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The Tutte Polynomial and Its
Applications

THOMAS BRYLAWSKI'and JAMES OXLEY!

E

i 6.1. Introduction

he theory of numerical invariants for matroids is one of the many aspects
of matroid theory having its origins within graph theory. Indeed, most of
w he fundamental ideas in matroid invariant theory were developed for graphs
by Veblen (1912), Birkhoff (1912-13), Whitney (1933c), and Tutte (1947; 1954)
hen considering colorings and flows in graphs. The applications of matroid
nvariant theory now extend well beyond graphs, reaching into such fields
coding theory, percolation theory, electrical network theory, and statistical
nechanics. In addition, many new graph-theoretic applications of the theory
ave been found. The purpose of this chapter is to review the many diverse
m.%momaozm of matroid invariant theory. In White (1987), Chapters 7 and 8
with several fundamental examples of matroid invariants, and we shall
ake frequent reference to these chapters here, particularly the former
L(Zaslavsky, 1987).

A matroid isomorphism invariant is a function f on the class of all Bmﬂoam
uch that -

f(M)=f(N) whenever M = N. 6.1)

The starting point for our chapter is the observation that several numbers
ociated with a matroid M(E), such as its number of bases, its number of
ndependent sets, and its number of spanning sets, are isomorphism invariants
tisfying the following two basic recursions. Recall that if T< E, then M(T)
enotes the submatroid of M on T.

- Supported in part by ONR grant N00014-86-K-0449.
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For every element ¢ of M, Thus

f(M)=f(M — e) + f(M/e) if e is neither a loop nor an isthmus, (6.2)

f(M) = f(M(e)) f(M — e) otherwise. (6.3)

If o is a class of matroids closed under isomorphism and the taking of

minors, and f is a function on ¢ satisfying (6.1), (6.2), and (6.3), then f is .
called a Tutte—Grothendieck or T-G invariant.

Theorem 7.2.4 of White (1987) notes that the characteristic polynomial p(M; é

of a matroid M satisfies the deletion—contraction formula

p(M; 2) = p(M — &; ) — p(M/e; 1)
for all elements e that are neither loops nor isthmuses of M. This prompts
consideration of matroid isomorphism invariants satisfying (6.3) and the

following generalization of (6.2).
For some fixed non-zero numbers ¢ and 7,

f(M) = of (M — &) + tf (M/e) (64)

SM; x, y)= M M.,.&cxmvx_ (6.7)

where a;; is the number of submatroids of M of rank r(M)—i and nullity j.
Brylawski (1982) calls S(M; x, y) the corank-nullity polynomial of M, the corank
of a set X in M being r(E) — r(X). Note that this usage differs from that in
Welsh (1976) where ‘corank’ means rank in the dual matroid. Clearly,
S(M; x, y)is an isomorphism invariant for the class of all matroids. Moreover,
one can easily check that if I is an isthmus and L is a loop, then

SI; x, )=x+1 and S(L;x,y)=y+ 1L (6.8)

62.1. Lemma. S(M; x, y) is a T-G invariant for the class of all matroids.

- Proof. Let e be an element of the matroid M(E). Clearly

MQSW X, .EH M x..AmTANJ\iE + M XAmT..ASv\iS. a.cv
provided e is neither a loop nor an isthmus. . XeE X<E
e eeX

Such invariants will be called generalized T-G invariants.
The fundamental result of this theory is that every T-G invariant f is an
evaluation of a certain two-variable polynomial t(x, y) where, for an isthmus
I and a loop L,

Consider the first term on the right-hand side. Clearly this equals
Y, x'BTr®ynd Moreover,
XcE-e
HE—e)+1 if e is an isthmus,
fh=x and f(L)=y. 6.5) rE) =
From this result, it is straightforward to deduce a characterization of all*
generalized T-G invariants. The precise statements of these results will be

given in the next section, which contains a review of the basic results in.

HE —e) otherwise.
Thus

Y xE-amrXy® if ¢ is an isthmus,

matroid invariant theory. A more detailed development of this theory appears T B ) XcE-e

in Brylawski (1982). The primary focus of this chapter is on the applications ¥ss Y xE-0-r@y®  otherwise.

of the theory. In particular, we concentrate mainly on those applications that XcE-e

are related to graphs and coding theory, preferring to treat a few applications Hence

in detail rather than to give a superficial treatment of all the applications sy | S(M —¢; x,y) if e is an isthmus,

We hope that the extensive list of references will compensate in part for our: Y x ym = . (6.10)
: X<k S(M —e; x,y) otherwise. )

failure to provide encyclopedic treatment of every application. ee X

Now consider the second term on the right-hand side of (6.9). This equals

Y, xtUE-eve-ritueyn¥ue) Jet ' and n' denote the rank and nullity
" YcE—e

I functions of M/e. Then, for all YS E —e,
(¥) = WHA%C e) if e is a loop,
HYue)—1 otherwise;

6.2. The Tutte Polynomial

In this section we state the fundamental results characterizing all T-G and
generalized T-G invariants. We also investigate several closely related but
coarser matroid invariants. v
For an arbitrary matroid M(E) having rank and nullity functions r and n
respectively, the rank generating polynomial S(M; x, y) of M is defined by
SOM; x, )= 3 X By — 3 XME)~rX0 X1~ r 0, a.@.,

X<E X<E

and
n(Yue)—1 if e is a loop,

n(Y)=

n(Yue) otherwise.
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Thus
(E—e)=rX) w'¥) i ,
y oy x if e is a loo
Y X @y — | veE-e Y P
(B &)= r (Y. o .
X<k Yy xTE-a-rMym®  stherwise.
Yc<E-e
Hence

M kzmvlsccw\iuc -

X<E
eeX

On substituting from (6.10) and (6.11) into (6.9), we obtain

Wv&d&\& x, y} if e is a loop,

S(M/e; x, y)  otherwise. (6.11)

S(M —e¢; x, )+ S(M/e; x, y) if e is neither an isthmus

. nor a loop,
SIM; x, y)= (x+ 1S(M —e¢; x, y) if e is an isthmus,
(y+ 1)S(M/e; x, y) if e is a loop.
But S(; x, y)=x+1 and S(L; x, y)=y + 1. Moreover, if ¢ is a loop, then
M/e = M — e. The lemma now follows easily. O

The next theorem, the main result of this section, extends the preceding
lemma by showing that not only is S(M; x, y) a T-G invariant but, more
importantly, it is essentially the universal T-G invariant. The sets of
isomorphism classes of matroids and non-empty matroids will be denoted
by .# and ', respectively. Note that (ii) and (iii) in this theorem are no
more than restatements of the fundamental recursions (6.2) and (6.3).

6.2.2. Theorem. (Brylawski, 1972b) There is a unique function t from # into
the polynomial ring Z[x, y] having the following properties:
©) L x, y)=x and (L; x, y) = y.

(i) (Deletion—contraction) If e is an element of the matroid M and e is neither
a loop nor an isthmus, then

HM; x, y) =M —e; x, y) + t(M/e; x, ).
(iii) If e is a loop or an isthmus of the matroid M(E), then
UM, x, y)=t(M(e); x, Y(M — ¢; X, y).
Furthermore, let R be a commutative ring and suppose that f is any function
from A’ into R.If f satisfies (6.2) and (6.3) whenever |E| > 2, then, for all matroids M. s
S (M) = «M; f(I), f(L)).

Proof. By Lemma 6.2.1, if {(M; x, y) = S(M; x — 1, y — 1), then (i}(iii) hold.
Now the only non-empty matroids that cannot be decomposed using (ii) or
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(iii) are I and L, and, for these matroids, #(M; x, y) is fixed by {i). Hence an
easy induction argument establishes that ¢ is unique. Finally, the last part
of the theorem can be proved using another straightforward induction
argument, the details of which are left to the reader. |

We shall call the function t(M; x, y) the Tutte polynomial of M. Evidently
t(M; x, y) can be written as Y, Y. b;;x"y’ where b;;> 0 for all i and j. We shall
iJ

usually abbreviate this double summation to Y, b;;x'y’. It follows immediately
from the last proof that

HM; x, p)=SM; x—1, y—1). (6.12)
Hence
UM; x, )= Y. (x— 1B EO(y— 1)@, (6.13)
XcE

The Tutte polynomial can be calculated directly from this summation, or
alternatively, it can be determined by using the recursions 6.2.2(ii) and (iii).
The second of these techniques is illustrated as follows.

6.2.3. Example. Let M be U, ,, the rank 2 uniform matroid on a set of four
elements, that is, the 4-point Iine. In the calculation below, we shall abbreviate
1(N; x, y) throughout as (N), and represent each matroid affinely, where a
loop e is written as e. By repeated application of 6.2.2(i), (i), and (iii) we have:

e TR

a
= A.\.wv + (@ab) + (@ab) + (iab}
a

= x(@a) + 2(@ab) + y@)
= ¥ + A@a) + 2@ + )°
= x2 + 2x + 2y + v\m.

Thus
HUz45 % ¥)=%x2+2x+2y + v

Evidently #(U, 4; X, y) is symmetric with respect to x and y. Since U, , is a
self-dual matroid, this observation is a special case of the next result, the
proof of which follows easily from (6.13) by using the fact that if X < E, then
its rank in M*(E) is | X| — HE) + r(E — X), where r is the rank function of M(E).
6.2.4. Proposition. For all matroids M,

t(M?*; x, y)=HM; y, x).

Aneasy induction argument beginning with 6.2.2(iii) establishes the next result.
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6.2.5. Proposition. For matroids M, (E,)and M ,(E,) where E 1 and E, are disjoint,
UM, @ M;; x, y) = t(M; X, y)i(M; X, y).

Evidently 6.2.2(iii) is a special case of 6.2.5. A consequence of this
observation and the preceding result is that one can use the direct sum
formula 6.2.5 in place of 6.2.2(iii) in defining the Tutte polynomial.

The following characterization of generalized T—G invariants is a
straightforward extension of Theorem 6.2.2. Its proof is left to the reader.

6.2.6. Corollary. (Oxley & Welsh, 1979b) Let ¢ and © be non-zero elements of
a field F. Then there is a unique function t Jrom A into the polynomial ring

F[x, y] having the following properties:
() £U; x, y)=x and t'(L; x, y) = y.
(i) Ifeisanelement of the matroid M and e is neither a loop nor an isthmus, then
U(M; x, y)=at' (M — ¢ x, y) + 1t'(M/e; x, y).
(iii) If e is a loop or an isthmus of the matroid M, then
(M x, y) =t'(M(e); x, y)t'(M —g; x, ).
Furthermore, this function t' is given by

Y(M; x, y)= o~ BBy M; x/1, y/o).

We defer to the exercises consideration of a still more general invariant
which admits a multiplicative constant on the right-hand side of 6.2.6(iii).

6.2.7. Example. Suppose that every element of a matroid M(E) has,
independently of all other elements, a probability 1 — p of being deleted from
M and assume that 0 < p < 1. We call the resulting restriction minor (M)
of M a random submatroid of M, corresponding in the obvious way to a
random graph on m vertices when M is the cycle matroid of the complete
graph K,,. If we let Pr(M) denote the probability that w(M) has the same
rank as M, then, evidently, Pr(I) = p and Pr(L) = 1. Moreover,

(1 —p)Pr(M —e) + pPr(M/e) if e is neither a loop nor an

Pr(M) = isthmus,

Pr(M(e)) Pr(M —e) otherwise.

It follows by Corollary 6.2.6 that

Pr(M) = (1 —p)"="®p®yM; 1, 1/(1 — p)).
Section 7.3 of White (1987) is devoted to the beta invariant for matroids.

This invariant is a member of the class of matroid isomorphism invariants
that satisfy the additive recursion (6.2) but not necessarily the multiplicative
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recursion (6.3). Such matroid isomorphism invariants will be called (T-G)
group invariants. The next result shows that the theory already developed
can be used to characterize invariants of this type.
6.2.8. Proposition. If A is an Abelian group, then there is a unique function g
from M’ into A such that

() g(M)=g(M — e) + g(M/e) provided e is neither a loop nor an isthmus of
the matroid M; and o
(i) g(U,;® U, )=ayfor all i and j such that i+j> 0.

Moreover, if t{M; x, )= Y. 3 b, X'y, then g(M) = M Mk“waac.
i J i

Proof. Evidently, if we define g(M) = M Mv:g: for all matroids M, then g

' 4 I
satisfies (i). Moreover, as {U;;® U, j; X, y) = xyl, g m.w..ammmm (ii). ﬂE.m there
is at least one function satisfying the required conditions. To obtain that
such a function is unique, we argue by induction Joaum that Eo.oﬁw
non-empty matroids that cannot be decomposed using (i) are ﬁ.romo consisting
entirely of loops and isthmuses. As the value of the function is fixed on such
matroids by (ii), the required result follows. O

We shall now illustrate the use of the last result. If E is a Bmﬂ.oau then
i, (M) will denote the number ofindependent sets of M having (M) — jelements.

6.2.9. Proposition. For a non-negative integer k, the isomorphism invariant
i, (M) is a group invariant and, if {(M; x, y) = Y. Y bx'y, then
r— " .\.

i

«.TwQSV = M Mwa k

Proof. Let e be an element of M and suppose that e is bn:won. a loop nor
an isthmus. Partition the set %, ,,,—, of independent sets of M E.:::m r(M)—k
elements into subsets £y, and Fyyy_ cOnsisting, Hnmwoo.:é? of MEOmo
members of £, that contain e and those a_m:. do not. Evidently £ 5«
is in one-to-one correspondence with the set of independent sets of M —e
having (M — ¢) — k elements. Moreover, £, - is in one-to-one correspon-
dence with the set of independent sets of M/e having r(M /e} — k elements. It

follows that i,_,(M)=1i,_,(M —e)+i,_,(M/e). Thus i, (M) is a group

i— k
6.2.8, we conclude that for all matroids M,

i
mxlkAEv"M.M.@C. Nﬂ . D
i

i i s
invariant. Now clearly i, (U, ;@ U, ;)=\ . »v = and so, by Proposition
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By (6.6), i, _, (M) is the coefficient of x* in S(M; x, y). Indeed, the preceding
proposition is just a special case of the result (see Exercise 6.4) that every
coefficient of S(M; x, y) is a group invariant.

Theorem 6.2.2 and Corollary 6.2.6 give characterizations of T-G invariants
and group invariants that are neatly expressible in terms of the Tutte
polynomial. In order to address the problem of precisely which matroid
isomorphism invariants can be determined from the Tutte polynomial, a
function f from . into a set Q will be called a Tutte invariant if it has the
property that f(M)= f(N) whenever M and N have the same Tutte
polynomial. Thus all generalized T-G and group invariants are examples of

Tutte invariants. There are many other examples that are not of one of these
types. For instance, since

UM; %, y) = S(M; x—1, y = 1) = 3" (x — 1y® =0y _ 1y

X<E
(M) is the highest power of x in HM; x, y), (6.14)
while
n(M) is the highest power of yin ¢(M; x, y). (6.15)

Thus rank and nullity are Tutte invariants. Clearly, since |E| = H(M) + n(M),
cardinality of the ground set is also a Tutte invariant. The next result
characterizes all Tutte invariants, although it is essentially just a restatement
of the definition. We leave the straightforward proof as an exercise,

6.2.10. Proposition. Let Q be a set and S be a function from M into Q such
that f(M) = f(N) whenever UM; x, y)=t(N; x, y). Then J(M) is a function of
the coefficients b;; of tM; x, y).

Notice that this proposition does not assert that we can find an explicit
formula for a particular Tutte invariant in terms of the Tutte polynomial
coefficients. Nevertheless, most of the examples of Tutte invariants that we

shall consider will have such an explicit formula. For example, by (6.14) and
(6.15), we have

HM) = max {i; b;;> 0 for some j}, and 6.16)

n(M) = max {j: b;;> 0 for some i}. 6.17)

Having stated the characterizations of T-G, generalized T-G, group, and
Tutte invariants, we now give a number of the more basic applications of
these results. For a matroid M, we denote by b(M), M), and s(M), the
numbers of bases, independent sets, and spanning sets, respectively, of M. It

was asserted in section 6.1 that these three numbers are T-G invariants. We
now prove this.
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6.2.11. Proposition.
() b(M)=tM; 1, 1)=S(M; 0, 0);
(i) (M) =M, 2, 1)=S(M; 1, 0);

(iii) s(M)=1tM; 1,2)=S(M; 0, 1); and
(iv) 28 =¢M; 2, 2)=S(M; 1, 1).

Proof. We begin by proving (i). Let e be an &oBoE.& the Bmano.wwa msﬁm
suppose that e is neither a loop nor an wm::b.cm. Partition the set o ases o
M into subsets &’ and #” consisting, respectively, of those bases ooEEEbw
e and those bases not containing e. Now #' is equal to the mnm of bases o
M — e, while the set of bases of M/e is {B—e: Be B"}. chm | %'} = b(M M e)
and |#"| = b(M/e). Therefore if e is neither a _oo.v nor an isthmus of ?M% MM
b(M) = b(M — e) + b(M/e). On the other hand, if e is a Gov or an GQHMS,
then it is clear that b(M) = b(M(e))b(M — ¢). Thus b(M) satisfies (6.2) an : M .H .
But clearly b(I) = b(L) = 1. Therefore, by .;ooﬂaj 6.2.2, b(M) =t(M; 1, 1).
Moreover, by (6.12), {(M; 1, 1) = S(M; 0, 0). Thus (i) holds. ) _
The proof technique used above can also be used to v.ho<m (ii) and we eave
this to the reader. To prove (iii), note that s(M)=i(M%*). Thus, dw ?vw
s(M) = t(M*; 2, 1). But by Proposition 6.2.4, t(M*; 2, 1)=t(M; 1, 2), and (iii
mo_MMM.:% we have by (6.12) and (6.8) that t(M;2,2)=S(M; 1, 1)=
Y 1r®-r0 0 - IE n

X<E

Since b(M)=t(M; 1, 1) and t(M; x, EHM.“ M,‘wcx{, it follows that
i j -
Y 3" b,;= b(M). In section 6.6A, we shall describe how, by ordering the mnoE.a
1)
i J

set of M, we can interpret each of the coefficients b;; as counting a particular
set of bases of M. . . .
The characteristic polynomial, the M6bius function, and the beta invariant
were all considered in detail in Chapter 7 of White (1987). We now n&m.ﬁm
each of these functions to the Tutte polynomial. Wnomz .Emn for a Bﬁ.,.ﬁo_.
M having a lattice of flats L, the characteristic polynomial p(M; 4) of M is
defined by the equation
p(M; A) ="}, pp (D, FYAOO=r® (6.18)
FeL
and satisfies the identity
p(M; A=), (=X, (6.19)
kmm . . -
We noted in section 6.1 that p(M; A) is a generalized T-G invariant. Using

Corollary 6.2.6, the characterization of such invariants, we obtain
p(M; A =(—=1y™yM; 1 — 4, 0)=(—1y*S(M; —4, —1).  (6.20)
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By Am.pmy M) = pp (&, E) = p(M; 0). Hence the Mébius function WM)is a
generalized T-G invariant and

HM) = (—1y™yM; 1, 0)= (—1YM™S(M; 0, — 1). (6.21)

6.2.12. Proposition. S(M) is a group invariant whose value is b,o- Moreover,
if |E| 22, then b,y = b,,.

NSQ\. As noted earlier, B(M) satisfies the additive recursion 6.2.5 and hence
1s a group invariant. Now, by Theorems 7.3.2(b) and 7.3.4 of White (1987),

1 ifi=1 and j=0,
0 otherwise.

Hence by Proposition 6.2.8, f(M) =b,,. The fact that bio=by, for |[E|>2
follows by a straightforward induction argument using the additive recursion
6.2.8(i).

o

EQ_.._. & Qot.v =

The EQ.E@ .@ 10 =bo; noted in the preceding proposition is one of a
number of identities that hold for the coefficients b;; of the Tutte polynomial.
The next result (Brylawski, 1972b; 1982) completely characterizes all identities of

the form )’ ¥ a,;b,, =y where y and all the ®;; are constants.
i

a.uhu. Theorem. The following identities form a basis Jor the affine linear
relations that hold among the coefficients b;; in the Tutte polynomial
H(M; x, y)= M M vc..x&t.
i20 j=0

where M is a rank r geometry having m elements none of which is an isthmus.

(@) b;=0 foralli>rand all j>0;
() bo=1; b,;=0 for all j >0,
(i) b,y g=m—r; b,_1,;=0 for all j>0;
(iv) b;j=0 for all i and j such that 1 <i<<r—2 and jZm—r;
™ bom-r=1; boj=0forall j>m—r,

. k k-s \ﬁl
v Y MAICHA Nm b, =0 for all k such that 0<k<m — 3.

s=0 t=0
Moreover, (vi) holds for all matroids M(E) such that |E| > k. Hence,
(vil) boo =0 if |E|>1;
(viil) byo=bo, if |EI=2;

(iX) byo—by; +by, = bioif |E|=3; and
(x) b3o—by, +by;—bo3=by, —2by, + by, if |E| 2 4.
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Next we consider what sorts of matroid properties are Tutte invariants.
First we note four elementary examples of such invariants. These assertions
are easily proved by induction.

6.2.14. Example. Ifb,,,, > 0, then tis the number ofloops of M and b, 4y, = 1.

6.2.15. Example. If b, >0, then s is the number of isthmuses of M and

F..ES =1

6.2.16. Example. The number of rank 1 flats of M is r(M) + b,,,—,, Where
t is the number of loops of M.

6.2.17. Example. Provided r(M) and n(M) are both positive, the number of
connected components of M is min{j: by; >0} = min{i: b,y > 0}. If exactly
one of r(M) and n(M) is zero, then M has |E| components.

To see the sorts of properties that are not Tutte invariants, we look at
two non-isomorphic matroids having the same Tutte polynomial.

6.2.18. Example. Let M, and M, be the matroids for which affine
representations are shown in Figure 6.1. Their Tutte polynomials are equal
because M; —e= M, —e and M, /e =~ M, /e. We now list various properties
that M, and M, do not share. Each such property is an example of a matroid
isomorphism invariant that is not a Tutte invariant, and hence cannot be
determined from the Tutte polynomial.

(i) M, =~ M for a planar graph I', so M, is both graphic and cographic
and hence is unimodular and binary. On the other hand, M, has a
4-point line as a restriction so it is not even binary.

(i) M, is transversal, but M, is not even a gammoid.

(iii) Although M, and M, have the same number of flats of rank 1 and the
same number of 4- and 3-element lines, M, has two 2-element lines

Figure 6.1.

® —@ @

Fom
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whereas M, has three. Hence M, and M, have different numbers of
flats and different numbers of hyperplanes.

(iv) M, and M, each have one 2-element circuit and six 3-element circuits,
but M, has five 4-clement circuits and M, has six such circuits. Thus
M, and M, have different numbers of circuits.

By Proposition 6.2.4, MY and M3 have the same Tutte polynomial.
Moreover, unlike M, and M,, each of M} and M% is a geometry. We defer
to the exercises (Exercise 6.9) consideration of an elementary counting
argument which has as a consequence that for any number N there are at
least N geometries all of which have the same Tutte polynomial.

Returning to the basic Tutte recursion (6.2), namely f(M)=
f(M — e) + f(M/e), we note that there are several slightly different techniques
which are used to show that, when f(M) enumerates the family £ (M),

| (M)] = |F (M —e)| + |F(MJe)|.

(1) There is a bijection b: F(M)—F (M — ) F(M/e). Thus the members
of # (M) are partitioned into two classes corresponding to the analogous
families in the deletion and the contraction. This technique was used
in the proof of 6.2.11(i).

(2) There is an injection i: F(M/e)>F (M —e) such that |F(M) =

Y m(x), where m(x) is 2 when x is in the image of i and is 1
xeF(M—e
oﬁro_.imo. This idea is used, for example, to prove that the number of
acyclic orientations of a graph is a T-G invariant (6.3.17), where, in
this case, m(x) counts the number of ways to orient the edge e while
maintaining the property of being acyclic.

(3) There are two surjections n,: #(M)—%(M/e) and n,: F(M — e)—
& (M/e), such that, for all x in F(M/e), |n; *(x)| = |z *(x)| + 1. Here we
think of partitioning both #(M) and #(M — e) into f(M/e) blocks such
that corresponding blocks have one more member in M thanin M —e.
An example occurs in the calculation of the number of different score
vectors that arise from the orientations of a graph (see Proposition 6.3.19).

Many T-G invariants are evaluations of the Tutte polynomial when y, or
dually x, is 0, 1, or 2. We now list some salient features of such invariants f.

