is listed in (1)- (m) Suppose that M is not regular.
Then, by Theorem 1.4, M has 2 minor isomorphic to F7 or F*. Thus, by Theorem
1.3, there is a chain My, M,,..., M, of 3 connected matroids such that MO = F or
F#*/ M= M;and for all i in {0 1,2,. -1}, M/isa smgle -element deleuon or
contraction of M, ;. ‘For thie rest of the proof of Theorem 2.2, we shall be concemed:
w1th the members of this chain. If M=F,or F7*, then M is hsted under (ii). Thus
assume that this does not occur. We sha]l first suppose that MG = F7* Then, since
F* has no nontrivial binary lifts, M, is a nontrivial exténsion of F *. Seymour [16]
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has noted that F;* has precisely two nonisomorphic binary nontrivial extensions,
these two matroids being represented by the matrices X, and Y, shown below.
Evidently these two matroids are ‘

isomorphic to Z,\ ¢, and Z,\ b,. Thus, if M, = F;*, then Mj = Z,\ ¢, or Z,\ b,.
But both of the last two matroids are isomorphic to their'duals and therefore, if
M, = F,, we again get that M, = Z,\ ¢, or Z,\ b;. We sha]] treat the cases when
M, = Z,\ b, and when M, = Z,\ c, separately. First suppose that M, = Z,\ c,.

(2.5) LeMMA. Every nontrivial binary extenszon of Z4 \ c4 is zsomorphzc 10 Z,.

-PrOOF. Let N be a nontrivial binary extensron of Z, \ c,. Then N can. be
represented by the matrix obtalned by adjoining the column-(x,, X, X3, X,)7 to X4
where each of x;, x,, x; and x,, is in {0, 1}. Evidently exactly two or exactly four of
Xy, X5; X5 and x, are equal to 1. Moreover, by the symmetry of X,, all six matroids
that arise by adjoining a column with exactly two ones are isomdrphic. In addition,
each of these matroids is isomorphic to the matroid Z, which is obtained when
(xl, X35 X3, X4) = (1,1,1,1). To see this, .observe that by addmg Tow:3 to each of
rows 1 and 2 in the matrix 4,, we get the following matrix: S

0
0
0
1

OOO)—l
Soro
S ==
p—u—ao»—a
)
RO =
o oo
»—ar—acﬁo‘

nd suitably reordering the first cigh colums,

§

On deletmg the last column of thrs
we get the matnx X, O ‘ :

We now suppose that M - Z, \ b The next lemma is stronger than we need for
the proof of Theorem 2. 2 We shall use thls add1t10na1 strength 1n the proof of
Theorem 2. 1 :

(2:6) LEMMA The only column that -can be ad]ozned to the matrix Y, to' give d’
representation of a 3-connected binary matroid with no-M(#)- minor is (1,1,1,0)7.
Thus, the unique extension of Z,\ b, in © is-Z,. Moreover eve;y other nontrzuzal
binary extension of z, \ b, is tsomorphzc to P9 ‘ ' '

PROOF Assume that the column (xl, xz, X3, X 4) is adjomed to Y4 to give a matrlx;
Y’ over GF(2) representmg a 3- connected matroid N. If (x, x,, x5, x,) =.(1,1,1,0),
then clearly N = Zy We may now assume that (x;, X, X3, x4) has exactly two ones.:
Moreover by the symmetry of Y4, we can suppose that (x;,:x,, X3, x,) is one of
@, 1, 0 0) and (1 0 0, 1) In each case, it is not difficult to check that the matrix.
obtained by deletmg the sixth column from Y, represents a matr01d 1somorph1c to..
M (VI/ ) and that Y4 1tse1f represents a matrord 1somorph1c to Po.. .01 ~
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As an immediate consequence of the preceding lemma, we have the following
corollary.

