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ON THE INTERSECTIONS OF CIRCUITS AND
COCIRCUITS IN MATROIDS
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Seymour has shown that a matroid has a triad, that is, a 3-¢lement set which is the inter-
section of a circuit and a cocircuit, if and only if it is non—bmary In this paper we determine precxsely
when a matroid M has a quad, a 4 element set which is the intersection of a circuit and a cocircuit.
We also show that this will occur if M has a circuit and a cocircuit meeting in more than four elements.
In addition, we prove that if a 3-connected matroid has a quad, then every pair of elements is in a
quad. The correspondmg result for triads was proved by Seymour.

1. Introduction SN

Several matroid results are concerned with the possible cardinalities of  the
intersections of circuits and cocircuits. For example, it is well-known that a circuit and
a cocircuit in a matroid cannot have exactly one common element, while a matroid
is binary if and only if every set which is the intersection of a circuit and a cocircuit
has even cardmahty The latter result was sharpened by Seymour [6] who showed that
a matroid is binary precisely when it does not have a friad, that i 1s, a 3-element set
which is the intersection of a circuit and a cocircuit. More recently, Seymour [8]
extended this result for 3-connected matroids by provmg that if such a matroid M
is non-binary, then every palr of elements is contained in a triad and hence is part of
the ground set of a' U, 4 minor of M.

In this paper we investigate further those sets which are the mtersectmn of a
circuit and a cocircuit. In particular, we concentrate on such sets having four elements,
calling these sets quads. In Section 2 we determine when an arbitrary matroid has a
quad, showing that this occurs for a 3-connected matroid if and only if both its rank
and its corank exceed two. The main result of the section shows that if, for some -
k=5, the matroid M has a k-element set which is the intersection of a circuit and a
cocircuit, then M has a quad. In Section 3 we exp1101t1y determiné which matroids
‘have no quads. Fmally, in Section 4, we prove that in a 3-connected matroid contain-
ing a quad, every pair of elements is in a quad.

The matroid terminology used here will in general follow Welsh [10]. The
gl‘ound set, rank and corank of the matroid M will be denoted by E(M), rkM and
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cork M respectively. If TS E(M), then rkT denotes the rank of 7. The deletion and
contraction of T from M will be denoted by M\ T and M /T respectively. Flats of M
of ranks one and two will be called points and lines. The whirl of rank r [10, pp. 80—=81]
and the uniform matroid of rank k on an n-element set will be denoted by #™ and
Uk, ne ) '

’ For n=1, the matroid .M is n-connected [9, p. 1303] provided that, for all
positive integers k<mn, thereis no subset 7 of E(M)such that |T'|=k, |[E(M)\T|=k
and tkT+rk(E(M)\T)wrkM=k—1. Thus a matroid is 2-connected precisely when -
it 1s connected [10, p. 69]. Moreover,

(1.1) M is n-connected if and only if M* is n-connected. |}

We shall assume familiarity with the operations of series and parallel connec-

" tion of matroids, these operations having been discussed in detail in [3]. For matroids

M, and M, such that E(M,)NE(M,)={p}, we shall denote the parallel connection
of M, and M, with respect to the basepoint p as P((Mj, p), (M., p)) or just
P(M,, M,). The following fundamental link between 3-connection and parallel
_connection was proved by Seymour [7, (2.5)].

(1.2) Theorem. A ‘connected matroid M is not 3-connected if and only if there
are matroids M, and M, each having at least three elements such that
M=P((M,, p), (M,, p))\p where p is not a loop or a coloop of My or M,. |

When M decomposes as in this theorem, we call M the 2-sum of M; and M,.
It is routine to check, using the properties of parallel connection, that :

(1.3) The 2-sum of M, and M, is connected if and only if both M, and M, are con-
nected. |

If {x, y} is a circuit of the matroid M, we say that x and y are in parallel in M.
If, instead, {x, y} is a cocircuit, then x and y are in series. A parallel class of M is a
maximal subset 4 of E(M) such that if a and b are distinct elements of A4, then a and b
are in parallel. Series classes are defined analogously. A series or parallel class is
non-trivial if it contains at least two elements. The matroid M’ is a series extension
of Mif M’=M]/T and every element of T'is in series with some element of M not in
T. Parallel extensions are defined analogously. We call M” a series-parallel extension
of M if M” can be obtained from M by a sequence of operations each of which is
either a series or parallel extension. A series-parallel extension of the two-element
matroid U, , is called a series-parallel network. A thorough investigation of the pro-
perties of such matroids can be found in Brylawski’s paper [3].

