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Abstract. Tutte’s Wheels-and-Whirls Theorem proves that if M is
a 3-connected matroid other than a wheel or a whirl, then M has a
3-connected minor N such that |E(M)| − |E(N)| = 1. Geelen and
Whittle extended this theorem by showing that when M is sequentially
4-connected, the minor N can also be guaranteed to be sequentially 4-
connected, that is, for every 3-separation (X, Y ) of N , the set E(N)
can be obtained from X or Y by successively applying the operations of
closure and coclosure. Hall proved a chain theorem for a different class
of 4-connected matroids, those for which every 3-separation has at most
five elements on one side. This paper proves a chain theorem for those
sequentially 4-connected matroids that also obey this size condition.

1. Introduction

We begin the introduction by discussing the results presented in this pa-
per. We believe that they are of interest in their own right. But our primary
motivation for conducting this research is to develop theorems that we hope
will be of eventual use in an attack on Rota’s Conjecture. This broader
purpose is discussed at the end of this section.

In dealing with matroid connectivity, one frequently wants to be able to
remove a small set of elements from a matroid M to obtain a minor N
that maintains the connectivity of M . Such results are referred to as chain

theorems. Tutte [15] proved that if M is 2-connected and e ∈ E(M), then
M\e or M/e is 2-connected. More profoundly, when M is 3-connected,
Tutte [15] proved the following result, his Wheels-and-Whirls Theorem.

Theorem 1.1. Let M be a 3-connected matroid other than a wheel or whirl.

Then M has an element e such that M\e or M/e is 3-connected.

This result has proved to be such a useful tool for 3-connected matroids
that it is natural to seek a corresponding result for 4-connected matroids.
Since higher connectivity for matroids may be unfamiliar, we now define it.
For a matroid M with ground set E and rank function r, the connectivity

function λM of M is defined on all subsets X of E by λM (X) = r(X) +
r(E−X)−r(M). A subset X or a partition (X,E−X) of E is k-separating
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if λM (X) ≤ k − 1. A k-separating partition (X,E − X) is a k-separation

if |X|, |E − X| ≥ k. A matroid having no k-separations for all k < n is
n-connected.

For 4-connected matroids, the hope of a chain theorem is frustrated by
examples given by Rajan [13]. He showed that, for all positive integers m,
there is a 4-connected matroid M such that M has no proper 4-connected
minor N with |E(M)| − |E(N)| ≤ m. Rajan also supplied corresponding
examples for vertically 4-connected matroids and cyclically 4-connected ma-
troids, the analogues of 4-connected graphs and their duals. Nevertheless,
chain theorems have been proved for certain classes of 3-connected matroids
which are partially 4-connected. More precisely, instead of ruling out all
3-separations as one does in a 4-connected matroid, one can severely re-
strict the types of 3-separations that one allows. There are two natural
ways of doing this. One way is to control the structure of 3-separations. A
3-separation (X,Y ) of a 3-connected matroid is sequential if, for some Z in
{X,Y }, there is a sequential ordering, that is, an ordering (z1, z2, . . . , zk) of
Z such that {z1, z2, . . . , zi} is 3-separating for all i in {1, 2, . . . , k}. A matroid
is sequentially 4-connected if it is 3-connected and its only 3-separations are
sequential. One raises connectivity to eliminate degeneracies and many of
the degeneracies eliminated by requiring 4-connectivity are also eliminated
by requiring sequential 4-connectivity. Geelen and Whittle [3] proved the
following chain theorem.

Theorem 1.2. [3, Theorem 1.2] Let M be a sequentially 4-connected ma-

troid that is neither a wheel nor a whirl. Then M has an element z such

that M\z or M/z is sequentially 4-connected.

Another way to restrict 3-separations is to control size, that is, to require
that they all have a small side. More precisely, let k be an integer exceeding
one. A matroid M is (4, k)-connected if M is 3-connected and, whenever
(X,Y ) is a 3-separating partition of E(M), either |X| ≤ k or |Y | ≤ k. Hall
[6] called such a matroid 4-connected up to separators of size k. Matroids
that are (4, 4)-connected have also been called weakly 4-connected. Although
Rajan [13] showed that, for all positive integers m, a (4, 4)-connected ma-
troid M cannot be guaranteed to have a (4, 4)-connected proper minor N
with |E(M)| − |E(N)| ≤ m, Geelen and Zhou [4] have recently shown that,
when |E(M)| ≥ 7, the only obstructions to such a result when m = 2 occur
when M has twelve elements or is the cycle or bond matroid of a planar
or Möbius circular ladder. By contrast, Hall [6] proved that, by moving
to (4, 5)-connected matroids with at least seven elements, one always has a
chain theorem.

Theorem 1.3. Let M be a (4, 5)-connected matroid other than a rank-3
wheel. Then M has an element x such that co(M\x) or si(M/x) is (4, 5)-
connected and has cardinality |E(M)| − 1 or |E(M)| − 2.
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In this paper, we prove a chain theorem where both the structure and the
size of 3-separations is controlled, that is, where the allowable 3-separations
are subject to both the restrictions imposed by Hall and those imposed by
Geelen and Whittle. A 3-connected matroid M is (4, k, S)-connected if M
is both (4, k)-connected and sequentially 4-connected.

Theorem 1.4. Let M be a (4, 5, S)-connected matroid that has no 5-element

fans. Then M has an element x such that M\x or M/x is (4, 5, S)-
connected.

Theorem 1.4 does not hold in certain highly structured matroids with
5-element fans. More generally, we have the following theorem, the main
result of the paper.

Theorem 1.5. Let M be a (4, 5, S)-connected matroid other than a rank-3
wheel. Then M has an element x such that co(M\x) or si(M/x) is (4, 5, S)-
connected and has cardinality |E(M)| − 1 or |E(M)| − 2.

An example that illustrates the necessity of the 2-element move in The-
orem 1.5 is given at the end of the paper. In proving this theorem, we
shall use another new result, which seems to be of independent interest. A
matroid that is (4, 3)-connected is often called internally 4-connected.

Theorem 1.6. Let M be a 4-connected matroid with |E(M)| ≥ 11. Let

{a, b, c, d, e} be a rank-3 subset of E(M). Then there are at least two ele-

ments x in {a, b, c, d, e} such that M\x is internally 4-connected.

We now discuss the broader motivation for the results of this paper.
Rota [14] conjectured that, for each finite field F, the number of excluded
minors for F-representability is finite. Rota’s Conjecture has become a focus
for much recent work in matroid representation theory. A major obstacle to
proving Rota’s Conjecture is the existence of inequivalent representations of
matroids over finite fields and understanding the behaviour of such inequiv-
alent representations is an imperitive. It can be hoped that control could
be obtained by imposing appropriate connectivity conditions. Indeed, for
prime fields, this is certainly the case. In [5], the notion of k-coherence for
matroids is introduced; this is a connectivity notion intermediate between
3-connectivity and 4-connectivity. It is proved that, for all k ≥ 5 and all
primes p, there is an integer f(k, p) such that a k-coherent matroid has at
most f(k, p) inequivalent GF (p)-representations.

While the above result is certainly interesting in its own right, it turns
out that, for the purposes of proving Rota’s Conjecture, it is of limited use.
Let F be a finite field with at least five elements and let g(M) denote the
number of inequivalent F-representations of a matroid M . Then there exist
infinite sequences M1,M2,M3, . . . of k-coherent matroids such that, for all i,
Mi is a minor of Mi+1, and such that the sequence, g(M1), g(M2), g(M3), . . .
oscillates. The existence of such sequences is clearly problematic in attempt-
ing to generalize any of the current proofs of instances of Rota’s Conjecture.
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However, k-coherent matroids can have arbitrarily long nested sequences of
3-separations and the known examples of sequences of matroids over a prime
field that exhibit the above oscillatory behaviour also have members with
arbitrarily long nested sequences of 3-separations. It is natural to conjecture
that, when nested sequences of 3-separations have bounded length, the un-
wanted oscillatory behaviour disappears. The obvious strategy to prove this
conjecture is to develop a connectivity notion that restricts nested sequences
of 3-separations and then to mimic the techniques of [5]. To do this, it is
necessary to begin by developing the basic tools that make it possible to
work effectively with this notion of connectivity.

This was our original approach, but we soon realized that we were not be-
ing sufficiently far-sighted. Rather than attempt to develop tools that would
work for a notion of connectivity where nested sequences of 3-separations
have bounded length, we should seek theorems that would yield tools when
applied to any reasonable notion of connectivity intermediate between 3-
connectivity and 4-connectivity. This is the second paper of a proposed
series with this goal in mind, the first being [12]. In what follows, we ex-
plain the role of this paper in the series.

In a matroid M , the full closure fcl(X) of a set X is the intersection of
all sets containing X that are closed in both M and M∗. Now suppose
that M is 3-connected. Two 3-separations (A1, B1) and (A2, B2) of M are
equivalent if fcl(A1) = fcl(A2) and fcl(B1) = fcl(B2). Let x be an element of
M such that M\x is 3-connected. If M\x has a non-sequential 3-separation
(A1, B1) such that, for all 3-separations (A2, B2) equivalent to (A1, B1),
neither (A2 ∪ {x}, B2) nor (A2, B2 ∪ {x}) is 3-separating in M , then we say
that x exposes (A1, B1). If M\x is 3-connected and x does not expose a non-
sequential 3-separation, then any reasonable weakening of 4-connectivity
held by M will be retained by M\x.

The task, then, is to demonstrated the existence of elements that do not
expose 3-separations in either M\x or M/x, or to characterize the structures
where such elements cannot be found. A triangle of a 3-connected matroid
is wild if, for all t in T , either M\t is not 3-connected, or t exposes a 3-
separation in M\t. The structure of a matroid relative to a wild triangle
is characterized in [12]. The next natural step is to develop an analogue of
Tutte’s Wheels and Whirls Theorem. We believe the following.

Conjecture 1.7. Let M be a 3-connected matroid that is not the matroid

of a wheel or a whirl. Then M has an element x such that either M\x or

M/x is 3-connected and does not expose a 3-separation.

Indeed, we believe we currently have a proof of Conjecture 1.7 up to a
bounded-size case analysis. When completed, this analysis will yield either
the conjecture or a characterization of certain exceptional matroids. Our
strategy for proving Conjecture 1.7 is to identify a 3-separating set X of
M that seems likely to contain an element that can be removed without
exposing a 3-separation. By adding dummy elements {α, β} to X, we obtain
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a matroid N on X ∪ {α, β} that enables us to localize the problem. The
tricky case turns out to be when N is 4-connected. It is not enough to find
an element in X that does not expose a 3-separation in N ; we need stronger
properties that will enable us to lift back to M . The principal results of
this paper establish some of these stronger properties and, from this point
of view, can be regarded as lemmas towards proving Conjecture 1.7.

The next section contains some basic definitions and results that will be
needed in the proof of the main theorem. In Section 3, we outline how the
proof of Theorem 1.5 proceeds. Basically, it divides the argument into the
cases when M is (4, k, S)-connected for k = 2, 3, 4, and 5. Observe that
M is (4, 2, S)-connected if and only if it is 4-connected; and M is (4, 3, S)-
connected if and only if it is internally 4-connected. When M is 4-connected,
there are two main cases to consider. The first uses Theorem 1.6, which is
proved in Section 4; the second is treated in Section 5. The case when M is
internally 4-connected is treated in Section 6. The proof of Theorem 1.5 is
completed in Section 7 where the (4, 4, S)-connected and (4, 5, S)-connected
cases are handled. The treatment of these cases is relatively short, but is
somewhat artificially so since the latter relies crucially on Hall’s proof of
Theorem 1.3.

2. Preliminaries

The matroid terminology used here will follow Oxley [8] except that the
simplification and cosimplification of a matroid N will be denoted by si(N)
and co(N), respectively. A quad in a matroid is a 4-element set that is both
a circuit and a cocircuit. This paper will use some results and terminology
from our papers describing the structure of 3-separations in 3-connected
matroids [10, 11]. In this section, we introduce the relevant definitions. In
addition, we prove some elementary connectivity results that will be used
in the proof of the main theorem.

In a matroid M , a k-separating set X, or a k-separating partition (X,E−
X), or a k-separation (X,E −X) is exact if λM (X) = k− 1. A k-separation
(X,E − X) is minimal if |X| = k or |E − X| = k. It is well known (see, for
example, [8, Corollary 8.1.11]) that if M is k-connected having (X,E − X)
as a k-separation with |X| = k, then X is a circuit or a cocircuit of M .

A set X in a matroid M is fully closed if it is closed in both M and M∗,
that is, cl(X) = X and cl∗(X) = X. Thus the full closure of X is the in-
tersection of all fully closed sets that contain X. One way to obtain fcl(X)
is to take cl(X), and then cl∗(cl(X)) and so on until neither the closure nor
coclosure operator adds any new elements of M . The full closure operator
enables one to define a natural equivalence on exactly 3-separating parti-
tions as follows. Two exactly 3-separating partitions (A1, B1) and (A2, B2)
of a 3-connected matroid M are equivalent, written (A1, B1) ∼= (A2, B2), if
fcl(A1) = fcl(A2) and fcl(B1) = fcl(B2). If fcl(A1) = E(M), then B1 has
a sequential ordering and we call B1 sequential. Similarly, A1 is sequential
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if fcl(B1) = E(M). We say (A1, B1) is sequential if A1 or B1 is sequen-
tial. Evidently, if (A1, B1) ∼= (A2, B2) and (A1, B1) is sequential, then so is
(A2, B2).

For a 3-connected matroid N , we shall be interested in 3-separations of N
that show that it is not (4, k, S)-connected. We call a 3-separation (X,Y )
of N a (4, k, S)-violator if either

(i) |X|, |Y | ≥ k + 1; or
(ii) (X,Y ) is non-sequential.

Observe that, when k = 3, condition (ii) implies condition (i). Hence (X,Y )
is a (4, 3, S)-violator of N if and only if |X|, |Y | ≥ 4.

The next observation is routine but useful.

Lemma 2.1. Every 3-connected matroid with at most 2k + 1 elements is

(4, k)-connected.

The following elementary lemma [10, Lemma 3.1] will be in repeated use
throughout the paper.

Lemma 2.2. For a positive integer k, let (A,B) be an exactly k-separating

partition in a matroid M .

(i) For e in E(M), the partition (A ∪ e,B − e) is k-separating if and

only if e ∈ cl(A) or e ∈ cl∗(A).
(ii) For e in B, the partition (A∪ e,B − e) is exactly k-separating if and

only if e is in exactly one of cl(A)∩cl(B−e) and cl∗(A)∩cl∗(B−e).
(iii) The elements of fcl(A) − A can be ordered b1, b2, . . . , bn so that A ∪

{b1, b2, . . . , bi} is k-separating for all i in {1, 2, . . . , n}.

The next well-known lemma specifies precisely when a single element z
of a matroid M blocks a k-separating partition of M\z from extending to
a k-separating partition of M . This result and its dual underlie numerous
arguments in this paper.