(1) y=0if and only if f(M)=0 whenever M has a loop, or, equivalently,
whenever parallel elements can be ignored. In this case, we obtain the

recursion f(G)=f(G-e)+ f AQ|\& for any geometry G and any
non-isthmus e. Here G/e denotes the simplification of the matroid G/e.
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(2) y=1if and only if loops can be ignored so that f(M)= f(M), where
M is obtained from M by deleting its loops. Here, if 4 is a set of parallel
elements of M that is not a component, then

f(M)=f(M — A4) + |Al f(M/A).
(3) y=2if and only if the recursion f(M)= f(M — e) + f(M/e) holds not
only when e is a non-loop or a non-isthmus, but also if e is a loop.

In some of the applications of T-G techniques, it is convenient to work
with a four-variable version of the Tutte polynomial. This is defined on the
class #, of pointed matroids, that is, matroids M, having a distinguished
point d. It is not difficult to modify the proof of Theorem 6.2.2 to establish
the next result and we leave the details to the reader. Evidently, if e is an
element of M, other than 4, then M, — e and M,/e are members of .#}, the
distinguished point of each being d.

6.2.19. Proposition. There is a unique function tp from My into the polynomial
ring Z[x', x, y', y] having the following properties:
(1) te(My(d)) =x" if M;(d) is an isthmus, and
t(M,(d) = if My(d) is a loop.
(i) If e is an element of a member M, of #, and e #d, then
tp(My) = to(M; — &) + (M, /e).
(iii) If e is a loop or an isthmus of a member M, of My and e # d, then
to(M,) = tp(M; — e)t(M,(e)). In particular, to(M [e)) = (M (e)).

The polynomial #(M;; x',x, ¥, y) is called the pointed Tutte polynomial.
The following proposition, which summarizes some of the basic properties
of this polynomial, is not difficult to prove and is left to the reader as an exercise.

6.2.20. Proposition. Suppose that M€ #p. Then
(i) for some f and g in Z[x, y],
tp(My; X', X, ¥, y) = Xf(x, y) + y'g(x, y).
Moreover, for this f and g,

(i) o(My; x, y)=xf(x, y) + yg(x, y)
(i) (M7; X', %, ¥, y)=ta(My; ¥, y, X', ) =x'g(y, X) + yf(y, x);
(iv) if d is neither a loop nor an isthmus of M, then

(M;—d; x, y) =(x—1)f(x, y)+ g(x, y) and

t(M,/d; x, y)= f(x, y) + (y — D)g(x, y); and



136 Thomas Brylawski and James Oxley

(v) if d is a loop or an isthmus of M,, then

fix, 5 if d is an isthmus,
UM, — d; x, y) = t(M,;/d; x, y) = P
g(x,y) if dis a loop.

We have seen that the rank generating polynomial is fundamental in the
class of T-G invariants. Another related polynomial that arises in applications
of T-G techniques is the cardinality-corank polynomial Sy.(M; x, y). This is
defined by

SxclM; x, )= 3, Xy @, (622)
X<E
We leave the reader to prove that this polynomial is a generalized T-G
invariant, as stated in the following,

xX+y
x

6.2.21. Proposition. S, o(M; x, y)= x"t( M; »x+1

6.3. T-G Invariants in Graphs

In this section we shall review the occurrence of T-G invariants in graphs.
Although the most important such invariants occur in the context of colorings
and flows, a number of others arise, for example, in connection with acyclic
and totally cyclic orientations, score vectors, and network reliability. Here,
most of our attention will be devoted to colorings and flows. We begin with
the former.

6.3.A. Colorings

Iet I' be a graph and 4 be a positive integer. A proper vertex coloring of T
with A colors or a proper A-coloring of T is a function f from V(I') into
{1,2,..., A} such that if wve E(T'), then f(u)+# f(v). The number of such
colorings will be denoted y.(4). It was noted in Chapter 7 of White (1987)
that x(4) is a polynomial in A. This polynomial is called the chromatic
polynomial of . The next result relates x-(4) to the Tutte polynomial of M.

6.3.1. Proposition. For a graph T having k(T') connected components,
Ar(A) = AOp(Mp; 4) = AO(— 1)V OI-KDOy(M 1 — ], 0).

Proof. Let f(T; ) = A~*@y(4). Ostensibly f depends on the particular graph
I'. However, we shall show that in fact f depends only on My and that if
we let f(Mp; )= f(T; 4), then this matroid function is a well defined
generalized T-G invariant for which o =1and = —1. If M. is I or L, then
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I is formed from a single isthmus or a single loop by adjoining isolated
vertices. It follows easily that f(I; ) =1 —1 and f(L; 1) =0 so that f is well
defined if |E(T')| = 1. Assume that f is a well defined matroid function when
|E(T)| < n and let |E(T')| = n.

Now suppose that e is an edge of I" having endpoints 4 and v. Assume
that e is neither a loop nor an isthmus of I'. Then we can partition the set
of proper A-colorings of I' — e into those in which u and v are colored alike
and those in which they are colored differently. But the first subset is
one-to-one correspondence with the set of proper A-colorings of I'/e, and the
second subset is in one-to-one correspondence with the set of proper
A-colorings of I". Evidently I" and I'/e have the same number of components.
Moreover, as e is not an isthmus, I and I" — e have the same number of
components. Thus f(I" —¢; 1) = f(T'; 1)+ f(I'/e; A), and so, by the induction
assumption,

S A= fMp_; ) — f(Mr; A).
If e is a loop of T, then f(I'; 1) = f(L; ) =0, and so

J@ ) =1L Af Mr_,; A).

Finally, if e is an isthmus of I, then the number of ways to properly A-color
T" equals the number of ways to properly A-color I' — e so that u and v are
colored differently. But in a proper A-coloring of I' — e, once a color is assigned
to u, there are A possible colors that can be assigned to v. Of these, A — 1 are
different from the color assigned to u. Thus the number of ways to properly
A—1

A

Ar—o(4).Since f(I; 1) =A—1and k(I — e) = k(I') + 1, we conclude

A-color I — e so that u and v are colored differently is Ar-(4). Hence

A—1
xr(d) = 2

that f(I5; )= f(I; ) f(’ — e; 4), and so, by the induction assumption,
fO =T Vf(Mr_,; A
On comparing the equations for f(I'; 4) when e is a loop, an isthmus, and
neither a loop nor an isthmus, we conclude by induction that f is well defined
as a matroid function. Moreover, the same equations imply that f is a

generalized T-G invariant for which ¢ =1 and 7= —1. Since f(I; })=4A—1
and f(L; A)=0, it follows by Corollary 6.2.6 that

fMp; )= (=) OgM; 1 -4, 0).

Thus
12lh) = (= )Y OO 1~ A, 0)

Since p(M; 1) = (—1y™yM; 1 — A, 0) for ail matroids M, the rest of the
proposition follows easily. O
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The chromatic polynomial for graphs was introduced by Birkhoff (1912-13)
as a tool for attacking the persistent Four Color Map problem. This problem
remained unsolved for another sixty years after Birkhoff’s paper, and the
eventual resolution of the problem did not use chromatic polynomials. Appel
& Haken (1976) were able to reduce the Four Color problem to one that
involved checking a very large, but finite, number of cases. Using a computer
to do the case checking, they were then able to prove the following result,
which is known as the Four Color theorem.

6.3.2. Theorem. Let I bealoopless planar graph. ThenT hasa Eo@mi-n&ol:m.

Accounts of the history of the Four Color problem and of the methods
used to prove the last theorem can be found in Biggs, Lloyd & Wilson (1976)
and in Woodall & Wilson (1978). In terms of chromatic polynomials, the
assertion of the theorem is that, for a loopless planar graph T, Ar(4)>0.

In general, if " is a planar graph, we can construct a geometric dual I'*
of it (see Chapter 6 of White, 1986). Consider now the number of proper
A-colorings of I'*. In section 6.3.B, we shall show how to interpret this number
in the graph T,

6.3.B. Flows

Let 6 be some fixed orientation of an arbitrary graph I" and let T', denote
the associated directed graph. Let H be an additively written Abelian group
with identity element 0 and order |H|. An H-flow on I’ ¢ 18 an assignment of
weights from H to the directed edges of I', so that, at each vertex v of I’ PR
the sum in H of the weights of the edges directed into v equals the sum of
the weights of the edges directed out from v. If none of the edges receives
zero weight, the H-flow is called nowhere zero. We denote by Xt,(H) the
number of nowhere-zero H-flows on T,.

6.3.3. Lemma. yf (H) does not depend on the orientation 0 of T.

Proof. Suppose that the orientation ¢ is obtained from 6 by reversing the
direction of a single edge e. Then, by replacing the weight of e by its additive
inverse in H, we determine a bijection between the sets of nowhere-zero
H-flows on I’y and T'y.. Thus xf,(H) = £, (H) and an obvious extension of
this yields the required result. ]

In view of the preceding lemma, we shall abbreviate xt,(H) as simply y¥(H).
The next result should be compared with Proposition 6.3.1.
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6.3.4. Proposition. For a graph T having k(I') connected components,
xF(H) = p(ME; |H|) = (— 1)EOIVOFOyM 1 0, 1 — |H]).

Proof. Let g(My; H) = x¥(H). We shall prove that g is well defined and that
it is a generalized T-G invariant for which ¢ = —1 and 1=1. miaob:.w
g(I; H)=0 and g(L; H)=|H| — 1. So g is well defined if |E(I')} = 1. Assume it
is well defined for |E(I')| <n and let |E(I')] =n.

Now suppose that e is an edge of I' having endpoints u and v. Assume
that e is not a loop or an isthmus of T'. Partition the set W of nowhere-zero

. H-flows on I'/e into subsets W’ and W” where W’ consists of those members

of W that are also nowhere-zero H-flows on I' —e. Thus |W'| = xf_.(H).
Moreover, W” is in one-to-one correspondence with the set of nowhere-zero
H-flows on I. To see this, we note that a member of W” fails as a nowhere-zero
H-flow on I' — e precisely because, at each of the vertices u and v in I'—e,
the sum of the weights of the edges directed into the vertex does not equal
the sum of the weights of the edges directed out. We may assume, without
loss of generality, that the resultant flow into u is n. Then the resultant flow
out of v is also n and, by directing e from u to v and assigning it the weight
n, we obtain a nowhere-zero H-flow on I'. Since every nowhere-zero H-flow
on I' is uniquely obtainable in this way, it follows that |W"| = yf(H) and so
XE(H) = 3F.(H) — xf - .(H). Thus, by the induction assumption,
X (H) = g(Mr;.; H)—g(Mr_; H).

If e is a loop in T, then, corresponding to every nowhere-zero H-flow on
I' — e, we may take the weight of e to be any one of the non-zero elements
of H. This gives a nowhere-zero H-flow on I, and every such flow on I
arises in this way. Thus if e is a loop in My, then xF(H) = g(L; H)xf_.(H)
and so, by the induction assumption,

1 (H) = g(L; H)g(My_,; H).
If e is an isthmus of I, then yf(H) =0 =g(I; H) and so
XE(H) = g(I; H)xp - (H):

On comparing the equations for xf(H) when e is a loop, an isthmus, and
neither a loop nor an isthmus, we conclude that g is well defined. The same
equations imply that g is a generalized T-G invariant for which ¢ = —1 and

7 = 1. The proposition now follows immediately from Corollary 6.2.6 and 6.20.
O

A consequence of the last result is that yf(H) does not depend on the
particular Abelian group H but only on its order. Thus, if |H| =n, we shall
denote xf(H) by x¥(n). In particular, x2(Z,) = xf(n). The last result implies
that yf(4) is a polynomial in 4. We call this the flow polynomial of T,
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Let I'* be a geometric dual of the planar graph I'. On combining
Propositions 6.3.1 and 6.3.4, we deduce the following result.

6.3.5. Corollary. The number of proper A-colorings of T equals the product of
A0 and the number of nowhere-zero 7 2flows on T*.

The next result comes from combining this corollary with the Four Color
theorem (6.3.2).

6.3.6. Corollary. Let I be a planar graph having no isthmuses. Then T has a
nowhere-zero Z,-flow.

An immediate consequence of Proposition 6.3.4 is that if H is an Abelian
group of order k, then I' has a nowhere-zero H-flow if and only if I has a
nowhere-zero Z,-flow. The next result shows that the existence of the latter
corresponds to the existence of a nowhere-zero Z-flow for which the weights
liein [—(k — 1), k — 1]. This result holds in the more general context of flows
in unimodular matroids (Tutte, 1965), but we prove it here only for graphs.

6.3.7. Proposition. Let k be an integer exceeding one, I be a graph, and 0 be
a fixed orientation of I'. Then the Jollowing statements are equivalent.

(i) Ty has a nowhere-zero Z,-flow.

(i) T'y has a nowhere-zero Z-flow with weights in [—(k— 1), k—1].

Proof. In this proof, the symbols 0, 1, 2, ..., k—1 will be used to denote
integers and to denote the members of Z,, and it will be convenient to switch
between these. Suppose I', has a nowhere-zero Z-flow with weights in
[—(k—1), k—1]. Then, by regarding these weights as elements of Z,, we
obtain a nowhere-zero Z,-flow in T',. Thus (ii) implies (i).

Now suppose that  is a nowhere-zero Z,-flow on T,. Define a function
¢ on E(I'y) by, for each e in E( o), taking ¢(e) to be an integer in
[—(k—1), k— 1] such that, regarded as a member of Z,, ¢(e) equals yf(e).
This does not uniquely determine ¢ since there are two choices for o(e) for
each edge e. We call e positive if ¢(e) is positive, and negative otherwise.
Evidently ¢(e) is non-zero.

Now, for each vertex v of I'; define the weight w(v) of v by

wpl= Y ¢le— Y )
eeN*t(v) eeN~(v)
where N *(v) is the set of edges directed into v, and N~ (v) is the set of edges
directed out from v. We call v positive, negative, or zero according to whether
its weight is positive, negative, or zero. Clearly w(v) = 0(mod k) for all vertices
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v. We choose the function ¢ so that Y |w(v)| is a minimum.
veV({l) . .
A path Pin I from a vertex u to a vertex v will be called positive provided

that the positive edges of P are precisely those whose orientation in I'y agrees
with the direction of traversal of P. We show next that there is no positive
path in I'y with a negative initial vertex and a positive final vertex. If there
is such a path, P’, then let ¢’ be defined as follows for all edges e of I":

¢e)—k if e is a positive edge of P,
d'e)={ dle)+k if e is a negative edge of P,
o(e) otherwise.

Evidently, regarded as members of Z,, ¢'(e) and ¢(e) are onj.& for .m:. edges
e. Moreover, using the fact that w(v) =0 (mod k) for all vertices v, it is easy
to show that if w' is the weight function associated with ¢’, then

2 Wel< X W)l
veV veV
This contradiction to the choice of ¢ establishes that the path P’ does not exist.
Let ¥, and ¥} be the sets of positive and negative vertices, Hommoogo_&. of
V(T). Let V] be ¥ together with all the vertices u for which there is a positive
path from a member of ¥, to u. Then V-V, 2V, and

Y wi)= Y w). (6.23)
But
2 W)= X Y, de— Y ¢} (6.24)
veV -V, veV -V, \eeN*(v} eeN~(v)

Ifboth endpoints of e are in ¥V — V), the net oona_ucm.os of e to the right-hand
side of (6.24) is zero. Moreover, by the definition of ¥}, no coamé. oamo. F.ma
its tail in ¥, and its head in V— V], and no negative edge has its S.:. in
V—V, and its head in V,. Thus the right-hand side of (6.24) is non-positive.
Hence, by (6.23), Y, w(v) <0.But, as every vertexin ¥} is positive, Y, w(v) >0

veV; veV,

with equality only if ¥, = (. We conclude that I has no positive vertices. A
similar argument shows that I' has no negative vertices. Thus ¢ is a Z-flow
onI havingallits weightsin [ —(k — 1), k — 1] and Proposition 6.3.7 is proved.

.|

If " is a graph, a Z-flow with weights in [ —(k — 1), k — 1] is called a k-flow.
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6.3.C. Tutte’s 5-flow Conjecture

In moomonm 6.3.A and 6.3.B, we noted that certain fundamental T-G invariants
occur in the study of both colorings and flows in graphs. In each of these
areas, the focal point of much of the research has been one very difficult
problem. For colorings this problem was, for many years, the Four Color
problem. Now that this has been solved, attention has turned to the more
mga.a& conjecture of Hadwiger, which we shall discuss later in the chapter
(section 6.4). For flows, the outstanding problem has been to prove or disprove
the following conjecture of Tutte (1954).

6.3.8. Conjecture. Every graph without isthmuses has a nowhere-zero 5-flow.
Appearing with this conjecture was the following weakening of it.

.a.ub. Conjecture. There is some integer k such that every graph without
isthmuses has a nowhere-zero k-flow.

Both conjectures remained unresolved for over twenty years until Jaeger
(1976b) E.osua that every graph without isthmuses has a nowhere-zero
8-flow. This result was sharpened by Seymour (1981) and, in this section, we
shall prove his result, which is still the best partial result toward Conjecture m,.u.w.

6.3.10. Theorem. Every graph without isthmuses has a nowhere-zero 6-flow.

. As an example of a graph having no nowhere-zero 4-flow, Tutte (1954)
cited .Eo Petersen graph P, (see Figure 6.2). The reader can check this by
showing that the flow polynomial of P,is

A=A -1)A-2)A— 3) A —4)(4* - 51+ 10).
In 1966, Tutte (1966a) advanced a variant of 6.3.8, namely that P, is the

Figure 6.2.
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unique minimal obstruction to the existence of a nowhere-zero 4-flow. More
precisely, he proposed the following.

6.3.11. Conjecture. If a graph without isthmuses has no nowhere-zero 4-flow,
then it has a subgraph contractible to P,,.

Let T be a graph without isthmuses. To prove Theorem 6.3.10, we shall
show that " has a nowhere-zero (Z, x Z,)-flow. We begin with the following
simple observation, the proof of which is left to the reader.

6.3.12. Lemma. The following statements are equivalent for a graph I'.

(i) T has a nowhere-zero 2-flow.
(ii) Every vertex of I has even degree.
(iii) E(T') is a disjoint union of circuits.

We show next that if a minimal counterexample to Theorem 6.3.10 exists,
then it is simple and 3-connected.

6.3.13. Lemma. Suppose that k is an integer exceeding 2. Let T be a graph
that, among all graphs A with no isthmuses and no nowhere-zero k-flows, has
|V(A)| + |E(A)| minimum. Then T is simple and 3-connected.

Proof. Evidently T is loopless and 2-connected. Moreover, if {e,, e,} is a
circuit of I, then E() # {e,, e, }, so I' — e, has no isthmuses. The choice of
I" now implies that I" — e, has a nowhere-zero k-flow, and, since k = 3, this
k-flow can easily be modified to give a nowhere-zero k-flow on I'. We conclude
that I' is simple.

Now suppose that I is not 3-connected. Then, as I" has at least four
vertices, it follows by Lemma 6.3.3 of White (1986) that I" has a representation
as a generalized circuit, each part of which is a block. This means that, for
somem > 2,I" hassubgraphs T, T, .., T}, so that the following conditions hold:

(1) Each T;is connected, loopless, has no cut vertices, and has a non-empty
edge set; and, if m =2, both I'; and I', have at least three vertices.
(2) The edge sets of I'y, I, ..., T}, partition the edge set of I', and each I;

shares exactly two vertices, its contact vertices, with C I;.
Jei
(3) IfeachT;is replaced by an edge joining its contact vertices, the resulting
graph is a circuit.

Ifnone of T;, T,, ..., I, consists of a single edge, then each has no isthmuses
and therefore, by the choice of T', each has a nowhere-zero k-flow. It follows
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that I" has such a flow; a contradiction. Thus, we may suppose that [, consists

of a single edge. Hence m = 3. Therefore I is the series connection of two

graphs A, and A,, neither of which has an isthmus. Thus

M) = S(M(A,), M(A,)) = [P(M*(A,), M*(A,))]* (White, 1986, p. 180), so

M*(I) = P(M*(A,), M*(A,)). Now, by Theorem 7.2.9 of White (1987),

pM*(I); ) = p(M*(A); Ap(M*(A,); 7),
that is,
A (A) = xX (DX, (4).

Since each of A, and A, has a nowhere-zero k-flow, so does T'; a contradiction.

d

The proof of Theorem 6.3.10 will use the following function defined on
the set of subsets of E(I'). For X < E(T'), we take the S-closure (XD of X to
be the smallest subset ¥ of E(T") with the following properties:

() X< Y; and
(2) there is no circuit C of T such that 0 < |C — Y| < 2.

Evidently if ¥, and ¥, both satisfy (1) and (2), then so does Y, n ¥,. Hence
{X is well defined. It is not difficult to check that {X> can be obtained
constructively as follows. If € is a circuit of I" with 0 < |C — X| < 2, then let
X' = X' C, Repeat this procedure with X’ replacing X and continue in this
manner until no further elements can be added. The resulting set is (X>.
We leave it to the reader (Exercise 6.32) to check that S-closure is a closure
operator, thatis, X < (X} {{X>>=(X;andif X, € X, then (X, > = (X,).
If fisa Z,-flow on I, then the support S(f) of f is the set {e € E(I'): f(e) # 0}.

6.3.14. Lemma. Let T be a graph and X be a subset of E(I) such that
(X7 =E(I'). Then there is a Z,-flow f on 1" with E(I") — X < S(f).

Proof. We argue by induction on |E(I'}— X|. If this is zero, the result is
immediate so assume that [E(T'} — X| > 0. Then X 5 (X, so there is a circuit
C with 0 <|C — X| < 2. Certainly (X = E(I") and so, by the induction
assumption, there is a Z;-flow ¢ on T such that E(I)—(CuX)< Sig)
Evidently there is 2 7Z3-flow 2 on I so that _w.cs =C. As |C— X| < 2, we can
choose n from Z, so that, for all e in C— X, 1 # —g(e)/h(e). Let f =g+ nh,
Then, for e in EI')— (X u C), fle}= gle) # 0. Moreover, for ¢ in C — X,
fle) = g(€) -+ nhie). This sum is non-zero by the choice of n, and we conclude
that, for all e in E(T') — X, f{e) is non-zero. ]

By Lemma 6.3.13, we know that we may assume that I" is simple and
3-connected. The next lemma focusses on such graphs. The proof of Theorem
6.3.10 will be obtained by combining this lemma with Lemma 6.3.14.
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6.3.15. Lemma. A simple 3-connected graph I has a collection C, C,, ..., C,
of disjoint circuits such that (C,uC,u ... UC, »=E()

To prove this lemma, we shall use the following technical but elementary result.

6.3.16. Lemma, Let A be a non-null simple graph in which each vertex has
degree at least two. Then A has a block A’ with at least three vertices so that
at most one vertex of A is adjacent in A to some vertex of A not in A'.

Proof. Let be(A) be the graph having as its vertices the blocks and cut vertices
of A; the edges of be(A) join a cut vertex to a block if the block contains the
cut vertex. Evidenily bcf{A) is a forest. Let v be a pendant vertex of be(A).
Then v corresponds to a block of A.Since A is simple and has no vertices
of degree less than 2, this block has at least three vertices. We take this block
to be A'. . 1

Proof of Lemma 6.3.15. A subset X of E(I'} will be called connected if the
subgraph of " consisting of X and all incident vertices is connected. Now
certainly I" has a circuit C. Moreover, as I is simple, {C) is connected, Thus
we can choose a maximum positive integer m so that there are disjoint circuits
C, Cyy oy Cp with { C,uCyu . C,, > connected.

Let U be the set of vertices of I” incident with {(C, v C,u ... wC, ) and
let A be the subgraph of I' obtained by deleting U. If A is the null graph,
then U=V({T) and so, as {(C,uC,u..uC,> is connected,
L CWCu .. uC >y =EI). Thus {C,uCyu ... uC,>=E(I") and the
lemma holds.

Now suppose that A is non-null. No vertex v of A is adjacent in I" to two
distinct vertices, say 4, and u,, of U; otherwise, since {C,uC,u ... UC,, >
is connected, there would be a path joining u, and u, using only edges of
{C,uC,yu ... uC, . This path together with the edges vu; and vu, forms
a circuit contradicting the definition of { C wC,u ... 0C,, . Thus, as every
vertex of the simple 3-connected graph I' has degree at least 3, every vertex
of A has degree at least 2. Therefore, by Lemma 6.3.16, A has a block A’
with at least three vertices and with at most one vertex adjacent in A to
some vertex of A not in A’. Since I' is 3-connected and [V(A’)] = 3, there are
at least 3 vertices of A’ that are adjacent in T to vertices not in A" Hence
there are distinct vertices b, and b, of A’ both of which are adjacent in I” to
vertices in U. As A’ is a block with at least three vertices, it has a circuit, say
C,. .y, using both b, and b,. Let e, and e, be edges of I' joining b, and b,
respectively to U. Then {e, e,}<{(C,uCu...uC, > and so
(C,wC,u ... C, > is connected. This contradicts the maximality of m and
completes the proof of the lemma. O
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We are now ready to prove Theorem 6.3.10.