2. Intersections of circuits and cocircuits

The main result of this section is that if a matroid M has a set with more than
four elements which is the intersection of a circuit and a cocircuit, then M has a set
with exactly four elements which is the intersection of a circuit and a cocitcuit. In
addition, an included minor characterization for when a 3-connected matroid has a
quad is proved. The first three results are preliminaries generalizing results of Sey-
mour [8, (2.4), (2.5)]. The elementary proof of the first of these is omitted.
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(2.1) Lemma. Let M’ be a minor of M and suppose that the set X is the intersection
of a circuit and a cocircuit in M’. Then X i is. the intersection of a circuit and a cocircuit
inM. }

(2.2) Proposition. Let M be a matroid containing a k-element set X which is the inter-
section of a circuit C and a cocircuit C*. Then M has a minor N in which X is both a
circuit and a cocircuit and such that tTKN=k —1=corkN.

Proof. By contracting the elements of C\C* and deleting the elements of C*\ C, we
obtain a minor N’ of M in which X is both a circuit and a cocircuit. If E(N')N\X
contains a circuit of N/, then we delete an element e from this circuit. The set X re-
mains a circuit in N\ e and, moreover, as E(N")\(XUe) is a hyperplane of N"\(e,
the set X is also a cocircuit of N"\\e. By repeating this operation of deleting single
elements from circuits of N’ contained in E(N)\ X, we eventually obtain a matroid
N” in which X is both a circuit and a cocircuit and E(N”)\ X i1s independent.

Now, if E(N")\X contains a cocircuit of N”, then we contract a single
element f from this cocircuit. In N” /¥, the set X is still both a circuit and a cocircuit
and its complement is still mdependent By repedtmg this operation of contracting
single elements from cocircuits of N” contained in E (N WX, we eventually obtain
the required minor N of M in which X is both a circuit and a cocircuit and E(N )\X
is independent in both N and N*. |} _

Euclidean representations for the 6-element matroids, Pg, O and Ry, appearing
in the next result are given in Figure 1.

(2.3) Corollary. The set X is a quad in the matroid M if and only if M has a minor
isomorphic to one of the matroids Us ¢, W3, M(K,), Ps, Q¢ or Rg in which X is a
quad.

Proof. If X is a quad in a minor of M then by Lemma 2.1, X'is a quad in M. Now
suppose that X is a quad in M. Then, by Proposition 2.2, M has a minor N in which X
is both a circuit and a cocircuit and such that rkN= corkN 3. It is now routine to
check that N must be one of the 6 matroids Us ¢, #%, M(K,), Ps, Qs or Rg. K

Qg

Fig. 1

(2.4) Corollary. A binary matroid has a quad if and only if it has M (K,) as a minor.

Proof. This follows im‘mediately from the preceding corollary upon noting that none
of the matroids %3, U, ¢, Pg, Qg O Rgis binary. |}
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If a matroid M contains a k-element set X which is the intersection of a circuit
and a cocircuit, then clearly X is the intersection of a circuit and a cocircuit in M™*.
Thus, for all k, the set %, of minor-minimal matroids containing such a k-element set
is closed under duality. Moreover, by [8, (2.5)] and Corollary 2.3, when k=3 or 4,
all the members of %, are self-dual. To see that this does not hold in general, consider
the rank-four matroid shown in Figure 2. This matroid has {1,2, 4, 6, 7} as both
a circuit and a cocircuit and hence is in % . However, it is not self- dual because it has
two 3-element circuits but only one 3- element cocircuit.

Te
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Fig. 2

If M and N are matroids with M\ e=N, then M is an extension of N; if
instead, M e=N, then M is a lift of N.

(2.5) Theorem. Let M be a 3-connected matroid. Then the following are equivalent. -

(1) Both the rank and corank of M exceed two.
(1) M has a minor isomorphic to one of Us ¢, W, M(Ky), Pg or Q.
(iit) M has a quad.

