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To the memory of Tom Brylawski, who contributed so much to matroid theory.

Abstract. We prove that, for each positive integer k, every sufficiently large
3-connected regular matroid has a parallel minor isomorphic to M∗(K3,k),
M(Wk), M(Kk), the cycle matroid of the graph obtained from K2,k by adding
paths through the vertices of each vertex class, or the cycle matroid of the
graph obtained from K3,k by adding a complete graph on the vertex class

with three vertices.

1. Introduction

For 3-connected graphs, the collections of unavoidable parallel and unavoidable
series minors were determined by Chun, Ding, Oporowski, and Vertigan [3] and
by Oporowski, Oxley, and Thomas [8]. In this paper, we combine these results
with Seymour’s decomposition theorem for regular matroids [12] to determine the
collection of unavoidable parallel minors for the class of 3-connected regular ma-
troids. In particular, we prove that the last collection is precisely the union of the
collections of unavoidable parallel minors for the classes of 3-connected graphic and
3-connected cographic matroids. The collections of unavoidable minors for binary
3-connected matroids and for all 3-connected matroids were determined in [6, 7].
From the first of these, one can determine the collection of unavoidable minors for
regular 3-connected matroids, although this result had been obtained earlier by
Ding and Oporowski [5]. We would like to extend our main theorem to find the
unavoidable parallel minors for the class of binary 3-connected matroids, but this
will require some new ideas.

Our terminology for matroids and graphs generally follows [9] and [4]. If M and
N are both matroids or are both graphs, N is a parallel minor of M if N can be
obtained from M by a sequence of moves each consisting of contracting an element
(in the graph case, an edge) or deleting an element that is in a 2-element circuit.
When M and N are both matroids, N is a series minor of M if N∗ is a parallel
minor of M∗. If G and H are graphs and H is a parallel minor of G, then M(H)
is a parallel minor of M(G). Conversely, when G and H are loopless 3-connected
graphs, if M(H) is a parallel minor of M(G), then H is a parallel minor of G.

Let M be a matroid with ground set E and rank function r. The simplification
of M will be denoted by si(M). The connectivity function λM of M is defined
for all subsets X of E by λM (X) = r(X) + r(E − X) − r(M). Equivalently,
λM (X) = r(X) + r∗(X) − |X |. Thus λM (X) = λM∗(X). For a positive integer m,
when λM (X) < m, a partition (X, Y ) of E is an m-separation if min{|X |, |Y |} ≥ m
and is a vertical m-separation if min{r(X), r(Y )} ≥ m. A matroid is n-connected
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Figure 1. A double fan graph DFk.

if, for all m < n, it has no m-separations [13]. A 3-connected matroid is internally
4-connected if it has no 3-separation (X, Y ) with min{|X |, |Y |} ≥ 4. A matroid M
is vertically 3-connected if it is loopless and has no vertical 1-separations and no
vertical 2-separations. Note that this adds the requirement that M be loopless to
the usual definition of vertical 3-connectedness. Thus M is vertically 3-connected
if and only if si(M) is 3-connected and M is loopless.

In the following theorem, the main result of the paper, Wk denotes the k-spoked
wheel, K ′

i,j is the bipartite graph Ki,j together with a complete graph on the vertex
class of i vertices, and DFk is a double fan, as shown in Figure 1.

Theorem 1.1. There is a function f1.1 such that, for each integer k exceeding three,
every 3-connected regular matroid with at least f1.1(k) elements has a parallel minor
isomorphic to M(K ′

3,k), M∗(K3,k), M(Wk), M(DFk), or M(Kk).

By using duality, we immediately obtain the set of unavoidable series minors of
3-connected regular matroids. We denote the dual of the double fan DFk by Vk.

Corollary 1.2. There is a function f1.2 such that, for each integer k exceeding
three, every 3-connected regular matroid with at least f1.2(k) elements has a series
minor isomorphic to M∗(K ′

3,k), M(K3,k), M(Wk), M(Vk), or M∗(Kk).

From either of the last two results, we can deduce the following result of Ding and
Oporowski [5] which shows that the collection of unavoidable minors of 3-connected
regular matroids is the union of the collections of unavoidable minors for the classes
of 3-connected graphic and 3-connected cographic matroids.

Corollary 1.3. There is a function f1.3 such that, for each integer k exceeding
three, every 3-connected regular matroid with at least f1.3(k) elements has a minor
isomorphic to M(K3,k), M∗(K3,k), or M(Wk).

By a result of Seymour, stated below as Theorem 2.1, an internally 4-connected
regular matroid with at least eleven elements is graphic or cographic. This means
that the sets of unavoidable parallel minors and unavoidable series minors of inter-
nally 4-connected regular matroids can be immediately determined by combining
results in [3] and [8] that determine the sets of unavoidable parallel minors and
unavoidable series minors, respectively, of internally 4-connected graphs.

The proof of Theorem 1.1 contains numerous technicalities but the basic method
is standard. By Seymour’s decomposition theorem, a large 3-connected regular
matroid can be decomposed in a tree-like fashion into pieces each of which is graphic
or cographic. If any of these pieces is large enough, then we can apply the known
results on unavoidable parallel minors in 3-connected graphic matroids and in 3-
connected cographic matroids. Thus we may assume that all the pieces are small,
so the tree is large and therefore contains a long path or a vertex of high degree.
In both of these cases, we can find a parallel minor of the desired type.
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2. Preliminaries

In this section, we introduce some more terminology and prove some lemmas
that will be used in the proof of the main theorem, which appears in the next sec-
tion. Much of what we do here is concerned with finding a tree-like decomposition
of a regular matroid. Of particular importance is the operation of generalized par-
allel connection of matroids, which was introduced and examined in detail by Tom
Brylawski [2]. We shall only use one special case of this operation.

For binary matroids M1 and M2 with ground sets E1 and E2 such that E1∩E2 =
∆ and M1|∆ and M2|∆ are triangles, the generalized parallel connection of M1

and M2 with respect to ∆, written P∆(M1, M2), is the matroid with ground set
E1 ∪ E2 in which F is a flat if and only if F ∩ Ei is a flat of Mi for each i. Then
P∆(M2, M1) = P∆(M1, M2). Moreover, one can show that if cl, cl1, and cl2 are the
closure operators of P∆(M1, M2), M1, and M2, then, for every subset X of E1∪E2,

cl(X) = cl1([X ∪ cl2(X ∩ E2)] ∩ E1) ∪ cl2([X ∪ cl1(X ∩ E1)] ∩ E2). (1)

This correction to [9, Exercise 12.4.5] appears in the errata to that book available
at the second author’s website and in the second edition of the book [10].

When M1 and M2 both have at least seven elements and ∆ does not contain a
cocircuit of M1 or M2, Seymour [12] defined the 3-sum, M1 ⊕∆ M2, of M1 and M2

to be the matroid P∆(M1, M2)\∆. In much of what we do, it will be convenient
to work with generalized parallel connections rather than 3-sums because of the
additional constraints that must be satisfied in order for the latter to be defined.
The generalized parallel connection across a triangle of two graphic matroids is
easily seen to be graphic. Hence so is their 3-sum. Note, however, that the 3-sum
of two cographic matroids need not be cographic. For example, the non-cographic
matroid R12 can be written as a 3-sum of M(K5\e) and M∗(K3,3) (see, for example,
[9, Exercise 1(ii), p. 440]). When G1 and G2 are graphs and both have ∆ as a
vertex bond, P∆(M∗(G1), M

∗(G2)) and P∆(M∗(G1), M
∗(G2))\∆ are easily shown

to be cographic. Hence so is M∗(G1) ⊕∆ M∗(G2) when it is defined.
The next theorem was proved by Seymour [12]. The matroid R10 is the 10-

element matroid that can be represented over GF (2) by the matrix whose columns
consist of all 5-tuples with exactly three ones (see [9, p. 518]).