Proof of Theorem 6.3.10. Let T be a graph that, among all graphs
A with no isthmuses and no nowhere-zero 6-flows, has [V(A) + [EA)|
minimum. By Lemma 6.3.13, we may assume that I is simple and
3-connected. Then, by Lemma 63.15, T has a set {C,, C,, ..., C,}
of disjoint circuits so that {C,UC,u ... wC,>=E(I). By Lemma 6.3.14,
there is a Z;-flow f, on I' with EI)—(CiuCyu ... uC,) = 8(f).
By Lemma 6.3.12, there is a Z,-flow £, on T with S(f,) = C,uCu ... uC,.
Then the (Z; x Z,)-flow f defined, for all e in E(T), by fle)=(fi(e), f>(e)
i1s nowhere zero. We conclude, by Propositions 6.3.4 and 6.3.7, that
I" has a nowhere-zero 6-flow. O

6.3.D. Orientations of Graphs

As we have seen, T-G invariants are important in the study of colorings and
flows in graphs. Another area of graph theory in which there have been
numerous applications of T-G techniques is in the consideration of certain
special types of orientations of graphs. Several of these are considered below
and some further examples are considered in section 6.3.G and the exercises.
An acyclic orientation of a graph I is an orientation of I' in which there are
no directed cycles. Let a(I') denote the number of such orientations of T

6.3.17. Proposition. (Stanley, 1973b) a(T') = (— 1)V ©ly (— 1) = (M s 2, 0).

Proof. Suppose that the edge e of I is neither a loop nor an isthmus and
let u and v be the endpoints of e. Partition the set o of acyclic orientations
of I — e into subsets o/’ and .o¢” where /' consists of those members 0 of
&/ for which (I" — e), contains a directed path from u to v or from v to u. It
is straightforward to show that if f€.s’, then (I’ — ¢), cannot contain both
a directed path from u to v and a directed path from v to u, as otherwise
(I" — e)q certainly contains a directed cycle. Therefore, for each orientation §
in o/, there is precisely one orientation of e that will extend 0 to an acyclic
orientation of I". On the other hand, if § € ¢, then each of the two orientations
of e extends 6 to an acyclic orientation of I". Since every acyclic orientation
of I can be uniquely obtained from a member of o by assigning an orientation
to e, it follows that

al’) = || + 2|
But
al’ —e)= || + |7
Moreover, it is easy to see that
a(l'/e) = |.a"|.
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We conclude that if e is neither a loop nor an isthmus of T, then
a(l") = a(l" — &) + a(I'/e).
Now suppose that e is an isthmus of I'". Then a(I') = 2a(T" — e) unless
consists of a single edge, in which case a(I') = 2. Finally, if " has a loop, the

I" has no acyclic orientations, that is, a(I") = 0.
We may now apply Theorem 6.2.2 to obtain that

al) = t(M; 2, 0).
Thus, by Proposition 6.3.1,
al) = (—1)"Olyr(~1),
as required. [

The preceding proposition showed that the number of acyclic orientatior
of a graph is a T-G invariant. Certain proper subsets of the set of acycli
orientations can also be associated with T-G invariants. The next result give
one such example and another example is given in Exercise 6.35. A vertex
in a directed graph is a source if no edge is directed toward v, and a sink :
no edge is directed away from v. We shall denote by N ,(I") the number ¢
acyclic orientations of I" in which v is the unique source.

6.3.18. Proposition. (Greene & Zaslavsky, 1983) N, (T') is (— 1)y Moy(M) if ]
is connected, and is O otherwise. Thus N,(T') does not depend on the choice ¢
the vertex v.

Proof. The proof of this result differs slightly from the usual pattern in that
instead of establishing the deletion—contraction formula for an arbitrary edg
e, we show it only for certain special choices of e. In particular, we assum
that the edge e has v as an endpoint. Let v’ be the other endpoint of e, If I
has e as its only edge, it is clear that

0, if e is a loop,

N,(I)= e : - (625

1, if e is an isthmus.
Now suppose that I" has at least two edges and that e is still a loop or ar
isthmus. Then

0, if e is a loop,
N,([I/e), if e is an isthmus.

Next assume that e is neither a loop nor an isthmus. Then we can partition
the set & of acyclic orientations of I" in which v is the unique source into
subsets &' and %", where 0 &%’ provided that the only edge of I' o directed
into v’ is e. Evidently

|| =N,T/e) and || =N, —e),

N,I) = A (6.26)
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hence

N, =N, —e) + N,(T'/e). 6.27)

Now although (6.27) has not been established for an arbitrary edge of T,

it is clear that by repeated application of (6.25), (6.26), and (6.27), one can
determine the value of N, (I) for any graph I'" having a distinguished vertex
v. Moreover, as (6.26) and (6.27) are Tutte~Grothendieck recursions, a
straightforward induction argument establishes that N,I)=tMy; 1, 0). It
follows, by (6.21), that N,(I') = (— 1)™(M.), as required. O

Our last result for oriented graphs concerns score vectors. If the graph T"
has vertex set {v,, v,, ..., v,} and 6 is an orientation of I, then the score
vector of 'y is the ordered n-tuple (51> 835 ..., 5,) where s;, the score of v, 1S
the number of edges of I, that are directed away from v;. We shall denote
the number of distinct score vectors of I" by s(I').

6.3.19. Proposition. (Stanley, 1980) s(I') = t(M o 2, )=i(Mp).
The proof of this proposition will use the following result.

6.3.20. Lemma. Let e be an edge of T’ joining v, and v,. Suppose that
’
(525 S25 83, 845 ...y S,) and (s}, s, 835 845 ..., 8,) are score vectors of T' with
'
S3<85. Then (s; — 1, 5, + 1, 53, 54, ..., 5,) is a score vector for T.

Proof. Let 6 and & be orientations of T having (s, s, s3, 84, ..., 5,) and
(57> 5%5 S35 Sq5 ons s,), TEspectively, as their score vectors. If, in Ty, the edge e
isdirected from v, to v,, then reversing the orientation of e gives an orientation
of I' having (s, — 1, s, + 1, s3, 5, ..., 5,) as its score vector. Therefore we
may assume that e is directed from v, to v, in T',. Now consider the set Vi
of vertices v such that there is a directed path in I’ from v, to v. We distinguish
two cases:

(1) v;eV;, and (2) v, ¢V,

In case (1), on taking a directed path from v, to v, and adding the edge
e, we obtain a directed cycle containing the edge e. Reversing the directions
of all the edges in this cycle except e gives an orientation having
(51— 1,5, +1, 54, 34, ..., 5,) as its score vector.

In case (2), v,& V(I') — V;. Now, by definition, every edge in I' ¢ joining a
vertex in V; to a vertex in V(I') — ¥, must be directed from the vertex in
V(I') -V, to the vertex in V,. Therefore, for any orientation of " and, in
particular, for Ty, the sum of the scores of the vertices in V(I') — V; cannot
exceed the sum of the scores of these vertices in T',. But since s, > §,, this is
a contradiction and the proof of the lemma is complete. O
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Proof of Proposition 6.3.19. The equality of {Mp; 2, 1) and (M) follows
immediately from Proposition 6.2.11. We now show that {(My; 2, 1) = s(I').
Let e be an edge of I' which is neither a loop nor an isthmus and assume
that e joins the vertices v, and v,. We shall show that

S(T) = s(T" — &) + s(T'/e). (6.28)

Suppose that (s}, 55, 53, S4, .-, S,) is @ score vector for I' — e and that & is
the set of score vectors of I' — e having (s;, s, ..., §,) as the last n — 2 entries.
Then, by Lemma 6.3.20, there are integers s,, 5,, and k such that

L ={(5; —J, S5 +J» S35 Sas -e» Su): 0<j <k}
Now, given an orientation of I' — e, we can orient the edge e in two different

ways to obtain orientations of I". Thus if & is the set of score vectors for I’
having (s5, 5,4, ---» S,) as the last n — 2 entries, then
P ={(sy+1—j, S3+], S35 540 00 S 0<j< k+ 1}

Hence |#’| = |#| + 1. Since the only score vector for I'/e having (s, 54, --., )
as the last n — 2 entries is (s; + 55, 53, 84, -, S,), We conclude that (6.28) holds.

To complete the proof, it only remains to notice that if I" has a loop, then
s(I') = 0, while if e is an isthmus of I', then s(I') = 2s(I" — e). Since the value
of s on an isthmus is 2, the proposition follows immediately on applying
Theorem 6.2.2. g

6.3.E. Reliability and Percolation

Classical percolation theory was introduced by Broadbent & Hammersley
(1957) to model the flow of liquid through a random medium. As such, the
classical theory is a branch of random graph theory. Another closely related
branch of random graph theory is the study of the reliability of a network.
Here one is interested in determining the probability that, in a random
subgraph of the network, two distinguished vertices are joined by a path. In
this section we show how the Tutte polynomial is useful in the study of the
matroid generalizations of these graph problems.

In matroid reliability and percolation problems, every element ¢; of a
matroid M(E) has, independently of all other elements, a probability 1 — p,
of being deleted from M where, except when otherwise stated, 0 <p, < 1.
Then, writing g, for 1 — p;, the probability Pr(4) that a subset A of E consists
of precisely those elements that are retained is given by

Pr(4)= [] p: [] 4= (6.29)

ejed ei¢Ad

The standard problem in this area is to find ways to efficiently compute the
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probability Pr(#) that the set of retained elements is in some family &#.

Evidently Pr(#)= Y Pr(4). Usually the family # is ascending, that is, if
AeF
AeZ and B2 4, then Be #. For example, when & is the family & of

spanning sets of M and all the retention probabilities p; equal some constant
p, then Pr(#) is the probability Pr(M) that a random submatroid of M(E)
has the same rank as M. We saw in Example 6.2.7 that this probability is

g BTy 1 1g). (6.30)

Toward the end of this section, we shall present a procedure for modifying
the matroid M so as to adapt the last formula to the case when the retention
probabilities p; are different.

Next we consider how to put the problem of computing network reliability
into this framework. Given two distinguished vertices s and ¢ in a graph T,
we are interested in determining the probability that a random subgraph of
I" contains a path between s and ¢. To do this, we first form a new graph T
from I by adjoining a basepoint edge d between s and t. Let @ be the family
of subsets 4 of E(I') for which Aud contains a cycle of T containing d.
Equivalently, Ae 2 if and only if d is not an isthmus in the subgraph of T’
induced by Aud. We shall develop a formula for Pr(®) for an arbitrary
pointed matroid M,(E Ud), where, in this more general context, 4 € @ if and
only if d is not an isthmus of M,(4 ud). Our formula for Pr(9) will involve
the pointed Tutte polynomial tp,(M,) that was introduced in Proposition
6.2.19. We shall first determine Pr(9) in the case when, for all elements e; of
E, the retention probability p, equals a constant p. The number of elements
in a matroid M will be denoted by |M]|.

6.3.21. Proposition. Let the matroid M be M (E Ud) and assume that every
element of E has, independently of all other elements, probability 1 — p of being
deleted from M, while the element d has probability 0 of being deleted. Then
the probability that, in a random submatroid «{M) of M, the element d is not
an isthmus is given by the formulas

() Pr(@)=p®gM-r-1g5(1/p 1/q) and
(i) Pr(2)=1—p ™0~ 1gM-rdDr(1/p 1/g)

where Xf(x, y)+ y'g(x, y) = tp(M(Ed); X, x, ¥, y).

Proof. We first show that Pr(2) obeys the weighted recursion

Pr(2(M)) = q Pr(D(M — €)) + p Pr(D(M/e) (6.31)

R o BN
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where e is a point of M — d that is not a loop or an isthmus, By (6.29), we have

PH@(M) = ¥ pHg"~4

Ae2

= 3 pMgE- AL T pigE-a
Aed AeD
egA eeAd

Thus
Pr(@M))=q ), p¥gE-9"44+p ¥ pUigE-a-41 (63
Ac? A'cE-e
e¢Ad A'veed

The first summation in (6.32) is clearly over those subsets 4 of E — e for
which 4 is not an isthmus of Aud in M — e. Thus this summation is over
those members A of 2(M — e). On the other hand, since d is an isthmus of
My(A'vdu e) if and only if it is an isthmus of M (4’ uduUe)/e, the second
summation in (6.32) is over those members 4’ of 2(M/e). Thus (6.31) holds.
It follows that if

h(M) = (1/g)™\="™(1/py ) Pr(2(M)),

then

h(M) = h(M — e) + h(M/e) (6.33)
for all elements e of M — d that are not loops or isthmuses of M. Moreover,
it is routine to check that if e is an element of M — d, then

1/g)h(M —¢) if e is a loop,

Esuﬁ [OUM =) e is  Toop, (634)
(1/p)M —e) if e is an isthmus.
Finally, one easily checks that

1/q, if M(d) is a loop,

hM(@D) = %o, if M(d) is an isthmus. (633)

We conclude, by Proposition 6.2.19, that h(M,) = t,(M,; X', x, ¥, y) where
x'=0, y=1/q, x=1/p, and y=1/q. Therefore, as t,(M,; x, x, y, y)
=xf(x, ) +y'g(x, y), hMy)=(1/q)g(1/p, 1/9) and so Pr(P(M)) =
gM=r0=1p"Mg(1/p, 1/g). This establishes (i). A similar argument applied to
Pr(2f — 9) gives (ii). O

With M still equal to M,(E U d), we note that, by (6.29),
Il
Pr(@M)) = } a;p'q®~". (6.36)

i=0
Thus Pr(2(M)) is a polynomial in p and g of constant total degree. The
coefficient a; here equals the number of i-clement subsets A of E for which
d is not an isthmus of M,(4ud). Thus, provided d is not an isthmus or a
loop of M, a;> 0 for all i and a5 = 1. Now suppose that M, is the polygon
matroid of the graph I' and let the basepoint edge d join the distinguished
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vertices s and t. Let k be the least j for which a; is non-zero. Then k equals
the length of the shortest (s, t)-path in T’ — d, and the number of such shortest
paths is a,.

On substituting 1 — p for g in (6.36), we obtain Pr(?) as a polynomial in
p alone. We leave as an exercise the problem of determining the coefficients
of this polynomial (Exercise 6.37).

Before attacking the reliability problem in the case of unequal retention
probabilities, we note a remarkable fact about the evaluation HM; 1/p, 1/g).
Recall that t,(M; X', x, ¥/, y) = Xf(x, y) + y'g(x, y). If M 4 1s viewed as simply
a matroid M rather than as a pointed matroid, then d is no longer
distinguished, so x' = x, y' = y,and {(M; x, y) = xf(x, y) + yg(x, y).In Proposition
6.2.20(iv), it was noted that, if d is neither a loop nor an isthmus of M, then

Wﬁs |&noﬂ|:>x.§+&x,smca
UM/d) = f(x, y)+ (y — Dg(x, y).
Clearly these formulas can be inverted in the Tutte-Grothendieck ring to
give expressions for f(x, y) and g(x, y) in terms of #{M — d) and y(M/d).
However, the determinant of this system equals xy — x — y, which is zero
when (1/x) + (1/y) = 1. Since p + g = 1, Pr(@)is computable from the evaluations
of (M — d) and t(M/d) at x = 1/p and y = 1/¢ only in the most formal sense,
that is, when the identity p + g = 1 is never invoked. On the other hand, we
note that, by (6.37), ((M/d; 1/p, 1/q) = (p/g}t(M — d; 1/p, 1/q). Therefore, for a
given matroid M, t(M"; 1/p, 1/g) is the same for any strong map image M”
of M. To see this, we note that if M” and M’ are so related, then, for some
matroid M and element d which is neither a loop nor an isthmus, M — d = M’
and M/d=M".

The above remarks are summarized in the following proposition, the first
part of which generalizes the following identity, a trivial consequence of 6.2.1 1(iv):

(M —d; 2, 2) = t(M/d; 2, 2) = 21~ 1,

(6.37)

6.3.22. Proposition. Let g(M) = t(M; 1/p, 1/q) where p + q =1 and let d be an
element of M that is neither a loop nor an isthmus. Then

() q(M/d)=(p/g)q(M —~ d)= f(M; 1/p, 1/g) + (p/q)g(M; 1/p, 1/g);
(i) Both g(M — d) and q(M/d) are independent of the modular cut of M—d
determined by d in M.

These ideas are illustrated in the following

6.3.23. Example. Let M be the polygon matroid of the graph T in Figure
6.3. Then, it is straightforward to check that

to(My; x, p)=x'(x +y+ )+ y(y + 1) (6.38)
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Figure 6.3.

Thus, by 6.3.21(),
1
Pr@() =pg ;) +1
=2p’q +p’
— Nﬁu _ Em.
Now, by (6.37) and (6.38),
M —d)=x*+xy

and
(M/d)=y* +y+x.
Thus
E\&nH+w+w
1 g q p
_ L
pq?
1 1
nA.il
a\r* pq
p
==q(M —d).
q

By 6.3.21(i), if M, and M, are the polygon matroids of the graphs I', ;m:a
I', shown in Figure 6.4, then g(M/d)=q(M,/d,)=q(M,/d,). However,
Pr(2(M,)) = p while Pr(2(M,)) = 2p — p*.

Proposition 6.3.21 gives two formulas for Pr(2) in the case when all the
retention probabilities are equal. We now turn to the general vonQB of
determining Pr(2) when M, is the polygon matroid of a graph I and the
retention probabilities p; can vary from edge to edge. In particular, we shall
describe how, if p; is equal to a k-place binary decimal, we can replace the
corresponding edge e; by an appropriate series—parallel network in which
each edge has retention probability equal to 1/2. Since Pr(%) will be unaffected
by the presence of loops, we assume that I is loopless.
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Figure 6.4.

Let 0.d;,d;, ... d;, be the binary decimal for p, where d,; = 1. We form the

(k+ 1)-edge series—parallel network N; as follows. Start with the graph

consisting of the edge e, and its endpoints. Then, since d; =1, add an edge
ey in parallel with e;. Assuming the edges e,, €ix—1)s --» €ij+1) have been
added, add ¢;; in parallel with e, if d;;=1, and in series with e; otherwise.
After the edge e¢;, has been added, form the 2-sum of this network N ; and
T along the basepoint e;. As an example, if p;=0.0111001, then N, is as
shown in Figure 6.5.

We repeat the above procedure for every edge of I” other than d to obtain
a new graph [* with polygon matroid i1 4+ Clearly T retains the distinguished
edge d. In T', we assign to each edge e;; the retention probability 1/2. Then
it is straightforward to check that

Pr(D(M,)) = Pr(D(M,)).
But, since M, has constant retention probability, we get, by 6.3.21(i), that
Pr(D(M,)) = (3)™i~'g(M ; 2, 2). (6.39)

The techniques just described when M 41s a polygon matroid can be equally
well applied to find Pr(2(M,)) for an arbitrary pointed matroid. This
technique can also be used in other situations where the retention probabilities
can vary. For instance, by replacing each element of an arbitrary matroid
M by an appropriate series—parallel network and using (6.30), we can obtain

a formula for the probability that a random submatroid of M has the same
rank as M.

Figure 6.5.

N, Cis
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To conclude this section, we shall extend Proposition 6.3.19 on the number
of score vectors that can arise when orienting a graph. The following lemma
will be used in the proof of this extension.

6.3.24. Lemma. Let k be a positive integer and M be a matroid. Let M® be
the matroid that is obtained from M by replacing each non-loop element by k
parallel elements and replacing each loop by k loops. Then

{MY; x, y)=

Ly gty 4
OF 4724+ . +w+CzSA.§e Y YEX

YVl Yy i by +1 4

Proof. Let f(M)=t(M®; x, y). Then it is straightforward to show that f is
a generalized T-G invariant. The lemma then foliows easily from Corollary
6.2.6. We leave it to the reader to complete the details of this argument. ]

In the North American National Hockey League (NHL), teams are
awarded 2 points for a victory, 1 point for a tie, and O points for a loss. To
compute the number of possible score vectors at the end of an NHL season,
it suffices to compute the number of score vectors for I'® where T is the
graph corresponding to the NHL schedule and I'® is obtained from I" by
replacing each edge by k edges in parallel. A special case of the next result
is that this number of score vectors can be determined directly from #(M;.).

6.3.25. Proposition. Suppose that the vertices of a loopless graph T correspond
to teams in some league with each edge corresponding to a game that must be
played between the two endpoints. Let k be a fixed positive integer so that, for
each game a team plays, it may score any number of points from the set
{0, 1, ..., k} provided that the two teams in any game score a total of k points
Sfrom that game. Then, when all the games have been played, the number of
possible score vectors is

k+1
UMpw; 2, 1) = k"Mt M; I.N_a.lﬁ. 1

Proof. The fact that the number of possible score vectors is {(Myw; 2, 1)
follows easily from Proposition 6.3.19. The equality of this and

EELHNSW »+ H. ~mmmoo:moncosooomﬁnBBmm.u.NA. _H_
rs Nﬁ

We note that this result can also be used to treat the case when, from each
game, a team may score any number of points from the set
{—k, —=(k=1), ..., k—1, k} provided that from any one game a total of 0
points are scored. A one-to-one correspondence between the possible score
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vectors (s(v,), s(vy), ..., s(v,,)) of T in this case and the possible score vectors
obtained from orienting the edges of I'¥ is given by

(5(v1), 5(v2)s .., 5(v,))—= (s(v4) + k deg(v,), s(v,) + k deg(v,), .., s(v,,) + k deg(v,,).

Hence there are t(Me»; 2, 1) possible score vectors in this case. We know
of no easy formula for determiming the number of score vectors when the
sum of the points scored in each contest is allowed to vary.

6.3.F. Two-variable Coloring

In this section we generalize the relationship (6.3.1) between the chromatic
polynomial of a graph I" and the Tutte polynomial of its polygon matroid.
So far we have considered only proper colorings of T, that is, assignments
of colors to the vertices of I' so that two adjacent vertices receive different
colors. We now consider arbitrary colorings where adjacent vertices are no
longer required to be colored differently. In such a coloring, an edge is called
monochromatic if its two endpoints receive the same color. Let I be connected
and let ¢;(4, T'), or briefly c;(4), denote the number of ways to color I with

A colors so that exactly i edges are monochromatic. Then ¢;(4) is a polynomial

in A. If T has n edges, define
H n
A4 =7 Y ey (6:40)
i=0

Then (T’ 4, v) is easily determined from the Tutte polynomial of M.
6.3.26. Proposition. If M. has rank r, then

1T 4, v)=(v— :,AEQ Eu <v.

v—1

Proof. We shall sketch three different but suggestive proofs of this identity,
leaving the reader the exercise of filling in the details.
(1) We can generalize the recursion for proper colorings to obtain:

v+2A—1x(/e) if e is an isthmus,
D)= v — o) if e is a loop, (6.41)
I —e)+(v—1jT/e) otherwise.

To see the third part of this, suppose e is neither a loop nor an isthmus of
I'. Then, for any fixed A and any i > 1, we can partition the A-colorings of
I' with i monochromatic edges into those in which the two endpoints v and
v’ of e are colored the same and those in which they are colored differently.
Evidently there are ¢;_,(4, I'/e) members of the first class. Moreover, the
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number of members of the second class equals the number of A-colorings of
I' — e with i monochromatic edges in which v and v’ are colored differently.
In turn, this number is the difference between c;(A, I' —e) and the number
of A-colorings of I — e with i monochromatic edges in which v and v are
colored the same. Since the last quantity clearly equals ¢;(4, I'/e), we have

¢4 D)=¢;., (4 T/e)+c;(A, T —e) — c;(4, T'/e).

Using this, the third part of (6.41) is not difficult to deduce.
(2) Following Crapo (1969), define the coboundary polynomial of an
arbitrary matroid M having lattice of flats L(M) by

AM; 4, v =%, vp(M/X;4)

XeL(M)

= M Xl r(M) |..3_:Cm. Y).

X,Ye L(M)
XcY

We leave it to the reader to check that

v+A—1

AM; 4, v) = —1)'t{ M; )V

v—1
To show that 3(T'; 4, v) = #(My; 4, v) we note that, in any coloring of I, the
set X of monochromatic edges forms a flat in M. Hence the coloring induced
on I'/X by contracting all the edges in X is proper.