(2.7) COROLLARY. Every nontrivial binary extension of Z, has a Py-minor and hence
has an M(#,)-minor. Hence, for all r > 4, every nontrivial binary extension of Z, has
a Pyminor. O

Now either (a) M, is an extension of M;, or (b) M, is a lift of M;. By Lemmas 2.5
and 2.6 and Corollary 2.7, in case'(a), M, = Z, and M, is a lift of M,. By duality,
in case (b), M2 = Z¥ and M, is an extension of M,. In general, Z* is represented
by the matrix

by b, --- b ¢ a a, ay a,
[ 0 1 1 1]
|1 0 1 1
ar=| Ly 11 0 1
. :
/] 1.1 1 - 0
i | 1 1 1 - 1|

The next lemma COIlSldCI‘ the nontrivial binary extensions of VAR

(2.8) LEMMA. Suppose that r > 4 and that x = (X1, Xy; ... | ,+1)T isa column that
is adjoined to A} to give a matrix B over GF(2) representing a 3- conne_cted matrozd N.
Then either (1) N has a Py-minor, or (i) x; = x, = +++ =x,=1.

PROOF. As (X,, X,,..., x,,;)7 is distinct from every column of A¥, it has at least
two ones. We may also assume it has at least two zeros otherwise (it) holds. We now
choose iy, i,,i; and i, to be distinct elements of {1,2,...,r} such that x;, =1,

, = 0and x; =1+ x,,, the sum here being taken modulo 2. Then exactly two of
x x,z, X, and x, 41 are 1. To cqnstruct a matrix representing a Py-minor of N, we
proceed as follows. First delete all the rows of B except iy,i,,i; and r + 1, and
arrange the remaining rows in the order listed. Then delete all the columns of the
resulting matrix except b,, b, , b, ,c,,a;,a;,a;,a; and x, and arrange the remain-
ing columns in the order hsted The matnx obtained by this construction is Y, with
one column adjoined, this extra column having two ones and two zeros. We
conclude, using Lemma 2.6, that N has a Py-minor. O : ‘

On adjoining (1,1,1,...,1,0)7 to Z*, we obtain a matrix representing Z, ,; \ ¢, ;
on adjoining (1,1,1,...,1,1)7 instead, or adjoining both these columns, we get
representations for Z, 41 \ vy and Z, g, respectively. It follows from this, using a
straightforward induction argument and Lemma 1.1, that for every r > 4, all of Z,,
Z¥, Z\ b, and Z \ c, are 3-connected. The following result is an easy consequence
of these observations and the last lemma.

(2.9) COROLLARY. For r > 4, Z* has precisely two nomsomorphzc extensions in \If
these being zsomorphzc toZ, ,\b.,.,andZ, |\ ¢, . Moreover, the unique extension
of each of the last two matroids that isin ¥ is Z, ;. O
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The next result finishes the proof of Theorem 2.2.

(2.10) COROLLARY. Let My, My, M,,... be a sequence of binary 3-connected
matroids each of which is an extension or lift of its predecessor. Suppose also that
M, = F, or F* and that none of M;, M,,... has a Py or Pg-minor. Then, for all
J>1L My =Z,3\bs0rZ; s\c;3andMy;=Z; 5 0r 2}, 4 |

PrOOF. We argue by induction on j. We noted earlier that M, = Z,\ b, or
Z,\ c, and that M, = Z, or Z}. Thus the result holds for j = 1. Assume it holds
"for j<k and let j=k Then M,,_,=Z,,, or Z},. In the latter case, by
Corollaries 2.7 and 2.9, M,,_; is an extension of M,, , and is isomorphic to
Z..3\bys OF Z, 3\ Cpys. Since the last two matroids are isomorphic to their
duals, if M,, _,=Z,,,, then again My, ;= Z, 3\ by 3 or Z; 3\ Cy3. Now
using Corollary 2.9 and duality, we get that M,, = Z, ., or Z}, ; and the theorem
follows by induction. O
It is now straightforward to complete the proof of Theorem 2.1 and we omit the
details.

3. A bound on the number of elements. Dirac [7] proved that, for all n > 3, a
simple n-vertex graph with no subgraph homeomorphic from #7 has at most
2n — 3 edges. As every binary matroid having nio M(%#7)-minor is a series-parallel
network [3, Theorem 7.6] and hence is graphic, Dirac’s result gives that, for all
r > 2, a simple binary matroid of rank r having no M(#;)-minor has at most
2r — 1 elements. A similar linear bound on the number of elements in a rank-r
simple ternary matroid having no M(#7)-minor was proved in [13, Theorem 5.1].
By making the obvious modifications to the proof of that result and using the main
theorem of this paper,we get the next theorem. The details of the proof are omitted.