Lemma 2.3. In a matroid M with an element z, let (A,B) be a k-separating

partition of M\z. Then both λM (A ∪ z) and λM (B ∪ z) exceed k − 1 if and

only if z ∈ cl∗(A) ∩ cl∗(B).

Let S be a subset of a 3-connected matroid M . We call S a fan of M if
|S| ≥ 3 and there is an ordering (s1, s2, . . . , sn) of the elements of S such
that, for all i in {1, 2, . . . , n − 2},

(i) {si, si+1, si+2} is a triangle or a triad; and
(ii) when {si, si+1, si+2} is a triangle, {si+1, si+2, si+3} is a triad, and

when {si, si+1, si+2} is a triad, {si+1, si+2, si+3} is a triangle.

The connectivity function λM of a matroid M has a number of attractive
properties. For example, λM (X) = λM (E −X). Moreover, the connectivity
functions of M and its dual M∗ are equal. To see this, it suffices to note
the easily verified fact that

λM (X) = r(X) + r∗(X) − |X|.
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We shall often abbreviate λM as λ.
One of the most useful features of the connectivity function of M is that

it is submodular, that is, for all X,Y ⊆ E(M),

λ(X) + λ(Y ) ≥ λ(X ∩ Y ) + λ(X ∪ Y ).

This means that if X and Y are k-separating, and one of X ∩ Y or X ∪ Y
is not (k − 1)-separating, then the other must be k-separating. The next
lemma specializes this fact.

Lemma 2.4. Let M be a 3-connected matroid, and let X and Y be 3-
separating subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.

(ii) If |E(M) − (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

The last lemma will be in constant use throughout the paper. For con-
venience, we use the phrase by uncrossing to mean “by an application of
Lemma 2.4.”

Another consequence of the submodularity of λ is the following very useful
result for 3-connected matroids, which has come to be known as Bixby’s
Lemma [1].

Lemma 2.5. Let M be a 3-connected matroid and e be an element of M .

Then either M\e or M/e has no non-minimal 2-separations. Moreover, in

the first case, co(M\e) is 3-connected while, in the second case, si(M/e) is

3-connected.

A useful companion function to the connectivity function is the local con-

nectivity, u(X,Y ), defined for sets X and Y in a matroid M , by

u(X,Y ) = r(X) + r(Y ) − r(X ∪ Y ).

Evidently,

u(X,E − X) = λM (X).

When M is F-representable and hence viewable as a subset of the vector
space V (r(M), F), the local connectivity u(X,Y ) is precisely the rank of
the intersection of those subspaces in V (r(M), F) that are spanned by X
and Y .

An attractive link between connectivity and local connectivity is provided
by the next result [10, Lemma 2.6], which follows immediately by substitu-
tion.

Lemma 2.6. Let X and Y be disjoint sets in a matroid M , then

λM (X ∪ Y ) = λM (X) + λM (Y ) −uM (X,Y ) − uM∗(X,Y ).

The first part of the next lemma [10, Lemma 2.3] is just a restatement
of [8, Lemma 8.2.10]. The second part, which follows from the first, is the
well-known fact that the connectivity function is monotone under taking
minors.
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Lemma 2.7. Let M be a matroid.

(i) Let X1,X2, Y1 and Y2 be subsets of E(M). If X1 ⊆ Y1 and X2 ⊆ Y2,

then u(X1,X2) ≤ u(Y1, Y2).
(ii) If N is a minor of M and X ⊆ E(M), then

λN (X ∩ E(N)) ≤ λM (X).

One application of the last lemma that we shall use here is the following.

Lemma 2.8. Let N be a 3-connected minor of a sequentially 4-
connected matroid M . If (X,Y ) is a 3-separation of M and |X∩E(N)|, |Y ∩
E(N)| ≥ 3, then (X ∩ E(N), Y ∩ E(N)) is a sequential 3-separation of N .

Proof. We may assume that X is sequential having (x1, x2, . . . , xk) as a
sequential ordering. Thus ({x1, x2, . . . , xi}, {xi+1, xi+2, . . . , xk} ∪ Y ) is a 3-
separation of M for all i ≥ 3. We deduce that the lemma holds provided we
can show that (X ∩E(N), Y ∩E(N)) is a 3-separation of N . But the latter
follows immediately from Lemma 2.7. �

The next lemma, which is elementary, is taken from Geelen and Whittle [3,
Proposition 3.8].

Lemma 2.9. Let M be a 3-connected matroid and (X,Y ) be a non-

sequential 3-separation of M . If |X| = 4, then X is a quad.

In the next lemma, all but (ii) are taken from [3, Lemma 4.1]. The part
of the lemma before (i) is in Coullard [2] (see also [8, Exercise 8.4.3]).

Lemma 2.10. Let M be a 4-connected matroid and z be an element of M .

Then M\z or M/z is weakly 4-connected. Let Q be a quad of M/z.

(i) If (X,Y ) is a 3-separation of M\x with |X|, |Y | ≥ 4, then |X ∩Q| =
|Y ∩ Q| = 2.

(ii) If T ∗ is a triad of M\z and |E(M)| ≥ 7, then Q ∩ T ∗ 6= ∅.

Proof. (ii) Since M is 4-connected and |E(M)| ≥ 7, the matroid M does not
have Q as a quad or T ∗ as a triad. Thus Q ∪ z is a circuit of M and T ∗ ∪ z
is a cocircuit of M . By orthogonality, Q ∩ T ∗ 6= ∅. �

The next lemma simplifies the task of identifying a (4, 4, S)-violator.

Lemma 2.11. Let N be a 3-connected matroid. Then (X,Y ) is a (4, 4, S)-
violator if and only if

(i) |X|, |Y | ≥ 5; or

(ii) X and Y are non-sequential and at least one is a quad.

Proof. A 3-separation (X,Y ) obeying (i) or (ii) is a (4, 4, S)-violator. Con-
versely, suppose (X,Y ) is a (4, 4, S)-violator. We may assume that |X|
or |Y | is at most 4. Then (X,Y ) is non-sequential. Hence X and Y are
non-sequential and at least one is a quad. �



A CHAIN THEOREM FOR MATROIDS 9

The notion of a flower was introduced in [10] to deal with crossing 3-
separations, that is, 3-separations (A1, A2) and (B1, B2) for which each of
the intersections A1∩B1, A1∩B2, A2∩B1, and A2∩B2 is non-empty. When
each of these intersections has at least two elements, Lemma 2.4 implies that
each is exactly 3-separating. Moreover, the union of any consecutive pair in
the cyclic ordering (A1∩B1, A1∩B2, A2∩B2, A2∩B1) is exactly 3-separating.
This 4-tuple is an example of a flower.

An ordered partition (P1, P2, . . . , Pn) of the ground set of a 3-connected
matroid M is a flower Φ if λM (Pi) = 2 = λM (Pi ∩ Pi+1) for all i
in {1, 2, . . . , n} where all subscripts are interpreted modulo n. The sets
P1, P2, . . . , Pn are the petals of Φ. It is shown in [10, Theorem 4.1] that
every flower is either an anemone or a daisy. In the first case, all unions
of petals are 3-separating; in the second, a union of petals is 3-separating if
and only if the petals are consecutive in the cyclic ordering (P1, P2, . . . , Pn).
Observe that, when n ≤ 3, the concepts of an anemone and a daisy coincide
but, for n ≥ 4, a flower cannot be both an anemone and a daisy.

Let Φ1 and Φ2 be flowers of a 3-connected matroid M . A natural quasi
ordering on the collection of flowers of M is obtained by setting Φ1 � Φ2

whenever every non-sequential 3-separation displayed by Φ1 is equivalent to
one displayed by Φ2. If Φ1 � Φ2 and Φ2 � Φ1, we say that Φ1 and Φ2 are
equivalent flowers of M . Hence equivalent flowers display, up to equivalence
of 3-separations, exactly the same non-sequential 3-separations of M . An
element e of M is loose in a flower Φ if e ∈ fcl(Pi) − Pi for some petal Pi of
Φ.

The classes of anemones and daisies can be refined using local connectiv-
ity. For n ≥ 3, an anemone (P1, P2, . . . , Pn) is called

(i) a paddle if u(Pi, Pj) = 2 for all distinct i, j in {1, 2, . . . , n};
(ii) a copaddle if u(Pi, Pj) = 0 for all distinct i, j in {1, 2, . . . , n}; and
(iii) spike-like if n ≥ 4, and u(Pi, Pj) = 1 for all distinct i, j in

{1, 2, . . . , n}.

Similarly, a daisy (P1, P2, . . . , Pn) is called

(i) swirl-like if n ≥ 4 and u(Pi, Pj) = 1 for all consecutive i and j, while
u(Pi, Pj) = 0 for all non-consecutive i and j; and

(ii) Vámos-like if n = 4 and u(Pi, Pj) = 1 for all consecutive i and j,
while {u(P1, P3),u(P2, P4)} = {0, 1}.

If (P1, P2, P3) is a flower Φ and u(Pi, Pj) = 1 for all distinct i and j, we call
Φ ambiguous if it has no loose elements, spike-like if there is an element in
cl(P1)∩cl(P2)∩cl(P3) or cl∗(P1)∩cl∗(P2)∩cl∗(P3), and swirl-like otherwise.
It is shown in [10] that every flower with at least three petals is one of these
six different types: a paddle, a copaddle, spike-like, swirl-like, Vámos-like,
or ambiguous.
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3. Outline of the Proof of the Main Theorem

In this section, we begin by giving a slightly more detailed statement of
the main theorem. Then we briefly outline the main steps in the proof of
this theorem.

Theorem 3.1. Let M be a (4, 5, S)-connected matroid. Then M has an

element x such that, for some N in {co(M\x), si(M/x)}, the matroid N is

(4, 5, S)-connected. Moreover, |E(N)| ∈ {|E(M)| − 1, |E(M)| − 2, |E(M)| −
3}. In particular, E(N) = |E(M)| − 3 if and only if M is a rank-3 wheel;

and E(N) = |E(M)| − 1 unless x is the element of a 5-element fan that is

in two triangles or two triads of the fan.

The overall strategy of the proof of this theorem is standard for proofs
of theorems of this type. We begin by assuming that M is 4-connected. In
that case, we prove the following result.

Theorem 3.2. Let M be a 4-connected matroid with |E(M)| ≥ 13. Then

M has an element x such that M\x or M/x is (4, 4, S)-connected.

A crucial tool in this proof is the following result of Geelen and Whittle [3,
Theorem 5.1].

Theorem 3.3. Let M be a 4-connected matroid. Then M has an element

z such that M\z or M/z is sequentially 4-connected.

In proving Theorem 3.2, we have, by the last result and duality, that we
may assume that the 4-connected matroid M has an element x for which
M\x is sequentially 4-connected. If M\x is not (4, 4, S)-connected, then it
has a 3-separation (X,Y ) with |X|, |Y | ≥ 5. Moreover, this 3-separation is
sequential. Hence it can be chosen so that |X| = 5 and X is sequential hav-
ing (x1, x2, x3, x4, x5) as a sequential ordering. Because M is 4-connected,
M\x has no triangles, so {x1, x2, x3} is a triad of M\x. Now x4 is in ei-
ther the coclosure or the closure of {x1, x2, x3} in M\x. In the first case,
{x1, x2, x3, x4} must be a union of triads in M\x. Again, because M is
4-connected, it follows that every 4-element subset of {x1, x2, x3, x4, x} is a
cocircuit of M , that is, M∗|{x1, x2, x3, x4, x} ∼= U3,5. The dual of this case
is treated in Section 4 where Theorem 1.6 is proved. The second case, when
x4 ∈ cl({x1, x2, x3}), is treated in Section 5, thereby completing the proof of
Theorem 3.2. That result imposed a lower bound on |E(M)|. By settling for
a (4, 5, S)-connected minor of M , we can drop this restriction. Specifically,
at the end of Section 5, we prove the following result.

Corollary 3.4. Let M be a 4-connected matroid. Then M has an element

x such that M\x or M/x is (4, 5, S)-connected.

In view of the last result, when continuing the proof of Theorem 3.1 to
the case when M is internally 4-connected, we may assume that M is not
4-connected. In that case, our proof uses the following result of Geelen and
Whittle [3, Theorem 6.1].
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Theorem 3.5. Let T be a triangle in an internally 4-connected matroid M .

Assume that M is not a wheel or whirl of rank three. Then either

(i) T contains an element t for which M\t is sequentially 4-connected;

or

(ii) |E(M)| ≤ 11 and M has an element y such that M/y is sequentially

4-connected.

Our main result in the internally 4-connected case is the following theo-
rem, which is proved in Section 6.

Theorem 3.6. Let M be a (4, 3, S)-connected matroid that is not isomorphic

to a wheel or whirl of rank three. Then M has an element e such that M\e
or M/e is (4, 5, S)-connected.

The main difficulty in proving this theorem arises when |E(M)| is rel-
atively small although our argument does not differentiate cases based on
|E(M)|.

The first theorem in Section 7 treats the case when M is (4, 4, S)-
connected by proving the following result.

Theorem 3.7. Let M be a (4, 4, S)-connected matroid that is not isomorphic

to a wheel or whirl of rank 3 or 4. Then M has an element x such that M\x
or M/x is (4, 5, S)-connected.

The core difficulties in proving this result have already been resolved in
proving Theorem 3.6, so Theorem 3.7 has a short proof. By using the last
result, we deduce that, to finish the proof of Theorem 3.1, we only need
to treat the case when M is (4, 5, S)-connected but not (4, 4, S)-connected.
This occupies the rest of Section 7. The proof here relies heavily on the
detailed case analysis used by Hall in proving Theorem 1.3.

4. The Five-Point-Plane Case

In this section, we prove Theorem 1.6. It would be desirable to eliminate
the lower bound on |E(M)| in that theorem even though we do not need the
stronger result to prove Theorem 1.5. To this end, the proof of Lemma 4.3
below includes more detail than is needed to get that result.

Lemma 4.1. In a 4-connected matroid M , let |F | = 5 and r(F ) = 3. For

some f ∈ F , let (F1, F2) be a 3-separation of M\f . Then

(i) |F1 ∩ F | = 2 = |F2 ∩ F |; and

(ii) if |F1| = 4, then F1 is a circuit of M and F1 ∪ f contains a cocircuit

of M containing f and having at least four elements.

Proof. As M is 4-connected, exactly two elements of F −f are in each of F1

and F2, so (i) holds. Now let |F1| = 4. Then rM\f (F1)+r∗M\f (F1)−|F1| = 2,

so rM\f (F1) + r∗M\f (F1) = 6. Since M has no triangles, r(F1) ≥ 3. Thus F1

is a circuit unless r(F1) = 4. In the exceptional case, r∗M\f (F1) = 2, so every
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3-element subset of F1 is a triad in M\f . Hence every 4-element subset of
F1 ∪ f is a cocircuit of M . Thus M has a 4-element cocircuit that contains
exactly two elements of F . Since every 4-element subset of F is a circuit of
M , we have a contradiction to orthogonality. We deduce that F1 is indeed
a circuit of M . Thus r∗M\f (F1) = 3.