Theorem 2.1. Let M be a 3-connected regular matroid. Then at least one of the
following holds:

(i) M is graphic;
(ii) M is cographic;
(iii) M ∼= R10; or
(iv) there are regular matroids M1 and M2 such that E(M1) ∩ E(M2) = ∆,

where ∆ is a triangle of both M1 and M2, and M = M1 ⊕∆ M2; and, for
each i in {1, 2},
(a) Mi is 2-connected and, for every 2-separation (X, Y ) of it, either X

or Y has exactly two elements and meets ∆, so si(Mi) is 3-connected;
(b) Mi is isomorphic to a minor of M ; and
(c) |E(Mi) − clMi

(∆)| ≥ 6 and |E(si(Mi))| ≥ 9.

The proof of our main result will require us to carefully consider both the ma-
troids that are built up by a sequence of generalized parallel connections across
disjoint triangles, and the matroids we get by deleting all of these triangles. We
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now formally describe these constructions. Let M1 and M2 be binary matroids
with E(M1) ∩ E(M2) = ∆2, where ∆2 is a triangle of both M1 and M2. Let
P (M1, M2) and (M1, ∆2, M2) be P∆2(M1, M2) and P∆2(M1, M2)\∆2. Now assume,
for some n ≥ 3, that (M1, ∆2, M2, ∆3, . . . , ∆n−1, Mn−1) and P (M1, M2, . . . , Mn−1)
have been defined, that

(M1, ∆2, M2, ∆3, . . . , ∆n−1, Mn−1) = P (M1, M2, . . . , Mn−1)\(∆2∪∆3∪· · ·∪∆n−1),

and that the flats of P (M1, M2, . . . , Mn−1) are those subsets F of its ground set
such that F ∩E(Mi) is a flat of Mi for all i in {1, 2, . . . , n−1}. Let Mn be a binary
matroid whose ground set meets that of (M1, ∆2, M2, ∆3, . . . , ∆n−1, Mn−1) in a set
∆n that is a triangle of both (M1, ∆2, M2, ∆3, . . . , ∆n−1, Mn−1) and Mn. Define

(M1, ∆2, M2, ∆3, . . . , ∆n, Mn) = P∆n
((M1, ∆2, M2, ∆3, . . . , ∆n−1, Mn−1), Mn)\∆n

and P (M1, M2, . . . , Mn) = P∆n
(P (M1, M2, . . . , Mn−1), Mn). Then one easily checks

that (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) = P (M1, M2, . . . , Mn)\(∆2∪∆3∪· · ·∪∆n) and
that the flats of P (M1, M2, . . . , Mn) are those subsets F of its ground set such that
F ∩ E(Mi) is a flat of Mi for all i in {1, 2, . . . , n}. It will be convenient to abbre-
viate P (M1, M2, . . . , Mn) as MP

[n]. Observe that the construction guarantees that

∆2, ∆3, . . . , ∆n are disjoint.

Lemma 2.2. If si((M1, ∆2, M2, ∆3, . . . , ∆n, Mn)) is 3-connected, then si(Mi) is
3-connected for all i.

Proof. By definition, si((M1, ∆2, M2, ∆3, . . . , ∆n, Mn)) is

si(P∆n
((M1, ∆2, M2, ∆3, . . . , ∆n−1, Mn−1), Mn)\∆n).

Assume that si(P∆2(M1, M2)\∆2) is 3-connected. If we can show that both si(M1)
and si(M2) are 3-connected, then the result will follow by induction. For some k
in {1, 2}, suppose that (X, Y ) is a vertical k-separation of M1. Without loss of
generality, we may assume that |X ∩ ∆2| ≥ 2. Then

r(X ∪ ∆2) + r(Y − ∆2) − r(M1) ≤ r(X) + r(Y ) − r(M1) ≤ k − 1.

Now, by [9, Lemma 8.2.10],

r((X ∪ E(M2)) − ∆2) + r(Y − ∆2) − r(P∆2 (M1, M2)\∆2)

≤ r(X ∪ E(M2) ∪ ∆2) + r(Y − ∆2) − r(P∆2 (M1, M2))

≤ [r(X ∪ ∆2) + r(M2) − r(∆2)] + r(Y − ∆2) − [r(M1) + r(M2) − r(∆2)]

= r(X ∪ ∆2) + r(Y − ∆2) − r(M1) ≤ k − 1.

Thus P∆2(M1, M2)\∆2 has a vertical k-separation; a contradiction. Therefore M1

is vertically 3-connected and, by symmetry, so is M2. �

The next lemma will be helpful in the proof of Lemma 2.4, where we use Sey-
mour’s theorem to obtain a sequential decomposition of a regular matroid.

Lemma 2.3. Let M1 and M2 be binary matroids whose ground sets meet in a set
∆2 that is a triangle of both matroids. If ∆3 is a triangle of P∆2(M1, M2)\∆2,
then, for some {i, j} = {1, 2}, either

(i) ∆3 ⊆ E(Mi); or
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(ii) |∆3 ∩ E(Mi)| = 2 and |∆3 ∩ E(Mj)| = 1, and the element c of ∆3 ∩
E(Mj) is parallel to some element g of Mi. Moreover, if M ′

j and M ′

i are
obtained by deleting c from Mj, and adding c in parallel to g in Mi, then
P∆2(M

′

1, M
′

2) = P∆2(M1, M2), while si(M ′

1) = si(M1) and si(M ′

2) = si(M2).

Proof. Let E1 = E(M1) and E2 = E(M2). We may assume that |∆3 ∩ E1| = 2
and |∆3 ∩ E2| = 1. Then, in P∆2(M1, M2), the intersection of cl(E1) and cl(E2) is
cl(∆2). Thus the element c of ∆3 ∩ E(M2) is parallel to some element of cl(∆2),
and the lemma follows. �

Lemma 2.4. Let M be a vertically 3-connected regular matroid such that si(M)
has at least six elements and is not isomorphic to R10. Then either M is graphic
or cographic, or, for some n ≥ 2, there is a sequence M1, M2, . . . , Mn of graphic
and cographic matroids such that M = (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) where, for
all i with 2 ≤ i ≤ n, the triangle ∆i ⊆ E(Mj) for some j < i, and all of
si(M1), si(M2), . . . , si(Mn) are 3-connected having at least nine elements.

Proof. We shall assume that M is simple since it suffices to prove the lemma in
that case. We proceed by induction on |E(M)|. Since M is regular, if |E(M)| ≤ 9,
then either M is graphic, or M is isomorphic to M∗(K3,3) and so is cographic. In
both cases, the lemma holds. Now suppose that the lemma holds for matroids with
fewer than k elements and let |E(M)| = k ≥ 10.

Assume that M is neither graphic nor cographic. Then, by Theorem 2.1, M
is the 3-sum of some matroids N1 and N2, where both si(N1) and si(N2) are 3-
connected having at least nine elements. Choose such a 3-sum decomposition in
which |E(N2)| is minimized. Let ∆ be the common triangle of N1 and N2. We may
assume that ∆ ⊆ E(si(Ni)) for each i.