Proof. Assume that M has rank and corank exceeding two. Then, by (1.1), M * 1is
3-connected, hence by [5, Theorem 4.1] there is a sequence of 3-connected matroids
ending with M * and beginning with the cycle matroid of a wheel, a whirl or U, 5 such
that each matroid in the sequence is a lift or an extension of its predecessor. Hence
there is a similar sequence ending with M and beginning with the cycle matroid of a
wheel, a whirl or U, ;. In the first two cases, M has M(K,) or #° as a minor. In the
third case, M has as a minor a 3-connected lift of a line having at least five points.
It is stralghtforward to check that this lift has one of P4, Qg or Us g as a minor. We
conclude that (i) implies (ii). It is routine to check that each of Uy ¢, #73, M(K,), P
and Qg has a quad. Heuce (ii) 1mp]1es (iii). Finally, since (iit) clear]y 1mp]1es (1), the
theorem is proved. |}

In terms of circuit-cocircuit intersections, Seymour’s characterization of non-
binary matroids in terms of the existence of a triad [6, p. 360] states that a matroid
havin g a circuit and a cocircuit meeting in an odd number of elements has a circuit and
a cocircuit meeting in exactly three elements. The next two results have the same form
as this, the first being rather elementary.

(2.6) Proposition. Suppose that M has a k-element set X whzch is the lntersecnon of a
circuit and a cocircuit where k=3. Then, for some t in {{k/2], [k/2]+1, . -1}, M
has a t-element set which is the intersection of a circuit and a cocircuit.
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Proof. By Proposition 2.2, M has a minor N having 2k —2 elements and rank k—1
in which X'is both a circuit and a cocircuit. Take a (k—3)-element subset ¥ of E (NN\X
and consider the hyperplanes #;, H,, ..., H, of N containing ¥ and meeting X.
Since X spans N, m=2 and s0, for some i, |H;N\X|=|k/2]. Thus the cocircuit
complementary to H; meets X in a t-element set Z where

te{[k/2], k2141, ..., k—1).
By Lemma 2.1, Z is the intersection of a circuit and a cocircuitin M. J
The next theorem is the main result of this section. )

(2.7) Theorem. Let M be a matroid containing a k-element set X which is the inter-
section of a circuit and a cocircuit for some k=4. Then M has g quad.

Proof. We argue by induction on |E(M)]. Since k=4, M has rank and corank at
least three. Therefore, if M is 3-connected, the result follows by Theorem 2.5. Fur-
thermore, by the induction assumption we may assume that both M and M* are
simple. We now suppose that M is not 3-connected. Then, by Theorem 1.2, M
=P(M;, M)\ p for some matroids M, and M,, each of which has fewer elements
than M. Since X is the intersection of a circuit and a cocircuit of M, there are two
possibilities: either one of M; and M, has a k-set which is the intersection of a circuit
and a cocircuit; or, for i=1, 2, M; has a j;-element set X; such that X =C;NCF
where C; and C7 are, respectively, a circuit and a cocircuit of M; containing p. In the
first case, since both M, and M, are minors of M [7, (2.6)], the result follows on com-
bining the induction assumption with Lemma 2.1. In the second case, j,+j,—2=k.
Now, as the result holds trivially for k=4, we may assume k=5, and so j,+j,=7.
Therefore, one of j, and j, exceeds 3, and so, by the induction assumption, M; or M,
has a quad. It follows by [7, (2.6)] and Lemma 2.1 that M has a quad. | :

3. The matroids without quads

_ It is clear that a disconnected matroid has a quad if and only if one of its
components has a quad. Corollary 2.3 gives one characterization of when a matroid
has a quad. The next result determines more explicitly precisely which connected
matroids have no quads. ‘ o

(3.1) Theorem. Let M be a connected matroid having at least three elements. If M has
no quads, then M is a series-parallel extension o f @ uniform matroid of rank or corank
two. ' : o . :

Proof. We argue by induction on |E(M)|. If |E(M)|=3, then M= Up,30r Uy 3,50
the required result holds. Now assume the result true for |E(M)|<n and let |E(M)]
=n. If M is binary, then, since M has no quads, Corollary 2.4 implies that M has
no minor isomorphic to M(K,). Hence, by [3, Theorem 7.6}, M is a series-parallel
- network. Therefore, as |E(M)|=3, Misa series-parallel extension of Uy,s0r U, gand
the required result holds: o ' ' :
We can now assume that M is non-binary. Furthermore, we may also suppose

that M has no non-trivial series or parallel classes as otherwise the required result
follows easily by the induction assumption. - S . .
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If M is 3-connected, then by Theorem 2.5, kM =2 or corkM=2. But, as
M is non-binary, it has U, 4 as a minor and therefore has rank and corank at least
two. It-follows that either TkM'=2 or corkM =2 and hence M or M* is uniform of
rank two. : A