We now know that F1 contains a cocircuit of M\f . If this cocircuit is
a triad T ∗, then T ∗ ∪ f is a cocircuit of M containing f and contained in
F1 ∪ f . We may now assume that F1 is a cocircuit of M\f . Since F1 is not
a quad of M , we deduce that F1 ∪ f is a cocircuit of M . �

Lemma 4.2. In a 4-connected matroid M with |E(M)| ≥ 7, let {a, b, c, d, e}
be a rank-3 subset of E(M). Then

(i) co(M\a, b) is 3-connected;

(ii) every non-trivial series class of M\a, b has exactly two elements and

meets {c, d, e}; and

(iii) each of c, d, and e is in at most one series pair of M\a, b.

Proof. Consider M\a. This matroid is certainly 3-connected. Now suppose
that (X,Y ) is a 2-separation of M\a, b. Without loss of generality, we may
assume that {d, e} ⊆ X. If c ∈ X, then b ∈ cl(X) so (X ∪ b, Y ) is a 2-
separation of M\a; a contradiction. Hence c ∈ Y . Again consider (X ∪b, Y )
and suppose that |Y | ≥ 3. Then (X ∪ b, Y ) is a 3-separation of M\a and
a ∈ cl(X∪b), so (X∪b∪a, Y ) is a 3-separation of M ; a contradiction. Hence
we may assume that |Y | = 2. Thus Y is a 2-cocircuit of M\a, b containing c.
We deduce that M\a, b has no non-minimal 2-separations so co(M\a, b) is
3-connected. Moreover, every 2-cocircuit of M\a, b meets {c, d, e}. If both
{c, y} and {c, z} are cocircuits of M\a, b, then neither y nor z is in {d, e},
otherwise {a, b, c, d} or {a, b, c, e} is a quad of M ; a contradiction. Therefore
{y, z} is a cocircuit of M\a, b avoiding {c, d, e}. This contradiction implies
that (ii) and (iii) hold. �

Lemma 4.3. In a 4-connected matroid M , let r({a, b, c, d, e}) = 3. Suppose

that (A1, A2) and (B1, B2) are 3-separations of M\a and M\b, respectively,

with |A1|, |A2|, |B1|, |B2| ≥ 4 and b ∈ A1 and a ∈ B1. Then

(i) λM\a,b(A1 ∩ B1) ∈ {1, 2};
(ii) if λM\a,b(A1 ∩ B1) = 1 and |E(M)| ≥ 10, then either A1 ∩ B1 con-

sists of a single element and this element is in {c, d, e}, or A1 ∩ B1

consists of a 2-element cocircuit including exactly one element that

is in {c, d, e}; in both cases, the two elements of {c, d, e} that are not

in A1 ∩ B1 are in A2 ∩ B2;

(iii) if λM\a,b(A1 ∩ B1) = 2 and |E(M)| 6= 10, then |A2 ∩ B2| = 2 and

exactly one element of {c, d, e} is in A1 ∩ B1 while the other two

elements are in A2 ∩ B2, and |A2 ∩ B1| = |A1 ∩ B2| = 2.

Proof. Observe that, by orthogonality, we have:
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4.3.1. Every cocircuit of M that meets {a, b, c, d, e} does so in at least three

elements.

Consider M\a, b. From the preceding lemma, co(M\a, b) is 3-
connected and each of c, d, and e is in at most one series pair of M\a, b.
Consider the placement of c, d, and e.

4.3.2. Either

(I) exactly one element of {c, d, e} is in each of A2 ∩ B1, A2 ∩ B2, and

A1 ∩ B2; or

(II) exactly one element of {c, d, e} is in A1 ∩ B1 and the other two are

in A2 ∩ B2.

None of A1, A2, B1, and B2 contains more than two elements of
{a, b, c, d, e}. Since a ∈ B1, exactly one of c, d, and e is in B1 and the
other two are in B2. Similarly, as b ∈ A1, exactly one of c, d, and e is in A1

and the other two are in A2.
Suppose that |A2 ∩ B1 ∩ {c, d, e}| = 1. Then, as |B1 ∩ {c, d, e}| = 1,

we have |A1 ∩ B1 ∩ {c, d, e}| = 0. As |A1 ∩ {c, d, e}| = 1, it follows that
|A1 ∩ B2 ∩ {c, d, e}| = 1. Since |B2 ∩ {c, d, e}| = 2, we deduce that |A2 ∩
B2 ∩ {c, d, e}| = 1. Hence if |A2 ∩ B1 ∩ {c, d, e}| = 1, then (I) holds. On
the other hand, if |A2 ∩ B1 ∩ {c, d, e}| = 0, then |A1 ∩B1 ∩ {c, d, e}| = 1, so
|A2 ∩ B2 ∩ {c, d, e}| = 2 and (II) holds. This completes the proof of (4.3.2).

4.3.3. λM\a,b(A2) = λM\a,b(A1 − b) = 2 = λM\a,b(B2) = λM\a,b(B1 − a).

By symmetry and taking complements, we see that it suffices to prove that
λM\a,b(A2) = 2. Assume that λM\a,b(A2) < 2. Now |A1|, |A2|, |B1|, |B2| ≥ 4,
every series class of M\a, b has at most two elements and meets {c, d, e} and
co(M\a, b) is 3-connected. Thus, by (4.3.2), A2 consists of exactly two
series pairs each containing one member of {c, d, e}. Let these series pairs
be {c, c′} and {d, d′}. Since |A2| = 4, by Lemma 4.1, A2 is a circuit of M .
But, in forming co(M\a, b), we contract one element from each of {c, c′} and
{d, d′} to get a 2-element circuit. This contradicts the fact that co(M\a, b)
is 3-connected since |E(M)| ≥ 9. Hence (4.3.3) holds.

4.3.4. b ∈ cl(A1 − b) and a ∈ cl(B1 − a).

By symmetry, it suffices to prove that b ∈ cl(A1−b). Assume the contrary.
We have r(A1)+r(A2) = r(M\a)+2, so r(A1−b)+r(A2∪b) ≤ r(M\a)+2.
Since a ∈ cl(A2 ∪ b) and |A1 − b| ≥ 3, we deduce that (A1 − b,A2 ∪ b ∪ a) is
a 3-separation of M ; a contradiction. We conclude that (4.3.4) holds.

4.3.5. None of A1 ∩ B1, A1 ∩ B2, or A2 ∩ B1 is empty.

If A1∩B1 = ∅, then A1−b ⊆ B2, so, by (4.3.4), b ∈ cl(B2); a contradiction.
If A1 ∩ B2 = ∅, then A1 − b ⊆ B1, so b ∈ cl(B1); a contradiction. Hence
A1 ∩ B2 is non-empty and, by symmetry, so is A2 ∩ B1.

4.3.6. If λM\a,b(A2 ∩ B2) ≤ 2, then λM\a,b(A2 ∩ B2) = |A2 ∩ B2|.



14 JAMES OXLEY, CHARLES SEMPLE, AND GEOFF WHITTLE

By (4.3.4), we deduce that λM\a,b(A2 ∩B2) = λM\a(A2 ∩B2) = λM (A2 ∩
B2). Since M is 4-connected, it follows that λM\a,b(A2 ∩ B2) = |A2 ∩ B2|.

4.3.7. (i) λM\a,b(A1 ∩ B2) = λM\b(A1 ∩ B2) = λM (A1 ∩ B2); and

(ii) λM\a,b(A2 ∩ B1) = λM\a(A2 ∩ B1) = λM (A2 ∩ B1).

We have |A2∩{c, d, e}| = 2 and a ∈ cl(B1−a), so cl((B1−a)∪ (A2 ∩B2))
contains b. Thus (i) holds and (ii) follows by symmetry.

By submodularity, we have:

4.3.8. λM\a,b(A1 ∩ B2) + λM\a,b(A2 ∩ B1) ≤ 4.

4.3.9. (i) If λM\a,b(A1 ∩ B2) ≤ 2, then λM\a,b(A1 ∩ B2) = |A1 ∩ B2|.
(ii) If λM\a,b(A2 ∩ B1) ≤ 2, then λM\a,b(A2 ∩ B1) = |A2 ∩ B1|.
(iii) Either |A1 ∩ B2| or |A2 ∩ B1| is 1; or |A1 ∩ B2| = 2 = |A2 ∩ B1|.
(iv) If |A1 ∩ B2| = 1, then A1 is a 4-element circuit of M and A1 ∩ B1

is a 2-element cocircuit of M\a, b that contains exactly one element

of {c, d, e}.

Parts (i) and (ii) follow from (4.3.7). Part (iii) follows by combining
(i) and (ii) and using (4.3.8) and (4.3.5). To prove (iv), now assume that
|A1 ∩ B2| = 1. As |A2|, |A1| ≥ 4, we have |A2 ∩ B2| ≥ 3 and |A1 ∩ B1| ≥ 2.
Now λM\a,b(A2 ∩B2) = λM\a(A2 ∩B2) ≥ 3, so λM\a,b(A1 ∩B1) ≤ 1. Hence
A1∩B1 is a 2-element cocircuit of M\a, b, so |A1| = 4. Thus, by Lemma 4.1,
A1 is a circuit of M .

4.3.10. Either

(i) |A2 ∩ B2| = 2 and λM\a,b(A1 ∩ B1) ≤ 2; or

(ii) |A2 ∩ B2| ≥ 3 and λM\a,b(A1 ∩ B1) = 1.

Moreover, if λM\a,b(A1 ∩ B1) = 1, then either |A1 ∩ B1| = 1, or A1 ∩ B1 is

a 2-cocircuit of M\a, b that contains exactly one element of {c, d, e}.

To see this, note that, by (4.3.9)(iii), either |A1 ∩B2| = |A2 ∩B1| = 2; or
|A1∩B2| or |A2∩B1| is 1. Thus, as |B2|, |A2| ≥ 4, we have |A2∩B2| ≥ 2. Also
λM\a,b(A2∩B2) = λM\a(A2∩B2) as b ∈ cl(A1−b). Hence λM\a,b(A2∩B2) ≥
2, so, by submodularity, λM\a,b(A1 ∩ B1) ≤ 2. Moreover, if |A2 ∩ B2| ≥ 3,
then λM\a,b(A2 ∩ B2) ≥ 3, so λM\a,b(A1 ∩ B1) ≤ 1. We deduce that (i) or
(ii) of (4.3.10) holds. The final assertion of the sublemma follows directly
from Lemma 4.2.

By (4.3.5) and (4.3.10), we deduce that (i) of the lemma holds.

4.3.11. If |A1 ∩ B1| = 1 and |E(M)| ≥ 10, then A1 ∩ B1 ⊆ {c, d, e}.

By (ii) of the lemma, each of A1 and B1 has exactly four elements. By
Lemma 4.1, each of A1 and B1 is a circuit and A1 ∪ a and B1 ∪ b contain
cocircuits C∗

a and C∗
b of M containing a and b, respectively. As |A1∩B1| = 1

and each of these cocircuits contains at least four elements, C∗
a and C∗

b are
distinct.
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Assume that (4.3.11) fails. Then (I) of (4.3.2) holds and |A1 ∩ B2 ∩
{c, d, e}| = 1 = |A2∩B1∩{c, d, e}|. Let A1∩B2 = {c, x}, let A2∩B1 = {d, y},
and let A1 ∩B1 = {z}. Then A1∪B1 is spanned by {a, b, c, z} since we have
the circuits {b, c, z, x}, {a, b, c, d}, and {a, d, z, y}. Thus

λ(A1 ∪ B1) = r(A1 ∪ B1) + r∗(A1 ∪ B1) − |A1 ∪ B1|

≤ 4 + 5 − 7 = 2.

This contradicts the fact that M is 4-connected because |A2 ∩B2| ≥ 3 since
|E(M)| ≥ 10. We conclude that (4.3.11) holds.

By combining (4.3.10) and (4.3.11), we deduce that (ii) of the lemma
holds.

As an immediate consequence of (4.3.10), we have:

4.3.12. If λM\a,b(A1 ∩ B1) = 2, then |A2 ∩ B2| = 2.

We now complete the proof of (iii) of the lemma. Assume that λM\a,b(A1∩
B1) = 2. Then, by (4.3.12), |A2 ∩ B2| = 2. Since |A2|, |B2| ≥ 4, it follows
by (4.3.9)(iii) that |A1 ∩ B2| = |A2 ∩ B1| = 2. Suppose that (I) of (4.3.2)
holds. Then {a, b} ⊆ cl(E − {a, b} − (A1 ∩ B1)), so λM\a,b(A1 ∩ B1) =
2 = λM\a(A1 ∩ B1) = λM (A1 ∩ B1). Hence, as |A2| ≥ 4, we deduce that
|A1∩B1| = 2 and, therefore, |E(M)| = 10. Thus, provided |E(M)| 6= 10, we
may assume that (II) of (4.3.2) holds and part (iii) of the lemma follows. �

The essential fact from the last lemma needed for the proof of Theorem 1.6
is the following.

Corollary 4.4. In a 4-connected matroid M with |E(M)| ≥ 11, let

r({a, b, c, d, e}) = 3. Suppose that (A1, A2) and (B1, B2) are 3-separations

of M\a and M\b, respectively, with |A1|, |A2|, |B1|, |B2| ≥ 4 and b ∈ A1 and

a ∈ B1. Then one element of {c, d, e} is in A1 ∩ B1 and the other two are

in A2 ∩ B2.

Proof of Theorem 1.6. Suppose that none of M\a,M\b,M\c, and
M\d is internally 4-connected. Let (A1, A2), (B1, B2), (C1, C2),
and (D1,D2) be 3-separations of M\a, M\b, M\c, and M\d with
|A1|, |A2|, |B1|, |B2|, |C1|, |C2|, |D1|, |D2| ≥ 4. Each of the last eight sets
contains exactly two elements of {a, b, c, d, e}. In particular, we may assume
that {b, c} ⊆ A1 ∩ {b, c, d, e}. Label B1 and C1 so that a ∈ B1 ∩ C1. By
Corollary 4.4, since |A1 ∩ B1 ∩ {c, d, e}| = 1, we deduce that c ∈ B1, so
B2 ∩ {a, c, d, e} = {d, e}. Symmetrically, b ∈ C1.

Now consider (D1,D2) labelling this so that a ∈ D1. Because d ∈ A2

and A2 ∩ {b, c, d, e} = {d, e}, we deduce that D1 ∩ A2 ∩ {a, b, c, d, e} = {e}.
Thus D1 ∩ {a, b, c, d, e} = {a, e} and D2 ∩ {a, b, c, d, e} = {b, c}. Now d ∈
B2 and b ∈ D2, yet D2 ∩ B2 ∩ {a, b, c, d, e} = ∅. This contradiction to
Corollary 4.4 completes the proof that at least one of M\a, M\b, M\c, and
M\d is internally 4-connected. If exactly one of M\a,M\b,M\c, and M\d
is internally 4-connected, assume it is M\a. Then, arguing as above, we get
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that at least one of M\b,M\c,M\d, and M\e is internally 4-connected. We
conclude that at least two of M\a,M\b,M\c,M\d, and M\e are internally
4-connected. �

5. The 4-Connected Case

In this section, we shall complete the proof of Theorem 3.2, thereby prov-
ing the main theorem in the case that M is 4-connected. We are following
the strategy outlined in Section 3. The key remaining result we need is the
following.