Since N2 has a triangle, it is not isomorphic to R10. Suppose si(N2) is not graphic
or cographic. Then, by Theorem 2.1, N2 is the 3-sum of matroids N ′

2 and N ′′

2 across
a common triangle ∆′ where each of si(N ′

2) and si(N ′′

2 ) is 3-connected and contains
at least nine elements. As ∆ is a triangle of P∆′(N ′

2, N
′′

2 )\∆′, Lemma 2.3 implies
that, without altering si(N ′

2) or si(N ′′

2 ), we can assume that ∆ ⊆ E(N ′

2). Then, by
comparing flats, we can show that P∆(N1, P∆′(N ′

2, N
′′

2 )) = P∆′(P∆(N1, N
′

2), N
′′

2 ),
so M = (N1 ⊕∆ N ′

2) ⊕∆′ N ′′

2 . By Lemma 2.2, si(N1 ⊕∆ N ′

2) is 3-connected; a
contradiction, since |E(N2)| was chosen to be minimal.

We may now assume that si(N2) is graphic or cographic. Hence so is N2. By
the inductive hypothesis, N1 = (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) and the desired con-
ditions hold. Now ∆ is a triangle of N1. Pick the smallest integer k such that
∆ ⊆ E((M1, ∆2, M2, ∆3, . . . , ∆k, Mk)). Then ∆ meets E(Mk).

Suppose that |∆∩E(Mk)| ≥ 2. Then, by moving at most one element of ∆ from
being parallel to an element of ∆k in (M1, ∆2, M2, ∆3, . . . , ∆k−1, Mk−1) to being
parallel to that element of ∆k in Mk, we ensure that ∆ ⊆ E(Mk), as desired.

It remains to consider when ∆∩E(Mk) contains a single element, say c. Then, by
Lemma 2.3 again, we move c from being parallel to an element of ∆k in Mk to being
parallel with that element in (M1, ∆2, M2, ∆3, . . . , ∆k−1, Mk−1). We now have
∆ ⊆ E((M1, ∆2, M2, ∆3, . . . , ∆k−1, Mk−1)) and we can repeat the above process
until we eventually obtain ∆ ⊆ E(Mi) for some i. Thus the lemma holds. �

Let M be a vertically 3-connected regular matroid having at least six elements. If
M = (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) for some n ≥ 2, we call (M1, ∆2, M2, ∆3, . . . ,
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∆n, Mn) a good decomposition of M if, for all i with 2 ≤ i ≤ n, the triangle
∆i ⊆ E(Mj) for some j < i. Also, we view (M) as a good decomposition of M .

Two disjoint triangles X1 and X2 in a binary matroid are parallel if r(X1∪X2) =
2. Recall that a regular matroid M is vertically 3-connected if si(M) is 3-connected
and M is loopless. For a good decomposition (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) of a
vertically 3-connected regular matroid, define the associated tree T to have vertex
set {M1, M2, . . . , Mn} and edge set {∆2, ∆3, . . . , ∆n} where ∆i joins Mi to the
vertex Mj with j < i such that ∆i ⊆ E(Mj). We shall sometimes write MT for
M . Note that this labelling means that, for every path Mi1Mi2 . . . Mik

in T , there
is a j in {1, 2, . . . , k} such that i1 > i2 > · · · > ij and ij < ij+1 < · · · < ik. The
reader may find some features of the tree disconcerting. For example, the matroids
labelling two non-adjacent vertices may contain triangles that are parallel in MP

[n].

In spite of this apparent shortcoming, this tree will be adequate for our needs.

Lemma 2.5. Let M be a vertically 3-connected regular matroid for which
|E(si(M))| ≥ 9 and si(M) 6∼= R10. Let (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) be a good
decomposition of M and MiMj be an edge of the associated tree with j < i. Then

(M1, ∆2, M2, ∆3, . . . , ∆j , (Mj , ∆i, Mi), ∆j+1, . . . , Mi−1, ∆i+1, Mi+1, . . . , ∆n, Mn)

is a good decomposition of M . Moreover, si((Mj , ∆i, Mi)) is 3-connected.

Proof. We shall show first that

(M1, ∆2, M2, ∆3, . . . , ∆j , (Mj, ∆i, Mi), ∆j+1, . . . , ∆i−1, Mi−1)

= (M1, ∆2, M2, ∆3, . . . , ∆i, Mi). (2)

Now (M1, ∆2, M2, ∆3, . . . , ∆i, Mi) is obtained from P (M1, M2, . . . , Mi) by deleting
∆2∪∆3∪· · ·∪∆i. Moreover, P (M1, M2, . . . , Mi) has, as its flats, those sets F such
that F ∩E(Ms) is a flat of Ms for all s with 1 ≤ s ≤ i. The matroid on the left-hand
side of (2) is obtained from P (M1, M2, . . . , Mj−1, P∆i

(Mj , Mi)\∆i, Mj+1, . . . , Mi−1)
by deleting ∆2 ∪ ∆3 ∪ · · · ∪ ∆i−1. Thus it is obtained from P (M1, M2, . . . , Mj−1,
P∆i

(Mj , Mi), Mj+1, . . . , Mi−1) by deleting ∆2 ∪∆3 ∪ · · · ∪∆i. The flats of the last
parallel connection coincide with the flats of P (M1, M2, . . . , Mi). Hence (2) holds.
It follows that M has the decomposition specified in the lemma, and one easily
checks that this decomposition is good. Finally, si((Mj , ∆i, Mi)) is 3-connected by
Lemma 2.2. �

We shall repeatedly use the following routine consequence of the last lemma.

Corollary 2.6. Let T be a tree associated with a vertically 3-connected matroid M .
Delete an edge MaMb of T and let Ta be the component of the resulting forest that
contains Ma. A new tree associated with M can be obtained from T by contracting
the edges of Ta, one by one, each time labelling the composite vertex that results
from contracting the edge ∆ joining Mi and Mj by (Mj , ∆, Mi).

When we have a good decomposition of a regular matroid M , the next two
lemmas will be useful in obtaining good decompositions of certain minors of M .

Lemma 2.7. Let (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) be a good decomposition of a reg-
ular matroid M . For e in E(Mi)− (∆2 ∪∆3 ∪ · · · ∪∆n), if e ∈ clMP

[n]
(∆j) for some

j, then e ∈ clMi
(∆k) for some k in {2, 3, . . . , n} where ∆k ⊆ E(Mi).
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Proof. Choose j to be the smallest integer t for which e ∈ clMP
[n]

(∆t). If ∆j ⊆

E(Mi), then the result holds with j = k. Thus we may assume that ∆j 6⊆ E(Mi)
so ∆j ∩ E(Mi) = ∅ and j 6= i. Now e is parallel in MP

[n] to some element of ∆j .

Assume j < i. Then e ∈ clMP
[i]

(∆j) so, in MP
[i], the element e is in the intersection

of cl(E(Mi)) and cl(E(P (M1, M2, . . . , Mi−1)). Hence e ∈ clMP
[i]

(∆i). Thus e ∈

clMi
(∆i) and the result holds with k = i.

We may now assume that j > i so j ≥ 2. We know that ∆j ⊆ E(Mj) and
∆j ⊆ E(Ms) for some s < j. If s < i, then, it follows, as above, that e ∈ clMi

(∆i).
Hence we may assume that s > i. Then e ∈ clMP

[s]
(∆j) so e ∈ clMP

[s]
(∆s) and hence

e ∈ clMP
[n]

(∆s). But s < j; a contradiction. �

Lemma 2.8. Let (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) be a good decomposition of a reg-
ular matroid M . For e in E(Mi) − (∆2 ∪ ∆3 ∪ · · · ∪ ∆n), if e ∈ clMP

[n]
(E(Mj)) for

some j 6= i, then e ∈ clMi
(∆k) for some k in {2, 3, . . . , n} where ∆k ⊆ E(Mi).

Proof. First we show the following.