(3) This proof is based on the pervasive combinatorial idea of ‘counting
in two different ways’. It is quite similar, for example, to the calculations
involving permutations with restricted position found in Stanley (1986, section
2.3). Let My be the (n + 1) x (r + 1) matrix with rowsindexed by 0, 1, 2, ..., n
and columns indexed by 0, 1, 2, ..., r whose (i, j)-entry equals the number of
subsets A of E(I') of size i such that A has rank r —j in My, or equivalently,
the subgraph I'"[4] of I' having edge set 4 and vertex set V(I') has j+ 1
connected components. Then - .

n

Y Ml ¥+ = Y (7)), (642)
j=0 j=0 \!
since each side counts the pairs (4, c¢) in which A4 is an i-element subset of
E(') and ¢ is a A-coloring of T" for which each edge in A4 is monochromatic.
Indeed, the left-hand side sums first over all such 4 and then, for each such
subset, counts the number of A-colorings that are monochromatic on each
component of I'[4]. The right-hand side sums over all A-colorings ¢
according to their number j of monochromatic edges and then picks i of
these j edges.
In matrix form, we have, from (6.42), that

Euﬂn ¢ y. = HJ. ﬂ» A@.A.WV
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where
A=(4 2% ..., ALy,
ﬂ» = Aﬁ.c Apvv h.uA&.vu seny ﬁaAh.vvsu

and T is the (n+ 1) x (n+ 1) matrix for which TG, j)= A\

1
column indices, i and j, ranging over the set {0, 1,2, ..., n}. It is well known

vu the row and

that the inverse T™! of T is given by T~1(j, j) = (— 1)i*/ ” . By (6.43),

N..IH .E—ﬁo.y “Aum..
Now recall that, for a matroid M(E), the cardinality-corank polynomial
Sxc(M; v, 2) is equal to

T M) —r)

A<E
Thus
Sxc(Mr; v, ) =3 My, j)v'A7
and so
1
SxcMr; v, 4) = 1 Ve Mygce A
where

vVi=(1,v,v% ..., V).
Thus, by (6.43),
1
SkeMp; v, ) = g vi-T-c,.
It is now not difficult to check that
ASxc(My; v, )= AHT; v + 1, A). (6.44)
But, by Proposition 6.2.21,

v+ A
v

Skc(M; v, ) =vt| M; ,v+1

Substituting this into (6.44), we immediately get 6.3.26. O

The formula in Proposition 6.3.26 is invertible. Hence HMy) can be
computed from knowing the distribution of monochromatic edges among
all A-colorings of I" for at least r(My) values of Ai. For the coboundary
polynomial in general, it is not difficult to show that

1

UM; x, y)= jm@ﬁ =1y =1, y). (6.45)
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The dual coboundary polynomial 3*(M; 4, v) is defined by
XX(M; 2, v) = J(M*; v, 2). (6.46)
Moreover, for a graph T, we let 7%(I'; 4, v) = ¥*(Mp; 4, v). Then one can show
that the coefficient of v in ¥*(I'; 4, v) is the number of A-flows that are zero
on precisely j edges of I'. Using the duality of the Tutte polynomial, we then
get the following link between two-variable colorings and two-variable flows
in graphs.

6.3.27. Proposition. If M. has n elements and rank r, then
_ (v—1) _ v+i-—1
*(T =y Ty Tt
v, A) 7 X 5 A —

Proof. 7*(T; v, A= *Mg: v, A)

=X(MF; 4, v)
=@ —1)"""t| M¥; ﬁw“ v
=v—1y""t| Mg; v, W.HM'HH
where the last step follows by (6.45). O

Clearly the last result also holds if we replace I" by an arbitrary matroid
M although, in this more general context, we no longer have the link to
colorings and flows.

6.3.G. Other Graph-theoretic Tutte Invariants

In this section, we briefly list some other Tutte invariants for graphs that
have appeared in the literature. Most of the results here can be proved by
verifying the fundamental recursion 6.2.2(ii).

Dual to acyclic orientations we have totally cyclic orientations: those in
which every edge of the graph T is contained in some directed cycle. To
avoid distracting complications, the statements of these results will assume,
unless otherwise stated, that I' has no isthmuses. Then, following the results
of Greene & Zaslavsky (1983) or Las Vergnas (1977) we have the following,.

6.3.28. Example. The number a*(T) of totally cyclic orientations of I'is given by
a* ) =tMr; 0, 2) = |y (= 1)| = [p(ME; —1)|.
Hence if T is a planar graph and I'* is a geometric dual of T', then a*(T") = a(I'*).
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6.3.29. Example. Let ¢ be a fixed edge of I' and aX(I') be the number of
totally cyclic orientations of I' such that reversing the orientation of e makes
the orientation acyclic. Equivalently, a¥(I') equals the number of totally cyclic
orientations of I" such that every directed cycle uses e, that is, such that I' — e
is acyclic. Then, provided |E(I')| > 1,

aX(C)=2B(M7)=2b;o=2B(My).
Thus a*(I') does not depend on the edge e.

Some further results of this type can be found in the exercises for section
6.3.D. The next two examples link totally cyclic orientations and the Mdbius
function. They are both special cases of a more general result of Greene &
Zaslavsky (1983, Theorem 8.3).

6.3.30. Example. Let T" be a directed graph having a fixed ordering on its
edges. Then the number of totally cyclic reorientations 7 of I" such that in
each cycle of 7 the lowest edge is not reoriented is |u(MF ).

6.3.31. Example. Let I" be a plane graph. The number of totally cyclic
orientations of I in which there is no clockwise cycle equals |(M7)| if T has
no isthmuses, and equals 0 otherwise.

When Stanley (1973b) proved his famous result (6.3.17) for acyclic
orientations, he actually obtained the following stronger result in order to
interpret evaluations of the chromatic polynomial at negative integers.

6.3.32. Example. Let m be a positive integer and w(I'; m) denote the number
of pairs (0, o) such that 6 is an acyclic orientation of I and ¢ is a function
from V() into {1, 2, ..., m} with the property that if 6 directs the edge uv
of " from u to v then o(u) > o(v). Suppose that I" has k connected components
and no isolated vertices. Then

w(l; m) = (— 1)V Oy (—m) = m*e(Mp; m+ 1, 0).

Let ' be a plane graph and, for each e of T, let v(e) be a point in the
interior of e. The medial graph T,, of T will appear in the next result and we
now describe its construction. If " is disconnected, its medial graph is the
union of the medial graphs of its components. Now suppose that I' is
connected. The construction of T',, in this case is illustrated in Figure 6.6. In
general, T',, is a plane graph with vertex set {v(e): ee E(I')}. As one can see
from Figure 6.6, two such vertices v(e) and 1(f) are joined by one edge for
every face in which e and f occur successively on the boundary. More

The Tutte Polynomial and Its Applications 161

Figure 6.6. (a) I; (b) I',, superimposed on I'; (¢) T,
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precisely, the edge set of I',, depends upon the set of ordered pairs (F, u)
where F is a face of I" and u is a vertex on the boundary of F. For every
such pair, we add an edge v(e)v(f) to I',, whenever e and f are edges of T’
incident with u that occur successively when one traverses the boundary of
F just inside its interior.

It is not difficult to check that I',, is 4-regular for all plane graphs I
Moreover, if I'* is the geometric dual of I, then I',, = (I"*),,.. If A is an arbitrary
connected, 4-regular plane graph, we can form a graph I" for which I',, = A
as follows. Two-color the faces of A so that two faces sharing an edge are
colored differently. This is possible because A is Eulerian and hence A* is
bipartite; this 2-coloring of the faces of A is just a proper 2-coloring of the
vertices of A*. We construct T" by letting its vertices consist of the faces in
one of the color classes; two vertices of I" are joined by an edge for every
vertex shared by the corresponding faces of A. Note that if we choose the
faces of the other color class to be the vertices of the graph, then this
construction will produce I'*. .

An Eulerian partition of a graph is a set of closed trails partitioning the
edge set of the graph. Clearly every 4-regular plane graph A has such a
partition P. Suppose that, at a vertex v of A, the edges, in cyclic order, are
e, €5, e5 and e,, where a loop, if it occurs, is listed once for each of its ends.
We say that P has a crossing at v if one of the closed trails in P uses both
e, and e,. It is not difficult to check that A has a unique Eulerian partition
P, in which there is a crossing at every vertex. Note that, since A is a plané
graph, there are two ways of travelling along each loop.

For an arbitrary plane graph I', results in Jaeger (1988a), Las Vergnas
(1979, 1981), Martin (1977, 1978), and Rosenstichl & Read (1978) show that
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(@) Mp; x, x) =Y (x — 1)~ where the sum is over all Eulerian partitions
P

P of T',, such that each P has no crossings and y(P) is the number of
closed trails in the partition P.

In addition, we have

(i) dMp; —1, —1)=(—1)EO(—2)P~1,

It will follow using Proposition 6.5.4 that both sides of (i) equal the number
of vectors in Cn C* where C is the binary code associated with M;.

6.4. The Critical Problem

6.4.A. Definitions and Elementary Results

The critical problem for matroids was introduced by Crapo & Rota (1970)
to provide a unified setting for a number of problems in extremal combinatorial
theory including such fundamental graph-theoretic problems as Tutte’s 5-flow
conjecture (6.3.8) and the following celebrated conjecture of Hadwiger (1943).

6.4.1. Conjecture. Let I be a loopless graph and k be a positive integer. If T
has no proper k-coloring, then some subgraph of T is contractible to )

The cases k=1 and k=2 of this conjecture are straightforward. The
conjecture was proved by Dirac (1952) when k = 3. For k = 4, Wagner (1964)
proved that the conjecture is equivalent to what was then the Four Color
conjecture. Now that the latter has become the Four Color theorem (6.3.2),
we know that Hadwiger’s conjecture is true for k < 4.

Several other important instances of the critical problem were noted in
section 7.5 of White (1987). In this section, we shall give a more detailed
discussion of the critical problem focussing attention on more recent results.
Inevitably there will be some overlap between this section and Chapter 7 of
White (1987). We begin here by recalling some basic definitions. A linear
Sunctional on V(n, g), the n-dimensional vector space over GF(q), is a linear
map from V(n, q) into GF(q). If A< V(n, g), then a k-tuple (f,, f,, ..., f;) of
linear functionals on V(n, ¢) is said to distinguish A if A is disjoint from
{e: file) =0 for all i such that 1 <i < k}. Let M(E) be a rank r matroid that
is coordinatizable over GF(q). The following fundamental result of Crapo &
Rota (1970) was proved in White (1987, Theorem 7.4.1).

6.4.2. Theorem. If keZ* and ¢ is a coordinatization of M in V(n, q), then
the number of k-tuples of linear functionals on V(n, q) that distinguish ¢(E)
equals ¢*"~"p(M; ¢*).
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It follows from this result that, for a matroid M coordinatizable over GF(g),

p(M; ¢*)=0forallkin Z™. (6.47)
The critical exponent c¢(M; q) of M is defined by
if M has a loop,
oM; g = ® , . (6.48)
min{je N: p(M; ¢’) >0} otherwise.

It follows from Theorem 6.4.2 that
o(M; q) = min {jeN: p(M; ¢*) > 0 for all integers k >j}. (6.49)
Since the kernel of a linear functional is a hyperplane, the following result
follows easily from Theorem 6.4.2.

6.4.3. Corollary. Let M be arank r loopless matroid and ¢ be a coordinatization
of M in V(n, q). Then

c(M; g) =min WH\.m N: V(n, q) has hyperplanes Hy, H,, ..., H; such that

A_} H ) no(B)=

=min{jeN: V(n, q) has a subspace of dimension n — j having empty
intersection with ¢(E)}.

A noteworthy and somewhat surprising aspect of Theorem 6.4.2 and
Corollary 6.4.3 is that the value of ¢(M; g) does not depend upon the particular
coordinatization ¢. From (6.48) and Propositions 6.3.1 and 6.3.4, we deduce
that when M is isomorphic to the polygon matroid of a graph T, ¢(M; q) is
the least integer ¢ such that the chromatic number of I does not exceed ¢°;
when M is isomorphic to the bond matroid of I', ¢(M; g) is the least integer
¢ for which T has a nowhere-zero ¢°-flow.

For a matroid M that is coordinatizable over GF(q), the critical problem
is the problem of determining the critical exponent, c(M; g). This is theoretically
possible for any matroid M, simply by calculating p(M; 1). In general,
however, this will require exponentially many steps. In particular then, the
critical problem becomes one of efficiently determining c(M; q) 3\.. .mOn
example, recognizing M as a member of a class of matroids whose critical
exponents are bounded above.

We now note some basic properties of the critical exponent. In each of
these, we shall assume that M is a matroid coordinatizable over GF(qg).

6.4.4. Proposition. If M is loopless and T is a subset of E(M), then
(M(T); q) < c(M; g) < c(M(T); q) + c(M(E — T); q).

Proof. This is an immediate consequence of Corollary 6.4.3. O
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6.4.5. Proposition. (Asano, Nishizeki, Saito & Oxley, 1984) Suppose that
S € E(M) and ke N. Then the following are equivalent.

(i) S is minimal with the property that ¢(M — S; q) < k.
(i) S is minimal with the property that c¢(M/S; q) <k.
(ii) S is minimal with the property that M has a minor with ground set
E(M)~— S and critical exponent not exceeding k.

This result is proved in Asano, Nishizeki, Saito & Oxley (1984) by using
Tutte’s theory of chain-groups (1965). We prove it here using a dele-
tion—contraction argument on the characteristic polynomial. We shall require
several preliminaries.

6.4.6. Lemma. Let S be a subset of E(M) for which ¢(M —S; q) <k. Then S
has a subset T such that o(M/T: q) <k.

Proof. We argue by induction on |S|, noting that the result is immediate if
this is zero. Assume the result to be true for [S| = n — 1 and let |S| = n. Choose
an element e of S. Then p(M — ) — (S —e); ¢*) = p(M — S: q*) > 0. Therefore,
by the induction assumption, S — e has a subset T such that p(M —e)/T; ¢*)> 0.
The required result holds if p(M/(T ue); ¢*) > 0. Therefore we may assume
that p(M/(Tue); ¢*)=0. Now (M ~e)/T=(M/T)—e and therefore
p((M/T) —¢; ¢*) > 0. Hence e is not a loop or an isthmus of M/T. Thus
PM/T; ) = p(M/T) — &; ") — p(M/(T U e); g*) > 0.
We conclude that ¢(M/T; g) <k and, since T< § — ¢, the lemma follows. []

6.4.7. Proposition. Let N be a matroid and A be a real number such that
P(N’; A >0 for all minors N’ of N. Suppose that T is a subset of E(N) for
which p(N/T; 2)>0. Then p(N — T; 2)> 0.

Proof. This follows by a similar induction argument to that given in the last
proof and is left as an exercise for the reader. ]

6.4.8. Corollary. (Oxley, 1978a) If T is a subset of E(M), then
(M —T; g <M/T; g). .

Proof. This follows by taking 1 equal to each of g, ¢, ¢3, ... in 6.4.7. O

We are now ready to prove Proposition 6.4.5.

Proof of Proposition 6.4.5. We shall show the equivalence of 6.4.5(i), 6.4.5(ii),
and the following statement, which is easily seen to be equivalent to 6.4.5(iii).
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(iii") S is minimal with the property that, for some subset T of S,
(M-DNS-T) gy <k

We begin by showing that (i) implies (iii'). Let S be a minimal set for which
oM —S; q) < k. Then c((M — S)/; q) < k. Suppose that §’ and T are sets for
which T §' &S and (M — T)/(S'— T); q) < k. Then, by Corollary 6.4.8,
(M —T)— (S —T); g <k, that is, (M — S’; q) < k. This contradicts the
choice of S.

To show that (iii’) implies (i), suppose that § satisfies (iii’). Then, as
(M — TS —T)=(M/S — T)) — T, the latter has critical exponent not exceed-
ing k. Hence, by Lemma 6.4.6, there is a subset T’ of T such that
((MAS— T)/(T—T; q) <k, that is, c(M/(S— T'); g) <k, or equivalently,
(M — @)/(S — T"); q) < k. By the choice of §, it follows that T' = &. Hence
c¢(M/S; g) < k. Moreover, if §’ ESand co(M/S’; @) < k,then (M — &)/S'; )< k,
contrary to the choice of S.

A similar argument shows that (ii) implies (i) and this completes the proof
of Proposition 6.4.5. O

A matroid M coordinatizable over GF(q) is called affine if ¢(M; q) = 1. To
justify this terminology, note that, from Corollary 6.4.3, M is affine if and
only if the simplification of M is a subgeometry of the affine space AG(r, q)
for some r. Recall here that AG(r, g) is obtained from the projective space
PG(r, g) by deleting the points of a hyperplane.

The next two observations come from combining Proposition 6.4.5 with
Corollary 6.4.3 and Lemma 6.4.6.

o(M; q) =min<neN: EM)= [ S, and M(S,) is affine for all i ;. (6.50)

i=1

¢(M; g) =min ,Tm N: E(M)= | S; and M/(E —S,) is affine for all *. (6.51)

i=1

For a loopless graph T, the chromatic number (I} satisfies

xT)=min{neZ"*: p(M; n) > 0}. (6.52)

It turns out to be quite fruitful to exploit the similarity between this and
the definition of the critical exponent (6.48). Many bounds on the chromatic
number of a graph are expressed in terms of vertex degrees. By analogy with
this, the next result bounds ¢(M; q) in terms of the sizes of its bonds. For a
matroid N, we denote the set of simple submatroids of N by R(N). The set
of bonds of N will be denoted by €*(N).
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6.4.9. Proposition. If M is a loopless matroid coordinatizable over GF(q), then

c(M; &M—w log,{ 1+ max [ min _O*_vv .

NeR(M) \C*ec¥*(N)

The proof of this result depends upon the following useful lemma for the
characteristic polynomial.

6.4.10. Lemma. (Oxley, 1 978a) Let {e,, e,, ..., e} be a bond C* of a matroid
M. Then

PIM; ) = (4 — k)p(M — C*; )

k-1
+ Y X M- {e ey iy, e;-1}/{es e;); A).

j=2 i=1

Proof. We argue by induction on k. If k = 1, then e, is an isthmus of M and
the result is immediate. Assume the result holds for k <nandletk=n>2 Then

PIM; 2) = p(M —e; 2) — p(M/ey; ). (6.53)
If e, is not a loop of M/e,, then
P(M/ey; A) = p(M/e, — e5; 2)— p(M]e,/e,; 3). (6.54)

But, if e, is a loop of M/e,, then p(M/e,; 2) =0 and Mfe, —e, = M/{e,, e,},
hence, (6.54) also holds in this case. On substituting (6.54) into (6.53), we obtain

PM; )= p(M —ey; 2) — f(M/e; — ey; A) + p(M/{ey, e, }; ). (6.55)
If k=2, then M —e; and M —e, have e, and e, respectively as isthmuses.
Thus p(M —e; 2)=pM — € A)=(@A—-1)p(M —C*; 1), and Mje, —e, =
M—e,fe,2M—e,—e,~2M—C* On combining these observations with
(6.55), we deduce that the required result holds for k = 2. We may therefore

suppose that k > 2. Then, as M/e, — €, =M —e,/e,, and e, is neither a loop
nor an isthmus of M —e,, we have

p(M/e; — e,; A=pM—e,—ey; A)—p(M —e,; A). Am.m@
On substituting (6.56) into (6.55), we get that
AM; )= p(M —ey; )+ p(M — e,; ) — p(M — {e,, e, }; )+ p(M/{e,, ,); A).
As C*—A4 is a bond of M— A for every proper subset A of C*,
we may now apply the induction assumption to each of the matroids

M—e, M—e,, and M— {e,, e,} to get the required result. The
straightforward details are omitted here., O

Proof of Proposition 6.4.9. We argue by induction on |E(M)|. The result is
true for |[E(M)] = 1. Assume it to be true for all matroids on sets with fewer
than n elements and suppose that |E(M)| =n. If M has an element e that is
in a 2-element circuit, then (M — e)=R(M), (M — ¢; q) = c(M; q) and we
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can deduce the result by applying the induction assumption to M — e. We may
now suppose that M is simple. Then, for a bond D* of M of minimum size,
we have, by (6.47) and Lemma 6.4.10, that ¢(M; q) < max ﬁ_._om%_b*_ + 1],
c(M — D*; g)}. But

|ID*¥|= min |C¥ < max [ min |C¥* ).
C*te¥*(M) NeR(M) \C*c¥*(N)

Moreover, by the induction assumption,

oM —D* g < Tomw~ AH + max A min _G*_vvg
Ned(M —D*) \C*c¥*(N)

< |log,| 1+ max A min |C¥|
Ne®(M) \C*e¥*(N)

The required result now follows by induction. |

The proof of the following consequence of Proposition 6.4.9 is left as an
exercise for the reader.

6.4.11. Corollary. Suppose that M is coordinatizable over GF(qg). If there is a
covering of E(M) with bonds each having fewer than g* elements, then c(M; q) < k.

If E(M) can be covered by disjoint bonds, then we have the folowing:

6.4.12. Proposition, (Oxley, 1978a) Suppose that M is coordinatizable over
GF(qg) and E(M) s a disjoint union of bonds. Then M is affine, that is, cM; g=1.

For g =2, the converse of the last proposition holds (Brylawski, 1972b)
(see Exercise 6.50). To see that the converse does not hold for g > 2, consider
the affine plane AG(2, q).

6.4.B. Minimal and Tangential Blocks

If M is a loopless matroid coordinatizable over GF(q), then M and its
simplification have the same characteristic polynomial and therefore have
the same critical exponent. Thus, for the moment, we shall suppose that M
is simple. Then M can be embedded as a submatroid of PG(n — 1, q) for some
n. In general, several different embeddings are possible. However, using the
fact that PG(n — 1, q) is isomorphic to the simple matroid associated with
V(n, 9), we deduce from Corollary 6.4.3 that the value of ¢(M: g) does not
depend on the embedding.

6.4.13. Proposition. If M is isomorphic to the restriction of PG(n—1, g) to
the set E, then
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¢(M; q) = min *m N: PG(n—1, q) has hyperplanes H |, H,,...,H; such that

(Q)o-e]

=min{ jeN: PG(n— 1, q) has a flat of rank n —j having empty

intersection with E

For any positive integer k, we shall call a simple matroid M a k-block over
GF(q) if c(M; q) > k. M is a minimal k-block over GF(q) if M is a k-block over
GF(qg) but no proper submatroid of M is. It follows easily from Corollary
6.4.3 that M is a minimal k-block over GF(g) if and only if ¢(M; q) =k + 1
and, for all proper submatroids N of M, ¢(N; q) < k.

An clementary geometric argument shows that PG(k, q) is a minimal
k-block. Moreover, one can easily show using the characteristic polynomial
that if I is a graph that is edge-minimal with the property of being properly
(¢* + 1)-colorable, then its polygon matroid M(I') is a minimal k-block. One
important such graph is M(K . ). An infinite family of minimal k-blocks
can be constructed from these examples by using the fact that if M and N
are these minimal k-blocks over GF(g), so is their series connection, S(M, N)
(Oxley, 1980) (Exercise 6.60). In view of this observation, it seems natural to
consider a strengthened notion of minimality for k-blocks. A subclass of the
class of minimal k-blocks that has received considerable attention is the class
of tangential k-blocks. A simple matroid M that is coordinatizable over GF(g)
is a tangential k-block over GF(g) if M is a k-block over GF(q) but no simple
proper minor of M is. It is not difficult to check that both PG(k, q) and
M(K . ) are tangential k-blocks. Moreover, since M and N are both minors
of S(M, N) (Brylawski, 1971), one cannot create new tangential k-blocks
simply by taking series connections of these blocks.

The straightforward proof of the next result is left to the reader (Exercise 6.61).

6.4.14. Proposition. The following statements are equivalent for a simple
matroid M that is coordinatizable over GF(q).

() M is a tangential k-block over GF(g);

(i) o(M; q)>k and c(N; q) <k for all loopless proper minors N of M,

(iil) o(M; q)=k+ 1 and c(M/F; q) <k for all non-empty flats F of M.

Tangential blocks were studied originally by Tutte (1966a). He concentrated
on tangential 1- and 2-blocks over GF(2) and began by showing that there
is only one tangential 1-block over GF(2). Recall that a matroid M
coordinatizable over GF(q) is affine if ¢(M; q) = 1.
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6.4.15. Proposition. (Tutte, 1966a) The unique tangential 1-block over
GF(2) is M(K,).

Proof. This follows immediately from the fact that a binary matroid is affine
if and only if it has no odd circuits. The proof of this is left to the reader
(Exercise 6.50). O

We have already noted that M(K;) and PG(2, 2) are tangential 2-blocks
over GF(2). Moreover, as the Petersen graph P, has no 4-flow, M*(P,) is
a 2-block over GF(2). Indeed, it is not difficult to check that this 2-block is
tangential.

The next theorem is the main result of Tutte’s paper (1966a). F, denotes
the Fano matroid, PG(2, 2).

6.4.16. Theorem. The only tangential 2-blocks over GF(2) of rank at most 6
are F,, M(Ky), and M*(P,).

Tutte also conjectured that the restriction on the rank in this theorem
could be dropped:

6.4.17. Conjecture. The only tangential 2-blocks over GF(2) are F,, M(Ks),
and M*(P,).

Using geometric methods, Datta (1976b; 1981) proved that there are no
tangential 2-blocks over GF(2) of rank 7 or 8. Conjecture 6.4.17 remains one
of the most important unsolved problems in this area of combinatorics. The
most significant advance toward its solution was made by Seymour (1981b)
who proved the following result.