Theorem 5.1. Let M be a 4-connected matroid with |E(M)| ≥ 13. Let x be

an element of M such that M\x is sequentially 4-connected but not weakly

4-connected, and M/x is not sequentially 4-connected. Suppose that {s, t, u}
is a triad of M\x, that {s, t, u, y} is a circuit of M\x, and that {s, t, u, y, c}
is 3-separating in M\x. Then, for some z in {s, t, u}, the matroid M/z is

(4, 4, S)-connected.

Proof. Since M\x is not weakly 4-connected, by Lemma 2.10, we have:

5.1.1. M/x is weakly 4-connected.

Since M/x is not sequentially 4-connected, by Lemma 2.9,

5.1.2. M/x has a quad D.

Assume the theorem fails.

Lemma 5.2. The matroid M/s has a (4, 4, S)-violator (S1, S2) with

{t, u, y} ⊆ S1 and x in S2.

Proof. Because the theorem fails, M/s has a (4, 4, S)-violator (S1, S2) where
we can label this so that |S1 ∩ {t, u, y}| ≥ 2.

5.2.1. If {t, u, y} ⊆ S1, then x ∈ S2.

To see this, assume that x ∈ S1. We have

rM/s(S1) + rM/s(S2) = r(M/s) + 2,

so r(S1 ∪ s) + r(S2 ∪ s) = r(M) + 3. But {s, t, u, x} is a cocircuit of M
and {t, u, x} ∩ S2 = ∅. Hence r(S2 ∪ s) = r(S2) + 1. Thus (S1 ∪ s, S2) is a
3-separation of M ; a contradiction. Hence (5.2.1) holds.

We may now assume that |S1 ∩ {t, u, y}| = 2. Then (S1 ∪ {t, u, y}, S2 −
{t, u, y}) is a 3-separation of M/s that is equivalent to (S1, S2). Hence S2

is not a quad of M/s. Thus (S1 ∪ {t, u, y}, S2 − {t, u, y}) is a (4, 4, S)-
violator unless |S2| = 5 and S2 − {t, u, y} is not a quad of M/s. We deduce
that the lemma holds unless S2 is a sequential 3-separating set of M/s having
a sequential ordering (1, 2, 3, 4, 5) with 5 ∈ {t, u, y}.

Consider the exceptional case. As 5 ∈ {t, u, y}, we have 5 ∈ clM/s(S1).
Thus 5 ∈ clM/s({1, 2, 3, 4}). Since M/s has no triads, we deduce that
{1, 2, 3} is a triangle of M/s. If 4 ∈ clM/s({1, 2, 3}), then M |{1, 2, 3, 4, s} ∼=
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U3,5. By applying the argument for (5.2.1) to (S1 ∪ {t, u, y}, S2 − {t, u, y}),
we deduce that x ∈ {1, 2, 3, 4}. But this means that the circuit {1, 2, 3, 4}
meets the cocircuit {s, t, u, x} in a single element; a contradiction. Hence
4 6∈ clM/s({1, 2, 3}), so {1, 2, 3, 4} is a cocircuit of M/s and hence of M .
Moreover, {1, 2, 3, s} is a circuit of M . By orthogonality, x ∈ {1, 2, 3} so,
since 1, 2, and 3 can be arbitrarily reordered, we may assume that x = 1.

Let Z = {x, 2, 3, 4, s, t, u, y}. Then rM/s(Z−s) ≤ 4 since Z−s is spanned
in M/s by {2, 3, 4} together with an element of {t, u, y} − 5 because 5 ∈
clM/s({1, 2, 3, 4}) and 5 ∈ {t, u, y}. Now {s, t, u, y} is 3-separating in M\x.
Thus, by Lemma 2.10, the quad D of M/x satisfies

|D ∩ {s, t, u, y}| = 2 and |D − {s, t, u, y}| = 2.

Now D is a cocircuit of M and D ∪ x is a circuit of M . As the cocircuit
{x, 2, 3, 4} meets D ∪ x, orthogonality implies that D meets {2, 3, 4}.

We now have two possibilities:

(i) D ⊆ Z; and
(ii) D − Z = {d} for some element d.

In the first case, D contains exactly two elements of {2, 3, 4}. Consider M∗.
It has {x, 2, 3, 4}, {s, t, u, x}, and D among its circuits. Let B∗ consist of
{x, y} together with two elements of {s, t, u}, both in D if possible, and one
element of {2, 3, 4} ∩ D. Then B∗ spans Z in M∗, Hence r∗M (Z) ≤ 5. But
we have already shown that rM (Z) ≤ 5. Thus rM (Z) + r∗M (Z)− |Z| ≤ 2, so
|E(M) − Z| ≤ 2. Hence |E(M)| ≤ 10; a contradiction.

In case (ii), the circuit D ∪ x and the fact that r(Z) ≤ 5 imply that
r(Z ∪ d) ≤ 5. Moreover, Z ∪ d is spanned in M∗ by {x, y, s, t, 2, 3}, so
r∗(Z∪d) ≤ 6. Thus rM (Z∪d)+r∗M (Z∪d)−|Z∪d| ≤ 2, so |E(M)−(Z∪d)| ≤
2. Hence |E(M)| ≤ 11. This contradiction completes the proof of the
lemma. �

Lemma 5.3. If (S1, S2) is a (4, 4, S)-violator of M/s with {t, u, y} ⊆ S1

and x ∈ S2, then

(i) rM/s(S1), rM/s(S2) ≥ 3; and

(ii) either |S1|, |S2| ≥ 5, or S2 is a quad of M/s and S1 is non-sequential

but is not a quad.

Proof. Suppose that rM/s(S2) = 2. Then, by Lemma 2.11, |S2| ≥ 5 and so
every 4-element subset of S2 is a circuit of M . Thus M has a 4-element cir-
cuit meeting the cocircuit {s, t, u, x} in {x}. This contradicts orthogonality.
Thus rM/s(S2) ≥ 3.

Now assume that rM/s(S1) = 2. Then, by Lemma 2.11, |S1| ≥ 5. Now
take a and b to be distinct elements of S1 − {t, u, y}. Then {a, b, y, s} is a
circuit of M meeting the cocircuit {s, t, u, x} in a single element; a contra-
diction to orthogonality. We conclude that (i) holds.

To prove (ii), note that if it fails, then S1 is a quad of M/s. But S1 is
not a quad of the 4-connected matroid M , so S1 ∪ s is a circuit of M that
properly contains the circuit {s, t, u, y}; a contradiction. �
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Now, by Lemma 5.2, we can choose (S1, S2), (T1, T2), and (U1, U2) to be
(4, 4, S)-violators of M/s, M/t, and M/u, respectively, with x ∈ S2∩T2∩U2

and (S2∪T2∪U2)∩{s, t, u, y} = ∅. Let S′
2, T

′
2, and U ′

2 be S2−x, T2−x, and
U2 − x, respectively. In the results that follow, we prove various properties
of the set S2. By symmetry, the corresponding properties will also hold for
T2 and U2.

Lemma 5.4. The elements s and x are in clM (S2) and clM/s(S
′
2), respec-

tively. Thus x ∈ clM (S′
2 ∪ s).

Proof. We have

rM/s(S1) + rM/s(S2) = r(M/s) + 2.

Assume x 6∈ clM/s(S
′
2). Then

rM/s(S1 ∪ x) + rM/s(S
′
2) = r(M/s) + 2,

so r(S1 ∪ x ∪ s) + r(S′
2 ∪ s) = r(M) + 3. Now {s, t, u, x} is a cocircuit of

M meeting S′
2 ∪ s in a single element. Hence r(S′

2 ∪ s) = r(S′
2) + 1. Thus

r(S1 ∪ x ∪ s) + r(S′
2) = r(M) + 2. But M is 4-connected, so |S′

2| ≤ 2. This
contradicts the fact that |S2| ≥ 4. We deduce that x ∈ clM/s(S

′
2). Hence

x ∈ clM (S′
2 ∪ s). But x 6∈ clM (S′

2) because {s, t, u, x} is a cocircuit that
avoids S′

2. Hence s ∈ clM (S′
2 ∪ x) = cl(S2). �

Lemma 5.5. u({s, t, u, y}, S′
2 ∪ T ′

2 ∪ U ′
2) = 2.

Proof. The set {s, t, u, y} is 3-separating in M\x, so u({s, t, u, y}, E(M) −
{s, t, u, y, x}) = 2. By Lemma 2.7(i), u({s, t, u, y}, S′

2 ∪ T ′
2 ∪ U ′

2) ≤ 2.
Now r({s, t, u, y}) = 3 and, by Lemma 5.4 and symmetry, cl(S′

2 ∪ T ′
2 ∪

U ′
2 ∪ x) contains {s, t, u} and hence y. Thus

3 = r({s, t, u, y}) + r(S′
2 ∪ T ′

2 ∪ U ′
2 ∪ x) − r(S′

2 ∪ T ′
2 ∪ U ′

2 ∪ x ∪ {s, t, u, y})

and

2 ≥ r({s, t, u, y}) + r(S′
2 ∪ T ′

2 ∪ U ′
2) − r(S′

2 ∪ T ′
2 ∪ U ′

2 ∪ {s, t, u, y})

≥ r({s, t, u, y}) + r(S′
2 ∪ T ′

2 ∪ U ′
2) − r(S′

2 ∪ T ′
2 ∪ U ′

2 ∪ x ∪ {s, t, u, y})

≥ r({s, t, u, y}) + r(S′
2 ∪ T ′

2 ∪ U ′
2 ∪ x) − 1

− r(S′
2 ∪ T ′

2 ∪ U ′
2 ∪ x ∪ {s, t, u, y})

= 3 − 1 = 2.

We conclude that u({s, t, u, y}, S′
2 ∪ T ′

2 ∪ U ′
2) = 2. �

Lemma 5.6. If λM\x(S′
2 ∪ T ′

2 ∪ U ′
2) = 2, then

E(M) = S′
2 ∪ T ′

2 ∪ U ′
2 ∪ {s, t, u, y, x}.

Proof. By Lemma 2.6, we have

λM\x(S′
2 ∪ T ′

2 ∪ U ′
2 ∪ {s, t, u, y}) ≤ λM\x(S′

2 ∪ T ′
2 ∪ U ′

2) + λM\x({s, t, u, y})

− u(S′
2 ∪ T ′

2 ∪ U ′
2, {s, t, u, y})

= 2 + 2 − 2 = 2.
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But x ∈ cl(S′
2∪T ′

2∪U ′
2∪{s, t, u, y}), so λM (S′

2∪T ′
2∪U ′

2∪{s, t, u, y, x}) ≤ 2.
The matroid M is 4-connected, so E(M) − (S′

2 ∪ T ′
2 ∪ U ′

2 ∪ {s, t, u, y, x})
is a set V with at most two elements. To complete the proof of the lemma,
we need to show that V is empty.

First we show that

5.6.1. V ⊆ cl({s, t, u}).

Assume not. As λM\x(S′
2 ∪ T ′

2 ∪ U ′
2) = 2, we have

2 = r(S′
2 ∪ T ′

2 ∪ U ′
2) + r({s, t, u, y} ∪ V ) − r(M\x)

≥ r(S′
2 ∪ T ′

2 ∪ U ′
2) + r({s, t, u, y}) − r(M\x)

= 2

where the last step holds by Lemma 5.5 since r(M\x) = r(M\x\V ) as
|V ∪ x| ≤ 3. Thus equality holds throughout the last chain of inequalities,
so V ⊆ cl({s, t, u, y}) = cl({s, t, u}), that is, (5.6.1) holds.

Now take e ∈ V . Then {s, t, u, e} and {s, t, u, y} are both circuits of M , so
every 4-element subset of {s, t, u, y, e} is a circuit of M . By (5.1.2), M/x has
a quad D. By Lemma 2.10, D contains exactly two elements of {s, t, u, y, e}.
But this contradicts orthogonality since D is a cocircuit of M . We conclude
that V = ∅. Hence the lemma holds. �

Lemma 5.7. The matroid M\x/s is 3-connected.

Proof. Certainly M\x is 3-connected and has no triangles since M is 4-
connected. The matroid M\x/s has {t, u, y} as a triangle and is simple
and cosimple. Assume (X,Y ) is a 2-separation of M\x/s. Since M\x/s
has no 2-cocircuits, this 2-separation is non-minimal. Then, without loss of
generality, |X ∩ {t, u, y}| ≥ 2. Therefore (X ∪ {t, u, y}, Y − {t, u, y}) is a
2-separation of M\x/s and |Y − {t, u, y}| ≥ 3. Hence we may assume that
X ⊇ {t, u, y} and |Y | ≥ 3. Now

rM\x/s(X) + rM\x/s(Y ) = r(M\x/s) + 1.

So r(X ∪ s) + r(Y ∪ s) = r(M) + 2. We have {s, t, u, x} as a cocircuit of M ,
so {s, t, u} is a cocircuit of M\x. Hence, as {t, u} ⊆ X, we have r(Y ∪ s) =
r(Y )+1, so r(X∪s)+r(Y ) = r(M)+1. Thus r(X∪s)+r(Y ∪x) ≤ r(M)+2,
a contradiction to the fact that M is 4-connected. �

Lemma 5.8. The partition (S1 ∪ s, S′
2) is a vertical 3-separation of M\x,

so λM\x(S′
2) = 2. Moreover, if |S′

2| = 3, then S′
2 is a triad of M\x.

Proof. We have

r(S1 ∪ s) + r(S′
2) − r(M\x) = [rM/s(S1) + 1] + [r(S′

2 ∪ s) − 1]

− [r(M/s) + 1]

= rM/s(S1) + rM/s(S
′
2) − r(M/s)

= rM/s(S1) + rM/s(S2) − r(M/s)

= 2.
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Thus (S1 ∪ s, S′
2) is a 3-separation of M\x. Since, by Lemmas 5.3 and

5.4, rM/s(S1) ≥ 3 and rM/s(S
′
2) = rM/s(S2) ≥ 3, it follows that this 3-

separation is vertical.
Finally, if |S′

2| = 3, then (S1 ∪ x, S′
2) is a minimal 3-separation of M\x.

As M\x has no triangles, it follows that S′
2 is a triad of M\x. �

Lemma 5.9. S′
2 ∩ T ′

2 6= ∅.

Proof. Assume S′
2 ∩ T ′

2 = ∅. Then S′
2 ⊆ T1 and s ∈ T1. But, by Lemma 5.4,

x ∈ cl(S′
2 ∪ s). Hence x ∈ cl(T1). Thus, by Lemma 5.8 and symmetry,

(T1 ∪ t ∪ x, T ′
2) is a 3-separation of M ; a contradiction. �

Lemma 5.10. The sets S′
2 and T ′

2 have the following properties:

(i) λM (S′
2 − T ′

2) + λM (T ′
2 − S′

2) ≤ 4;
(ii) if |S′

2 − T ′
2| ≥ 2, then |T ′

2 − S′
2| ≤ 2;

(iii) if |S′
2 − T ′

2| ≥ 3, then |T ′
2 − S′

2| ≤ 1; and

(iv) if |S′
2 − T ′

2|, |T
′
2 − S′

2| ≥ 2, then |S′
2 − T ′

2| = |T ′
2 − S′

2| = 2.