2.8.1. The lemma holds if e ∈ clMP
[q+1]

(E(Mj)) − clMP
[q]

(E(Mj)) for some q with

j ≤ q < n.

By definition, MP
[q+1] = P∆q+1(M

P
[q], Mq+1). Suppose E(Mj) ∩ E(Mq+1) 6= ∅.

Then the construction of M means that E(Mj) ∩ E(Mq+1) = ∆q+1. Thus, by
(1), clMP

[q+1]
(E(Mj)) = clMP

[q]
(E(Mj)) ∪ clMq+1(∆q+1), so e ∈ clMq+1 (∆q+1). Hence

e ∈ clMP
[q+1]

(∆q+1), so e ∈ clMP
[n]

(∆q+1) and the lemma follows by Lemma 2.7.

Hence 2.8.1 holds.
Now assume that j > i. If e 6∈ clMP

[j]
(E(Mj)), then, since e ∈ clMP

[n]
(E(Mj)),

the lemma follows by 2.8.1. Hence we may assume that e ∈ clMP
[j]

(E(Mj)). Then

e ∈ E(Mi) ∩ clMP
[j]

(E(Mj)). Hence e ∈ clMP
[j]

(∆j), so e ∈ clMP
[n]

(∆j) and again the

lemma follows by Lemma 2.7.
Finally, assume that j < i. By 2.8.1, we may assume that e ∈ clMP

[i]
(E(Mj)). But

e ∈ E(Mi), so e ∈ clMP
[i]

(E(Mj)) ∩ clMP
[i]

(E(Mi)) ⊆ clMP
[i]

(∆i). Thus e ∈ clMP
[n]

(∆i)

and the lemma follows by Lemma 2.7. �

Corollary 2.9. Let (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) be a good decomposition of a
regular matroid M . For some i in {1, 2, . . . , n}, let Ni be a minor of Mi such that
if ∆j ⊆ E(Mi) for some j in {2, 3, . . . , n}, then ∆j is a triangle of Ni. Then

(M1, ∆2, M2, ∆3, . . . , Mi−1, ∆i, Ni, ∆i+1, Mi+1, . . . , ∆n, Mn)

is a good decomposition of a minor of M .

Proof. It suffices to prove this when Ni is Mi\e or Mi/e for some element e. In this
case, the result follows without difficulty using the last lemma and properties of the
generalized parallel connection [2] summarized in [9, Proposition 12.4.16]. �

Let A and B be parallel triangles in a loopless binary matroid N . Then N |(A∪B)
is a double triangle. We call N a multi-K4 with respect to A and B if si(N) =
M(K4); and we call N a multi-triangle with respect to A and B if r(N) = 2 and N
contains at least one element not in A ∪ B.

The following result is an immediate consequence of the Scum Theorem.
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Lemma 2.10. If a binary matroid M has as a minor a multi-triangle or a multi-
K4 with respect to two parallel triangles A and B, then E(M) has a subset Y such
that M/Y is, respectively, a multi-triangle or a multi-K4 with respect to A and B.

The next lemma [10] was proved by Jim Geelen and is useful for finding a double
triangle as a parallel minor of a 3-connected graphic or cographic matroid. If X
and Y are disjoint subsets of the ground set of a matroid M , we define κM (X, Y )
to be min{λM (Z) : X ⊆ Z ⊆ E(M) − Y }.

Lemma 2.11. Let C and X be disjoint sets in a matroid M such that C is a
circuit and κM (C, X) = 2. Then there are elements a, b, and c of C and a minor
N of M that has {a, b, c} as a circuit and X ∪ {a, b, c} as its ground set such that
κN({a, b, c}, X) = 2.

Lemma 2.12. Let M be a vertically 3-connected regular matroid for which
|E(si(M))| ≥ 9 and si(M) 6∼= R10. Let (M1, ∆2, M2, ∆3, . . . , ∆n, Mn) be a good
decomposition of M such that each si(Mi) has at least nine elements. Let T be the
tree associated with this decomposition. Let T ′ be a connected subgraph of T . Then
T ′ is a tree associated with the matroid M ′ that labels the one vertex that results
after all the edges of T ′ are contracted. Moreover, si(M ′) is a 3-connected matroid
that is isomorphic to a parallel minor of M .

Proof. It suffices to prove the lemma in the case that T ′ = T −Mi for some vertex
Mi of degree one. Let Mj be the neighbor of Mi in T and let ∆k be the triangle
common to Mi and Mj . By Corollary 2.6, M = P∆k

(Mi, M
′

j)\∆k where M ′

j labels
the vertex other than Mi in the graph that is obtained by contracting every edge of
T other than MiMj. By Lemma 2.2, si(M ′

j) is 3-connected. We may assume that
the only 2-circuits of Mi meet clMi

(∆k).
Because the vertex Mi has degree one in T , in MP

[n], the intersection of the

closures of E(Mi) and E(M1)∪· · ·∪E(Mi−1)∪E(Mi+1)∪· · ·∪E(Mn) is the closure
of ∆k. Let Yi = E(Mi)−clMi

(∆k). Then |Yi| ≥ 6 so, as Mi is regular and cosimple,
r∗(Yi) ≥ 3. Now 2 = λMi

(∆k) = λMi
(Yi) = r(Yi) + r∗(Yi)− |Yi|. Thus r(Yi) < |Yi|

so Yi contains a circuit C. By Lemma 2.11, there are elements a, b, and c of C and a
minor Ni of Mi that has {a, b, c} as a circuit and ∆k∪{a, b, c} as its ground set such
that κNi

({a, b, c}, ∆k) = 2. Thus 2 = λNi
({a, b, c}) = r({a, b, c})+ r(∆k)− r(Ni) ≤

r(∆k) ≤ 2, so equality holds throughout and r(∆k) = r(Ni) = 2. Therefore Ni is
a double triangle that is a minor of Mi. Hence, by the Scum Theorem, since Mi is
binary, Ni is a parallel minor of Mi. Then (Ni, ∆k, M ′

j) is isomorphic to M ′

j and
the latter is a parallel minor of M . The lemma now follows using Corollary 2.9. �

The next lemma is from an unpublished paper [5] of Ding and Oporowski. The
proof is given here for completeness.

Lemma 2.13. Let G be a 3-connected simple graph containing distinct 3-element
bonds S1 and S2. Then one of the following occurs.

(i) S1 and S2 are both vertex bonds.
(ii) G has a subgraph H that is a subdivision of K4 such that H has a degree-

three vertex v so that S1∪S2 is contained in the union of the minimal paths
in H from v to the other degree-three vertices of H.

Proof. Let S1 = {e1, f1, g1} and S2 = {e2, f2, g2}. Either S1∩S2 = ∅ or |S1∩S2| =
1. In each case, since G is 3-connected, S2 − S1 is a bond of G\S1, and S1 − S2 is
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a bond of G\S2. Let A be the component of G\S1 that does not contain S2 − S1,
and let C be the component of G\S2 that does not contain S1 − S2. Then A and
C are vertex disjoint.

Suppose A contains no cycles. Then A is a tree and, since G is 3-connected, all
the leaves of A must meet edges of S1. Assume that A contains an edge. Then A
has at least two vertices of degree one, so G has a vertex of degree at most two; a
contradiction. Hence A contains no edges, and S1 is a vertex bond. Likewise, if C
contains no cycles, then S2 is a vertex bond.

We may now assume that A or C, say A, contains a cycle D, otherwise (i) holds.
Take a vertex v in V (C). By Menger’s Theorem, G contains three paths from v to
V (D) that have no internal vertices in V (D) and that are disjoint except that all
contain v. Each such path contains exactly one edge of S1 and exactly one edge of
S2. The union of these three paths with D is a subdivision of K4 satisfying (ii). �

3. The proof of the main theorem

The following theorem is well-known (see, for example, [4]).