(3.1) THEOREM. Let M be a simple binary matroid of rank r having no M(%,)-minor.

Then
3r — 2, zfrzs odd,

| lE(M)I\{ 3r — 3, ifriseven.
Moreover, the following list includes all the matroids that attain this bound

@r=1"U;;
) r=2, U3
(i) r = 3, Fy;

(iv) r =4, Z, P(F;,Up3); BRI

V) r=2t+ 1 for t > 2, all matroids that can be formed from t copies.of F, uszng
t — 1 parallel connections,

(v1) r =2t for t > 3, all matroids that can be formed from t — 1 copies of F7 and
one copy of U, using t — 1 parallel connections, and all matroids that can be formed
fromt — 2 copies of F, and one copy of Z, using t — 2 parallel connections. 0O

We now consider extending this result. We shall use some additional térmiﬁé)légy
For a class # of matroids which contains a simple matroid of every nonzero rank,
Kung [9] has, dcfmed the size function h(#, r) to be the function on Z™ given, by

h(A,r)= max{|E(M)| Me#, kM =rand M is simple} .’
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If N, N,,..., N, are matroids, then EX(N, N,,..., N,,) will denote the class of
binary matroids having no minor isomorphic to any of N;, N,,..., N,,.. The follow-
ing is an immediate consequence of the last theorem.

(3.2) COROLLARY.

WEX(M(#,));r) = {;: § if ris odd,

The next result extends this corollary.

(3.3) THEOREM.

if r is even. O

h(EX(M(Ks), Py, P3), 1) = {2: - § if ris odd.

To prove this theorem we shall use both Corollary 3.2 and the next theorem. The
latter is one of the several results of Kung [9, 10] on the size functions of various
classes of binary matroids:.

(3.4) THEOREM [9, THEOREM 9.1].

if ris even.

3r—2, ifrisodd.
*
h(EX(M(Ks), F7).r) = {3r =3, ifriseven. O
PROOF OF THEOREM 3.3. By [9, Lemma 10.1], since EX(M(%;)) and
EX(M(K5), F;¥) have the same size function, EX(M(%)) U EX(M(K5), Fi*) also
has this size function. To establish the theorem, we shall first show that '

(3.5) EX(M(#})) U EX(M(K;), F#*) € EX(M(Ks), Py, P5).
Since the class EX(M(#,))U EX(M(K5), F;*) is closed under minors, it can
certainly be characterized by excluded minors. It is straightforward to check that

M(K) is a minimal such excluded minor. The following lemma completes the proof
of (3.5). We omit its routine proof.

(3.6) LeMMA. Both Py and P§. are mmor-mtnzmal matroids not in EX(M(#,)) VU
EX(M(K5), ). O

The next lemma completes the proof of Theorem 3.3.

(3 7) LEMMA. Let M be a simple matroid that is m EX(M(K 5) Py, Pg) but Is not
in EX(M(#})) U EX(M(K5), F*). Then
3rkM 2, if tk M is odd,;:
IE(M)I {3 tk M — 3, if tk Miseven.

- PROOF: Assume»that the lemma is not true and let N be a minor-minimal
counterexample. It is straightforward to show, using Theorem 1.2; that N must be
3-connected. Moreover, since N &€ EX(M(K5), F;*) but N € EX(M(Ks), Py, PS),
N has an Fj*-minor. Thus, by Theorem 1.3, there is a chain' Ny, Ny, Ny, .., N, of
3-connected matroids such that N, = F*, N, = N and, for each i in {0,1,2,.

n'— 1}, N, is a single-element deletion or contraction of N, By Theorem 3 1
N = N, ¢ EX(M(#,)). But N, € EX(M(¥#,)). Let

m = min{i: N, ¢ EX(M(#,))}.
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Then N,_; € EX(M(#},)) and, by Theorem 2.1, N, _,
Z\b, or Z \ c, for some r > 4. ;