Proof. We have λM\x(S′
2) = 2 = λM\x(T ′

2) while E(M\x)−S′
2 = S1 ∪ s and

E(M\x) − T ′
2 = T1 ∪ t. Thus

4 = λM\x(S′
2) + λM\x(T1 ∪ t)

≥ λM\x(S′
2 ∪ T1 ∪ t) + λM\x(S′

2 ∩ (T1 ∪ t))

= λM\x(T ′
2 − S′

2) + λM\x(S′
2 − T ′

2)

= λM (T ′
2 − S′

2) + λM (S′
2 − T ′

2).

The last step here holds because E(M\x) − (T ′
2 − S′

2) ⊇ S′
2 ∪ s and x ∈

clM (S′
2 ∪ s), so λM\x(T ′

2 −S′
2) = λM (T ′

2 −S′
2) and, by symmetry, λM\x(S′

2 −
T ′

2) = λM (S′
2 − T ′

2). Thus (i) holds. Since M is 4-connected, parts (ii) and
(iii) hold. Part (iv) follows by using (ii) and the natural symmetric form of
it. �

Lemma 5.11. If |S′
2 ∩ T ′

2| = 1, then S′
2 and T ′

2 are both triads of M\x.

Proof. Suppose that S′
2 is not a triad of M\x. Then, by Lemma 5.8, |S′

2| > 3,
so |S′

2 −T ′
2| ≥ 3. Hence, by Lemma 5.10(iii), |T ′

2 −S′
2| ≤ 1. As |T ′

2 ∩S′
2| = 1,

it follows that |T ′
2| ≤ 2; a contradiction. We conclude that S′

2 is a triad and,
by symmetry, so is T ′

2. �

Lemma 5.12. If each of S′
2 − T ′

2, T
′
2 − S′

2, and S′
2 ∩ T ′

2 has at least two

elements, then (S′
2 ∩ T ′

2, T
′
2 −S′

2, (S1 ∪ s)∩ (T1 ∪ t), S′
2 − T ′

2) is a Vámos-like

flower Φ in M\x and |S′
2 − T ′

2| = 2 = |T ′
2 − S′

2|.

Proof. By Lemma 5.10, we deduce that each of S′
2−T ′

2 and T ′
2−S′

2 has exactly
two elements and so is 3-separating in M\x. We have λM\x(S′

2) = 2 =

λM\x(T ′
2) while |(S1∪s)∩(T1∪t)| = |E(M\x)−(S′

2∪T ′
2)| ≥ |{s, t, u, y}| ≥ 4.

We deduce, by Lemma 2.4, that λM\x(S′
2∩T ′

2) = 2 = λM\x((S1∪s)∩(T1∪t)).
Hence Φ is a flower in M\x. Now (S1∪s)∩(T1∪t) is 3-separating in M\x and
has at least four elements. Thus, by Lemma 2.10, D has exactly two elements
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in (S1∪s)∩(T1∪ t). Similarly, D has exactly two elements in S′
2 and exactly

two elements in T ′
2. Hence D has exactly two elements in S′

2∩T ′
2. We deduce,

since D contains a cocircuit of M\x, that u∗
M\x(S

′
2∪T ′

2, (S1∪s)∩(T1∪t)) > 0.

Now D avoids the 4-element set (S′
2 − T ′

2) ∪ (T ′
2 − S′

2) of E(M\x) so, by
Lemma 2.10 again, the set (S′

2 − T ′
2)∪ (T ′

2 −S′
2) is not exactly 3-separating.

Thus Φ is a daisy in each of M\x and (M\x)∗. As u∗
M\x(S

′
2 ∪ T ′

2, (S1 ∪

s) ∩ (T1 ∪ t)) > 0, the flower Φ is not swirl-like in (M\x)∗. Hence Φ is not
swirl-like in M\x, so Φ is Vámos-like. �

Lemma 5.13. If |S′
2 ∩ T ′

2| ≥ 2, then |S′
2 − T ′

2| ≤ 1 or |T ′
2 − S′

2| ≤ 1.

Proof. Assume that both S′
2 − T ′

2 and T ′
2 − S′

2 exceed one. Then, by
Lemma 5.12, Φ is a Vámos-like flower in M\x and |S′

2−T ′
2| = 2 = |T ′

2−S′
2|.

By [10, Theorem 6.1], Φ has no loose elements.
Now (S′

2 − T ′
2) ∪ [(S1 ∪ s) ∩ (T1 ∪ t)] = T1 ∪ t and (T ′

2, T1 ∪ t) is a 3-
separation of M\x. Hence it is sequential. Assume that T1 ∪ t is sequential
and consider the set F of the first three elements in a sequential ordering
−−−→
T1 ∪ t of T1 ∪ t. If S′

2 −T ′
2 ⊆ F , then the element of F − (S′

2 −T ′
2) is loose in

Φ; a contradiction. Thus, at most one element of S′
2 −T ′

2 is in F , so we may

assume that the first two elements of
−−−→
T1 ∪ t are in (S1∪s)∩(T1∪t). It follows

that the first element of S′
2 − T ′

2 in
−−−→
T1 ∪ t is in the closure or coclosure of

(S1 ∪ s)∩ (T1 ∪ t) in M\x and so is loose in Φ; a contradiction. We conclude
that T1∪t is not sequential. A symmetric argument using T ′

2−S′
2 and S′

2∩T ′
2

in place of S′
2 − T ′

2 and (S1 ∪ s) ∩ (T1 ∪ t), respectively, establishes that T ′
2

is not sequential. Thus (T ′
2, T1 ∪ t) is non-sequential; a contradiction. �

Lemma 5.14. If T ′
2 ⊆ S′

2, then ((S1 ∪ s) − t, S2) is a (4, 4, S)-violator for

M/t with x in S2 and {s, u, y} ⊆ (S1 ∪ s) − t.

Proof. We have

rM/s(S2) + rM/s(S1) = r(M/s) + 2.

Thus

r(S2 ∪ s) − 1 + r(S1 ∪ s) − 1 = r(M/t) + 2.

Now, by Lemma 5.4, r(S2 ∪ s) = r(S2) and r(T2 ∪ t) = r(T2). Thus, as
T2 ⊆ S2, we deduce that r(S2 ∪ t) = r(S2) = r(S2 ∪ s), so

r(S2 ∪ t) − 1 + r([(S1 ∪ s) − t] ∪ t) − 1 = r(M/t) + 2.

Hence ((S1 ∪ s) − t, S2) is a 3-separation of M/t.
Evidently x ∈ S2 and {s, u, y} ⊆ (S1∪s)−t. Suppose that ((S1∪s)−t, S2)

is not a (4, 4, S)-violator of M/t. As (S1, S2) is a (4, 4, S)-violator of M/s,
it follows that S1 or S2 is a quad of M/s. But if S1 is a quad of M/s,
then S1 ∪ s is a circuit of M that properly contains the circuit {s, t, u, y}; a
contradiction. Thus S2 is a quad of M/s. Hence S′

2 = T ′
2 since |S′

2|, |T
′
2| ≥ 3,

so S2 = T2 and ((S1 ∪ s) − t, S2) = (T1, T2). Thus ((S1 ∪ s) − t, S2) is a
(4, 4, S)-violator of M/t. �
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By the last lemma, if T ′
2 ⊆ S′

2, then we may replace (T1, T2) by ((S1 ∪
s) − t, S2) giving T ′

2 = S′
2. By repeating this process, we may assume that

none of S′
2, T

′
2, and U ′

2 is properly contained in another such set.

Lemma 5.15. The sets S′
2, T

′
2, and U ′

2 are not all equal.

Proof. Assume that S′
2 = T ′

2 = U ′
2. We know that x ∈ clM/s(S

′
2)∩clM/t(T

′
2)∩

clM/u(U ′
2) and

u(S′
2, {s, t, u, y}) = r(S′

2) + r({s, t, u, y}) − r(S′
2 ∪ {s, t, u, y})

= r(S′
2) + 3 − r(S′

2 ∪ {s, t, u, y}).

Now M\x has {s, t, u} as a triad. Thus r(S′
2 ∪ {s, t, u, y}) ≥ r(S′

2) + 1.
But cl(S′

2 ∪ s) contains x. Thus, by Lemma 5.4 and symmetry, cl(S′
2 ∪ s)

contains t and u, and hence y. Therefore r(S′
2 ∪ {s, t, u, y}) ≤ r(S′

2) + 1.
Thus u(S′

2, {s, t, u, y}) = 2.
By Lemma 2.6,

λM\x(S′
2 ∪ {s, t, u, y}) = λM\x(S′

2) + λM\x({s, t, u, y})

− uM\x(S
′
2, {s, t, u, y}) − u∗

M\x(S′
2, {s, t, u, y})

≤ 2 + 2 − 2 = 2.

Since x ∈ cl(S′
2 ∪{s, t, u, y}), we deduce that λM (S′

2 ∪{s, t, u, y, x}) ≤ 2. As
M is 4-connected, it follows that |E(M) − (S′

2 ∪ {s, t, u, y, x})| ≤ 2.
By Lemma 2.7(i),

2 = u(S′
2, S1 ∪ s) ≥ u(S′

2, {s, t, u, y}) = 2.

Thus

r(S1 ∪ s) − r(S′
2 ∪ S1 ∪ s) = r({s, t, u, y}) − r(S′

2 ∪ {s, t, u, y}).

Since |E(M) − (S′
2 ∪ {s, t, u, y})| ≤ 3, we deduce that r(S′

2 ∪ S1 ∪ s) =
r(S′

2 ∪ {s, t, u, y}) = r(M). Hence r(S1 ∪ s) = r({s, t, u, y}) = 3. This
contradiction to Lemma 5.3 completes the proof. �

Lemma 5.16. If S′
2 and T ′

2 are both triads of M\x, then |S′
2 ∩ T ′

2| = 1.

Proof. By Lemma 5.9, |S′
2 ∩ T ′

2| ≥ 1. If |S′
2 ∩ T ′

2| ≥ 2, then every 3-element
subset of S′

2 ∪ T ′
2 is a triad of M\x. Thus r∗M (S2 ∪ T2) = 3. Now exactly

two elements of D are in {s, t, u, y}. Thus at most two elements of D are in
S′

2 ∪T ′
2. But, by Lemma 2.10(ii), there is an element of D in each 3-element

subset of S′
2 ∪ T ′

2. Hence exactly two elements of D are in S′
2 ∪ T ′

2.
Let G = S′

2 ∪ T ′
2 ∪ {s, t, u, y, x}. Then G is spanned by S′

2 ∪ T ′
2 ∪ {u, x}

as s ∈ cl(S2) and t ∈ cl(T2) while {s, t, u, y} is a circuit. Thus r(G) ≤
|S′

2 ∪ T ′
2| = 2. On the other hand, letting d be an element of {s, t, u} such

that |{d, y} ∩ D| = 1, we have that cl∗(S2 ∪ T2 ∪ {d, y}) contains at least
three elements of the cocircuit D and so contains all of D. The choice of D
also means that this coclosure contains at least two elements of {s, t, u} and
the cocircuit {s, t, u, x} guarantees that it contains all of {s, t, u}. Hence
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cl∗(S2 ∪T2 ∪{d, y}) contains G and so r∗(G) ≤ r∗(S2 ∪T2) + 2 ≤ 5.Thus we
have

λM (G) = r(G) + r∗(G) − |G| ≤ [|S′
2 ∪ T ′

2| + 2] + 5 − [|S′
2 ∪ T ′

2| + 5] = 2.

Hence |E(M)−G| ≤ 2. But this contradicts the fact that |E(M)| ≥ 12. �

Lemma 5.17. If |S′
2∩T ′

2| ≥ 2, then λM\x(S′
2∪T ′

2) = 2. Moreover, if at least

two of S′
2∩T ′

2, T
′
2∩U ′

2, and U ′
2∩S′

2 exceed one, then λM\x(S′
2∪T ′

2∪U ′
2) = 2.

Proof. We have λM\x(S′
2) = λM\x(T ′

2) = 2. Since M\x is 3-connected and
each of S′

2 ∩ T ′
2 and E(M\x) − (S′

2 ∪ T ′
2) has at least two elements, the first

assertion of the lemma holds by uncrossing.
Now assume that |S′

2 ∩ T ′
2| ≥ 2 and |T ′

2 ∩U ′
2| ≥ 2. Then λM\x(S′

2 ∪ T ′
2) =

2 = λM\x(T ′
2 ∪ U ′

2). Since E(M\x) − (S′
2 ∪ T ′

2 ∪ U ′
2) ⊇ {s, t, u, y}, another

application of uncrossing gives that λM\x(S′
2 ∪ T ′

2 ∪ U ′
2) = 2. �

Lemma 5.18. If λM\x(S′
2 ∪ T ′

2 ∪ U ′
2) = 2, then |(S′

2 ∪ T ′
2) − U ′

2| ≥ 2.

Proof. Assume that |(S′
2 ∪ T ′

2) − U ′
2| ≤ 1. By Lemma 5.6, S′

2 ∪ T ′
2 ∪ U ′

2 =
E(M)−{s, t, u, y, x}. Hence |U1| ≤ |{s, t, y}|+ |(S′

2 ∪ T ′
2)−U ′

2| ≤ 3 + 1 = 4;
a contradiction to Lemma 5.3. �

Lemma 5.19. If |S′
2 ∩ T ′

2| = 1, then |S′
2 ∩ U ′

2| = 1 and |T ′
2 ∩ U ′

2| = 1.

Proof. By Lemma 5.11, S′
2 and T ′

2 are both triads of M\x. If |S′
2 ∩U ′

2| = 1,
then U ′

2 is also a triad. Hence, by Lemma 5.16, |T ′
2 ∩ U ′

2| = 1. Thus
we may assume that |S′

2 ∩ U ′
2| ≥ 2 and |T ′

2 ∩ U ′
2| ≥ 2. By Lemma 5.17,

λM\x(S′
2 ∪ T ′

2 ∪ U ′
2) = 2. Then, by Lemma 5.18, |(S′

2 ∪ T ′
2) − U ′

2| ≥ 2. Since

|S′
2 − U ′

2| ≤ 1 and |T ′
2 − U ′

2| = 1, we deduce that S′
2 − U ′

2 and T ′
2 − U ′

2 are
disjoint one-element sets. By Lemma 5.6, E(M) is the disjoint union of the
sets U ′

2, S
′
2 − U ′

2, T
′
2 − U ′

2, and {s, t, u, y, x}.
Since both (U1 ∪ u,U ′

2) and ({s, t, u, y}, E(M\x) − {s, t, u, y}) are 3-
separations of M\x and {s, t, u, y} ⊆ U1∪u, we have, by Lemma 2.10(ii) that
|D∩{s, t, u, y}| = 2 and |D∩U ′

2| = 2. Furthermore, by Lemma 2.10(iii), since
D meets every triad of M\x, we must have D ∩ S′

2 ∩U ′
2 6= ∅ 6= D ∩ T ′

2 ∩U ′
2.