Theorem 3.1. There is an integer-valued function f3.1 such that, for each positive
integer d, every tree with at least f3.1(d) vertices has an induced subgraph isomorphic
to K1,d or a path with d vertices.

The next two theorems [3, 8] will be crucial in the proof of Theorem 1.1.

Theorem 3.2. There is an integer-valued function f3.2 such that, for each integer
k exceeding three, every 3-connected graph with at least f3.2(k) vertices has a parallel
minor isomorphic to K ′

3,k, Wk, DFk, or Kk.

Theorem 3.3. There is an integer-valued function f3.3 such that, for each integer
k exceeding two, every 3-connected graph with at least f3.3(k) vertices has a subgraph
that is isomorphic to a subdivision of Vk, Wk, or K3,k.

We will also use the following result of Oxley [11].

Lemma 3.4. Let N be a 3-connected binary matroid having rank and corank at
least three and suppose {x, y, z} ⊆ E(N). Then N has a minor isomorphic to
M(K4) whose ground set contains {x, y, z}.

The proof of our main result will occupy the rest of the paper.

Proof of Theorem 1.1. Let k be an integer exceeding three. Let f3.2 and f3.3 be
the functions described in Theorems 3.2 and 3.3, respectively. Let s = f3.2(k) +
f3.3(k) + 11. Let m = ⌈(k + 2)1

3f3.3(k)⌉ + 2 and l = max{
(

s

3

)

(k + 2), 2(2m + 1)}.
Let t = (s − 1)f3.1(l). Set f1.1(k) = t. Let M be a 3-connected regular matroid
with at least t elements. Then t ≥ 11.

By Lemma 2.4, M has a good decomposition into matroids each of which is
graphic or cographic and has a 3-connected simplification with at least nine ele-
ments. By Lemma 2.5, we retain a good decomposition satisfying these additional
conditions if we contract, one by one, the edges between vertices labelling graphic
matroids. Let the resulting good decomposition be (M1, ∆2, M2, ∆3, . . . , ∆n, Mn),
and let T be the tree associated with this decomposition.

By Lemma 2.2, for each i, the matroid si(Mi) is 3-connected. Suppose that
some such si(Mi) has at least s elements. By Lemma 2.12, si(Mi) is isomorphic to
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a parallel minor N of M . If N is graphic, then, by Theorem 3.2, M has a parallel
minor isomorphic to M(K ′

3,k), M(Wk), M(DFk), or M(Kk), and the theorem
holds. If, instead, N is cographic, then, by Theorem 3.3, N∗ has a series minor
isomorphic to M(K3,k), M(Vk), or M(Wk). Thus N , and hence M , has a parallel
minor isomorphic to M∗(K3,k), M(DFk), or M(Wk), and again the theorem holds.

We may now assume that no vertex of T labels a matroid whose simplification
has at least s elements. As |E(M)| ≤

∑n

i=1 |E(si(Mi))|, we have n > t
s−1 = f3.1(l).

Suppose next that T contains a vertex Mi of degree at least l. We will show
that M has a parallel minor isomorphic to M(K ′

3,k). Since si(Mi) has fewer than

s elements, si(Mi) has fewer than
(

s
3

)

triangles. As Mi has degree at least l, for

some triangle S in si(Mi), at least l/
(

s
3

)

of the matroids labelling vertices adjacent

with the vertex Mi have a triangle whose union with S has rank 2 in MP
[n]. We

may assume that si(Mi) is labelled so that S = ∆h for some h. Clearly j > i for
all but at most one neighbor Mj of Mi in T ; and ∆h is contained in the ground
set of a unique neighbor of Mi in T . By definition, l/

(

s

3

)

≥ k + 2. Take a subgraph
T ′ of T induced by Mi and k of its higher-indexed neighbors, Mi1 , Mi2 , . . . , Mik

,
that contain triangles that are parallel to and so disjoint from ∆h. By Lemma 2.12,
the simplification of the matroid M ′ associated with T ′ is isomorphic to a parallel
minor Q of M . We relabel Mi, Mij

, ∆ij
, and ∆h as M0, Mj, ∆j , and ∆0. Then

V (T ′) = {M0, M1, . . . , Mk} and M0 has ∆0, ∆1, . . . , ∆k as parallel triangles.
By Lemma 3.4, for all j in {1, 2, . . . , k}, the matroid Mj has an M(K4)-minor M ′

j

having ∆j as a triangle. Because Mj has no Fano-minor, by the Scum Theorem, M ′

j

is a parallel minor of Mj . Take two distinct elements d1 and d2 in ∆0 and extend
{d1, d2} to a basis B of M0. Let M ′

0 = M0/(clM0(B−{d1, d2})). Then ∆0 ⊆ E(M ′

0).
Therefore, if i ≥ 1, for every parallel deletion that is done in Mi to produce M ′

i ,
there is a corresponding parallel deletion in Q. It follows by Corollary 2.9 that
(M ′

0, ∆1, M
′

1, ∆2, . . . , ∆k, M ′

k) is a parallel minor N of Q. Moreover, si(N) can be
obtained by identifying a triangle in each of k matroids isomorphic to M(K4), so
si(N) ∼= M(K ′

3,k). Hence M has a parallel minor isomorphic to M(K ′

3,k).
We may now suppose that every vertex of T has degree at most l − 1. By

Theorem 3.1, T contains a path Mi1Mi2 . . .Mil
with l vertices. By construction,

there is some index j such that i1 > i2 > · · · > ij and ij < ij+1 < · · · < il. Now
l
2 ≥ 2m + 1, so T contains a path T ′ with at least 2m + 1 vertices such that the
indices on the vertices are increasing. As no two adjacent vertices of this path label
graphic matroids, by removing vertices from the ends of the path, we can get a path
T ′ with 2m vertices such that the first vertex of T ′ labels a non-graphic matroid.
We relabel the vertices of T ′ so that T ′ = M1M2 . . .M2m and relabel each edge
MiMi+1 as ∆i+1. Let M ′ = (M1, ∆2, M2, ∆3, . . . , ∆2m, M2m) and M̄ = si(M ′).
By Lemma 2.12, M̄ is 3-connected and is isomorphic to a parallel minor of M . We
can modify the decomposition we have for M ′ to obtain a good decomposition for
M̄ by deleting superfluous parallel elements. Specifically, we replace each Mi by its
restriction to the set (E(M̄)∩E(Mi))∪(∆i∪∆i+1). Note that ∆1 and ∆2m+1 do not
exist so we take these sets to be empty. This process gives us a good decomposition
of M̄ for which we shall retain the labelling (M1, ∆2, M2, ∆3, . . . , ∆2m, M2m).

Next we prove two lemmas to deal with this kind of situation. Let N be a
3-connected regular matroid having (N1, ∆2, N2, ∆3, . . . , ∆d, Nd) as a good decom-
position such that the associated tree is a path N1N2 . . . , Nd; each si(Ni) has at
least nine elements and is graphic or cographic, with no two consecutive matroids
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being graphic; and N1 is not graphic. We call such a good decomposition a fine
decomposition of N . Note that, in a fine decomposition, every non-trivial paral-
lel class of each Ni meets ∆i or ∆i+1. When (N1, ∆2, N2, ∆3, . . . , ∆d, Nd) is a
fine decomposition of N , if 1 < i < d, we denote (N1, ∆2, N2, . . . , ∆i−i, Ni−1) and

(Ni+1, ∆i+2, Ni+2, . . . , ∆d, Nd) by N̂i−1 and Ňi+1. As a graph, the triangular prism
consists of the vertices and edges of the eponymous polyhedron. This graph is the
planar dual of the graph K5\e.