6.4.18. Theorem. Let M be a tangential 2-block over GF(2) and suppose that
M is not isomorphic to F, or M(Ks). Then M is cographic.

The proof of this theorem uses a number of very powerful results including
the Four Color theorem (6.3.2) and Seymour’s decomposition theorem for
regular matroids (1980). We omit the details and refer the reader to Welsh
(1982) for an outline of the proof.

An interesting consequence of Theorem 6.4.18 is that Conjecture 6.4.17 is
equivalent to Tutte’s 4-flow conjecture (6.3.11). The proof of this equivalence
is straightforward and is based on the observation that a graph I" without
isthmuses has a nowhere-zero 4-flow if and only if M*(I') is a 2-block over GF(2).

There are a number of results for tangential blocks over fields other than
GF(2). These results indicate that the binary case is certainly the nicest. By
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arguing in terms of the characteristic polynomial it is straightforward to
prove the following result.

6.4.19. Proposition. Suppose that M is coordinatizable over GF (q), and j and
k are positive integers such that j divides k. Then M is a tangential k-block
over GF(q) if and only if M is a tangential j-block over GF(g).

We observe here that the assumption that M is coordinatizable over GF. (7))
is redundant above if M is a tangential k-block over GF(g), but may be

needed if M is a tangential j-block over GF(g*7), since such a matroid need-

not be coordinatizable over GF(q). The next result was proved by Walton
& Welsh (1982).

6.4.20. Proposition. The only tangential 1-blocks over GF (B)are M(K,)and U, ,.
The proof of this will use the following result of Brylawski (1971).

6.4.21. Proposition. Let " be a loopless series—parallel network. Then T has
a proper 3-coloring.

Proof. We argue by induction on |E(I')| to show that pM(I); 3)>0.If T is
aforest having m edges, then p(M(I'); 4) = (A — 1)™, hence p(M(T'); 3) > 0. Thus
the proposition is true in this case. Assume it to be true for |E(I')] < n and
let [E(')| = n. We may suppose that I' is not a forest. Then E(I') has a subset
{e;, e;} that is either a circuit or a bond of M(I). In the first case,
PM(T); A) = p(M(T — e,); ) and the result follows by the induction assumption.
In the second case, by Lemma 6.4.10,

pM(T); )= (A—2p(M([T)—{ey, e,}; A)+p(M(T)/{ey, e,}; 4).
By the induction assumption, when A = 3, the first term on the right-hand side
is positive. Since the second term is non-negative, the result follows. O

Proof of Proposition 6.4.20. M(K,) = M(K.,,) and U,.4 = PG(1, 3), hence
both M(K,) and U, , are tangential 1-blocks over GF (3). If M is a tangential
1-block having no minor isomorphic to M(K,) or U, ,, then, by Table 7.1
(p- 146) of White (1986), M =~ M(T') where " is a series—parallel network. By
Proposition 6.4.21, p(M(T'); 3) > 0. Hence c(M:; 3)=1; a contradiction. [

Proposition 6.4.20 and Conjecture 6.4.17 suggest that tangential blocks
are relatively scarce. Indeed, Welsh (1980) made several conjectures to this
effect. Subsequently, he and Seymour (Walton, 1981) and, independently,
Whittle (1987) gave a number of examples to disprove these conjectures,
thereby showing that there are many more tangential blocks than had
previously been thought.
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6.4.22. Example. (Seymour & Welsh, in Walton, 1981) Let g be a .vaBo
power exceeding two and let x,, x,, and x; be three non-collinear vo::.m of
PG(2, g). Let S, be the set of points of PG(2, q) that lie on one of s.ﬁ lines
spanned by {x,, x,}, {x,, x3}, and {x3, x, }. Let x be an arbitrary point that
is on the line spanned by {x;, x,} but different from x; and x;. Let S, be
the set of points of PG(2, g) that lie on one of the lines spanned by {x,, x,}
and {x,, x3}, together with the point x. The geometries N, and M, are
obtained from PG{2, q) by restricting to the sets S; —{x,, x,, xu.w and
S, — {x,, x5}, respectively. Affine representations for these geometries are
shown in Figure 6.7, where we note that a number of lines have been left
out to avoid cluttering the diagrams. We remark, without proof, that
N, = AG(2, 3) (Exercise 6.62).
Figure 6.7.

Xg
Xq

6.4.23. Proposition. M, and N, are tangential 1-blocks over GF(g).

Proof. In view of Proposition 6.4.14, to establish that a member M . of
{M,, N} is a minimal 1-block over GF(q), we need to check that the following
hold. We leave these checks to the reader.

(1) The ground set E of M intersects every line of PG(2, q). .
(2) For every point p of M, there is a line of PG(2, ¢) that meets E in p only.

Evidently, for any point e of M, the simplification of M/e is not PG(1, E.
Thus no minor of M of lesser rank is also a 1-block. It follows from this

that M is indeed a tangential 1-block. O

6.4.24. Example. (Whittle, 1989a) Let 4 be a subgroup of order m of GF(g)*,
the multiplicative group of GF(g). Let {v,, v,, ..., v,} be a basis B ».A.un V(r, q
and let D be {v; + (—1)*"/*'av;: 1 <i<j<r and ae A}. The matroids Q,(4)
and Q.(A) are obtained by restricting V(r, g) to the sets wa. and ~.u.
respectively. Thus, for example, Q) (GF(g)*) is precisely the Bm:o_a. N, in
Figure 6.7, while Q,(GF(q)*) is obtained from N, by adjoining the points x,,
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X, and x5 to N,. If A is the trivial group, then it is straightforward to show
that Q,(4) = M(K, , ,). More generally, it can be shown that Q,(A4) depends
only on r and the group 4 and not on the prime power q.

The matroid Q,(4) was introduced by Dowling (1973a, b) and is now
known as the rank r Dowling geometry based on the group A. In fact, Dowling
defined such matroids when A is an arbitrary finite group. Our main interest
here will be in the special case defined above, although we remark that
Whittle (1989a) has described an interesting extension of the critical problem
to Dowling geometries in general. ,

Since Q5(GF(q)*)= N,, Proposition 6.4.23 implies that 05(GF(@)*) is a
tangential 1-block over GF(q). Moreover, when A is the trivial group and r
is ¢*, Q,(A) is the tangential k-block M (K g« + 1) over GF(q). These observations
are special cases of the following result of Whittle (1989a).

6.4.25. Proposition. Let A be a subgroup of GF (@)*. Then
g —1
|4
g—1
14

i) forr= + 1, Q,(4) is a tangential k-block over GF(q); and

(i) forr= + 2, 0.(A) is a tangential k-block over GF(q).

In an important sequence of papers Whittle (1987, 1988, 1989b) noted
several general constructions for using known tangential blocks to find others.
Next we describe the simplest of these constructions, which, curiously, was
the last to be found. Suppose that M is a rank r geometry that is
coordinatizable over GF(q). Let E be a subset of PG(r, q) such that the
restriction of PG(r, q) to this set is isomorphic to M. Clearly clp(E) is a
hyperplane of PG(r, q) where cl, denotes the closure operator of PG(r, g).
Now take a point p of PG(r, q) that is not in clp(E). Let E’ be the set of all
points of PG(r, g) lying on some line that contains p and some point of E,

that is, E' = C clp({x, p}). We call the restriction of PG(r, g) to E' a g-lift of

xeE

M. Thus, for example, PG(2, 2) is a 2-lift of the 3-point line U, 5, while a
3-lift of U, 5 is the complement in PG(2, 3) of U,s.

6.4.26. Proposition. (Whittle, 1989b). If M is a tangential k-block over GF(q)
and M’ is a g-lift of M, then M’ is a tangential (k + 1)-block over GF(q).

The last construction produces tangential (k + 1)-blocks from tangential
k-blocks. Next we shall describe two special cases of a quotient construction
of Whittle (1988) that produces tangential k-blocks from tangential k-blocks.
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A description of the general quotient construction can be found in Exercise 6.67.
A rank r matroid M is supersolvable if there is a set {F,, F|, F,, ..., F,} of
modular flats of M with (F,)=ifor 0<i<rand F,oF;_, for 1 <i<r. We
call the set {Fy, Fy, F,, ..., F,} a maximal chain of modular flats.

Now suppose that M is a supersolvable rank r tangential k-block over
GF(q) with r>k+1. Then we can embed M in PG(r—1,q). Let
{Fo, Fy, F,, ..., F,} be a maximal chain of modular flats in M. Then F, = &
and F, = E(M). Because r >k + 1, M & PG(k, q). Let m be the least element
of the set {i: 2<i<r and M(F,)% PG(i— 1, @)} Since M does not have
PG(k, q) as a minor, m<k+ 1. But r>k+1 and so F,, is a proper flat of
M. As M(F,)% PG(m — 1, g), the closure of F, in PG(r — 1, g) contains an
element x that is not in F,,. Let M” be the elementary quotient of M by the
element x, that is, M” is formed by first extending M by adding x and then
contracting x.

6.4.27. Theorem. (Whittle, 1987) The simplification of M” is a rank (r—1)
tangential k-block over GF(q).

We shall not prove this result here but instead we note the following
important consequence of it.

6.4.28. Corollary. (Whittle, 1987) For all r such that k + 1 <r < ¢*, there is a
rank r tangential k-block over GF(q).

Proof. M(Kx. ) is a supersolvable tangential k-block over .GF(q). By
repeatedly applying the above construction, the corollary follows. 1

The second special case of Whittle’s quotient construction that we shall
consider involves the complete principal truncation T;(M) of the matroid M
with respect to the flat F (see White, 1986, p. 149). If r(F) =j > 0, we recall
that T;(M) is formed from M by putting a set P of j — 1 independent points
freely on F and then contracting P. The bases of T;(M) are the subsets of
E(M) of the form B or B’ x where x is a non-loop element of F, and B and
B’ are subsets of E — F that are independent in M such that |Bj=r—j+1,
[By=r—j,and H{BUF)=r(B'UF)=r.

6.4.29. Theorem. (Whittle, 1987) Let M be a tangential k-block over GF(qg)
and F be a proper non-empty modular flat of M. If T.(M) is coordinatizable
over GF(q), then the simple matroid associated with T:(M) is a tangential k-block
over GF(q).

From this, Whittle deduced the following.
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al.a.ua. Corollary. For all m with 2<m<gq, the simplification of
Ty (M(K 1)) is a tangential k-block over GF(q) with rank g*—m+ 2
and with 3(g* + 1)g* — im(m + 1) + 1 elements.

It is not difficult to check that, for n=g* the simplification of
Ty, (M(K,,,)) is isomorphic to the matroid M, in Example 6.4.22.

We conclude this discussion of tangential blocks with some diagrams of
such matroids from Whittle (1985) and with some unsolved problems. The
matroid shown in Figure 6.8a is the simplification of Tk (M(Ky)) and is
a tangential 1-block over GF(5). The restriction of this matroid to the

Figure 6.8.

[

(b)

A A —@
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hyperplane H is the simplification of T, (M(K5)) and is a tangential 1-block
over GF(4). )

The three matroids shown in Figure 6.8b are all examples of tangential
1-blocks over GF(5). The first is the simplification of Ty, (M(K)). We note
that both the first and second have characteristic polynomial equal to
(A—1)(A—4)(4—5), while the third has characteristic polynomial
(A — 1)(A — 3)(A1 — 5). Each of these three matroids is the simplification of some
quotient of M(Kj).

In connection with his constructions, Whittle raised several questions. Calil
a tangential k-block over GF(q) normal if it is the simplification of a quotient
of M(K . ). Not every tangential k-block is normal; for example, M*(P,,)
is a non-normal 2-block over GF(2).

6.4.31. Problem

(i) Are there any non-normal supersolvable tangential k-blocks?
Less strongly:
(i) Arethereany non-normal tangential k-blocks with modular hyperplanes?
Conversely:
(iti) Does every normal tangential k-block have a modular hyperplane?
More strongly:
(iv) Is every normal tangential k-block supersolvable?

Another interesting unsolved problem raised by Whittle (1985)is the following.
6.4.32. Problem. Do all tangential k-blocks contain a spanning bond?

Given that tangential blocks are much more abundant than was once
thought, the approach to classifying such objects has somewhat changed.
Whittle (1987) showed that one group of well-behaved tangential blocks is
those with modular hyperplanes. He also showed (Whittle, 1989a, b) that if
|A| =2, then Q;(4) has no modular hyperplanes unless r = 3 and |4| = 2;"that
M*(P,,) has no modular hyperplanes; and that a g-lift of a matroid M has
no modular hyperplanes if and only if M has no modular hyperplanes. On
combining these observations with Propositions 6.4.15 and 6.4.20, we deduce
that there are tangential k-blocks over GF(g) with no modular hyperplanes
for all prime powers ¢ and all positive integers k except when k is 1 and g
is 2 or 3. Interestingly, it is precisely in the exceptional cases just noted that
the problem of finding all tangential k-blocks over GF(g) has been solved.
Indeed, Whittle (1989b) asserts that the existence of tangential blocks without
modular hyperplanes lies at the heart of the problem of determining all
tangential blocks.
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6.4.C. Bounding the Critical Exponent for Classes of Matroids

In this section we survey a number of results and conjectures concerned with
determining an upper bound on the critical exponent of a matroid M when
M is in some class of matroids characterized by excluded minors. Most of
this work has appeared since 1980 and is related to the following conjecture
of Brylawski (1975c¢).

6.4.33. Conjecture. If M is a loopless matroid coordinatizable over GF {q) and
M has no minor isomorphic to M(K ), then c(M; EYA

Restated in terms of k-blocks this conjecture asserts that every tangential
2-block over GF(g) has a minor isomorphic to M(K,).

The following very general extension of this conjecture was proposed by
Whittle (1985).

6.4.34. Conjecture. Every tangential k-block over GF (q) has a minor isomorphic
to M(K, . ,).

This conjecture is easily seen to be true for k= 1. In support of the general
case of the conjecture, Whittle (1987) has proved the following result.

6.4.35. Theorem. A tangential k-block over GF(q) that has a modular h yperplane
has M(K, . ,) as a submatroid,

Return now to Brylawski’s conjecture. It is certainly true for g =2. To see
this, recall from the proof of Proposition 6.4.20 that a loopless matroid with
no minor isomorphic to U, , or M(K,) is isomorphic to M(I) for some
series—parallel network I'. By Proposition 6.4.21, T is 3-colorable. Hence T
is certainly 4-colorable, so p(M(I'); 4) > 0 and hence c(M@), 2) < 2.

For larger values of g, the conjecture is much more difficult. The following
resolution of the conjecture for the case ¢ =3 and partial result for the case
q =4 were obtained by Oxley (1987b) as consequences of non-trivial structure
theorems for the classes of matroids involved. The matroid %3 is the rank
3 whirl; an affine representation for it is shown in Figure 6.9.

Figure 6.9.
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6.4.36. Proposition. Let M be a loopless ternary matroid having no minor
isomorphic to M(K,). Then ¢(M; 3) < 2. ;

6.4.37. Proposition. Let M be a loopless matroid that is coordinatizable over
GF(4). Suppose that M has no minor isomorphic to M(K ) or #™3. Thenc(M; 4) < 2.

The graph K, is isomorphic to the 3-spoked wheel graph #; where ¥/ is
shown in Figure 6.10. The polygon matroids of the wheel graphs are of
fundamental structural importance in the class of matroids (see, for example,
Tutte, 1966b), and the following conjecture of Oxley is an alternative
strengthening of Brylawski’s conjecture in the case g = 2.

Figure 6.10.

6.4.38. Conjecture. Let M be a loopless binary matroid having no minor
isomorphic to M(#,). Then ¢«(M; 2)<r— 1.

The truth of Conjecture 6.4.34 would imply the truth of this conjecture.
However, both conjectures seem very difficult. Conjecture 6.4.38 holds when
r=13 since it is equivalent to the case g =2 of Conjecture 6.4.33, and we
showed above that the latter is true. Moreover, Oxley proved Conjecture
6.4.38 in general when r = 4 (Oxley, 1987a) and for regular matroids when
r = 5(Oxley, 1989a). In the latter special case, the stronger bound ¢(M; 2) <r — 2
holds. Again both these results were derived from results on the structure of
the relevant classes of matroids.

Prior to Whittle’s advancing Conjecture 6.4.34, Walton & Welsh (1980)
had proposed the following:

6.4.39. Conjecture. If M is a loopless binary matroid having no minor
isomorphic to M(K ), then ¢(M; 2) < 3.
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Welsh (1979) also offered the weaker conjecture that there is a fixed positive
integer k so that, for all loopless binary matroids M having no minor
isomorphic to M(K ), c(M; 2) < k. The corresponding weakenings of each of
Conjectures 6.4.34 and 6.4.38 are both open and would certainly be sensible
starting points for the conjectures themselves. We shall describe next some
results of Kung that resolve Welsh’s conjecture as well as the weakened form
of Conjecture 6.4.33 that seeks only a fixed bound on c(M; g) for all loopless
matroids M that are coordinatizable over GF (9 and have no minor
isomorphic to M(K,).

Let & be a class of geometries that is closed under deletion. Kung defines
its size function, (%, r), to be the function with domain D = {reN: % contains
a rank r geometry} for which A(%, r)=max{|[E(M): Me ¥, r(M) = r}.

The growth rate, g(%, r), of 4 is defined, for all positive integers r in D, by

9%, N=nY, rN—W% r—1).

The maximum growth rate g(%) of ¢ is max{g(¥%, r): reD — {0}}, provided
this maximum exists, and is infinite otherwise.

The following conjecture is due to Kung (1986a). A class of geometries is
minor-closed if every geometry that is a minor of a member of the class is
also in the class.

6.4.40. Conjecture. Let 4 be a minor-closed class of geometries coordinatizable
over GF(q). Then the maximum growth rate of % is finite if and only if
max{c(M; q): M e%} is finite.

In one direction this conjecture is proved by the following result (Kung,
1986a). The other direction remains open.

6.4.41. Proposition. Let % be a class of geometries coordinatizable over GF (7))
and closed under deletion. Suppose that the size function of 9 satisfies
W%, r)< cr for some integer c. Then c(M; qQ)<c forall M in 9.

Proof. Let M(E) be a member of 4. As ¥ is closed under deletion, for all
subsets E' of E, |E'| < cr(E"). Thus, by Edmonds’ covering theorem (1965b),
E can be partitioned into ¢ independent sets. Since independent sets are
affine, it follows by (6.50) that c(M; g) <c. O

Kung (1986a, 1987) has proved a number of results on growth rates of
various classes of geometries and from these has deduced, using the last
result, bounds on the critical exponents of members of these classes. The next
two propositions are examples of such results. The first proves the conjecture
of Welsh stated after Conjecture 6.4.39. Ineach, M is a loopless binary matroid.
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6.4.42. Proposition. If M has no minor isomorphic to M(K s), then c(M; 2) < 8.

/

6.4.43. Proposition. If M has no minor isomorphic to M (K 3,3), then ¢(M; 2) < 10.

The proofs of these results are long and involve operations on the bond
graphs of binary geometries. For a binary geometry M having a hyperplane
H, the bond graph T'(H, M) is the labelled graph defined as follows. The vertex
set of I'(H, M) is the set of points of M not in H. Two vertices @ and b are
joined by an edge ab if there is a third point ¢ on the line of M spanned by
a and b. As {a, b, c} is a circuit of M having an odd number of elements and
M is binary, {a, b, ¢} cannot be contained in the bond E-H of M. Thus ce H.
The edge ab of I'(H, M) is labelled by c.

An approach to Conjecture 6.4.39 that provides an alternative to that
offered by Proposition 6.4.42 is to try to retain the original bound, but to
prove the result for a subclass of the original class. The next two results are
of this form. The first is due to Walton & Welsh (1980), the second to Kung
(1986a). As above, M is a loopless binary matroid.

6.4.44. Proposition. Suppose that M has no minor isomorphic to M(K;) or
3. Then c(M; 2)< 3.

For an outline of the proof of this proposition, see Exercise 6.55.

6.4.45. Proposition. Suppose that M has no minor isomorphic to M(Ks) or
F,. Then ¢(M; 2) < 3. .

The following result of Kung (1988) employs a modification of the technique
used to prove Propositions 6.4.42, 6.4.43, and 6.4.45 to obtain a partial result
toward Conjecture 6.4.33.

6.4.46. Proposition. Let M be a loopless matroid coordinatizable over GF @
and having no M(K ,)-minor. Then c(M; q) < 64°.

We conclude this section with a solution to the critical problem for the
class of transversal matroids. Brylawski (1975c¢) proved that, for a loopless
principal transversal matroid M that is coordinatizable over GF; @), co(M; g) < 2.
He also proposed the following extension of that result. Recall that a gammoid
is a minor of a transversal matroid.

6.4.47. Conjecture. Let M be a loopless gammoid coordinatizable over GF(q).
Then c(M; q) < 2.
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As M(K,) is not a gammoid, this conjecture is weaker than Conjecture
6.4.33. Morcover, since, the latter holds for g=2 and g =3, so does the
former. The following result of Whittle (1984) verifies Brylawski’s conjecture
for transversal matroids.

6.4.48. Proposition. Let M be a loopless transversal matroid coordinatizable
over GF(q). Then c(M; q) <2.

To prove this proposition we shall need to recall some basic facts about
transversal matroids. Let M(E) be such a matroid and (44, A;, ..., A,)) be a
presentation of M, that is, the independent sets of M are the partial
transversals of this family of sets. A cyclic flat of M is a flat that is a union
of circuits. From Corollary 5.1.3 of White (1987), we deduce that if F is a
proper cyclic flat of M, then

F=n(E—A), (6.57)

where the intersection is taken over all i for which F A, # (.

The proof of Proposition 6.4.48 will use the next result of Bondy & Welsh
(1972) and a lemma.

6.4.49. Proposition. If M(E) is a rank r transversal matroid, then M has a
presentation (4,, A,, ..., A,) such that each A; is a bond of M.

6.4.50. Lemma. Let M(E) be a simple matroid coordinatizable over GF (q). If
E' is a subset of E that intersects all cyclic flats of M, then
c(M(E); q) < c(M(E'); q) + 1.

Proof. We identify M(E) with a submatroid of PG(r—1, g) to which it is
isomorphic. Let ¢(M(E'); q) = k. Then, by Corollary 6.4.3, there are hyperplanes,

k k
H,, H,, ..., H,, of PG(r — 1, ) such that AD mu.va\H&. H.AD m..v NE
' |

i i=1

i=

k

nosﬁmmcmmowocxﬁu50:&58 A D.m ..v Dmmmmmm:Q.E,:ooﬁﬁwm&ig,
i=1
the closure in M of C. This set contains a point of E', hence so must

w w
A Dm ,.v Dmnmoo::.m&oaoc.ﬁnoozo_canﬂwmﬂ A D m mv memmbaocnsaoa
i=1 i=1

in M. Therefore the restriction of M to this set is affine, thatis, ( M(E — E'); q) = 1.
But, by Proposition 6.4.4, o(M; ) < co(M(E); q) + c(M(E — E’); g). Hence,
o(M; q) < c(M(E"); q) + 1, as required. d
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Proof of Proposition 6.4.48. We may assume that M is simple and that
r(M)=r. Thus we can identify M(E) with & submatroid of PG(r—1, g) to
which it is isomorphic. By Proposition 6.449, M has a presentation
(A, 4,, ..., A,) such that each 4, is a bond of M. Let I = {1,2,..., 7} and,
foralliin I,let H, be the hyperplane of PG(r — 1, g) that is spanned by E — 4,.

We suppose first that () H;= &. For all j in I, consider (| H.As(\H,=¢

iel iel—j iel
and H;is a modular flat of PG(r — 1, g), (| H;has rank one and so contains
iel—j

a single point, say x;. It follows, without difficulty, that X = {x1, X3, ..u) x,}
is independent in PG(r — 1, g). Hence X is a basis of PG(r—1, g). Let N be
the submatroid of PG(r — 1, q) on EU X. We shall show next that X meets
every cyclic flat of N. Assume that F is such a flat and that FA X = . Then
nF) <r—1,s0 Fisaproper cyclic flat of M. Hence by (6.57), for some subset J of I,

F= DaléumaADFV.

jeJ jeJ
wEo_z@JvHECMQDQ&QJHEC.SDAMDAD H, v =(EuvX)n AD mg.v.
jeJ jedJ

Thus cly(F) contains {x,: i¢J}, that is, cly(F)n X # . Since cly(F) = F, this
is a contradiction. We conclude that X does indeed meet all cyclic flats of
N. Thus, by Lemma 6.4.50, ¢(N; q) < ¢(N(X); 9)+ 1. But X is independent,
so N(X) is affine. Hence c(N; g) < 2, and so, by Proposition 6.4.4, ¢(M; ¢) < 2.