Now let G = S′
2 ∪ T ′

2 ∪{s, t, u, y, x} and R = E(M)−G = U ′
2 − (S′

2 ∪T ′
2).

The set G is spanned by S′
2 ∪ T ′

2 ∪ {x, u} because cl(S2) and cl(T2) contain
s and t, respectively, and cl({s, t, u}) contains y. Thus r(G) ≤ 7.

Next we compare r(R) and r(M). In M |U ′
2, each of S′

2 ∩ U ′
2 and T ′

2 ∩ U ′
2

is a union of cocircuits. Thus r(U ′
2) ≥ r(R) + 2. Recall that (U1 ∪ u,U ′

2)
is a 3-separation of M\x. Let S′

2 − U ′
2 = {s′2} and T ′

2 − U ′
2 = {t′2}. Since

s′2 ∈ cl∗M\x(U ′
2), we have s′2 6∈ clM\x(U ′

2). Thus r(U ′
2 ∪ s′2) = r(U ′

2) + 1 and

((U1 ∪ u)− s′2, U
′
2 ∪ s′2) is a 3-separation of M\x. Since t′2 ∈ cl∗M\x(U ′

2 ∪ s′2),

we have t′2 6∈ clM\x(U ′
2 ∪ s′2). Thus r(U ′

2 ∪ s′2 ∪ t′2) = r(U ′
2) + 2. Hence

r(U ′
2 ∪ S′

2 ∪ T ′
2) ≥ r(R) + 4. The set {s, t, u, x} is a cocircuit of M avoiding

U ′
2 ∪S′

2 ∪T ′
2. Hence r(M) ≥ r(R) + 5. As r(G) ≤ 7 and R = E(M)−G, we

have
λM (G) ≤ 7 + [r(R) − r(M)] ≤ 7 − 5 = 2,
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so |R| ≤ 2. Thus we get a contradiction since |G| = 10 and |E(M)| ≥ 13. �

Lemma 5.20. The set {s, t, u, y} is a flat of M\x.

Proof. Assume that e ∈ E(M\x) − {s, t, u, y} and e ∈ cl({s, t, u, y}). Then
M |{s, t, u, y, e} ∼= U3,5. The quad D of M/x contains exactly two elements
of {s, t, u, y} and exactly two elements of E(M\x) − {s, t, u, y, e}. Thus
{s, t, u, y, e} contains a 4-circuit having exactly one element in common with
the cocircuit D of M ; a contradiction. �

Lemma 5.21. |S′
2 ∩ T ′

2| 6= 1.

Proof. Assume the contrary. Then, by Lemma 5.19, |S′
2∩U ′

2| = 1 = |T ′
2∩U ′

2|.
By Lemma 5.11, each of S′

2, T
′
2, and U ′

2 is a triad of M\x. Thus each of S2, T2,
and U2 has exactly four elements, so these sets are quads of M/s,M/t, and
M/u, respectively. Hence S2 ∪ s, T2 ∪ t, and U2 ∪ u are circuits of M . Now
D contains exactly two elements of the 3-separating set {s, t, u, y} of M\x.
Hence, without loss of generality, s 6∈ D. Moreover, D meets each of S′

2, T
′
2,

and U ′
2. Since D is a cocircuit of M and S2∪s is a circuit of M and these sets

meet, it follows that |D∩S′
2| = 2. Thus if S′

2∩T ′
2∩U ′

2 = ∅, then D ⊇ {st, su}
where S′

2 ∩ T ′
2 = {st} and S′

2 ∩ U ′
2 = {su}; and if S′

2 ∩ T ′
2 ∩ U ′

2 = {z}, then
D ⊇ {z, s2} for some s2 in S′

2 − z.
Let G = S2∪T2∪U2∪{s, t, u, y}. If S′

2∩T ′
2∩U ′

2 = ∅, let BG = {s, t, u, x}∪
(T ′

2 − S′
2); and if S′

2 ∩ T ′
2 ∩ U ′

2 = {z}, let BG = {s, t, u, x} ∪ {z, t2, u2}
where t2 ∈ T ′

2 − z and u2 ∈ U ′
2 − z. Then by using, in order, the circuits

{s, t, u, y}, T2 ∪ t,D ∪ x, S2 ∪ s, and U2 ∪ u, we get that BG spans G. Thus
r(G) − |G| ≤ −5.

Now if S′
2∩T ′

2∩U ′
2 = ∅, let B∗

G = {s, t, u, y}∪{st, tu} where {tu} = T ′
2∩U ′

2;
and if S′

2 ∩ T ′
2 ∩ U ′

2 = {z}, let B∗
G = {s, t, u, y} ∪ {z, t2, u2}. Then by using,

in order, the cocircuits {s, t, u, x},D, S2, T2, and U2, we get that B∗
G spans

G. Thus if S′
2 ∩ T ′

2 ∩ U ′
2 = ∅, then r∗(G) ≤ 6, so λM (G) ≤ 1 and we get a

contradiction since |E(M) − G| ≥ 2 because |E(M)| ≥ 13.
If S′

2 ∩ T ′
2 ∩ U ′

2 = {z}, then r∗(G) ≤ 7, so λM (G) ≤ 2. Thus we get
a contradiction provided |E(M) − G| ≥ 3, that is, provided |E(M)| ≥ 15.
But we are only guaranteed that |E(M)| ≥ 13. We shall now more closely
examine the situation in which S′

2∩T ′
2∩U ′

2 = {z} and show that, in that case
too, we will get a contradiction, this time only requiring that |E(M)| ≥ 11.

For the first time in the proof of this theorem, we consider the element
c from the hypothesis such that {s, t, u, y, c} is 3-separating in M\x. By
Lemma 5.20, c 6∈ clM\x({s, t, u, y}). Thus {s, t, u, y, c} contains a cocircuit
C∗ of M\x containing c. Since D contains exactly two elements of {s, t, u, y}
and exactly two elements of E(M\x) − {s, t, u, y, c}, we deduce that c 6∈ D.
Thus, as z ∈ D, we have

c 6= z.

Now either C∗ or C∗ ∪ x is a cocircuit of M .

5.21.1. C∗ ∪ x is a cocircuit of M .
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Assume not. Then C∗ is a cocircuit of M . But both {s, t, u} and C∗ are
cocircuits of M\x, so C∗ contains at most two elements of {s, t, u}. Since
C∗ ⊆ {s, t, u, y, c} and |C∗| ≥ 4, we deduce that C∗ contains exactly two of
s, t, and u. Thus C∗ meets two of the circuits S2 ∪ s, T2 ∪ t, and U2 ∪ u of
M . But C∗ does not contain z or x and the only element of C∗ that can be
in S′

2 ∪ T ′
2 ∪ U ′

2 is c. Since (S′
2 − z) ∪ s, (T ′

2 − z) ∪ t, and (U ′
2 − z) ∪ u are

disjoint, we have a contradiction. Hence (5.21.1) holds.
Now the cocircuit C∗ ∪ x meets each of the circuits S2 ∪ s, T2 ∪ t, and

U2 ∪ u, so C∗ meets each of (S′
2 − z)∪ s, (T ′

2 − z)∪ t, and (U ′
2 − z) ∪ u. But

C∗ − c avoids S′
2 ∪ T ′

2 ∪ U ′
2 and C∗ does not contain all of s, t, and u. Thus

C∗ must contain exactly two of s, t, and u. Moreover, for the element w of
{s, t, u} that is not in C∗, we have c ∈ W ′

2 − z.

5.21.2. y ∈ C∗.

Suppose y 6∈ C∗. Then C∗ ∪ x = {s, t, u, y}. It follows that
M∗|{s, t, u, c, x} ∼= U3,5. Thus, since |E(M)| ≥ 11, Theorem 1.6 implies
that {s, t, u, c, x} contains at least two elements e such that M∗\e is in-
ternally 4-connected. By assumption, M∗\x is not internally 4-connected.
Thus, for some e in {s, t, u}, the matroid M/e is internally 4-connected.
This contradiction to the fact that the theorem fails implies that (5.21.2)
holds.

Now we know that C∗ contains exactly two of s, t, and u. Moreover,
although the symmetry between s, t, and u is broken by the fact that s 6∈ D,
we will not use D in the short argument to follow. Thus we may assume
that C∗ = {s, t, y, c} and c ∈ U ′

2 − z. Then {s, t, y, c, x} and {s, t, u, x} are
cocircuits of M . Eliminating x, we get that M has a cocircuit D∗ containing
c and contained in {s, t, u, y, c}. By orthogonality with the circuits S2 ∪ s
and T2 ∪ t, we deduce that neither s nor t is in D∗. Thus |D∗| ≤ 3; a
contradiction. �

On combining Lemmas 5.9, 5.21, 5.17, and 5.6, we immediately get the
following.

Lemma 5.22. Each of S′
2∩T ′

2, T
′
2∩U ′

2, and S′
2∩U ′

2 has at least two elements

and is 3-separating. Moreover, E(M) − (S′
2 ∪ T ′

2 ∪ U ′
2) = {s, t, u, y, x}.

Lemma 5.23. The sets S′
2 and T ′

2 have the following properties.

(i) T ′
2 6⊆ S′

2; and

(ii) |S′
2 − T ′

2| = 1 or |T ′
2 − S′

2| = 1.

Proof. Assume that T ′
2 ⊆ S′

2. Then, by our choice of S′
2, T

′
2, and U ′

2, we
have T ′

2 = S′
2. By Lemmas 5.13 and 5.22 and symmetry, |U ′

2 − T ′
2| ≤ 1 or

|T ′
2−U ′

2| ≤ 1. If U ′
2 ⊆ T ′

2 or T ′
2 ⊆ U ′

2, then our choice of S′
2, T

′
2, and U ′

2 means
that U ′

2 = T ′
2 = S′

2, a contradiction to Lemma 5.15. Hence |U ′
2−T ′

2| = 1 and
|T ′

2 −U ′
2| = 1. By Lemma 5.22, E(M)− (S′

2 ∪T ′
2 ∪U ′

2) = {s, t, u, y, x}. Thus
|T1| = 4, a contradiction to Lemma 5.3. Hence (i) holds. Part (ii) follows
immediately from Lemma 5.13. �
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Figure 1. The cardinalities ns, nt, nu, nst, nsu, and ntu.

Now define ns, nst, and nsu to be |S′
2 − (T ′

2 ∪ U ′
2)|, |(S

′
2 ∩ T ′

2) − U ′
2)|, and

|(S′
2 ∩U ′

2)− T ′
2)|, respectively (see Figure 1). Let nt, nu, and ntu be defined

similarly.

Lemma 5.24. After a possible relabelling, either

(i) ns + nsu = nt + nst = nu + ntu = 1; or

(ii) ns + nsu = nu + nsu = nu + ntu = 1.

Proof. By Lemma 5.23,

|S′
2 − T ′

2| = 1 or |T ′
2 − S′

2| = 1;

|T ′
2 − U ′

2| = 1 or |U ′
2 − T ′

2| = 1; and

|U ′
2 − S′

2| = 1 or |S′
2 − U ′

2| = 1.

By symmetry and a possible relabelling, we get that either

(i) |S′
2 − T ′

2| = |T ′
2 − U ′

2| = |U ′
2 − S′

2| = 1; or
(ii) |S′

2 − T ′
2| = |U ′

2 − T ′
2| = |U ′

2 − S′
2| = 1.

The lemma follows by substitution. �

Lemma 5.25. The following inequalities hold:

ns + nst + nt ≥ 2;

nt + ntu + nu ≥ 2; and

nu + nsu + ns ≥ 2.

Proof. We have E(M) − (S′
2 ∪ T ′

2 ∪ U ′
2) = {s, t, u, y, x}, so U1 = {s, t, y} ∪

[(S′
2 ∪ T ′

2) − U ′
2]. As |U1| ≥ 5, it follows that |(S′

2 ∪ T ′
2) − U ′

2| ≥ 2. Hence
ns + nst + nt ≥ 2. The second and third inequalities in the lemma follow by
symmetry. �

Lemma 5.26. At most two of ns, nt, and nu equal one.
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Proof. Suppose that ns = nt = nu = 1 and let the elements of S′
2 − (T ′

2 ∪
U ′

2), T ′
2 − (S′

2 ∪ U ′
2), and U ′

2 − (S′
2 ∪ T ′

2) be s′, t′, and u′, respectively.
Then both {s, t, u, y} and T ′

2 ∪ U ′
2 are 3-separating in M\x. Hence both

{s, t, u, y} and {s, t, u, y, s′} are 3-separating in M\x. Thus, by Lemma 5.20,
s′ ∈ cl∗M\x({s, t, u, y}). By symmetry, {s′, t′, u′} ⊆ cl∗M\x({s, t, u, y}). As

({s, t, u, y}, E(M\x) − {s, t, u, y}) is a 3-separation of (M\x)∗, we have
r(M\x)∗(cl

∗
M\x({s, t, u, y})∩ (E(M\x)−{s, t, u, y})) ≤ 2. Thus {s′, t′, u′} is a

triangle in (M\x)∗ and hence is a triad in M\x. This triad avoids the quad
D since D has exactly two elements in each of S′

2 ∪T ′
2 ∪U ′

2, S
′
2 ∪T ′

2, T
′
2 ∪U ′

2,
and S′

2 ∪ U ′
2. This contradicts Lemma 2.10(ii). �

Lemma 5.27. nu 6= 1.

Proof. Suppose nu = 1. Assume first that (i) of Lemma 5.24 holds. Then
ntu = 0 so, by Lemma 5.25, nt = 1. By the symmetry of (i), we also get
ns = 1, so we have a contradiction to Lemma 5.26. Hence we may assume
that case (ii) of Lemma 5.24 holds. By that, nsu = 0 = ntu and ns = 1.
By Lemmas 5.25 and 5.26, nt ≥ 1 but nt 6= 1. Hence nt ≥ 2, that is,
|T ′

2 − (S′
2 ∪U ′

2)| ≥ 2. Let s′ and u′ be the unique elements of S′
2 − (T ′

2 ∪U ′
2)

and U ′
2 − (S′

2 ∪ T ′
2), respectively.

In M\x, the set S′
2 ∪ U ′

2 is 3-separating. Hence so is E − x − (S′
2 ∪

U ′
2). Likewise, T ′

2 is 3-separating. The union of T ′
2 and E − x − (S′

2 ∪
U ′

2) avoids {s′, u′}. Hence their intersection T ′
2 − (S′

2 ∪ U ′
2) is 3-separating.

Now each of {s, t, u, y, s′} and {s, t, u, y, u′} is 3-separating in M\x and, by
Lemma 5.20, {s, t, u, y} is a flat of M\x. Thus {s′, u′} ⊆ cl∗M\x({s, t, u, y}).

Hence u∗
M\x(S

′
2 ∪ U ′

2, {s, t, u, y}) ≥ 2.