Lemma 3.5. Let (N1, ∆2, N2, ∆3, . . . , ∆d, Nd) be a fine decomposition of a 3-
connected regular matroid. For all i with 1 < i < d, one of the following occurs:

(i) Ni is graphic and E(Ni) has a subset Yi such that Ni/Yi is a multi-triangle
with respect to ∆i and ∆i+1;

(ii) Ni is the cycle matroid of a triangular prism, and Ni−1 and N̂i−1 have no
triads meeting ∆i, while Ni+1 and Ňi+1 have no triads meeting ∆i+1;

(iii) Ni is not graphic and Ni = M∗(Gi) for some graph Gi where ∆i and ∆i+1

are vertex bonds of Gi; or
(iv) Ni is cographic but not graphic and E(Ni) has a subset Yi such that Ni/Yi

is a multi-K4 with respect to ∆i and ∆i+1.

Proof. If ∆i and ∆i+1 are parallel in Ni, then Lemma 3.4 implies that E(Ni) has
a subset Yi such that Ni/Yi is a multi-K4 with respect to ∆i and ∆i+1. Thus (i)
or (iv) holds depending on whether Ni is graphic or not. We may now assume that
∆i and ∆i+1 are not parallel in Ni.

Suppose that Ni is graphic and let Gi be the 3-connected graph such that
M(Gi) = Ni. By Menger’s Theorem, Gi has three vertex-disjoint paths, P1, P2,
and P3, from V (∆i) to V (∆i+1).

We assume first that Gi\(E(∆i) ∪ E(∆i+1)) has a component C that contains
at least two of the chosen paths. Then Gi\(E(∆i) ∪ E(∆i+1)) contains a path R
with ends in two different chosen paths and no other vertices in any chosen path.
Evidently, Gi has a multi-triangle as a minor whose restriction to each of E(∆i)
and E(∆i+1) is a triangle. By Lemma 2.10, E(Ni) contains a set Yi such that
Ni/Yi is a multi-triangle with respect to ∆i and ∆i+1, and (i) holds.

We may now assume that Gi\(E(∆i)∪E(∆i+1)) has three disjoint components
each containing one chosen path. Since Gi is 3-connected, no Pi has an internal
vertex since its ends do not form a vertex cut. Thus V (Gi) = V (P1)∪V (P2)∪V (P3).
If Gi has a non-trivial parallel class, then this class meets ∆i or ∆i+1, and (i)
holds with Yi = P1 ∪ P2 ∪ P3. Thus we may assume that Gi is simple. Then
|E(Gi)| = |E(si(Ni))| ≥ 9, and it follows that Gi is a triangular prism.

Let {x1, x2, x3} = E(Ni) − (∆i ∪ ∆i+1). By Lemma 2.5, Ni−1 ⊕∆i
Ni and

N̂i−1 ⊕∆i
Ni have no series pairs. Since every pair of elements in a triangle of Ni

is contained in a triad, it follows that Ni−1 and N̂i−1 have no triads meeting ∆i.
Similarly, Ni+1 and Ňi+1 have no triads meeting ∆i+1, and (ii) holds.

We may now assume that Ni is not graphic. Then Ni is cographic and so too is
si(Ni). Hence si(Ni) = M∗(Hi) for some 3-connected simple graph Hi. Now ∆i and
∆i+1 are not parallel in Ni. Thus r(∆i∪∆i+1) is 3 or 4. Hence we can choose Hi so
that either both ∆i and ∆i+1 label bonds of it, or so that ∆i and (∆i+1−ei+1)∪ei

label bonds of it where {ei, ei+1} is a circuit of Ni with each ej in ∆j . Consider
the bonds ∆i and ∆′

i+1 of Hi where ∆′

i+1 is ∆i+1 or (∆i+1 − ei+1) ∪ ei. Suppose
first that both ∆i and ∆′

i+1 are vertex bonds. Then, by replacing edges of Hi by
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paths if necessary, we can get a graph Gi such that Ni = M∗(Gi) and ∆i and ∆i+1

are both vertex bonds of Gi. Thus (iii) holds.
It remains to consider when ∆i or ∆′

i+1 is not a vertex bond of Hi. By Lemma 2.13,
Hi has a subgraph J that is a subdivision of K4 such that J has a degree-three
vertex v so that ∆i ∪ ∆′

i+1 is contained in the union of the minimal paths in J
from v to the other degree-three vertices of J . If ∆′

i+1 6= ∆i+1, form J ′ from J by
replacing ei by a 2-edge path {ei, ei+1}; otherwise let J ′ be J . Then M∗(J ′) is a
minor of Ni. By Lemma 2.10, E(Ni) has a subset Yi such that Ni/Yi is a multi-K4

with respect to ∆i and ∆i+1, and (iv) holds. �

We will say that Ni is type (i) if it meets the conditions of (i) in the preceding
lemma. Likewise, we will say that Ni is type (ii), type (iii), or type (iv) if it meets
the conditions of (ii), (iii), or (iv), respectively. The goal of the next lemma is to
eliminate the graphic matroids in a fine decomposition. The strategy of the proof
is as follows. Suppose that (N1, ∆2, N2, ∆3, . . . , ∆d, Nd) is a fine decomposition of
a 3-connected regular matroid and that Ni is graphic for some i other than 1 or
d. By the preceding lemma, Ni is type (i) or type (ii). In the latter case, it is
straightforward to eliminate Ni by replacing it by a double-triangle. But if Ni is
type (i), then replacing Ni with the multi-triangle Ni/Yi may create a series pair
in the underlying matroid. In particular, this will occur if every pair of elements in
∆i is in a triad in both Ni−1 and Ni+1, and Ni/Yi contains exactly seven elements.
When such a series pair arises, we will need to contract an element, say a, from this
pair to preserve the vertical 3-connectivity of the matroid we are working with.

Lemma 3.6. Let (N1, ∆2, N2, ∆3, . . . , ∆d, Nd) be a fine decomposition of a 3-conn-
ected regular matroid N . For some i with 2 ≤ i ≤ d − 1, suppose N1, N2, . . . , Ni−1

are not graphic. When Ni is type (i), let N ′

i be a contraction of Ni that is a multi-
triangle with respect to ∆i and ∆i+1. When Ni is type (ii), let N ′

i be the double
triangle obtained by contracting each element not in a triangle of Ni. Then either
(N1, ∆2, N2, ∆3, . . . , ∆i, N

′

i , ∆i+1, . . . , ∆d, Nd) is vertically 3-connected, or there is
an element a of E(Nj) − (clNj

(∆j) ∪ clNj
(∆j+1)) for some j ≤ i − 1 such that

(N1, ∆2, N2, . . . , ∆j , Nj/a, ∆j+1, . . . , Ni−1, ∆i, N
′

i , ∆i+1, . . . , ∆d, Nd)

is vertically 3-connected, and Nj/a is not graphic.

Proof. By Lemma 2.12, both N̂i−1 and Ňi+1 are vertically 3-connected. We show
first that:

3.6.1. Either (N̂i−1, ∆i, N
′

i , ∆i+1, Ňi+1) is vertically 3-connected, or that there is

an element a of E(N̂i−1) − ∆i such that (N̂i−1/a, ∆i, N
′

i , ∆i+1, Ňi+1) is vertically
3-connected.