This completes the proof in the case that () H, = &.

iel

Now suppose that () H; # & and choose x from (H;. This time we let

iel iel
N be the submatroid of PG(r—1, g) on Eux. A similar argument to the
above again shows that ¢(N; ¢) < 2 and hence that oM; g<2. O

6.5. Linear Codes

In this section, we consider the work of Greene, Dowling, Jaeger, and
Rosenstiehl & Read that applies Tutte-Grothendieck techniques to various
problems related to linear codes.

To begin, recall that an [n, r] linear code C over GF(q) is an r-dimensional
subspace of the n-dimensional vector space V(n, q) over GF(q). We call r and
n, respectively, the dimension and length of C. If U is an r x n matrix over
GF(g), the rows of which form a basis for C, then U is called a generator
matrix for C. It is straightforward to check that, for such a matrix U, the
matroid on the columns of U depends only on C and not on U. We denote
this matroid by M(C). The dual code C* of C is defined by C*={ve V(n, q):
v-w=0 for all win C}. Evidently C* is an [n, n—r] linear code. Moreover,
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it follows by Proposition 5.4.1 of White (1986) that M(C*) is isomorphic to
M*(C), the dual of M(C).

The members of a linear code C are called codewords. If v is the codeword
(v, Ug, ...r U,), its weight w(v) is the cardinality of its support, that is,
w(¥) = |{v;: v; # 0}|. Dimension and length are two of the three fundamental
parameters associated with a linear code C. The third of these parameters
is the distance d of C. This is defined to be min{w(v): ve C — 0}. Evidently d
is the size of a smallest bond in M(C), or equivalently, the size of a smallest
circuit in M*(C). It is therefore easily determined from t(M(C)) using the formula

d=n—r+1—max{j: b;>0, for some i>0}. (6.58)

As a much deeper application of T-G techniques, we next present Greene’s
(1976) result that the distribution of codeweights in a linear code is a
generalized T-G invariant. For a linear code C, the codeweight polynomial
A(C; g, 2) of C is defined by

AC; q,2) =} 2.
veC
Thus, if a; is the number of codewords v in C having weight i, then

AC; q,2)= ), a7
i=0

The proofs below of Propositions 6.5.1 and 6.5.4 will use the following
notation. If W is a subspace of V(n, q), then W, will denote the subspace
consisting of those vectors in W whose first entry is zero; W will denote the
vector space obtained from W by removing the first entry of every vector.
By convention, W, = W where W = W,

6.5.1. Proposition.

b

AG; g, 2)=(1 |NV,N._-;A§Q m+_3||wcn wv

Proof. Let f(M(C))= A(C; g, z). We shall show that f is well defined and
that it is a generalized T-G invariant for which ¢ =z and t =1 — z. We begin
by noting that f is well defined if C has length 1 for, in that case,
1, if M(C) is a loop,
1+(g— 1)z, if M(C) is an isthmus.
Assume that f is well defined if C has length less than m, and suppose that
C has length m where m > 2.

Let U be a generator matrix for C and suppose that the element e of M(C)

is neither a loop nor an isthmus. Without loss of generality, we may assume
that e corresponds to the first column of U. Let U’ be the matrix obtained

fM(C) = W
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by row reducing U so that the first entry in the first column is 1 and all
other entries in this column are 0. Clearly U’ is also a generator matrix for
C. From considering the matrix U’, we easily deduce that

M(Cy)=M(C)le and M(C)=M(C)—e. (6.59)
Now consider the map g: C — C,— C — C, that removes the first entry of
each codeword, that is, g((v,, v)) = v. We show next that

g is a bijection. (6.60)

First observe that if (v,, v') and (u,, ¥') are both in C for some distinct v,
and u,, then (v, —u,, 0)e C. But this implies the contradiction that e is an
isthmus of M(C). Hence the image of g is indeed C — C, and (6.60) holds.
By definition, A(C)= ) z*™. Thus

veC
AQ)= Y Mg Y Moo Yoy g,
(v1,¥)eCo (v1,¥)eC—Co veClo (v1,¥)eC—Co
Therefore, by (6.60),
AC)= Y z*M4z ¥ 2M=zy 2?4 (1—-2) ) 2*V

veCo vel—-Co vel velo

zA(C) + (1 — 2)4(C,).
Hence, by (6.59) and the induction assumption, if e is neither a loop nor an
isthmus of M(C), then
A(C)=zf(M(C) — &) + (1 — 2) f(M(C)/e). (6.61)
Now suppose that e is a loop of M(C). Then A(C)= A(C,), so, by the
induction assumption,

A(C)= f(L)f(M(C)/e). (6.62)
Finally, if e is an isthmus of M(C), then C is the direct sum of ¢ with a
one-dimensional space. Hence A(C) = (1 + (g — 1)2)A(C) so, by the induction
assumption,

A(C)= ) f(M(C)—e). " (6.63)
On combining (6.61)6.63), we conclude by induction that f is well defined.

Moreover, the same equations imply that f is a generalized T-G invariant.
The proposition now follows easily by Corollary 6.2.6. O

We now sketch an alternative derivation of Proposition 6.5.1 that mimics
the treatment of two-variable coloring in section 6.3.F. As there, T denotes
the (n + 1) x (n + 1) matrix with T(i, j)= A\“v where i and j both range over
the set {0, 1, 2, ..., n}; and M is the (n + 1) x (r + 1) matrix with rows and
columns indexed by {0, 1, 2, ..., n} and {0, 1, 2, ..., r}, respectively, such that
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My (i, j) is the number of i-element subsets of M(C) having corank j, that

r
is, rank r — j. Now, recall that 4(C)= Y, a,2". Then, as in (6.43), we have the
i=0
matrix equation

Myc q=T-¢, (6.64)
whereq=(1, ¢, ¢% ..., ) and ¢, =(a,, a,_1, ..., ag)". Both sides of (6.64) are
column vectors with rows Saoxaa by i where 0 < i< n. To verify (6.64), we
observe that, for fixed i, the corresponding entries in these column vectors
count the number of pairs (P, w) where P is an i-element subset of the set of
columns of the generator matrix U of C and w is a codeword that has entry
0 in every column corresponding to P. The left-hand side of (6.64) chooses
P first according to its corank, while the right-hand side chooses w first
according to its number of zero entries.

Proposition 6.5.1 can be derived from (6.64) by arguing as in section 6.3.F.
We leave the details of this to the reader as an exercise. Again, as for
two-variable coloring, we can invert Proposition 6.5.12 to obtain

(M(C); x, y) =~ mﬂn;lexngyw. (6:65)

(y—1y
Hence we can recover the Tutte polynomial of a vector matroid M if we
know its associated linear code over sufficiently many finite fields. For
example, if M is coordinatizable over GF(q), we could use the fields GF(q')
for1<i<

The next result is the celebrated MacWilliams duality formula for linear
codes (MacWilliams, 1963; Greene, 1976). It can be proved analogously to
the proof of Proposition 6.3.27. We leave the details to the reader.

6.5.2. Proposition.

AC* g, 2) = C.TSQ||:NV=.AAO, Fkv.

Apart from Greene’s work just described, the other pioneering work in
the matroid invariant theory of linear codes was by Dowling (1971). He
showed that a fundamental problem of coding theory, that of finding the
maximum possible dimension r for a linear code over GF(q) having length
n and distance at least d, is a special case of the critical problem for matroids.

The precise statement of Dowling’s result will require another definition.
The punctured Hamming ball, H (n, d — 1), consists of all non-zero vectors of
V(n, q) having fewer than d non-zero coordinates. Evidently C is a
maximum-dimension length n linear code having distance at least d if and
only if C is a maximum-dimension subspace of V(n, q) containing no member
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of H (n, d — 1). Thus the problem of maximizing the dimension of a code of
distance at least d is equivalent to the problem of finding the critical expcrent
of the vector matroid on H ., d—1). In fact:

6.5.3. Proposition. (Dowling, 1971) If r is the maximum dimension of a linear
code over GF(q) having length n and distance at least d, and ¢ is the critical
exponent of the vector matroid on H,(n,d— 1), thenr=n—c.

Proof. This follows directly from the definition of the critical exponent. []

Let G,(n, d— 1) be the simplification of the vector matroid on H 4 n,d—1)
Then G,(n, 2) is Q,(GF(g)*), the rank n Dowling geometry gmoa on the
B:EEE&:& group of GF(q) (see section 64.B). When g=2, G ., 2) is
isomorphic to the polygon matroid of K, .. In general, the o&o:_mnos of
the characteristic polynomial of G,(n, m) is difficult except in the cases where
mis 1, 2, n— 1, or n, when the geometry is supersolvable (see Exercise 6. 78).

Next we turn our attention to an interesting T-G invariant for binary
codes, that is, linear codes over GF(2). This invariant was discovered for
graphs by Rosenstiehl & Read (1978), and Jaeger (1989b) noted that their
result could be extended to binary matroids. The dimension of a vector space
V will be denoted by dim V.

6.5.4. Proposition. Let C be a binary code of length n. Then

e HQSAOH -1, — )= (=1y 2dim(CnC?).
Hence
(i) I(M(C); —1, — 1) =|CACH.

Proof. The proof in Rosenstiehl & Read (1978) was in graph-theoretic terms.
We generalize these ideas to binary vector spaces. Let A(M(C)) = (— 1)¥€)24imCnC*
where n(C) is the length of C. We shall show that 4 is a well defined T -G
invariant. First note that h is well defined if n(C)=1 for, in that case,
CnC*={0} mnm $O ENEQV = — 1. Assume that h is well defined if n(C) <m
and let n(C) = .

Let B= EQ = G N C* and suppose that the element e of M(C) is neither
aloop nor an isthmus. We may assume that e corresponds to the first column
of a generator matrix U for C. If xe €, then either (1, x) or (0, x) is in C, but
not both, otherwise (1, 0)e C, and e is an isthmus of M(C).

Now observe that

either B= B,, or, for some vector x having first entry 1, B= B, + {(x).

(6.66)

In view of (6.59), we shall write C —e for C, and C/e for C,. One easily
checks that (C — e)* is C*/e, that is,

(C— e =(C%),.
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Thusif xe B(C — ¢) = (C — ) n(C — e)*, then (0, x) € C*, while either (0, x)e C
or (1, x)e C, but not both. Dually, if ye B(C/e), then (0, y)e C, while either
(0, y)eC* or (1, y)e C*, but not both. The proof of the next result is
straightforward and is left as an exercise. O

6.5.5. Lemma. Either

(i) for some x in B(C —e), (1, x)e C and so B(C —e) = B, + {(x);
or

(i) for all x in B(C —e), (0, x)eC and B(C —e)= wo.

Now suppose that dim B =k. We shall show that one of the following
three possibilities must occur.

dim B(C — €)=k — 1 = dim B(Cle). (6.67)
dim B(C —¢) =k + 1, dim B(C/e) = k. (6.68)
dim B(C — e) =k, dim B(C/e) =k + 1. (6.68%)

First we note that each statement in the following is equivalent to its successor.

(1) B=B,.

(2) (1, 0)e B*.

(3) (1, 0e(CnCHH*=C+C*

(4) For some z,
(@ (1, z7eC and (0, 2eC* or
(b) (1, zeC* and (0, z)eC.

Suppose that B# B,. Then (i) cannot occur otherwise (1, x)eC and
(0, x)e C*so (1, 0)e C + C*; a contradiction. Thus B(C — e) = B,, and, dually,
B(C/e)= B,. Hence dim B(C —e)=dim B, = dim B(C/e). But, by (6.66), as
B +# B, dim B =dim B, + 1 =dim B, + 1. Thus if B # B,,, then (6.67) occurs.

We may now assume that B= B,. Then, from above, (4a) or (4b) occurs.
In the former case, for some z,, (1, z;)e C and (0, z,) e C*, so z, € B(C —e).
In the latter case, for some z,, (0, z,)e C and (1, z,) € C* so z,e B(Cle).
Moreover, exactly one of (4a) and (4b) occurs; otherwise, for some z, and
z,, both (1, z,) and (0, z,) are in C and (0, z,) and (1, z,) are in C*. Hence
(1,z) (1, 2z,)=0and (0, z,)- (0, z,) =0, so 1 =0; a contradiction.

Suppose that (4a) occurs. Then, as z, e B(C —e), we have, by (i), that
dim B(C —e)=dim B, + 1 = dim B, + 1 = dim B + 1. Moreover, as (4b)does
not occur, the dual of Lemma 6.5.5 implies that B(C/e)= B,, so
dim B(C/e)=dim B, =dim B, =dim B. Hence, if (4a) occurs, then so does
(6.68) and, by duality, if (4b) occurs, so does (6.68*). We conclude that one
of (6.67), (6.68), and (6.68*) must occur. It is routine to check that, in each case,

A| Hva N&Bm — A| ::AOISN&EEOI& + A| :iﬁ\mvN&Bma\mv.
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Hence, by (6.59) and the induction assumption, if e is neither a loop nor an
isthmus of M(C), then ] :

(—1)"O2%mE = y(M(C) — &) + h(M(C)/e).
It is also easy to check that
hDWM(C)—e) if e is an isthmus,
HL)W(M(C)—e) if e is a loop.

From the last two equations, we deduce by induction that h is well defined
and, moreover, that 4 is a T-G invariant. As h(I) = h(L)= —1, it follows by
Theorem 6.2.2 that h(M(C)) = t(M(C); —1, —1). O

A _ C:AQ NEBN =

6.5.6. Corollary. Let C be a binary code. Then C~C¥* is trivial if and only
if M(C) has an odd number of bases.

Proof. For an arbitrary matroid M, if both #(M; 1, 1)and ¢(M; —1, —1) are
evaluated modulo 2, we obtain the same result. But, by 6.2.11(1), t(M; 1, 1)
is the number of bases of M. Using these observations, the result follows
easily from Proposition 6.5.4. O

On putting (g, z) = (4, —1)in Proposition 6.5.1 and using Proposition 6.5.4,
we get that, for a binary code C,
. Nw +r

 (6.69)

where k = dim(C n C*) and ¢, and c, are the number of even- and odd-weight
codewords, respectively, in the linear code over GF(4) that is generated by C.

A consequence of (6.69) is that C < C* if and only if, in the code over
GF(4) that is generated by C, all codewords have even weight. We leave the
verification of this to the reader noting that one can derive this directly from
the fact that C < C* if and only if, in a binary generator matrix U for C, any
two rows are orthogonal over GF(2).

In contrast to the binary case, if C is a linear code over GF(q) for g =4
then dim (C n C*)is not, in general, a matroid invariant, For example, consider
the following representation of the 4-point line over GF (13) where a¢ {0, 1}:

1 01 1
01 1 qf

We leave the reader to check that

=|c, —c,|

1 if ae{6, 8},
0 otherwise.

When g =3, Jaeger (1989¢) showed that A/\wv&aﬁan.v is the modulus of
the complex number #M(C); j, j?) where j = 2™/3,

dim(CAC* =

S
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6.6. Other Tutte Invariants

The bibliography at the end of this chapter indicates how widespread the
use of T-G techniques has been in combinatorics. We have tried to provide
some indication of this in this chapter. However, the large number of diverse
applications, together with our desire to avoid providing a superficial skim
through the theory, has meant that some important topics have been omitted.
To compensate partially for this we shall, in this short section, briefly survey
some of the other applications. Still more applications are touched on in the
exercises and we hope that the extensive bibliography will provide the reader
with adequate opportunities for further reading on matroid invariant theory.
One particularly exciting recent development has seen the application of
T-G techniques in knot theory where a family of new polynomial invariants
has been discovered. We shall not discuss this rapidly growing area here,
but instead, refer the interested reader to Kauffman’s survey (1988) of the
area and to the following papers in the bibliography: Jaeger (1988c), Jaeger,
Vertigan & Welsh (1990), Jones (1985), Kauffman (1987, 1988), Lickorish
(1988), Lipson (1986), Thistlethwaite (1987, 1988a, b), Traldi (1989), and
Vertigan (1990).

6.6.A. Basis Activities

We consider here what is essentially the most basic group invariant. It was
introduced for graphs by Tutte in his founding work (1954) and was later
extended to matroids by Crapo (1969). For a matroid M, recall that t(M; 1, 1)
enumerates the bases of M. Thus, it is clear that we may partition %(M), the
set of bases of M, into blocks 4%,; where || = b;;, the coefficient of x%' in
#M; x, y). We now describe one way to obtain such a partition.

First we linearly order the ground set E of M by relabeling the elements
ofEas 1,2,..., n For a basis B of M, the internal activity, 1(B), of B is equal
to the number of elements e of B for which e is the least element in the
unique bond contained in (E — B)ue. Similarly, the external activity, &(B), of
B is the number of elements e of E — B for which e is the least element in
the unique circuit contained in Bue. On letting 4,; be the number of bases
of M of internal activity i and external activity j, we obtain the desired
partition of #(M), that is,

b;={Be B(M): 1(B)=1i, &(B) =j}. (6.70)

To verify this, one shows that if f(M)= |#;;], then provided the greatest
element 7 is neither a loop nor an isthmus,

S(M)=f(M —n) + f(M/n). (6.71)

The Tutte Polynomial and Its Applications 189

One striking consequence of (6.70) is the fact that |{BeB(M): i(B)=i,
&(B)=j}| does not depend upon the particular ordering chosen for E,

Whitney (1932) introduced another concept that has been fruitfully
developed in this context. A broken circuit is an independent set that is
obtained from a circuit by deleting its least element. Evidently a basis has
external activity equal to zero if and only if it contains no broken circuits.
Now define p*(M; 1) by

PT(M; A)=t(M; 1+ 1,0). 6.72)

By (6.20), if w; is the coefficient of A"~ in the characteristic polynomial
p(M; A) of M, then

PrM; =3 wlart
i=0
The numbers w;, 0 <i<r, are called the Whitney numbers of the first kind.
A detailed discussion of their properties can be found in Aigner (1987). It is
not difficult to show, by verifying (6.71) for f(M) = |wyl, that

|wj=[{I < E: |I|=i and I contains no broken circuits}.  (6.73)
Hence, by (6.72),

tM; 2, O)is M |wyl, the number of subsets of E that contain no broken circuits,

i=0
(6.74)

A bijective proof of the relationship between (6.70) and (6.73) is given in
Brylawski (1977c), and other properties of the associated invariants may be
found in Beissinger (1982), Bjorner (1980, 1982), Brylawski (19776, 1982),
Brylawski & Oxley (1980, 1981), Wilf (1976), and Zaslavsky (1983). Among
these are toplogical properties of the broken-circuit complex, the simplicial
complex whose simplices are the subsets that contain no broken circuits.
Berman (1977) gives an activity-theoretic interpretation of b;; for acyclic
orientations. A generalization of his result to a three-variable polynomial
has been given by Las Vergnas (1978; 1984). A

6.6.B. Hyperplane Arrangements

A finite set of hyperplanes in Euclidean d-space E* is called an arrangement
of hyperplanes. Such an arrangement decomposes F¢, and various counting
problems associated with this decomposition have been extensively studied.
See Brylawski (1976, 1985), Cordovil (1980, 1982, 1985), Cordovil & Silva
(1985, 1987), Cordovil, Las Vergnas & Mandel (1982), Greene (1977), Greene
& Zaslavsky (1983), Las Vergnas (1977), Winder (1966), Zaslavsky (1975a,
1976, 1977, 1979, 1981a, b, 1983), Buck (1943), Orlik (1989), Schlifi (1950),
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and Stanley (1980). Moreover, Zaslavsky (1975b) has given a comprehensive
treatment of such problems. In this section we briefly survey some of his
results which can be derived using T-G techniques.

Let {H,, H,, ..., H,} be a set of hyperplanes in E? and consider the set of

intersections D H;: I1<={1,2,..., n};. Thissetis partially ordered by reverse
iel

inclusion. In general, this poset P need not be a geometric lattice, although

it will be if no intersection of hyperplanes is parallel to another hyperplane,

or, more precisely, if the following condition holds (Exercise 6.87).

Whenever J € {1, 2, ..., n} and ) H; contains a line, () H, meets H;

ieJ ieJ
for alljin {1, 2, ..., n} —J. (6.75)

In the results that follow we assume that P is a geometric lattice and we
let M denote the simple matroid for which P is the lattice of flats. For the
generalizations of these results to arbitrary arrangements of hyperplanes in
projective as well as Euclidean space, we refer the reader to Zaslavsky’s paper
(1975b).

‘When the hyperplanes H,, H,, ..., H, are removed from E4, the remainder
of the space falls into components, each a d-dimensional open polyhedron.
We call these polyhedra regions of the arrangement. Such regions may be
bounded or unbounded. An arrangement of hyperplanes is called central if
the hyperplanes have non-empty common intersection.

6.6.1. Proposition. The total number of regions of a non-central arrangement
is #(M; 2, 0) — t(M; 1, 0) = «(M; 2, 0) — |(M)\.

6.6.2. Proposition. The number of bounded regions of a non-central arrangement
is t(M; 1, 0) = [u(M))|.

For central arrangements, the situation is a little different. In particular,
(6.75) always holds for such an arrangement so the poset of hyperplane
intersections will certainly be a geometric lattice in this case. It is not difficult
to show that a central arrangement has no bounded regions. On the other hand:

6.6.3. Proposition. The number of (unbounded) regions in a central arrangement
is t(M; 2, 0).

Given a central arrangement {H,, H,, ..., H,} having associated matroid
M, suppose we perturb one of the hyperplanes, say H,, by translation from
its initial position. Let H; be the perturbation of H;.
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6.6.4. Proposition. The numbers of bounded regions of the arrangements
{Hy, H,, ..., H,}U{H;} and ({H,, H,, ..., H,} U{H;})— {H,} are the same
and are equal to B(M).

As a further development of these ideas, Greene & Zaslavsky (1983) have
given an interpretation in terms of arrangements for the coefficients of the
characteristic polynomial. Moreover, many of the above results can be
generalized to oriented matroids (see, for example, Cordovil, Las Vergnas &
Mandel, 1982; Las Vergnas, 1975a; 1984). Finally, we note that Cordovil
(1980) showed that a conjecture of Griinbaum on the minimum number of
regions of a pseudoline arrangement in the real projective plane can be
deduced from certain general inequalities for the Whitney numbers.

6.6.C. Separation of Points by Hyperplanes

We now consider various results that are obtained by projectively dualizing
the results of the previous subsection. When this is done, the image of a
hyperplane is a point and the image of a region is a topologically connected
family of hyperplanes. Suppose E is a finite subset of E? and M is the affine
matroid induced on E. We consider those subsets E’ of E that can be separated
from their complements E — E’ .E\ some hyperplane of E°. The number of

~ such hyperplane-separable subsets is a T-G invariant. In fact:

6.6.5. Proposition. The number of hyperplane-separable subsets of E equals
t(M; 2, 0).

To verify the fundamental T-G recursion in this case, one considers an
extreme point e of E. Then every separation of a subset E' of E — e gives a
separation of either E’ or E'Ue. Both E’ and E’ Ue are hyperplane-separable
if and only if E’ can be separated from E — (E’'Ue) by a hyperplane through
e. But separations of the latter type are in one-to-one correspondence with
separations in M/e, where here one projects from e onto a hyperplane H
which is in general position further from e than any point of E — e.

Similar arguments to the above can be used to establish the following results.

6.6.6. Proposition. Let C be the convex hull of a basis B of M and suppose
that CNE = B. Then the number of subsets of E that can be separated from
their complements by a hyperplane intersecting C is given by
t(M; 2, 0) — 2¢(M; 1, 0) = ¢(M; 2, 0) — 2|u(M)).

6.6.7. Proposition. Let ¢ be sufficiently small and B, be an epsilon ball in F*
centered at an element e of M that is neither a loop nor an isthmus. Then the
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number of subsets of E that can be separated by a hyperplane that passes
through B, is given by t(M; 2, 0) — 2b,, = t(M; 2, 0) — 28(M).

To conclude this section, we note that, apart from their close links with
hyperplane dissections, hyperplane separations are also closely related to
acyclic orientations of graphs. Details of this relationship, including
combinatorial correspondences between the objects involved, can be found
in Brylawski (1985), Greene (1977), and Greene & Zaslavsky (1983).

6.6.D. Intersection Theory

We saw in sections 6.3.F and 6.5 that the coboundary polynomial 5(M; 4, V)
enumerates generalized colorings as well as codeweights. We now put these
two facts into a general framework: the combinatorial structure of the way
an embedded matroid intersects the flats of its ambient geometry. More
details of this intersection theory can be found in Brylawski (1979b, 1981b).

A matroid M(E) is said to be embedded into a geometry G(T) if there is a
mapping f: E—» TG0 such that ryu(E)=rg(f(E") for all subsets E' of E.
Equivalently, the simplification of M is a subgeometry of G. The element 0
here serves merely as the image of any loops in M.