Now N, is an extension or lift of N, _;. Since Z,\ b, and Z \ ¢, are both
isomorphic to their duals and Z*=Z,_ ,\ b,,;, ¢,.;, one of N, and N} is
isomorphic to an extension of N’ where N’ is isomorphic to Z,, Z,\ b, or Z \ c,
for some r > 4, or to Z \ b,, c, for some r > 5. But, by Lemmas 2.5, 2.6 and 2.8
and Corollary 2.7, every nontrivial binary extension of each of the possibilities for
N’ has a Pg-minor or is in EX(M(%#7,)). Thus one of N,, and N,f hasa Pg-rmnor It
follows that N has a Py or a P¢-minor; a contradiction. [

To conclude this section, we determine the size function of EX(P,, P§") noting
that, unlike H(EX(M(Ks), Py, P§), r), it is quadratic in 7.

is isomorphic to Z,, Z¥,

(3.8) THEOREM.

(r;l)’ ifr + 3,
h(EX( Py, Pg),r) = L |
( 5 )+1, ifr=73.

This result extends the following theorem of Murty [11] (see.also [1, 2]) which
itself is an extension of Heller’s result [8] that A(EX(F,, F;*),r) = (";1).

(3.9) THEOREM. h(EX(F,),r) = (";1). O

On combining Heller’s result with Theorem 3.8, we get the size function for
EX( F3¥). This can also be deduced from a result of Walton [19]. -

(3.10) COROLLARY.

(r-;l)’ ifr # 3,
MEX(F)r)={, 2
( 9 )+1, ifr=3. O

PROOF. OF THEOREM 3.8. We argue by induction on r. As PG(2,2)= F; €
EX(Pg,P*) it follows easily that A(EX(P,, Pg),3)= 7= (31) + 1. To see that
h(EX(Py, P§), r) > ("3*) for r # 3, we note that M(K,,,) is a rank-r member of
EX(P,, P§). Evidently, for r = 1 or 2, h(EX(P,, P§*),r) = (";'). Hence, for r < 3,
h(EX(Py, P&), r) is as stated in the theorem. Now suppose that M is a simple rank-r
member of EX( Py, P) having h(EX(P,, Ps*), r) elements and assume that r > 4. If
M € EX(F,), then, by Theorem 3.9, h(EX(Py, Pg),r)y= ("5 1). Thus we can sup-
pose that M has an F,-minor. Since |E(M)| = h(EX(Py, Pg),7) > (" 1y, it follows
from Theorem 2.2 that M is not 3-connected. Then using Theorem 1.2 and the
choice of M, we can deduce that M = P(N,, N,) where both N, and N, are simple
members of EX(P,, P¢) having rank at least two. It is now straightforward to apply
the induction assumption to N, and N, to obtain the contradiction that |[E(M)| <
(?H-1 O |
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4. The critical problem. A loopless binary matroid with no ‘M(%75)-minor has
critical exponent at most two [3]. In this section we shall show that a loopless binary
matroid with no M(#/,)-minor has critical exponent at most three and exp]icitly
determine the critical exponents of all loopless binary 3-connected matroids with no
M(#,)-minor. We shall use the following result. '

 (4.1) LemMA [4, THEOREM 10. 3]. Let M be a matroid that is represented by the
matrix [1,| A] over GF(2). Then the followzng statements are equivalent: '

(1) c(M;2)=1.

(i) M has no odd circuits. |

(iii) Every column of A contains an odd number of nonzero entries. O

(4.2) THEOREM. Let M be a loopless binary 3-connected matroid having no M(#,)-
minor. Then c( M, 2) 2 unless
(1) M has rank one, or r is an even integer exceedzng 3 and M = Z, \c, or Z 1‘, or
(1) r is an odd integer exceedzng 2and M = 7.
In cases (i) and (1), ¢(M;2) = 1 and 3, respectively.