Now N ′

i is either a double triangle with ground set ∆i ∪ ∆i+1, or it is obtained
from this matroid by adding some elements in parallel with elements of ∆i+1. In

both cases, we let N̂ ′

i−1 = N̂i−1 ⊕∆i
N ′

i . Then N̂ ′

i−1 may be obtained from N̂i−1 by
relabelling the elements of ∆i by the appropriate elements in ∆i+1 and, when N ′

i

is type (i), adding some non-empty set of elements in parallel with those of ∆i+1.

Let N̄ be the matroid P∆i+1(N̂
′

i−1, Ňi+1). Then every non-trivial parallel class of

N̄ meets ∆i+1. Let ∆i+1 = {x, y, z}. We shall distinguish the following two cases:

(a) no element of ∆i+1 is in a non-trivial parallel class of N̄ ; and
(b) some element, say z, of ∆i+1 is in a non-trivial parallel class of N̄ .
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Observe that if Ni is type (i), then (b) holds.

Assume first that (a) holds. Then Ni is type (ii), so N̂ ′

i−1 has no triad meeting

∆i+1 because N̂i−1 has no triad meeting ∆i. Moreover, N̄ is simple and, since it is
the generalized parallel connection across a triangle of two 3-connected matroids, it
too is 3-connected. Let C∗ be a cocircuit of N̄ meeting ∆i+1. Then |C∗∩∆i+1| = 2.

Furthermore, as C∗ ∩ E(N̂ ′

i−1) and C∗ ∩ E(Ňi+1) contain cocircuits of N̂ ′

i−1 and

Ňi+1, it follows that both |C∗∩E(N̂ ′

i−1)| and |C∗∩E(Ňi+1)| exceed 3, so |C∗| ≥ 6.

Thus, if Z ⊆ ∆i+1, then N̄\Z has no 2-cocircuits. Hence N̄\x is cosimple. Since
N̄/x has a non-minimal 2-separation, it follows, by a well-known result of Bixby [1]
(see also [9, Proposition 8.4.6]), that N̄\x is 3-connected. Similarly, N̄\x/y and
N̄\x, y/z have non-minimal 2-separations, so N̄\x, y is 3-connected and then so is

N̄\x, y, z. Hence, in case (a), (N̂i−1, ∆i, N
′

i , ∆i+1, Ňi+1) is vertically 3-connected.
Now assume that (b) holds. Then N̄ has {e, z} as a 2-circuit for some element

e, so si(N̄\z) is 3-connected. We shall show next that si(N̄\z, y) is 3-connected.
Suppose not. Then y is not in a 2-circuit of N̄ . Clearly si(N̄\z)/y has a non-
minimal 2-separation. Thus, by Bixby’s Lemma, co(si(N̄\z)\y) is 3-connected,
that is, co(si(N̄\z, y)) is 3-connected. As si(N̄\z, y) is not 3-connected, si(N̄\z)\y

has a 2-cocircuit. Thus si(N̄\z) has a triad C∗ containing y. As each of si(N̂ ′

i−1) and

si(Ňi+1) is a restriction of si(N̄\z), and either C∗∩E(si(N̂ ′

i−1)) or C∗∩E(si(Ňi+1))

has exactly two elements, we deduce that si(N̂ ′

i−1) or si(Ňi+1) has a cocircuit with

at most two elements; a contradiction. Thus si(N̄\z, y) is indeed 3-connected.
Now si(N̄\z, y)/x has a non-minimal 2-separation. Thus, by Bixby’s Lemma

again, co(si(N̄\z, y)\x) is 3-connected. As si(N̄\z, y, x) ∼= si(P (N̂ ′

i−1, Ňi+1)\∆i+1),

we assume that si(N̄\z, y, x) is not 3-connected, otherwise the lemma holds. Then

3.6.2. N̄ has no 2-circuit containing x or y.

As si(N̄\z, y) is 3-connected, N̄ has no 2-circuit containing x. By symmetry, N̄
has no 2-circuit containing y.

Now si(N̄\z, y) must have a triad containing x. Assume that {a, b, x} and
{c, d, x} are such triads. Then their symmetric difference is a disjoint union of cocir-
cuits of si(N̄\z, y). Thus {a, b}∩{c, d} = ∅. Now si(N̄\z)\y is 3-connected. There-
fore {a, b, x, y} and {c, d, x, y} contain cocircuits of si(N̄\z) containing {a, b, x} and

{c, d, x}. By considering the intersections of these cocircuits with E(si(N̂ ′

i−1)) and

E(si(Ňi+1)), we see that each such cocircuit has four elements. Moreover, we may
assume that the first contains {a, c} and the second contains {b, d}. Thus {a, x, y}

and {c, x, y} are cocircuits of si(N̂ ′

i−1). Hence si(N̂ ′

i−1) has a cocircuit contained

in {a, c}; a contradiction. We deduce that si(N̄\z, y) has exactly one triad, say
{a, b, x}, containing x. Moreover, we may assume that {a, x, y} and {b, x, y} are

triads of si(N̂ ′

i−1) and si(Ňi+1), respectively.

3.6.3. N̂ ′

i−1 has no 2-circuit containing a.

If a is in a 2-circuit of N̂ ′

i−1, then, by 3.6.2, a is parallel to z. Thus {a, x, y} is

both a triangle and a triad of si(N̂ ′

i−1); a contradiction.

By 3.6.2 and 3.6.3, {a, x, y} is a triad of N̂ ′

i−1. Since {a, b} is the only 2-

cocircuit of si(N̂ ′

i−1⊕∆i+1 Ňi+1), the matroid si(N̂ ′

i−1⊕∆i+1 Ňi+1)/a is 3-connected,

so si((N̂ ′

i−1/a) ⊕∆i+1 Ňi+1) is 3-connected. This completes the proof of 3.6.1.
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Observe that the construction of N̂ ′

i−1 means that we can label the triangle ∆i

of Ni−1 by {xi, yi, zi} where {x, xi}, {y, yi}, and {z, zi} are circuits of N ′

i . Clearly

N̂i−1 can be obtained from N̂ ′

i−1 by first relabelling the elements x, y, and z of the
latter as xi, yi, and zi and then deleting some elements that are parallel to xi, yi,
or zi. By 3.6.2 and 3.6.3, none of a, x, or y is in a 2-circuit of N̂ ′

i−1. Hence none of

a, xi, or yi is in a 2-circuit of N̂i−1. Moreover, as {a, x, y} is a triad of N̂ ′

i−1, and

si(N̂i−1) is 3-connected, {a, xi, yi} is a triad of N̂i−1.

For all p with 2 ≤ p ≤ i − 1, let ∆p = {xp, yp, zp}. Now N̂i−1 = P∆i−1(N̂i−2,

Ni−1)\∆i−1. Since {a, xi, yi} is a triad of N̂i−1, either {a, xi, yi} is a triad of Ni−1;

or {a, xi, yi} ∪ Z is a cocircuit of P∆i−1(N̂i−2, Ni−1) for some 2-element subset
Z of ∆i−1. In the latter case, we may assume that Z = {xi−1, yi−1}. Then

{a, xi−1, yi−1} contains, and so is, a cocircuit of N̂i−2. By repeating this argument,
we deduce that, for some j with 1 ≤ j ≤ i−1, after possibly relabelling the elements
of ∆j+1, we have {a, xj+1, yj+1} as a triad of Nj .

Next we shall show that a is not in the closure of ∆j or ∆j+1 in Nj . Note that,
when j = 1, the set ∆j is empty. We have {a, xj+1, yj+1} as a triad of Nj . If Nj has
a circuit containing a and contained in a ∪ ∆j , then we contradict orthogonality.
If Nj has a circuit containing a and contained in a ∪ ∆j+1, then a is parallel to
some element of ∆j+1. Thus si(Nj) has a 2-cocircuit, a contradiction since si(Nj)
is 3-connected having at least nine elements.