A rank r geometry G is called upper combinatorially uniform if it has the
same number W, (i, j) of flats of corank j in every upper interval of rank i.
The numbers W, (i, j) are called the (doubly indexed) Whitney numbers of G
of the second kind. The equation W,(r, r — k) = W, relates these numbers to
the (singly indexed) Whitney numbers W, of the second kind discussed by
Aigner (1987). The reader should note that these doubly indexed Whitney
numbers of the second kind differ from their namesakes W,;, which were
studied by Greene & Zaslavsky (1983). Examples of upper combinatorially
uniform geometries include finite affine and projective geometries, where the
Whitney numbers are Gaussian coefficients; Boolean algebras, where the
Whitney numbers are binomial coefficients; polygon matroids of complete
graphs, where the Whitney numbers are Stirling numbers of the second kind;
and perfect matroid designs, that is, matroids in which flats of the same rank
have equal cardinalities. In the last case, a formula for W, (i, j) in terms of
the sizes of the flats can be found in Brini (1980), Brylawski (19790, 1982),
and Young, Murty & Edmonds (1970).

The intersection matrix I;(M) of the embedding of M(E) into the upper
combinatorially uniform geometry G is defined by I,(M; i, j)= {F:Fis a
corank j flat of G with | ~!(F)| = i}|, that is, I;(M; i, j) counts the flats of G
of corank j that contain i points of E. The intersection polynomial ig(M; u, v)
is then given by

i

ig(M; u, 0) =) Y I6(M; i, ju'v’.
J
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The principal idea of intersection theory is that the numbers I;(M; i, j)
do not depend upon the embedding but only on the Whitney numbers of G
and the Tutte polynomial of M. Indeed, if W, denotes the matrix of Whitney
numbers W, (i, j) of G, then we have the matrix equation
T~ Myc Wy =1g(M) (6.76)
J

i
cardinality-corank matrix of M (see section 6.5). After seeing similar arguments
in sections 6.3.F and 6.5, the reader will not be surprised that (6.76) is derived
by counting in two different ways: it is not difficult to check that

(T I6)G, J) = (Mgc* Wa)(, /) = NG, J) (6.77)
where N(i, j)=|{(F, E'y. F is a corank j flat of G, E€E, |E'|=i, and
E'c f~1(F)}|. Hence N(, j) is the number of ordered pairs consisting of a
flat of corank j and a subset of size i embedded in the flat.

The intersection polynomial ig(M; u, v) is not a T-G invariant. However,
it does satisfy the same recursion as the coboundary polynomial 7:

ig(M)=ig(M — e) + (u — Digz(M/e) (6.78)
where e is neither a loop nor an isthmus of M, and M/e is embedded into

G/f(e), the simplification of G/f(e). The formula (6.78) is derived from the
following recursion:

Is(M; i, j)=1g(M —¢; i, j) +~o\.§Q§\& i—1,j)— NQSaQS\ﬁ i,j) (6.79)
To verify (6.79), observe that I;(M — ¢; i, j) counts the i-point flats of M that
do not contain e, together with the (i + 1)-point flats of M containing e. But
there are precisely Ig7g(M/e; i,j) flats of the latter type. Since
Igrs(M/e; i — 1, j) counts those i-point flats that do contain e, (6.79) follows.

On combining (6.76) and the matrix-theoretic proof of 6.3.26, we get the
polynomial equation

where T™1(i, j)=(—1)*/(" ) for all i, j in {0, 1, ..., |E|} and My is the

u+i—-1

ic(M; u, v) =@ — 1)t| M; , U . (6.80)

u—1 e T WG i
. J

Here we use the same evaluation of the Tutte polynomial as in 6.3.26 and

then replace A’ in the resulting polynomial for g(M) by Y. W, (i, j)v'. To justify
i

this, compare (6.43) and (6.77).

For any upper combinatorially uniform geometry, G, every rank k upper
interval has the same characteristic polynomial. Denoting this polynomial
by pi(G; A), we see that p,(G; 4)=p(G; 1). Now let W,(i,j) denote the
coefficient of 4/ in p,(G; 1), where both i and j are chosen from the set
{0, 1, 2, ..., r}. We call the numbers W,(j, j) the (doubly indexed) Whitney
numbers of the first kind. The equation W,(r, r — k) = w, relates these numbers
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to the (singly indexed) Whitney numbers w, of the first kind which are
discussed in section 6.6.A and in more detail by Aigner (1987). As with the
Whitney numbers of the second kind, the numbers W,(i, j) differ from the
numbers w; ;, which Greene & Zaslavsky (1983) call ‘doubly indexed Whitney
numbers of the first kind’,

One can show that W, and W, are inverse matrices (Exercise 6.92b). When
G is the polygon matroid of a complete graph, this inverse relationship is
precisely the relationship between the Stirling numbers of the first and second
kinds. When G is a Boolean algebra B, the inverse relationship is that exploited
earlier between the binomial coefficient matrix T and the signed binomial
coefficient matrix T~ !. Indeed, one easily checks that p,(B; 1) = (4 — 1)}, so

1
(1973b) was the first to prove the formula for evaluating p,(G; 1) from an
inverse matrix. This formula also appears in a slightly more general form in
Brylawski (1979b).
Using the fact that W, is the inverse of W, , we get immediately from (6.76) that

that, in this case, W, (i, j) = (—1)'*4 A&V, that is, W, (i, j)= T~ (i, j). Dowling

Myc=T-15(M) W,. (6.81)
Moreover, by inverting (6.80) and using (6.45), it can be shown that
MAEV u, pv = ~Q,Q§. u, Cv_c_ISQS“ A Amva

The above theory can be used in a straightforward manner to compute,
for example i;.(M) from i;(M) where G’ is another upper combinatorially
uniform geometry in which M is embedded (Brylawski, 1979b). Hence, the
intersection numbers for an embedding of an n-vertex graph I into K, yield
those for a linear representation of M. Further, iz(M) can be computed
from ig(M*), this result being the intersection analog of the MacWilliams
duality formula. Also, if G is a perfect matroid design and G’ is a subgeometry
of G, then one can compute #G’) from (G — G’). To see this, we note that if
a; is the size of each corank j flat of G, then

NQAQ\W F.\v"NQAQ! Q\u Q&.'ﬁ.\.v.

Some examples of the above calculations are given in the exercises.

Among the other applications of intersection theory are various reconstruction
results for the Tutte polynomial. In particular, Proposition 5.1 of Brylawski
(1982) enables one to reconstruct (M) from the Tutte polynomials of its
single-element contractions. With Sy -(M; x, y) equal to the cardinality-corank
polynomial of M(E), we have the straightforward formula

Skc(M; x, y) = _, A 2. Skc(M/e; x, evv dx + y@0 (6.83)

ecE
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where ._, dx is the formal integral operator: ._. x*ymdx = T
/

Brylawski (1981¢) reconstructed $(M) from the multiset of isomorphism
classes of hyperplanes of M; in the graphic case (1981b), he reconstructed
t(My) from the multiset of isomorphism classes of single-vertex deletions of
T'. To make the latter calculation and to find the intersection numbers for
graph complements, a finer graph invariant called the polychromate was
introduced. For a graph I" having m vertices and n edges, this is defined by

AT Y, 24y Zgs eees Zp) = M.V..M?kﬁ i, m)z™. (6.84)

The second sum here is over all integer partitions = of m, while if
n=142%  m, then z"=z%{'z}*... z;". Further, M(T, i, #) denotes the
number of vertex partitions of type = in which there are exactly i edges of
T joining two vertices in the same class.

It is an easy matter to reconstruct the polychromate § from vertex or edge
deletions, as well as to determine its behavior under the addition of isolated
vertices or the taking of complements. Moreover,

ix, T u,0)=20 w0, v, ..., 0). (6.85)

One can use these ideas to construct non-isomorphic graphic matroids of
arbitrarily high connectivity having the same polychromate, and hence the
same Tutte polynomial (see Exercise 6.19).

As a final application of intersection theory, we sketch suggestively similar
statements and proofs of two extremal theorems, one due to Bose & Burton
(1966), the other to Turén (see, for example, Erdds, 1967). Another proof of
the former is outlined in Exercise 6.65. In both these theorems, the ambient
geometry is a supersolvable upper combinatorially uniform geometry G. Each
theorem has two parts: the first part asserts that a smallest subset of G that
meets every modular flat of rank ¢+ 1 has the same size as a smallest flat
of corank c; the second part asserts that every such smallest subset of G is
a smallest flat of corank c. Our proof will be only of the second part of these
theorems, the characterization of the extremal subsets. Since any flat of corank
¢ meets all modular flats of rank c + 1, to prove this second part it suffices
to show that every extremal subset is a flat.

In the Bose-Burton theorem, the ambient geometry is PG(d, q) and the
assertion of the second part of the theorem is that if a subset A of the points
of this projective space has the same size as a subspace F of rank ¢ + 1 and
A meets every subspace of corank ¢, then A =~ F = PG(c, q).

In Turan’s theorem, the ambient geometry is M(K,). To state the theorem
we shall need some more notation, For natural numbers p and n, the Turdn
graph T,(n) is the unique n-vertex p-partite graph for which every vertex class
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has either e or I members. It is not difficult to check that T, (n) has

p p
the largest number of edges among all complete p-partite graphs on n vertices

(Exercise 6.91). Hence a smallest corank ¢ flat F in M(K,) contains
n
2

a subset 4 of the edges of K, has this minimum number |F| of edges and 4

meets every (c + 2)-clique, then A is isomorphic to the complement in K, of

)

Both of these theorems have equivalent formulations in terms of a subset
of the ambient geometry that is of maximum size with respect to the property
of not containing any modular flat of corank ¢ + 1. Indeed, Turan’s theorem
is probably more commonly stated in this way.

For fixed ¢, the common proof of the second part of these two theorems
is by induction on r(G) — (c + 1), each result being trivial when this quantity
is 0. Let F be as in the theorems and X be a subset of G of size |G — F| which,
like G—F, does not contain any rank (c + 1) modular flats. Then ali the
single-element contractions X/e of X are essentially extremal. It then follows
by induction that X/e is isomorphic to (G — F)/e. Thus we may employ (6.83)
to show that X and G — F have the same Tutte polynomial and the same
intersection matrix. The only flat of G of corank c that avoids G—F is F
itself, that is, I;(G — F; 0, ¢) = 1. Hence I4(X; 0, ¢) is also 1 so X must avoid,
and therefore be complementary to, a flat of the same corank and size as F.

We shall illustrate this idea further in the graphical case by looking in
more detail at what happens when ¢ = 1. We leave the task of completing

2
EnaogzmgEa?o&ooméommommmboxonommo.m<Eo=a<_mAHN§v_H 7r=| .

—|E(T, +,(n))} edges. The second part of Turan’s theorem asserts that if

4
2
Now take a subset X of E(K,) that has W.. edges and no triangles. We
shall also let X denote the subgraph of K, induced by this set of edges. Let

e be an edge of X with endpoints u and v. Then
n? (n—2)>*

and none of the edges of X/e is multiple. If 7 is the vertex of X/e formed by
identifying u and v, then

|E(X/e—0)| = |E(X — {u, v})| = ﬁ

+n-2,

(n—2)y

2 |_+=INIaom D.

— 72
But X — {u, v} contains no triangles and therefore has at most ﬁEx_

4
(n—2)

edges. Hence deg 5=n—2 and |E(X/e —?)| = n

. Thus, by the
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induction assumption, X/e — 7 is isomorphic to T,(n — 2) and 7 is adjacent
to every vertex of this graph. Thus the isomprphism type and intersection
matrix of X/e are determined for all e in X. Hence X itself is determined
and is isomorphic to 7,(n).

Exercises

Those with one asterisk are more difficult; those with two asterisks are unsolved.
Section 6.2
6.1. (a) Determine the Tutte polynomials of the three matroids M,, M,, and M,
for which affine representations are shown below.

Figure 6.11.

*— oo

M, M, M,

(b) (Brylawski, 1972b) Show that M, and M, are the unique smallest pair of
non-isomorphic matroids with the same Tutte poiynomial.
* () (Brylawski, 1972b) Determine when two rank 3 geometries have the same
Tutte polynomial.
6.2. Define a function t* on the class .# of all matroids by t*(M) = t{M*; x, y).
Show that t* is a T-G invariant and use this to give an alternative proof of
the fact that t(M*; x, y)=t(M; y, x).
6.3. (a) Show that, for m =2,
U s % Y)=X4+y+y*+ ... +y" L
(b) Determine (U, ,,; x, y).
6.4. If a;; is the coefficient of x*)/ in S(M; x, y), prove that it is a group invariant
and determine its value in terms of the coefficients of ¢{(M; x, y).
6.5. Let F be a field and g, 7, 9, and & be non-zero elements of F. Suppose that f
is a function from .# into F[x, y] having the following properties.
(1) fU x, y)=x and f(L; x, y)=.
If e is an element of the matroid M, then
2 fIM; x, y=0af (M —¢ x, y)+1f(MJe; x, y) if e is neither an isthmus
nor a loop,
3) fM; x, yy=19f(M(e); e, ) f(M — ¢; x, y) if e is an isthmus, and
@) f(M; x, y)=of (M(e); x, y)f(M —¢; x, y) if e is a loop.
(a) Find an example to show that, in order for f to be well defined,

we must have y = 4.
(b) Show that if y =4, then
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6.6.
6.7.
6.8.

6.9.

6.10.

6.11.

Thomas Brylawski and James Oxley

f(M; x, y) =y~ 1gB-r®pEy( pr. XX W)

>

T 0O

(c) If y=4, show that
() S(M @ My; x, y)=1(My; x, y)f(M3; x, y)
and that (b) still holds if this condition replaces (3) and (4).
Use Theorem 6.2.2 to prove 6.2.11(ii).
Prove Proposition 6.2.20.
For each of the following determine whether there is a matroid having the
specified polynomial as its Tutte polynomial. If there is such a matroid,
determine whether or not it is unique.
(&) x*>+x+3y+y%
(b) x> +2x% + x + x2y + 3xy + xy* + y + 2y% + y.
(© x*+4x®+ 7x* + 3x2y + Txy + 6xy2 + 3xy® + xy*.
(d) x® +3x% 4+ 2xy + )2
(€ x*+ 3x%y +2x2y? + x%y® + 3xy? + 4xy> + 3xy* + xp5 + y3 + 2% + 2)°
+ 5.
Let S(M; x, y)= 3. 3 a;;x'y where S(M; x, y)is the rank generating polynomial
i

of M(E).
(a) Show that
max {i: a;; > 0 for some j} = (M),

max{j: a;; > 0 for some i} = n(M)

and 0<q; < for all i and j where m = |E]|.

m

lm/2)

(b) Use (a) to deduce that, corresponding to matroids on m elements there
are at most 2"*1** distinct rank generating polynomials.

(©) If g(m) denotes the number of non-isomorphic geometries on a set of
cardinality m, then Knuth (1974) has shown that

gM) = W N_A PMN_V\Q_.
m!

Cmo this result with (b) to deduce that, for any number N, there are at
least N non-isomorphic geometries having the same Tutte polynomial.
Let H be a circuit and a hyperplane in the matroid M(E). Let #' consist of
the set of bases of M together with the set H.
(a) Show that &’ is the set of bases of a matroid M’ on E.
(b) Use the rank generating polynomial to show that t(M’; x, n=tM; x, y)—
xy+x+y.
Show that
HUM(K ); x, y) = x> 4 3x% + 2x + 4xy + 2y + 3y* + 3,
HM(K 5); x, y) =x* + 6x® + 11x2 + 6x + 10x2y
+ 20xy + 15xy* + 5xy® + 6y + 152
+ 15y + 10p* + 4y° + 5,
and

6.12.

6.13.

6.14

6.15.
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HM(K;3); x, y) =x° +4x* + 10x® + 11x? + 5x
+ 9x2y + 15xy,+ 6xy*
+ 5y 4+ 9y% + 5y + y~.

(Brylawski, 1982) Let ¢ be the set of isomorphism classes of geometries and
R be a commutative ring. If M is a matroid, M denotes its simplification. A
geometric T-G invariant is a function f from ¢ into R such that if e is an
element of a geometry G, then

(1) f(G)=f(G(e)f(G—e) if e is an isthmus, and

2) f(G)= f(G —¢)+ f(G/e) otherwise.
(a) Give a non-trivial example of a geometric T-G invariant.
(b) Show that if G is a geometry, then f(G)=G; f(I), 0).

M) n(M)
For a matroid M having Tutte polynomial t(M; x, y)= Y. 3 b,x'y/, show

i=0 j=0
n(M) r(M)

that ) byy-;=nM)and Y b ,an-1 =rM).
j=0 i=0

(Oxley, 1983a) Let f be a generalized T-G invariant and suppose that f(I) = x
and f(L)=0o + 7 (see 6.2.6(ii)).
(a) Prove thatif H is a hyperplane of M(E) and E — H = {x,, x,, ..., X, }, then

f(M)=¢*""(x + (k — 1)o) f(M(H))

k-1
+12 Y Y T M =Xy, X5 ey Xim gy Xigga oenr Xy 1)/ X5 Xj).
j=2i=1

(b) State the corollary of this result obtained by taking f(M)= p(M; A).

(c) Interpret (a) when x, o, and t are all equal to one.

(d) Use (b) to obtain an identity relating (M) and S(M(H)).

A matroid M, is a series—parallel extension of a matroid M, if M, can be

obtained from M, by repeated application of the operations of series and

parallel extension.

(a) Show that if M, is a series—parallel extension of the loopless matroid M,
then B(M,) = B(M,).

(b) (Crapo, 1967) If M(#,) is the polygon matroid of the r-spoked wheel and
W is the rank r whirl, show that S(M(#,))=r—1 and f(#")=r.

A matroid M(E) is 3-connected if M(E) is connected and there is no partition

{X, Y} of S such that |X|, |Y| =2 and {X)+r(Y) —r(M) = 1.

(c) (Seymour, 1980) Prove that a connected matroid M is not 3-connected if
and only if M is the 2-sum of two matroids on at least three elements.

(d) Use Exercise 6.1 to show that 3-connectedness is not a Tutte invariant.

(e} (Oxley, 1982a) Let M be a matroid with (M) =k > 1. Prove that either
(1) M is a series—parallel extension of a 3-connected matroid N such that

B(N)=k, or

(2) M is the 2-sum of two matroids each having 8 <k.

* (f) (Oxley, 1982a) Let N be a minor of the matroid M and suppose that

B(N) = B(M) > 0. Prove that if N is 3-connected, then M is a series—parallel
extension of N.
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(g) Prove that f(M)=2 if and only if M is a series—parallel extension of the
4-point line, U, ,, or M(K,).
(h) Prove that f(M) =3 if and only if M is a series—parallel extension of U,
Uss, Fp, FX, M(W},), or W2
* (i) Determine all matroids M for which p(M)=4.
6.16. Find two geometries G and G’ with the same Tutte polynomial where G is
isomorphic to its dual but G’ is not. (Hint: Form two distinct matroids from
AG(3, 2) each retaining seven circuit-hyperplanes, and use Exercise 6.10.)

Figure 6.12.

M, M,

6.17. (a) Show that for M, and M,, shown in Figure 6.12, (M?) = (M%) but that
MY is Hamiltonian, that is, has a spanning circuit, whereas M? is not.
(b) Show that the size of a smallest circuit in a matroid is a Tutte invariant.
** {c) Is the size of a largest circuit in a graph a Tutte invariant? (Recently
Schwirzler, 1991, has answerede this question in the negative.)

r

6.18. (Brylawski, 1975a) Prove that if p(M; )= Y. c,4* and T(M) is the truncation
k=0
of M, then

AT D= 3 o2 4,

k=1

Section 6.3.A
6.19. (a) Find two simple graphs I" and A such that y.(M) = y,(M), but M and
M, have different Tutte polynomials.
* (b) (Tutte, 1974) Now find two simple graphs ' and A such that
UMp; x, y) = M,; x, y) but M and M, are not isomorphic.
* (©) (Brylawski, 1981b) Show that I and A can be chosen in (b) to have
arbitrarily high connectivity.

Figure 6.13.
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6.20. For A=1,2, 3, 4, and 5, find the number of proper 1-colorings of the graph
I’ shown in Figure 6.13, and use these numbers to calculate x(4) for arbitrary A.

621. If #, is the n-spoked wheel, show EN\: its chromatic polynomial is
ALA=2r+(-1)"(A - 2]].
6.22. (a) Let K, — e be the graph obtained from K, by deleting an edge. Show that
its chromatic polynomial is {4 — 1)(A—2) ... A —n+3)(A —n+ 2%
(b) Ifeand f areadjacent edges of K, find the chromatic polynomial of K, — e — f.
(c) Show that the chromatic polynomials of K, 5 and K, , are

MA—1)(A* —84% + 2842 — 472+ 31)
and
AMA— 1(A5 — 114* 4 5523 — 14722 + 2044 — 115),
respectively.

Section 6.3.B
6.23. If I' is a graph, find the degree of its flow polynomial.
6.24. Show that the flow polynomials of K, ; and K are

(A — 1)(A — 2)(A2 — 64 + 10)

and
A—1DA2—424+5(A2 =512+ 111-9),

respectively.

6.25. If T is a connected planar graph and I'* is a geometric dual of T, give a
one-to-4 correspondence between the set of nowhere-zero A-flows of I" and
the set of proper A-colorings of I'*.

6.26. Let T be a cubic graph. Show that the number of proper edge 3-colorings of

I equals (— C‘EUAE_,“ 0, —3). (Hint: Relate the coloring to a nowhere-zero
flow over an appropriate group.)
6.27. (Negami, 1987) The two 3-variable polynomials f(T’; ¢, x, y) and f*({I; ¢, x, y)
are recursively defined for graphs as follows:
(1) f(K,)=r¢"for all n 21 where K, is the complement of K ;
2) f(D)=yf(T"' —e)+ xf(I'/e) for all e in E(T);
and
(3) fXK,)=t"forallnx>1; ,
(4) fXT)=xf*T —e)+ yf*(['/e) for all edges e of I that are not loops or
isthmuses;
B D) =x+ty) M —e)if e is a loop;
6) f*D)=(x+y)f*I/e) if e is an isthmus.
(a) (Negami, 1987) Prove that if I has k(I") components, then

[T x=Dy=1), 1, y=1)=(y—1)"Dx — PO(M; x, y).
(b) (Oxley, 1989a) Prove that

£y \HD) 7\ 1V ¢
fCax=(2) (2) veou( My 1+2 142
x ¥ x y

and
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£ \FO £ )\ VD]
SH 8 X, y) = Alx 2V o M 145 142,

y X y x

(©) Prove that
SHE; 8, %, y) = O VO 1, 1y, x),
(d) Show that
and
ATVOUAT 4, 4, —1) = g (A).

(e) Let I be a plane graph and I'* be a geometric dual of . Show that

/D)= f(T*).

Section 6.3.C
6.28. Prove that if a graph I has a nowhere-zero n-flow, then I has a nowhere-zero

(n+ 1)-flow.

6.29. (Jaeger, 1976b) Let the complement of a spanning tree in a connected graph

6.30.

6.31.
6.32.
6.33.

T be a cotree.

(a) Prove thatif E(I')is the union of m cotrees, then I' has a nowhere-zero Z7-flow.

(b) Use Edmonds’ covering theorem for matroids (Edmonds, 1965b) to prove
that every 3-edge connected graph is the union of three cotrees.

() Use (a) and (b) (and not Theorem 6.3.10) to prove that every bridgeless
graph has a nowhere-zero 8-flow.

(d) Deduce that every bridgeless graph can be covered by three Eulerian

Figure 6.14.

r A
subgraphs, where the latter is a subgraph whose edge set can be partitioned
into circuits.

() Use the same technique that was used to prove (c) to show that every
4-edge connected graph has a nowhere-zero 4-flow.

(a) (Tutte, 1974) Consider the two graphs shown in Figure 6.14. Show that
the Tutte polynomials of their polygon matroids are equal but that these
polygon matroids are non-isomorphic.

(b) Show that any orientation of I" has 48 nowhere-zero Z-flows taking values
in [~2, 2], but any orientation of A has 52 such flows.

Prove Lemma 6.3.12,

Prove that S-closure is a closure operator.

(Walton, 1981) Let the graph I be formed from a set of 2-connected planar
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graphs by taking 3-sums. Prove that T has a nowhere-zero 4-flow.

Section 6.3.D ,

6.34.

6.35.

(Greene & Zaslavsky, 1983) A totally cyclic orientation of a graph T’ is an
orientation 8 of T" such that every edge of I, is in some directed cycle. If I" is
planar and I'™* is a geometric dual of T, find a combinatorial correspondence
between the set of acyclic orientations of I and the set of totally cyclic
orientations of I'*.

(Greene & Zaslavsky, 1983) If uv is an edge of a graph I" and N(I') denotes
the number of acyclic orientations of I" having u as the unique source and v
as the unique sink, prove that

N(T) = p(My,).

Section 6.3.E

6.36.

6.37.
*6.38.
6.39.

6.40.

Let T be the graph shown in Figure 6.15.