Now suppose that M. is not 3-connected. Then, by (1.2) and (1.3), M
=P(M,, M)\ p for some connected minors M, and M, of M, each of which has at
least three elements. As M is non-binary, at least one of M; and M, is non-binary.
Assume that both are non-binary. Then, by [1, Theorem 3.7, M, has a U, , minor
using p and M, has a U, , minor using p. It follows that P(M,, My)\p has Rgas a -
minor. But R, contains a quad and so we obtain the contradiction that M has a quad.
. It remains to consider the case when exactly one of M; and M,, say M,, is
non-binary. Then, as M, is binary, connected and does not contain a quad, M, is a
series-parallel network and hence, by [3, Theorem 7.6], is a series-parallel extension
of p. Tt follows that M has a non-trivial series or parallel class and this contradiction
completes the proof. |}

The next result follows immediately on combining the last theorem with
Corollary 2.3.

(3.2) Corollary. Let M be a connected matroid having at least three elements. Then
either

() M has Us s, M(K,), #3, Pg, Qg or Rg as a minor;

or : .

(i) M or M* is a series-parallel extension of a k-point line for some k=3. |}

4. Pairs of elements in quads

‘ An immediate consequence of results of Bixby [1] and Seymour [6] is that if a

connected matroid M has a triad, then every element of M is in a triad. If; in addition,
M is 3-connected, then Seymour [8, (3.1)] has shown that every pair of elements of
M is in a triad. In this section we prove the analogue of Seymour’s result for quads
and note that the analogue of Bixby’s result does not hold. We shall use the following
lemma, the straightforward proof of which is omitted.

(4.1) Lemma. If M is isomorphic to one of the matroids Us s, W3, M(K,), Pg or Q,
then every pair of elements of M is in a quad. [}

(4.2).Theorem. Let M be a 3-connected matroid having rank and corank at least three.
Then every pair of elemerts of M is in a quad. -

Proof. We shall prove by induction on |E(M)] that every pair of elements of M is in
the ground set of some 6-element minor of M whichis isomorphicto one of the matroids
Us g, W3, M(K,), P or Qg. The theorem then follows immediately from the preceding
lemma. :

As M is 3-connected having rank and corank at least three, |[E(M)|=6 and,
- by Theorem 2.5, M has a minor isomorphic to one of the 5 specified 6-element mat-
roids. The result therefore follows immediately if |[E(M)|=6. Now suppose that
|[E(M)|>6 and the result is true for all matroids with fewer elements than M. Let
rkM=3. If M is minimally 3-connected, then by [4, Lemma 4.5}, either (i) M is isomor-



CIRCUIT-COCIRCUIT INTERSECTIONS - 193

phicto a whirl or the cycle matroid of a wheel, or (ii) M /e is minimally 3-connected for
some element e of M, or (iii) for some elements /., x and y of M, either M /f\x or
M/ f\x, y is minimally 3-connected. In the first case, as tkM =3, we obtain the
contradiction that |E(M)|=6. In cases (ii) and (iii), M /e and M / i both have rank
two. But the only minimally 3-connected matroid of rank 2 is U,y and, since
|E(M)|=6,none of M/e, M /f\x or M /f\x, y can beisomorphic to U2 s- We con-
clude that M is not minimally 3-conniected and therefore has an element z such that
Mz is 3-connected. By the induction assumption, for all pairs {x;, x,} of elements
of E(M\z), M has a minor of the required type usmg both x; and x,. Moreover, as
M has rank 3, if we E(M\z), M has a restriction using w which is isomorphic to one
of the 5 speciﬁed matroids. It is now a routine matter to check that by adding z to
any of these 5 matroids we must obtain a minor of the required type that uses both
z and w. We conclude that the required result holds if M has rank 3 and, by duality,
the result also holds if M has corank 3. We shall now assume that M has rank and
corank exceeding 3 and show that an arbitrary pair {x, y} of elements of M is in the
ground set of a minor isomorphic to one of the 5 specified 6-element matroids. If
e€ E(M)\{x, y} and M\e or M /e is 3-connected, then we can apply the induction
assumption to obtain the required result. Thus we may assume, that for all e in
E(M)N\{x, y}, neither M\ e nor M /e is 3-connected. If, in addition, none of M\ x,
MX\y, M/x or M /y is 3-connected, then every element of M is essential [9] so, by
[9, (8.3)], M is a whirl or the cycle matroid of a wheel. But, in that case, E(M) has a
6-element subset X containing both x and y and M has a minor on X isomorphic to
either M (K,) or #"3. Hence the required result holds. Therefore we may assume that
at least one of M\ x, M\ y, M/x and M /y 1s 3-connected.