By Lemma 5.4, x ∈ cl(S′
2 ∪ s) ∩ cl(U ′

2 ∪ u). By orthogonality with the
cocircuit {s, t, u, x}, we deduce that M has circuits containing {x, s} and
{x, u} that are contained in S2∪s and U2∪u. Hence, by circuit elimination,
M\x has a circuit contained in (S′

2∪U ′
2)∪{s, t, u, y} that meets both S′

2∪U ′
2

and {s, t, u, y}. Thus uM\x(S
′
2 ∪U ′

2, {s, t, u, y}) ≥ 1. By Lemma 2.6, we get

3 ≤ uM\x(S
′
2 ∪ U ′

2, {s, t, u, y}) + u∗
M\x(S

′
2 ∪ U ′

2, {s, t, u, y})

= λM\x(S′
2 ∪ U ′

2) + λM\x({s, t, u, y}) − λM\x(S′
2 ∪ U ′

2 ∪ {s, t, u, y})

= 2 + 2 − 2 = 2;

a contradiction. �

By Lemmas 5.24 and 5.27, nu = 0 and ns+nsu = 1. Hence ns+nsu+nu =
1. This contradiction to Lemma 5.25 completes the proof of Theorem 5.1.

�

We are now ready to prove Theorem 3.2 and we begin by restating the
result for ease of reference.

Theorem 5.28. Let M be a 4-connected matroid with |E(M)| ≥ 13. Then

M has an element x such that M\x or M/x is (4, 4, S)-connected.
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Proof. By Theorem 3.3, M has an element x such that M\x or M/x is
sequentially 4-connected. By duality, we may assume the former. We may
also assume that M\x is not (4, 4, S)-connected so is not weakly 4-connected.
Thus, by Lemma 2.10, M/x is weakly 4-connected. Hence M/x is not
sequentially 4-connected otherwise the theorem holds.

Because M\x is not weakly 4-connected, it has a 3-separation (X,Y ) with
|X|, |Y | ≥ 5. As M\x is sequentially 4-connected, we may assume that X
is sequential. Thus we may assume that |X| = 5 and X has a sequential
ordering (1, 2, 3, 4, 5). Let Z = {1, 2, 3, 4}. Since M has no triangles, {1, 2, 3}
is a triad of M .

Suppose first that 4 ∈ cl∗M\x({1, 2, 3}). Then every 3-element subset of Z

is a triad of M\x. Thus M∗|(Z ∪ x) ∼= U3,5. Hence, by Theorem 1.6, for
some element z in Z, the matroid M∗\z is internally 4-connected. Hence
M/z is internally 4-connected so M/z is (4, 4, S)-connected.

We may now assume that 4 ∈ clM\x({1, 2, 3}). Then Z is a circuit of M .
Consider the 3-separating set {1, 2, 3, 4, 5} in M\x and apply Theorem 5.1
taking (1, 2, 3, 4, 5) = (s, t, u, y, c). By that result, for some z in {s, t, u},
the matroid M/z is (4, 4, S)-connected. This completes the proof of the
theorem. �

Corollary 5.29. Let M be a 4-connected matroid. Then M has an element

x such that M\x or M/x is (4, 5, S)-connected.

Proof. By Theorem 3.3, M has an element z such that M\z or M/z is
sequentially 4-connected. By duality, we may assume the former. If M\z
is (4, 5, S)-connected, then the corollary holds. Thus we may assume that
M\z is not (4, 5, S)-connected. Hence M\z has a 3-separation (X,Y ) with
|X|, |Y | ≥ 6. Thus |E(M)| ≥ 13. Therefore, by Theorem 5.28, M has an
element x such that M\x or M/x is (4, 4, S)-connected and so is (4, 5, S)-
connected. �

6. The internally 4-connected case.

In this section, we establish the main theorem when M is internally 4-
connected by proving Theorem 3.6, which, for convenience, is restated below
as Theorem 6.3. We begin with an elementary lemma.

Lemma 6.1. Let M be an internally 4-connected matroid with |E(M)| ≥ 8.

(i) If e is an element of M that is not in a triad, then M\e is 3-
connected.

(ii) Every triad of M avoids every triangle of M .

Proof. For (i), suppose that M\e has a 2-separation (X,Y ). Then

r(X) + r(Y ) = r(M\e) + 1

and |X|, |Y | ≥ 2. Since |E(M)| ≥ 8, we may assume that |Y | ≥ 4. Then

r(X ∪ e) + r(Y ) ≤ r(M\e) + 2.
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Since M is internally 4-connected, we get a contradiction unless |X ∪ e| =
3 = r(X ∪e). In the exceptional case, X ∪e is a triad of M ; a contradiction.
Thus (i) holds.

To prove (ii), note that if M has a triad that meets a triangle, then, since
|E(M)| ≥ 5, these sets meet in exactly two elements, so M has a 4-element
fan F . But |F |, |E(M)−F | ≥ 4, so we have a contradiction to the fact that
M is internally 4-connected. �

Next we show that it is a straightforward consequence of earlier results
that the main theorem holds for internally 4-connected matroids with at
most 12 elements.

Corollary 6.2. Let M be an internally 4-connected matroid that is not

isomorphic to a wheel or whirl of rank three. If |E(M)| ≤ 12, then M has

an element e such that M\e or M/e is (4, 5, S)-connected.

Proof. The corollary holds by Corollary 5.29 if M is 4-connected. Thus, by
duality, we may assume that T has a triangle. Then, by Theorem 3.5, M
has an element f such that M\f or M/f is sequentially 4-connected. Since
|E(M)| ≤ 12, it follows that M\f or M/f is (4, 5, S)-connected. �

Theorem 6.3. Let M be a (4, 3, S)-connected matroid that is not isomorphic

to a wheel or whirl of rank three. Then M has an element e such that M\e
or M/e is (4, 5, S)-connected.

Proof. Assume the theorem fails. Then, by the last result and duality, we
may assume that |E(M)| ≥ 13 and that M has a triangle {x, y, z}.

By Lemma 6.1, we immediately get the following.

6.3.1. None of x, y, or z is in a triad of M , and all of M\x, M\y, and

M\z are 3-connected.

6.3.2. If e ∈ {x, y, z} and (A,B) is a 3-separation of M\e with |A| ≥ 4,
then {x, y, z} ∩ A 6= ∅.

If {x, y, z} − e ⊆ B, then (A,B ∪ e) is a 3-separation of M in which each
side has at least four elements; a contradiction. Thus (6.3.2) holds.

Because the theorem fails, each of M\x, M\y, and M\z has a
(4, 5, S)-violator. For the moment, we shall take (X1,X2), (Y1, Y2), and
(Z1, Z2) to be 3-separations of M\x, M\y, and M\z, respectively, with
|X1|, |X2|, |Y1|, |Y2|, |Z1|, |Z2| ≥ 4. Without loss of generality, we shall as-
sume that y ∈ X1 and z ∈ X2. We shall also assume that x ∈ Y1 ∩ Z1. By
(6.3.2), z ∈ Y2 and y ∈ Z2.

Later we will refine the choices of (X1,X2), (Y1, Y2), and (Z1, Z2), thereby
breaking the symmetry between them. At this point, however, we do
have symmetry and we will prove various properties of any collection of
3-separations that satisfy the conditions above as well as the additional re-
strictions imposed by specific lemmas.
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Lemma 6.4. If (X1,X2) ∼= (X1 ∪ f,X2 − f) for some element f of X2 and

(X1,X2) is a (4, k, S)-violator of M\x with k ≥ 4, then (X1 ∪ f,X2 − f) is

a (4, k − 1, S)-violator of M\x.

Proof. If (X1,X2) is non-sequential, then so is (X1 ∪ f,X2 − f). If (X1,X2)
is sequential, then |X1|, |X2| ≥ k + 1, so |X1 ∪ f |, |X2 − f | ≥ k. �

Lemma 6.5. If (X1,X2) is a (4, 4, S)-violator of M\x, then y ∈ cl(X1−y).

Proof. We have λM\x(X1) = 2. If y is a coloop of (M\x)|X1, then (X1 −
y,X2 ∪ y) ∼= (X1,X2), so λM\x(X1 − y) = 2. But X2 ∪ y ⊇ {y, z}, so
λM (X1−y) = 2. This is a contradiction since, by Lemma 6.4, (X1−y,X2∪y)
is a (4, 3, S)-violator of M\x with {y, z} ⊆ X2 ∪ y, so (X1 − y,X2 ∪ y ∪ x)
is a (4, 3, S)-violator of M . We deduce that y ∈ cl(X1 − y). �

Lemma 6.6. If (Y1, Y2) is a (4, 4, S)-violator of M\y, then X2 ∩ Y1 6= ∅.

Proof. Suppose that X2 ∩ Y1 = ∅. Then, by Lemma 6.5 and symmetry,
x ∈ cl(Y1 − x). But Y1 − x ⊆ X2, so x ∈ cl(X1); a contradiction. �

Lemma 6.7. Let (Y1, Y2) be a (4, 5, S)-violator of M\y.

(i) If (X1,X2) is a (4, 4, S)-violator of M\x, then |X2 ∩ Y1| ≥ 2.
(ii) If |X2 ∩ Y1| = 1 and |X2| = 4, then X2 ∩ Y2 is a triangle of M and

M has a cocircuit containing (X2 ∩Y1)∪x and contained in X2 ∪ x.

Proof. Suppose that X2 ∩ Y1 = {e}. If e ∈ cl(X2 ∩ Y2), then e ∈ cl(Y2),
so (Y1, Y2) ∼= (Y1 − e, Y2 ∪ e). By Lemma 6.4, (Y1 − e, Y2 ∪ e) is a (4, 4, S)-
violator of M\y. If x is a coloop of M |(Y1 − e), then (Y1, Y2) ∼= (Y1 − e −
x, Y2 ∪ e ∪ x) and (Y1 − e − x, Y2 ∪ e ∪ x) is a (4, 3, S)-violator of M\y. As
y ∈ cl(Y2 ∪ e ∪ x), we get the contradiction that (Y1 − e − x, Y2 ∪ e ∪ x ∪ y)
is a (4, 3, S)-violator of M . We deduce that x is not a coloop of M |(Y1 − e),
so x ∈ cl(Y1 − e − x). Hence x ∈ cl(X1), a contradiction.

We may now assume that e 6∈ cl(X2 ∩ Y2), so e 6∈ cl(X2 − e). Hence
(X1,X2) ∼= (X1∪e,X2−e) in M\x. Now (X2−e)∩Y1 = ∅. As x ∈ cl(Y1−x),
we deduce that x ∈ cl(X1 ∪ e). Thus (X1 ∪ e∪x,X2 − e) is a 3-separation of
M . This gives a contradiction provided |X2 − e| ≥ 4, that is, provided
|X2| ≥ 5.

Now suppose that |X2| = 4. Then X2 − e = X2 ∩ Y2 and this set is a
triangle or a triad of M . But X2 ∩ Y2 contains a single element, z, of the
triangle {x, y, z}. Thus X2∩Y2 is a triangle of M . Hence X2 is sequential in
M\x and so (i) holds. Moreover, M\x has a cocircuit that contains e and
is contained in e ∪ (X2 ∩ Y2). Hence M has a cocircuit that contains {e, x}
and is contained in {e, x} ∪ (X2 ∩ Y2). �

Lemma 6.8. If |X2∩Y1|, |X1∩Y2| ≥ 2 and y ∈ cl(X1−y) and x ∈ cl(Y1−x),
then |X1 ∩ Y2|, |X2 ∩ Y1| ∈ {2, 3} and λM (X1 ∩ Y2) = 2 = λM (X2 ∩ Y1).
Moreover, if W ∈ {X1 ∩ Y2,X2 ∩ Y1} and |W | = 3, then W is a triangle or

triad of M .
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Proof. We have 2 = λM\x(X2) ≥ λM\x,y(X2) = λM\x,y(X1 − y) and 2 =
λM\y(Y2) ≥ λM\x,y(Y2) = λM\x,y(Y1 − x). By submodularity,

(1) 2+2 ≥ λM\x,y(X2)+λM\x,y(Y1−x) ≥ λM\x,y(X2∩Y1)+λM\x,y(X1∩Y2).

Since z ∈ X2 ∩ Y2 while y ∈ cl(X1 − y) and x ∈ cl(Y1 − x), we have that
λM\x,y(X2 ∩ Y1) = λM (X2 ∩ Y1) and λM\x,y(X1 ∩ Y2) = λM (X1 ∩ Y2). As
|X1 ∩ Y2|, |X2 ∩ Y1| ≥ 2, we deduce, using (1), that λM (X2 ∩ Y1) = 2 and
λM (X1 ∩ Y2) = 2. Since M is internally 4-connected, we conclude that each
of X2∩Y1 and X1∩Y2 has exactly two or exactly three elements. Moreover,
each such set with exactly three elements is a triangle or a triad of M . �

Lemma 6.9. (i) Let (X1,X2) and (Y1, Y2) be (4, 4, S)-violators of M\x
and M\y, respectively. If |X2∩Y1|, |X1∩Y2| ≥ 2, then |X1∩Y2|, |X2∩
Y1| ∈ {2, 3} and λM (X1 ∩ Y2) = 2 = λM (X2 ∩ Y1).

(ii) Let (X1,X2) and (Y1, Y2) be (4, 5, S)-violators of M\x and M\y,
respectively. Then |X1 ∩ Y2|, |X2 ∩ Y1| ∈ {2, 3} and λM (X1 ∩ Y2) =
2 = λM (X2 ∩ Y1).

Proof. Let (X1,X2) and (Y1, Y2) be (4, 4, S)-violators of M\x and M\y.
Then, by Lemma 6.5 and symmetry, y ∈ cl(X1 −y) and x ∈ cl(Y1−x). Part
(i) follows immediately from Lemma 6.8.

Now let (X1,X2) and (Y1, Y2) be (4, 5, S)-violators of M\x and M\y. By
Lemma 6.7(i) and symmetry, |X1 ∩ Y2|, |X2 ∩ Y1| ≥ 2. Part (ii) now follows
from part (i). �

Lemma 6.10. If (X1,X2) is a (4, 4, S)-violator of M\x, then X2∩Y2 % {z}.

Proof. Suppose that X2 ∩ Y2 = {z}. Then, by Lemma 6.5 and symmetry,
z ∈ cl(X2 − z). But X2 − z ⊆ Y1, so z ∈ cl(Y1). Since x ∈ Y1, we deduce that
y ∈ cl(Y1); a contradiction. �

To this point, we have symmetry between (X1,X2), (Y1, Y2), and (Z1, Z2)
and this symmetry will be heavily exploited in the argument below as we
apply the lemmas we have already proved. We shall now specialize the
choices of (X1,X2), (Y1, Y2), and (Z1, Z2). In particular, by Theorem 3.5,
since {x, y, z} is a triangle of M and M is internally 4-connected having
at least 13 elements, we may assume that M\x is sequentially 4-connected.
We will take the 3-separation (X1,X2) of M\x to have the property that
X2 is sequential and |X2| = 6. Hence (X1,X2) is a (4, 5, S)-violator of
M\x. We also take the 3-separations (Y1, Y2) and (Z1, Z2) so that they are
(4, 5, S)-violators of M\y and M\z, respectively.