We now show that Nj/a is not graphic. Assume it is and let G be a graph such
that M(G) = N∗

j . Since {a, xj+1, yj+1} is a triad of Nj , it is a triangle of G. As
{xj+1, yj+1, zj+1} is a triad of G, the vertex v common to xj+1 and yj+1 has degree
3. Since Nj is not graphic, G has a minor isomorphic to K5 or K3,3. Assume first
that G has a K3,3-minor. Since K3,3 is cubic, G contains a subgraph H that is a
subdivision of K3,3. As M∗(G\a) is graphic, G\a has no K3,3-minor. Thus a is
in H . Since H has no triangles, at most one of xj+1 and yj+1 is in H . Either v
has degree two in H , or v is not in V (H). In each case, by interchanging xj+1 and
yj+1 if necessary, we get that G/xj+1 has a K3,3-minor. But {a, yj+1} is a cycle of
G/xj+1, so G/xj+1\a has a K3,3-minor. Hence so does G\a; a contradiction.

We may now assume that G has a K5-minor. Then G has five disjoint connected
subgraphs G1, G2, G3, G4, and G5 that together contain all of the vertices in G and
such that G has at least one edge between every pair of these subgraphs. Suppose
first that a is in G1. Then two of the three neighbors of v are in G1, and we may
assume that v is in G1. Hence xj+1 and yj+1 are in G1. Then G1\a is connected,
since {a, xj+1, yj+1} is a triangle, and G\a contains a minor isomorphic to K5; a
contradiction. Finally, assume that a is a G1-G2-edge. If xj+1 or yj+1 is a G1-G2-
edge, then G\a has a minor isomorphic to K5. In the exceptional case, without loss
of generality, we may assume that xj+1 is a G2-G3-edge and yj+1 is a G3-G1-edge.
Then v is in G3. Since v has degree three in G, it has degree one in the graph
G3. Hence G3 − v is a connected graph and, for each i in {4, 5}, there is an edge
of G with one end in G3 − v and the other in Gi. We contract the subgraphs G1,
G2, G3 − v, G4, and G5 to vertices v1, v2, v3, v4, and v5, respectively, and delete
the edge a. The resulting 6-vertex graph has K3,3 as a subgraph, where the vertex
classes are {v1, v2, v3} and {v, v4, v5}. Thus G\a has a K3,3-minor; a contradiction.
We conclude that Nj/a is not graphic and the lemma is proved. �
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Now returning to the proof of the main theorem, recall that, immediately before
Lemma 3.5, we showed that we could obtain a fine decomposition (M1, ∆2, M2, ∆3,
. . . , ∆2m, M2m) of a 3-connected matroid M̄ that is isomorphic to a parallel minor
of M . Each Mi with 1 < i < 2m satisfies one of (i)-(iv) of Lemma 3.5.

Suppose that some matroid in the set {M1, M2, . . . , M2m−1} is graphic. In that
case, let Mi be the lowest-indexed such matroid. Then i > 1, so Mi labels a type (i)
or type (ii) matroid. By Lemma 3.6, we may contract elements from Mi to obtain
a matroid M ′

i that is a double triangle or a multi-triangle containing ∆i and ∆i+1,
and we may contract at most one element of some Mj with j ≤ i − 1 to obtain a
non-graphic matroid M ′′

j such that

(M1, ∆2, M2, . . . , ∆j , M
′′

j , ∆j+1, . . . , Mi−1, ∆i, M
′

i , ∆i+1, . . . , ∆2m, M2m) (3)

is vertically 3-connected. Now let M ′′

i−1 be M ′′

j when j = i−1 and let M ′′

i−1 = Mi−1

when j < i − 1. Then M ′′

i−1 is cographic but not graphic. Hence (M ′′

i−1, ∆i, M
′

i)
is also cographic but not graphic. Thus, in (3), when we remove ∆i and M ′

i ,
and replace M ′′

i−1 by (M ′′

i−1, ∆i, M
′

i), we get a good decomposition of a vertically 3-

connected matroid whose simplification is a parallel minor M̄ ′ of M . We can convert
this good decomposition into a fine decomposition for M̄ ′ by deleting superfluous
parallel elements. This means that we can repeat the above process. Thus, from our
original fine decomposition, we eliminate graphic matroids one by one, beginning
with the lowest-indexed such matroid. After each such move, we recover a fine
decomposition of a 3-connected parallel minor of M . Since no two consecutive
matroids in M1, M2, . . . , M2m are graphic and M1 is non-graphic, we eventually
obtain a fine decomposition for which the corresponding path has at least m + 1
vertices, where each vertex except possibly the last labels a cographic matroid that
is not graphic. If this path ends in a graphic matroid, that matroid has been
unaltered in the above process and so its simplification has at least nine elements.
Hence we can apply Lemma 2.12 and remove at least one vertex from the end of this
path to obtain a path Q with m vertices each of which is labelled by a cographic
matroid that is not graphic. Again by deleting superfluous parallel elements, we
may assume that MQ, which is a parallel minor of M , is simple. Relabel Q as
N1N2 . . . Nm. By Lemma 3.5, each Ni with 1 < i < m is type (iii) or type (iv).

Recall that m = ⌈(k + 2)1
3f3.3(k)⌉ + 2. Suppose that the interior vertices of Q

contain a subpath Q′ of at least ⌊ 1
3f3.3(k)⌋ vertices each of which is labelled by a

type (iii) matroid. Then it is not difficult to check that the associated matroid MQ′

is cographic. Because each si(Ni) has at least nine elements, si(MQ′) has at least
f3.3(k) elements and, by Lemma 2.12, MQ′ is vertically 3-connected. Since DFk is
the dual of Vk, we deduce by Theorem 3.3, that M has a parallel minor isomorphic
to M(DFk), M(Wk), or M∗(K3,k). Hence, in this case, Theorem 1.1 holds.

We may now assume that every interior subpath of Q with at least 1
3f3.3(k)

vertices contains a vertex labelled by a type (iv) matroid. Thus Q has at least
⌊(m − 2)/(1

3f3.3(k))⌋ vertices that are labelled by type (iv) matroids, so Q has at
least k + 2 such vertices.

We now modify each Ni with 1 < i < m to produce N ′

i as follows. If Ni is
type (iv), we let N ′

i = Ni/Yi, where Ni/Yi is a multi-K4 with respect to ∆i and
∆i+1. Now suppose Ni is type (iii). Then Ni = M∗(Gi) for some graph Gi that has
∆i and ∆i+1 as vertex bonds. By Menger’s Theorem, Gi has a subgraph Hi that is
a subdivision of K2,3 where ∆i and ∆i+1 are vertex bonds of Hi. Thus Ni has, as a



16 CAROLYN CHUN AND JAMES OXLEY

minor, a double triangle with ground set ∆i ∪∆i+1. Hence, by the Scum Theorem,
for some subset Yi of E(Ni), the matroid Ni/Yi is either this double triangle or a
multi-triangle with respect to ∆i and ∆i+1. In this case, we let N ′

i = Ni/Yi.
Let R = N ′

2N
′

3 . . . N ′

m−1. Using Corollary 2.9 and Lemma 2.12, we can show
that si(MR) is a parallel minor of si(MQ). Furthermore, MR may be obtained
by identifying at least k + 2 copies of M(K4) across a triangle and either deleting
elements from the common triangle or adding elements parallel with the elements in
the common triangle. Evidently MR, and hence M , has a parallel minor isomorphic
to M(K ′

3,k), and this completes the proof of the theorem. �
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