- Now, by [2, Theorem 1], for all elements e of M, either M\ e is a series exten-
sion of a 3-connected matroid, or M /e is a parallel extension of a 3-connected matroid.
‘We now distinguish four cases:

(1) for some element e, of E(M)\ {x, y}, the matroid M\ e, is a series extension of
- a 3-connected matroid N having rank at least 3, and x and y are in different series
classes of M\ e, and hence may be assumed to lie in E(N);
(1) for all elements e of E(M)\{x, y}, M \e is a series extension of a 3-connected
matroid and x and y are in series in M\ ¢;
{11) for some elements f; and f, of E(M )\{x, y}, x and y are in series in M \h and
are in parallel in M /f,;
(iv) for some element e, of E(M)Y\{x, y}, M \e;, is a series extensmn of a rank-two
3-connected matroid N and {x, y}S E(N).
Evidently one of ()—(iv) must hold for either M or M*. In the latter case, we use M*
in place of M in the argument that follows.

In case (1), since corkM =3, corkN=3 and the required result follows on -
applying the induction assumptlon to N.

In case (ii), {e, x, y} is a cocircuit of M for allein E(M)\ {x, y}. Hence M has
corank 2; a contradiction.

In case (i), {f1, x, ¥} is a cocircuit and {f;, x, y}is a circuit of M. Thus, we
get the contradiction that none of M\ x, M\ y, M /x or M /'y is 3-connected.

In case (iv), since the only rank-two 3-connected matroids are uniform,
N=U,, for some k=3. But cork(M\e;)=corkN=corkM—1=3, so k=5.
Now, as tkM=4 and rkN=2, M\ e, has at least one non-trivial series class. Choose
x; and x, in this class taking x, equal to x or y if either x or y is in the class. Contract
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all the remaining elements from this series class and then contract all but one element
from each of the other non-trivial series classes ensuring that the elements x and y are
kept during this process. The resulting contraction of M has rank 3 and has {e,, x;, x5}
as a cocircuit. Now delete all but 3 elements, a,b and ¢, from theline which is comple-
mentary to {e,, X, X,}, again ensuring that x and y are kept. The resulting matroid
M’ has {e,, x;, x5} as a cocirtuit and {a, b, ¢} as the corresponding hyperplane.
Moreover, the closure of {x;, x,} in M’ does not contain a, b or ¢ as M"™\e,/x; is
isomorphic to a restriction of the simple matroid N; nor does the closure of {x;, x}
contain e,, otherwise e, is in the closure in M of the series class S; of M\(e, contam-
ing {x;, xs}. In that case, tk(S;Ue)=1kS; and if S,=E(M\e)\S:, them
kM =1kS,+[S;|—1 and rkS,=|S;|. Thus rkS;+rkS;=rkM+1, so tk(S;Uey)
+1kS,=rkM+1 and this is a contradiction to the fact that M is 3-connected. We:
conclude that M isisomorphic to one of Pgand Qg and, as x and y areincluded among
the elements of M’, the required result follows. ||

The next result follows immediately on combining Theorems 2.5 and 4.2.

(4.3) Corollary. Let M be a 3-connected matroid containing a quad. Then every pair of
elements of M is in a quad. |} ' '

Seymour [8, p.392] gives an explicit characterization of when two elements in
an arbitrary connected matroid M are contained in the ground set of a U, 4 minor
of M, or equivalently, are contained in a triad of M. The corresponding result holds
for when two elements in an arbitrary connected matroid lie in a quad but we shall
not give the details. S

To see that Corollary 4.3 need not hold if M is not 3-connected, let M be the:
matroid shown in Figure 3. This matroid is connected and has {1, 2, 3, 4} as a quad,,
yet it has no 4-element circuit containing the element e and hence certainly does not
have a quad containing e.

We also note here that one cannot replace “pair”’ in Theorem 4.2 by “triple’”
since, for example, any three spokes in a wheel or a whirl do not all lie in a common.
circuit and hence do not all lie in a quad. _

By Corollary 4.3 and Seymour’s corresponding result for triads [8, (3.1]1..
when k=3 or 4, if a 3-connected matroid M has a k-element subset which is the inter~
section of a circuit and a cocircuit, then every pair of elements of M is in such a k-set.
To see that this does not hold for all k, consider the matroid M shown in Figure 4.
Tt is easy to check that M is 3-connected. Moreover, {2,4, 6, 7, 8} is both a circuit
and a cocircuit of M. However, no 5-element subset of M which is the intersection of
a circuit and a cocircuit contains the element 5.
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