ProoF. If |E(M)| < 4, then, by Theorem 2.1, M = U, , U, ,, Uy 01 U, ; and it is
easy to check that ¢(M;?2) is as claimed. Now suppose that |E(M)| > 4. Then for
some r > 3, M is isomorphic to one of Z,, Z*, Z,\ b, or Z,\ ¢, We shall treat the
cases when 7 is even and when 7 is'odd separately. First suppose that r is even. The
matroid Z,\ ¢, is represented by the matrix A4, obtained from A, by deleting the
last column. Every column of 4” has an odd number of nonzero entries and so, by
Lemma4.1l, ¢(Z,\ ¢,;2) = 1.1t follows that c(Z,;2) < 2and bence c¢(Z,\ b,;2) < 2.
Moreover, since Z* , = Z \ ¢,,b,, ¢(Z* ;2) = 1. Now consider Z,\ b,. It has an
odd circuit, namely {a,, a,,...,4a,,¢,}. Therefore by Lemma 4.1, ¢(Z, \b,, 2)
and hence ¢(Z,;2) > 2. We conclude that

(Z\b;2) = e(2:2) = 2. |

Next we suppose that r is odd. Then zx, has an odd circuit, namely
{ay, byy by, ... b0} Therefore c¢(Z* 1;2) > 2. Moreover, as both Z \ b, .and
Z_\ c, are extensions of Z* ;, both ¢(Z, \ ;2) and ¢(Z,\ c,;2) are bounded below
by 2. Now consider the representanons for Z\ b, and Z,\ ¢, obtained from the
matrix 4, by deleting the second last and last columns, respectively. Let H;, H, and
H, be the hyperplanes of PG(r—1,2) defined by the equations x; + x,
4 oo 4x,_,=0,x +x,+x,=0and x, + x, = 0. Then H, N H, N E(Z,\'b,)
= @ and H. N H, N E(Z,\c,) = &. Thus both ¢(Z,\ b,;2) and ¢(Z,\ c,;2) are
bounded above by 2, so both quantities equal 2. Moreover, c¢(Z* ;2) =2 and
¢(Z,;2) < 3. The next result completes the proof of the theorem.

(4.3) LemMA. If ris odd and exceeds 2, then ¢(Z,;2) > 2.

ProoF. Consider the matrix A, representing Z,. We shall show that PG(r—1 2)
does not have two hyperplanes H and H’ such that HN H' N E(Z )= @
Assume that two such hyperplanes do exist. Each hyperplane is defined by an .
equation of the form a;x; + a;x, + - -+ +a,x, = 0 where each of o}, a,,...;2,1s0
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or 1 with at least one «, being nonzero. Now we may assume that H avoids-c,. Then
the equation defining H has an odd number of nonzero coefficients, so we may
suppose, without loss .of generality, that this equation is x; + x, +. -« x,,,, =0
for some k > 0. The elements of F(Z,) which are contained in H include
bi,byse..sbypi1s Grpyas Aagiss---»a, and these elements form an odd circuitin Z,.
Therefore by Lemma 4.1, H’ cannot avoid all these elements and ‘we have a
contradiction. O _

The last theorem can be used to show that every loopless binary matr()id'havihg
no M(#;)-minor has critical exponent at most 3. The proof here follows the same
lines as the proof of the corresponding result for loopless ternary matroids with no
M(#7;)-minor [13, Corollary 3.3]. We omit it since we can obtain a stronger result
by combining Theorem 3.3 with the following theorem of Kung. o

(4.4) THEOREM [9, LEMMA 3.1). Let A be a class of simple matrOidv represen'tab‘le’
over GF(q) that is closed under restriction. Assume that there is an znteger k so that for
all r > 1, every rank-r member of M has at most kr elements. Then, for euery member
Mof M,c(M;q)< k. O ‘

(4.5) COROLLARY. Let M be a loopless bznary matroid hauzng no minor zsomorphzc to
any of M(K5s), Py or P Then c¢(M;2)< 3. O

Since both EX(M(Kj), Fy) and EX(M(K), F*) are contained-
EX(M(Ks), Py, P§), a consequence of the last corollary is the followmg result of
Walton and Welsh [20, Theorem 2, (a) and (b)] P

(4.6) COROLLARY. Let M be a loopless binary matroid. If M is in EX( M (K 5) F7) ‘
or EX(M(K5), F¥), then c(M; 7)< 3. =

Corollary 4.5 provides a partial answer to Walton and Welsh’s question {20, p. 5]
as to whether ¢(M;2) < 3 for all loopless binary matroids having no M(K)-minor.
Kung [10] has glven another partial answer to this question by showmg that for all
such M, ¢(M;2) < : &
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