If edge e, has retention probability p;, and p, =3, p,=1%» P3=4> Da=1
ps =11 and ps =13, construct a graph I* from I" so that every edge of I* has
retention probability 3 and the probability that there is an (s, t)-path in I" is

equal to the probability that there is an (s, )-path in I

Figure 6.15.

Supply the argument that proves 6.3.21(ii).

M|
If Pr(2(M)) = Y. b,p', determine the coefficients b;.

i=1
In M = M,(E{d), suppose the retention probability p; of every point ¢; of E
is equal to the finite binary decimal p. Derive the formula for Pr(2(M)) from
the corresponding formula when p = 1. By taking limits give another unoo», of
6.3.21(i).
{a) Complete the proof of Lemma 6.3.24.
(b) Let M, be the matroid that is obtained from M by replacing every

non-isthmus of M by k elements in series and replacing every isthmus by

k isthmuses. Find t(M,; x, y) in terms of {M; x, y).

* (c) (Brylawski, 1982, Proposition 4.10) Let M, be a pointed matroid in which

d is neither a loop nor an isthmus. Let M be a matroid on the set
{P1> P2» ---» P} The tensor product M @ M, is the matroid N, formed from
M as follows: let Ng=M and, fori=1, 2, .., k, let N; be the 2-sum of the
basepointed matroids (N;_,, p;) and (M,,d), this 2-sum being
(N,_,/p;)®(M,/d)if p; is a loop, and (N;_ \ p;) D (M,\ d) if p; is an isthmus.
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If tp(M ) = xf(x, y) + y'g(x, y), show that
(M @My x, y)=

(f G, Y= g(x, y)) ASA

(d) Deduce Lemma 6.3.24 and part (b) from part (c).

Section 6.3.F
6.41. Complete the details of each of the proofs of Proposition 6.3.26.

Eth nf+ g f+y— cnv.
g S

6.42. Verify that T™1(j, j) = (— :..IQV where T~! is the inverse of the matrix T
J
i
6.43. Argue directly from Theorem 6.2.2 to show that

UM; x, y)=(y— 1)7"%M; (x— 1)(y — 1), y).
6.44. Show that if M has rank r,

(@) HM; 0, )= py(d);
() X(M; 4, v)=Skc(M; A -1, v); and

(©) Skc(M; u, v)=uS| M; m, :v.

u
Section 6.3.G
6.45. Use deletion—contraction arguments to prove 6.3.28 and 6.3.29.
6.46. (a) Find the medial graphs of each of K, K, and a planar embedding of K ,.
(b) Show that the medial graph of an n-cycle C, is C‘?, the graph obtained
from C, by doubling every edge.
(c) Find the medial graph of C®,
(d) If A is the graph of the octahedron, find a graph I such that I',, = A.
6.47. Prove that if I' is a plane graph and I'* is its geometric dual, then I, = (I'*),,.
6.48. Show how deletion and contraction of an edge e in a plane graph I correspond
to decomposing I, into two smaller 4-regular graphs.
Section 6.4.A
6.49. Prove Corollary 6.4.11.
6.50. Let M(E) be a rank r binary matroid.
(a) Prove that the following statements are equivalent.
(1) M is affine.
(2) If ¢ is a coordinatization of M in V(r, 2), then there is a linear
functional f on V(r, 2) that distinguishes ¢(E).
(3) All circuits of M have even cardinality.
(4) All hyperplane complements of M* have even cardinality.
(5) There is a partition of E into bonds of M.
(b) Assume that M(E) > M_. for a graph I'. Prove that (1)~(5) are equivalent
to (6) I' is 2-colorable.
(c) Assume that M(E) = M for a connected graph I'. Prove that (1)-(5) are
equivalent to (7) T is Eulerian.
*6.51. Prove Proposition 6.4.12.
6.52. Show thatif c((M; q) = k,but (M — ¢; q) < kfor all ¢, then c(M/e; q) < kfor alle.

for which T(, j)= foralli,jin {0, 1,2, ..., n}.

The Tutte Polynomial and Its Applications 205

6.53. For a loopless matroid M, there are several ways one may attempt to define
the chromatic number. Two possibilities are

x(M)=min{jeZ™: p(M; .“.VVS.
and
wM)=min{jeZ": p(M;j+k)>0fork=0,1,2,...}.
(a) Evidently y(M)<n(M). Give examples to show that n(M)— y(M) can
become arbitrarily large.
(b) Show that if T <= E(M), then x(M(T)) can exceed y(M) and n(M(T)) can

exceed n(M).
(c) Let M be a geometry and €*(M) be its set of bonds. Prove that

n(M)<1+ max |C*.

C*e€é*(M)
(d) (Heron, 1972b) Prove that, for a matroid M(E), t(M) <|E|—r + 2.
(e) (Lindstrém, 1978) Prove that if M is a regular matroid, then (M) = n(M).
*f) (Walton, 1981) Extend (e) to show that if M is binary and has no minor
isomorphic to F,, then (M) = n(M).
(2) (Oxley, 1978a) Prove that for a regular matroid M having (M) as its
set of simple submatroids,

n(M)<1+ max A min _O*_v.

NeR(M) \C*e¥¢*(N)
(h) Deduce from (g) the following result of Lindstrém (1978). If a loopless
regular matroid can be covered by bonds of size less than n, then n(M) < n.
*(i) (Oxley, 1978a) Use (g) to prove that if M is a connected regular geometry, then
a(M)< max |C*
C*e¥*(M)
unless M is an odd circuit or an isthmus.

*6.54. (Walton, 1981) With n(M) as defined in the previous exercise, prove that if M
is loopless and representable over GF(g), then, provided M has no minor
isomorphic to any of the four matroids shown in Figure 6.16,

nM)<q+1.

Figure 6.16.

/N

6.55.*% (a) (Brylawski, 1975a) Let M be the generalized parallel connection of the
matroids M, and M, across the modular flat X. Prove that

PM; 2)=p(M ;5 )p(M; HIp(M (X); )]
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(b) (Walton & Welsh, 1980) Let M be the 2-sum of matroids M, and M,
with basepoint z. Show that

PM; ) =(A—1)7"p(M ; A)p(M; 4) + p(My/z; Dp(M, /2, 2).
(c) (Walton & Welsh, 1980) Let M, and M, be binary matroids and
X ={a, b, c} be a 3-circuit of M, and M,. Let M be the generalized

parallel connection of M, and M, across X, and N be the 3-sum of M,
and M,, that is, N=M — X. Show that

M ;5 A)p(M,; A)
A-1)1-2)
+P(M —{a, b})/c; }) + p(M — a)/b; 2) + p(M/a; 3.
Let # = EX(M,, M,, ..., M,) be the class of matroids having no minor
isomorphic to any one of M,, M,, ..., M,. A splitter N for & is a
3-connected member of # such that if Me% and M has a minor
isomorphic to N, then M~ N.

(d) Let &# be a class of matroids closed under isomorphism and the taking
of minors. Prove that if N is a splitter for &, then N* is a splitter for

={M:M*eF}.

(¢) (Walton & Welsh, 1982) Let & be a class of matroids and
(/) = max{n(M): M is a loopless member of «/}. Prove that if
oEX(N, M, M, .., M) = kand Nisasplitterfor EX(M |, M,, ..., M),
then n(EX(M,, M, ..., M,)) < max{k, n{N)}.

(f) Show that Seymour’s 6-flow theorem (6.3.10) is equivalent to the assertion
that, for a loopless member M of EX(F,, F%, M(Ks), M(K; 3), n(M) < 6.

*(g) (Seymour, 1980) Prove that F, is a splitter for EX(U, ,, F*), that M(K )
is a splitter for EX(U, 4, F,, F}, M(K; 3)), and that R, is a splitter for
EX(U, 4, F%).

*(h) (Walton & Welsh, 1980) Prove the following:

im.NAQN.f F,, EQA.L& <6;
MEX(U,.4, F%, M(K5)) <6;
UEX(Uyq, Fpy M(K44)<6;
WEX(U,,q, F7, M(K;3)) <6
(i) Show that the Four Color theorem is nnEﬁ;nE to the assertion that
UEX(Usz,as Fq, FT, MXK;), M¥(K; 3), M(K5), M(K; 3)) = 4.

(i) Use (i) and Wagner’s theorem (1964) that the case k=4 of Hadwiger's

conjecture is equivalent to the Four Color theorem to prove that
MEX(U,,4, Fq, F7, M¥(K;), M¥(K; 5), M(K,)) = 4.

(k) Prove the following:

MEX(Uy,, Fy, MX(K; 4), M(K,)) =4

imNAQN.f m.ﬂv g*ﬁhu.uv. EQA.&VV =35;

MEX(Uyz 4, Fqy MXK; 3), M(K;3) =5

im\wAQN.E m.«,“ E*Qmu.uv. EQAubvvv =35.

pN; A) =
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() Deduce from (k) that a loopless graph having no subgraph contractible
to K, 3 is 5-colorable.

(m) Deduce from (k) that a graph without agacmnm having no subgraph
contractible to K, 5 has a nowhere-zero 4-flow.

(n) Use(m)to show that a cubic graph without isthmuses having no subgraph
contractible to K; ; has edge-chromatic number 3.

*6.56. (Walton, 1981) Use Seymour’s decomposition result for regular matroids to
prove that if M e EX(U, 4, F,), then p(M; A)=0for all 1in Z*.

6.57. (a) Show that p(PG(n, q); }) = ._W_ A —q).

(b) Show that if M = AG(n, g), then

PM; = (A= DIX — (@ — DI+ (" = D@ = D2+
G = D@ = D) e (T R
+(=17g = D@~ 1) .. (4= D.

6.58. Find three non-isomorphic matroids each having characteristic polynomial
equal to (A — 1)(A —3)2

Section 6.4.B
6.59. (a) Find all minimal 1-blocks over GF(2).
** (b) Find all minimal 1-blocks over GF(3).
6.60. Prove that if M and N are minimal k-blocks over GF(q), then so is their series
connection.
6.61. Prove Proposition 6.4.14.
6.62. Check that the matroid N, in Example 6.4.22 is _moBo_.on to AG(3,2).
6.63. (a) (Oxley, 1980) Let M be coordinatizable over GF(q) and C* be a bond of
M such that ¢(M; g) — 1 =c(M — C*; q) = k. Prove that [C*| =
(b) Show that if M is a tangential k-block and C* is a bond of M having
exactly g* elements, then E — C* is a modular hyperplane of M.
6.64. (a) (Walton, 1981) Prove that a tangential k-block over GF(q) is 3-connected.
(b) Give an example of a 3-connected minimal ¢-block that is not
a tangential t-block.
(c) (Walton, 1981) Prove that a tangential k-block over GF(2) is not a 3-sum.
76.65. (Mullin & Stanton, 1979) A (g, m. k)-matroid is a submatroid of PG(k — 1, q)
having rank k and critical exponent greater than m. A minimal (g, m, k)-matroid
is a (g, m, k)-matroid for which no submatroid is also a (g, m, k)-matroid. Let
n(g, m, k) denote the least number of elements in a (g, m, k)-matroid.

NLN=.+ 1_ 1
g—1
(b) (Brylawski, 1975¢c) Show that if r, ¢>2 and U, , is coordinatizable over

GF(g), then ¢(U, ,; 9) = 1.
* {c) Prove that a (g, m, k)}-matroid having n(g, m, k) elements is mmoBoaqu to
PG(m, @ U, _ -1 4-m-1 forg=2and m>2,and forg>2 and m>
(d) Deduce from (c) the following result of Bose & Burton (1966). Let M dn
a loopless matroid coordinatizable over GF(q) and suppose M has critical

* (a) (Oxley, 1979a) Prove that n(g, m, k} = +k—m-—1.
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Qi+~|~

exponent greater than m. Then M has at least ]
q—

elements. Moreover,

®§+ 1_ i
if M has exactly ———
qg—1

6.66. Use an argument involving coloring and the critical exponent to prove that

AG(3, 2) has no minor isomorphic to M(K,).

(Whittle, 1985) Recall that if M and N are matroids having a common ground

set E, then N is a quotient of M if every flat of N is also a flat of M. Let M

be a tangential k-block over GF{(g) and N be a loopless quotient of M that is

coordinatizable over GF(q). Let (M) — (N) = m. Assume that N has a proper
non-empty flat F such that
(1) F is a modular flat of M;
(@) ry(F)—ry(F)=m; and
(3) for every proper flat F' of N(F), p(N(F)/F’; ¢*)> 0.
* (a) Prove that the simplification of N is a tangential k-block over GF(g).
(b) Deduce Theorem 6.4.27 from (a).
() Deduce Theorem 6.4.29 from (a).

6.68. Suppose that the matroid M is represented over GF(g) by a matrix 4. We call
M’ a GF(g)-vector quotient of M (see, for example, White, 1986, 7.4.8) if M’
can be obtained from M by adjoining a linearly independent set of columns
to A and then contracting those elements of the resulting matroid that
correspond to the newly adjoined columns.

(a) Show that if M’ is a GF(g)-vector quotient of M, then c(M’; q) = c(M; q).
* (b) (Jaeger, 1981) Prove the following analog of Hajos’ theorem (1961)
characterizing all graphs of chromatic number at least k. If M is
coordinatizable over GF(g), then ¢(M; q) >k if and only if M has as a
restriction a matroid that can be constructed from copies of PG(k — 1, q)

by a sequence of series connections and GF(g)-vector quotients.

elements, then M = PG(m, g).

6.67

Section 6.4.C
6.69. Both K, and K have two different types of hyperplanes. Find the four bond
graphs that arise from K, and K.
6.70. Add the argument omitted in the last paragraph of the proof of Proposition 6.4.48.
6.71. Give an example of a transversal matroid coordinatizable over GF(q) having
critical exponent 2.
6.72.*%(a) (Jaeger, 1982) Let I, and I, be independent sets in PG(r — 1, g) and M be
the submatroid on I, 1,. For which values of g is ¢(M; g) = 1?
**(b) If L, 1,, ..., I, are independent sets in PG(r — 1, g), whenisc(I, vI, U ... U
I; @) <k? When is k best-possible here?

Section 6.5
6.73. (a) Show that M{(C)depends only on C and not on the generator matrix U for C.
(b) Show that M(C*) = M*(C).
6.74. Verify (6.58).
6.75. Complete the derivation of Proposition 6.5.1 from (6.64).
6.76. Prove Proposition 6.5.2.

6.71.

6.78.

6.79.

6.80.

6.81.

6.82.

6.83
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Let C be a binary code. Use Corollary 6.5.6 to verify that, in the code over

GF(4) that is generated by C, all codewords have even weight.

(a) Calculate p,, (1) when M is G,(n, 2) and when M is G,(n,n—1)

(b) Calculate py,(4) when M is G, (5, 3). .

(¢) Can the critical exponent of G,(n + 1, 2k + 1) be computed directly from
that of G,(n, 2k)? (They are the same.)

Calculate the codeweight polynomial A(C) for

(a) the projective code C, where M(C,) = PG(r — 1, g);

(b) the dual C} of C, (This is the Hamming code.);

(c) the optimal code C where M(C)="U,,.

(a) Provethatif M is coordinatizable over GF(g), then, provided g is sufficiently
large, C(M) has codewords of every possible weight.

(b) Prove that, for g =2, A(C(M)) always has a, or a,_, equal to zero unless
M has an isthmus.

Ay—i
M J

(5
With A(C; g, 2) = . a2, define T;= A 77 Use (6.64) to prove (a)—(c).

i=0 Q_.I\
(a) T, is always an integer.
b) T, =1
(c) T, determines the number of loops in M(C).
If C* has distance d, calculate T; for i <d.

(Asano, Nishizeki, Saito & Oxley, 1984) Let U be an r x n matrix over GF(g).

The chain-group N generated by U is the linear code C generated by U, a

chain being a codeword in C. The support o(f) of a chain f is the support of

the corresponding codeword. Let M = M(C) and E denote the set of elements of M.

(a) Prove that ¢(M; q) <k if and only if N contains k chains f, f,, ..., f; such
k

that E= Y o(f;).

i=1
Suppose that S = T< E(M). Prove that
(b) c(M(S); g) <k if and only if N contains k chains fi, f5, ..., f; such that
k

S= U alf)

i=1
{(c) c(M/(E —S); q) < kif and only if N contains k chains f}, f3, ..., f; such that
k

S={J o(f);

i=1
(d) «(M(T)AT—-S); g)<k if and only if N(T), the set of restrictions to T of

k
chains in N, contains k chains f}, f3, ..., f; such that S= | o(f).
i=1

(¢) Use (b)~(d) to give another proof of Proposition 6.4.5.

(Jaeger, 1989a) Let C be a binary code and E be the ground set of M(C). Let
U* be a generator matrix for C*, If e € E, then to double e in series, one replaces
the column of U* corresponding to e by two copies of this column. If FS E,
let U*: F be the matrix obtained from U* by doubling every element of F in
series. Let C*: F be the code generated by U*: F and let C: F be (C*: F)*.
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(a) Show that, for e in E, M(C:{e}) is obtained from M(C) by adding an
element in series with e unless e is an isthmus of M(C); in the exceptional
case, M(C: {e}) is obtained from M(C) by adjoining another isthmus.

Let N be the number of ordered pairs (X, X,) of subsets of E for which
X,uX,=E and each X, is a disjoint union of circuits of M(C).
(b) Show that N equals the number of ordered pairs of codewords of C*, the
union of whose supports is E.
* (c) Prove that
N= A.I va M A| C_m._Al.NvEB!DE
FcE
where r = r{(M(C)).
“* (d) Prove that
N = (= 1y OM(C); 0, —3).
{e) Use (c), (d), and Proposition 6.5.4 to prove that, for a binary matroid M
having ground set E and rank r,
HM; 0, =3)=(3F Y tM:F; —1, —1).
FcE
Here M:F is obtained from M by adjoining an element in series
to each non-isthmus element of F, and adjoining an isthmus to
M for each isthmus of M in F.

(f) Let M be a rank r matroid on E and «, §, and y be numbers with 1 +y# 0

and 1+ y(x + 1) #0. Using induction, prove that

HE.g+§m B+ @+ p)
14y T 14+9a+1)

H .. w _m_l~.
H _m:gnmwv.
1+7y A:ﬁicV M% ( % )

{(g) If C is a binary code, show that
|F| + dim(B(C: F)) 2 dim B(C).

(h) Use (f), (g) and Proposition 6.5.4 to prove that, if M is a binary matroid,
then t(M; 3, 3) =kt(M; —1, —1) for some odd integer k.

(i) Show that the Four Color theorem is equivalent to the statement that if
M is the polygon matroid of a planar loopless graph, then t(M; —3, 0) is
non-zero with the sign of (— L)),

(j) Use(f) and (i) to prove that if M is the polygon matroid of a planar loopless

=349 3y

14y 2—1

graph, then , for all y in (—1, 0], t[{ M is non-zero with

the sign of (—1y™),
Section 6.6.A
6.84. Prove that if f(M)=|%,;,(M)| and the greatest element n of M is neither a loop
nor an isthmus, then f(M)= f(M —n) + f(M/n).
6.85. Prove 6.73.
6.86. (Brylawski, 1977c) Let M be a matroid of rank r on {1, 2, ..., n}. Show that
the number of ways to color the elements of M with {1', 2, ..., n'} so that no
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broken circuit is colored entirely with 1’ is equal to A"~ "p™(M; A).

/

Section 6.6.B
6.87. Show that if (6.75) holds, then the poset of hyperplane intersections is a
geometric lattice.
6.88. (Buck, 1943) Suppose that the hyperplanes H,, H,, ..., H, are in general
position in E% Show that
(a) the number of regions of this arrangement is Auv + M. + .+ A“v,
n—1
d
6.89. Let T be a loopless graph having vertex set {1, 2, ..., d}. For each edge e = ij
of T, let H, be the hyperplane {(x, x,, ..., x,): x,= x;} of E%. Show that the
following hold.

(@) For the arrangement {H,: ee E(I')}, the poset of hyperplane intersections
is isomorphic to the lattice of flats of M.

(b) There is a bijection between the set of acyclic orientations of I" and the
regions of the arrangement {H,: e E(I')} determined as follows: the region
corresponding to the acyclic orientation o of I' is {(x, X3, ..., X2): X; <X;
if o directs the edge ij of T from i to j}.

(b) the number of bounded regions of this arrangement is

Section 6.6.C
6.90. Let E be a set of n points in general position in E¢. Show that the number of
-1 —-1 -
hyperplane-separable subsets of E is | 2 " 0 + " 1 + ..+ ? i !

(Zaslavsky, 1975b, p. 72, discusses the history of this result.)

Section 6.6.D
6.91. Show that the Turan graph T,{n) has the largest number of edges among all
complete p-partite graphs on n vertices.
6.92. (a) For G equal to PG(r — 1, g) and AG(r — 1, g), find the matrices W, and W,
(see Exercise 6.57). .
* (b) (Brylawski, 1979b) Prove that, for any upper combinatorially uniform
geometry G, the matrices W, and W, are inverses of each other.
6.93. (Brylawski, 1979b) Show that if M. is the cardinality-corank matrix of the
matroid M, then the corresponding matrix Mg for M* satisfies

MEG, j)=Mgcn—i i+j+r—n)

foralliin {0, 1,...,n} and alljin {0, 1, ..., n—r}.
6.94. (Brylawski, 1981b) Let I' and A be the graphs shown in Figure 6.14.
(a) Show that, for each of the matroids M and M,, the matrix My, is the
following.
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0 1 2 3 4
o[fo o o o0 o
1 0 0 0 0 10
2 0 0 0 4 1
3 0 0 108 12 0O
4 0 151 58 1 0
5198 142 12 0 O
6 |151 - 58 1 0 0
71108 12 0 0 0
8| 44 1 0 0 0
91 10 0 0 0 O
10 1 0 0 0 0

©C © ©C O O O © © © O© =

o -
(b) Show that for M(K) the matrix W, is the following.

1
1
1
1
1
1

(c) Find W, for M(K).

(d) Use(6.76)to show that,for Min {M, M,},I Mxg(M)is the following matrix.

0

(=T R = 2 — I — I = R — - B )

1

6.95. (Brylawski, 1979b) Let G and G’ be upper combinat

0
1
3
7

0
0
1
6

0
0
0
1

15 25 10
31 9 65 1

0

e T - T N Y

o ©

2
10
28
24
19

S O O =

0

8 6
24 8
24 1

©C O O o O =
o O o o o o o

00

0

0
0
0
1
5

1
0
0
0
0
0
0
0
0
0

0

into which the matroid M is embedded. Show that

Ig(M)=Ig(M)- W, - W,
where W, is the matrix of doubly indexed Whitney numbers of the first kind

-

0

lHOOOO

orially uniform geometries

6.96.
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of G, and W, is the matrix of doubly indexed Whitney numbers of the second

kind of G'.

/

(Brylawski, 1979b) Let M, be the matroid that is represented over any field

by the following matrix:

© O~ 8

0

[ =

0

- o O 6

0

-0 O O N
S = =m®

0

—_ —=

Let M, be the matroid that is represented over any field except F, by the

following matrix, where a #0,

S O = 80

=]

1.
b
0
1
0

0

-0 O O

0

- O O O &
[ I e )

— e = O

R = = O

(a) Show that M, and M, have the affine embeddings shown in Figure 6.17.
Figure 6.17.

[e]

g

M,

M,

(b) Show that, for both M, and M, the matrix My is the following.

0

NN AW N O

0

1
0

2
0

OO O O N - O

3
0

O O O O O O =

AI.
1

(=T = e R o A = =
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(c) Show that #(M,; x, y)=t(M,; x, y). . . .
(d) Show thatif Me{M,, M,}, then Ipg; 3, (M) is the following matrix.

_|o 2 58 33 1
0 7 5 70
0 17 15 0 O
0 7 2 00
0 6 0 00
0 1 0 00O
0 0 0 0O
1 ¢ 0 00O

(e) Show by using (6.76) and also by using the result of Exercise 6.95 that
Ipg3,2)(M,) is the following matrix.

1
]

13
15

_ O O O O O o ©
O O = NN =
o O o o

©C O O O O O -
O O O O O O O -

{f) Why is the matrix Ipg; ;)(M,) undefined? .
(8) Show that M7 is isomorphic to the polygon matroid of the graph shown
in Figure 6.18.

Figure 6.18.

(h) Use Exercise 6.93 to find My, for M} and then (6.76) to show n.z:
Ik, (M7) is the following matrix. Check your calculations by finding
Iy, (MT) directly from the definition.

The Tutte Polynomial and Its Applications NG

— o O 00 o o o

O OO N WN O o

() Find My, for MS, where M 1 is the matroid PG(3, 2) — X where X is the
set of columns of the matrix representing M,.
6.97. (Brylawski, 1981b) Show that the graphs I' and A in Figure 6.14, which have
the same Tutte polynomial, have different polychromates.

©C 0 OO0 O = o
LOOOOOOO'—‘
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