Now we want to exploit the symmetry between (X1, y) and (X2, z). Al-
though we have made some special assumptions about X2, we do still have
symmetry between (z,X2, x,X1, Y1, y, Y2) and (y,X1, x,X2, Z1, z, Z2) with
respect to the hypotheses of Lemma 6.9. This is easy to see using a Venn
diagram. Hence an immediate consequence of Lemmas 6.8 and 6.9 is the
following.
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Corollary 6.11. |X1 ∩ Z1|, |X2 ∩ Z2| ∈ {2, 3} and λM (X1 ∩ Z1) = 2 =
λM (X2 ∩ Z2). Moreover, if W ∈ {X1 ∩ Z1,X2 ∩ Z2} and |W | = 3, then W
is a triangle or triad of M .

Although it will not be needed, it is worth noting at this point that we
have the following easy bound on |E(M)|, where we recall that M is a
counterexample to the theorem.

Lemma 6.12. |E(M)| ≤ 17.

Proof. We have |E(M)| = |X1|+ |X2|+1 = |X1|+7. Now X1 is the disjoint
union of X1 ∩Y2, {y}, X1 ∩Y1∩Z1, and X1 ∩Y1 ∩Z2. By Lemma 6.9, |X1 ∩
Y2| ≤ 3 and |X1∩Y1∩Z2| ≤ |Y1∩Z2| ≤ 3. Moreover, using Corollary 6.11, we
have |X1∩Y1∩Z1| ≤ |X1∩Z1| ≤ 3. We conclude that |X1| ≤ 3+1+3+3 = 10,
so |E(M)| ≤ 17. �

To complete the proof of the theorem, we will use the fact that X2 is
sequential. Thus there is a sequential ordering (x1, x2, x3, x4, x5, x6) of X2.
Now, because M is internally 4-connected, we have that z ∈ {x1, x2, x3, x4}.

Lemma 6.13. Either

(i) |{x1, x2, x3, x4} ∩ Y2| = 3 and |{x1, x2, x3, x4} ∩ Y1| = 1 and

{x1, x2, x3, x4} ∩ Y2 is a triangle of M ; or

(ii) |{x1, x2, x3, x4} ∩ Y2| = 2 and |{x1, x2, x3, x4} ∩ Y2| = 2.

Proof. By Lemma 6.9(ii), since (X1,X2) and (Y1, Y2) are (4, 5, S)-violators
of M\x and M\y, respectively, we have |X2 ∩ Y1|, |X1 ∩ Y2| ∈ {2, 3}.

Now (X1∪x6,X2−x6) is a (4, 4, S)-violator of M\x. Thus, by Lemma 6.7,
|(X2−x6)∩Y1| ≥ 2. From the previous paragraph, we have |(X1∪x6)∩Y2| ≥
|X1∩Y2| ≥ 2. Hence, by Lemma 6.8, both |(X2−x6)∩Y1| and |(X1∪x6)∩Y2|
are in {2, 3}. Thus if x6 ∈ X2∩Y1, then |X2∩Y1| = 3 and |(X2−x6)∩Y1| = 2.
If x6 ∈ X2∩Y2, then |X1∩Y2| = 2 and, by Lemma 6.10, |(X2−x6)∩Y2| ≥ 2.

Consider the position of x5. It is straightforward to see that either

(a) |{x1, x2, x3, x4} ∩ Y2| = 3 and |{x1, x2, x3, x4} ∩ Y1| = 1; or
(b) |{x1, x2, x3, x4} ∩ Y2| = 2 and |{x1, x2, x3, x4} ∩ Y1| = 2;

unless X2 ∩ Y2 = {z, x5, x6}. Consider the exceptional case. We have (X1 ∪
{x5, x6},X2 − {x5, x6}) as a 3-separation of M\x. Now λM\x,y(Y1 − x) =
2 = λM\x,y(X2 − {x5, x6}). Thus, by the submodularity of the connectivity
function and the positions of x, y, and z, we deduce that λM\x,y(Y2 ∩ (X1 ∪
{x5, x6})) = λM (Y2 ∩ (X1 ∪ {x5, x6})) = 2. Since |Y2 ∩ (X1 ∪ {x5, x6})| ≥ 4,
we have a contradiction to the fact that M is internally 4-connected. We
deduce that (a) or (b) holds.

If (a) holds, then, by Lemma 6.7(ii), {x1, x2, x3, x4} ∩ Y2 is a triangle of
M . �

By Lemma 6.9, |X2 ∩ Y1| is 2 or 3. The rest of the proof considers these
two possibilities beginning with the first.

Lemma 6.14. If |X2 ∩ Y1| = 2, then
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(i) x6 ∈ X2 ∩ Y2;

(ii) |X1 ∩ Y2| = 2;
(iii) (X1 ∩ Y2) ∪ x6 is a triangle or a triad of M ; and

(iv) (X2 ∩ Y2) − x6 is a triangle of M containing z.

Proof. By Lemma 6.13, we have two possibilities for the distribution of the
elements of {x1, x2, x3, x4} in X2 ∩ Y1 and X2 ∩ Y2. Suppose first that
|{x1, x2, x3, x4} ∩ Y1| = 2. As |X2 ∩ Y2| = 2, we deduce that {x5, x6} ⊆
X2∩Y2. Now consider the 3-separation (X1∪{x5, x6},X2−{x5, x6}) of M\x.
We have y ∈ cl(X1−y) and x ∈ cl(Y1−x). Moreover, |(X2−{x5, x6})∩Y1| =
|X2 ∩ Y1| ≥ 2 and |(X1 ∪ {x5, x6}) ∩ Y2| = |X1 ∩ Y2| + 2 ≥ 4 ≥ 2. Thus,
by Lemma 6.8, |(X1 ∪{x5, x6})∩Y2| ∈ {2, 3}; a contradiction. We conclude
that |{x1, x2, x3, x4} ∩ Y1| 6= 2, so |{x1, x2, x3, x4} ∩ Y1| = 1.

By Lemma 6.13, {x1, x2, x3, x4} ∩ Y2 is a triangle of M . We know that
z ∈ {x1, x2, x3, x4} ∩ Y2. Thus z is in a triangle of M contained in X2 ∩ Y2

and avoiding {x5, x6}. We now consider where x5 and x6 are. As (X1 ∪
x6,X2 − x6) is a (4, 4, S)-violator for M\x, we have, by Lemma 6.7, that
|(X2 − x6) ∩ Y1| ≥ 2. But |X2 ∩ Y1| = 2 by assumption. Thus x6 ∈ X2 ∩ Y2

and x5 ∈ X2∩Y1, so (i) holds. Moreover, |(X2−x6)∩Y1| = |X2∩Y1| = 2 and
|(X1∪x6)∩Y2| = |X1∩Y2|+1 ≥ 3. Hence, by Lemma 6.9(i), |(X1∪x6)∩Y2| ∈
{2, 3}. Thus |X1 ∩ Y2| = 2 and (X1 ∪ x6) ∩ Y2 is a triangle or a triad of M ,
so (ii) and (iii) hold. Part (iv) follows from Lemma 6.13. �

For the rest of the proof, we shall call the elements of Z1 red and those of
Z2 green.

Lemma 6.15. |X2 ∩ Y1| = 3.

Proof. Assume that |X2 ∩ Y1| = 2. From the previous lemma, we may
assume that |X1 ∩ Y2| = 2. Let the triangle (X2 ∩ Y2) − x6 be {z1, z2, z}.
Since z 6∈ cl(Z1)∪cl(Z2), we may assume that z1 ∈ Z1 and z2 ∈ Z2. Now, by
Lemma 6.14(iii), (X1 ∩ Y2) ∪ x6 is a triangle or triad of M . By Lemma 6.9,
Y2 contains two or three red elements. Since z1 is red, Y2 − z1 contains
either one or two red elements. Thus (X1 ∩ Y2) ∪ x6 contains either one
green and two red elements, or one red and two green elements. In the first
case, we recolour the green element γ of (X1 ∩ Y2) ∪ x6 to red. This means
replacing (Z1, Z2) by (Z1 ∪ γ, Z2 − γ), which is a (4, 4, S)-violator of M\z.
Now |Y1 ∩ (Z2 − γ)| = |Y1 ∩ Z2| ≥ 2, while |(Z1 ∪ γ) ∩ Y2| = 4. This gives a
contradiction to Lemma 6.9(i).

We may now assume that {y1, y2, x6} contains one red and two green
elements. In that case, we recolour the red element ρ to green, replacing
(Z1, Z2) by (Z1−ρ, Z2∪ρ), which is a (4, 4, S)-violator. Thus, by Lemma 6.7
and symmetry, |(Z1 − ρ) ∩ Y2| ≥ 2; a contradiction to the fact that |(Z1 −
ρ) ∩ Y2| = 1. �

Lemma 6.16. (X2 ∩ Y2) − z is monochromatic.
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Proof. Assume that (X2∩Y2)−z contains one red and one green element. By
Lemma 6.9 and symmetry, X2 contains either two or three green elements.
Thus either

(i) X2 ∩ Y1 contains one red and two green elements; or
(ii) X2 ∩ Y1 contains one green and two red elements.

Now X2 ∩ Y1 is a triangle or triad of M .
In case (i), we recolour the red element ρ of X2 ∩ Y1 to green, replacing

(Z1, Z2) by (Z1−ρ, Z2∪ρ). Now |(Z2∪ρ)∩X2| = 4 and |(Z1−ρ)∩X1| ≥ 2,
so we get a contradiction to Lemma 6.8.

In case (ii), we recolour the one green element γ of X2∩Y1 to red, replacing
(Z1, Z2) by the (4, 4, S)-violator (Z1 ∪ γ, Z2 − γ). Then, by Lemma 6.7 and
symmetry, |(Z2 −γ)∩X2| ≥ 2. But |(Z2−γ)∩X2| = 1; a contradiction. �

Lemma 6.17. |{x1, x2, x3, x4} ∩ Y2| = 2.

Proof. We assume that |{x1, x2, x3, x4} ∩ Y2| = 3. Then {x1, x2, x3, x4} ∩ Y2

is a triangle of M containing z. Since neither Z1 nor Z2 spans z, the set
(X2 ∩ Y2) − z must contain one red and one green element; a contradiction
to Lemma 6.16. �

Lemma 6.18. (i) One of x5 and x6 is in X2 ∩ Y1 and the other is in

X2 ∩ Y2.

(ii) Y2 ∩ (X1 ∪ {x5, x6}) is a triangle or triad of M .

(iii) |X1 ∩ Y2| = 2.

Proof. Part (i) follows immediately from the last lemma and the fact that
|X2 ∩ Y1| = 3. Consider the 3-separation (X1 ∪ {x5, x6},X2 − {x5, x6})
of M\x. We have |(X1 ∪ {x5, x6}) ∩ Y2| = |X1 ∩ Y2| + 1 ≥ 3 and |(X2 −
{x5, x6})∩Y1| = 2. Also y ∈ cl((X1∪{x5, x6})−y) and x ∈ cl(Y1−x). Thus,
by Lemma 6.8, Y2 ∩ (X1 ∪ {x5, x6}) is a triangle or triad of M . Moreover,
|X1 ∩ Y2| = 2. �

Lemma 6.19. |Y2| = 5 and (Y1, Y2) is non-sequential.

Proof. We have |Y2| = |Y2 ∩ X1| + |Y2 ∩ X2| = 2 + 3 = 5. By the choice of
(Y1, Y2), we deduce that (Y1, Y2) must be non-sequential. �

Lemma 6.20. The elements of (X2 ∩ Y2) − z are both red.

Proof. Assume the lemma fails. Then, by Lemma 6.16, both the elements of
(X2∩Y2)−z are green. Now X2 contains either two or three green elements.
Assume the latter. Then, by Lemma 6.8, X2 ∩ Y2 is a triangle or a triad of
M . Thus if γ is the green element in X2∩Y2, then (Y1−γ, Y2∪γ) ∼= (Y1, Y2).
Thus (Y1 − γ, Y2 ∪ γ), like (Y1, Y2), is non-sequential, and so is a (4, 5, S)-
violator of M\y. Hence we could replace (Y1, Y2) by (Y1 − γ, Y2 ∪ γ). But
|X2 ∩ (Y1 − γ)| = 2, a contradiction to Lemma 6.15. We conclude that X2

contains exactly two green elements.
The set Y2 contains two or three red elements while |Y2∩X1| = 2, so both

elements of Y2 ∩ X1 are red. As (X1 ∪ {x5, x6}) ∩ Y2 is a triangle or a triad
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of M , the element γ′ of {x5, x6}∩X2 ∩Y2 can be recoloured red, that is, we
replace (Z1, Z2) by (Z1∪γ′, Z2−γ′). Since |(Z2−γ′)∩X2| = |Z2∩X2|−1 = 1,
we have a contradiction to Lemma 6.7. �

Lemma 6.21. The elements of X1 ∩ Y2 are green.

Proof. We know that Y2 contains at most three red elements. Hence X1∩Y2

contains at most one red element. If X1 ∩ Y2 does contain a red element,
then, using the triangle or triad (X1 ∪ {x5, x6}) ∩ Y2, we can recolour the
other element γ of X1 ∩ Y2 to red, replacing (Z1, Z2) by (Z1 ∪ γ, Z2 − γ).
We now get a contradiction to Lemma 6.8 because |(Z1 ∪ γ) ∩ Y2| = 4 and
|(Z2 − γ) ∩ Y1| ≥ 2. �

Since both elements of X1 ∩ Y2 are green, we can recolour the element
ρ of {x5, x6} ∩ X2 to green, replacing (Z1, Z2) by (Z1 − ρ, Z2 ∪ ρ). As
|(Z1 − ρ)∩Y2| = 1, we get a contradiction to Lemma 6.7 that completes the
proof of Theorem 6.3. �

7. Finishing Off

This section completes the proof of the main theorem of the paper. Our
proof will rely on the following lemma, which is a slight strengthening of
a result of Geelen and Whittle [3, Theorem 7.1(i)]. The proof is a minor
modification of their proof and is presented here for completeness.

Lemma 7.1. Let M be a sequentially 4-connected matroid and let (A,B) be

a sequential 3-separation of M having (a1, a2, . . . , ak) as a sequential order-

ing of A with k = |A| ≥ 4. If M\ai is 3-connected, then M\ai is sequentially

4-connected.

Proof. The proof will make repeated use of the elementary observation that
if (J,K) is a 3-separating partition of M and e ∈ J , then (J − e,K) is a
3-separating partition of M\e. Assume that M\ai is not sequentially 4-
connected, letting (X,Y ) be a non-sequential 3-separation of it. Since the
first three elements of (a1, a2, . . . , ak) can be arbitrarily reordered, we may
assume that i ≥ 3. Suppose first that i = 3. Then {a1, a2, a3} is a triangle,
otherwise it is a triad and M\a3 is not 3-connected. If a4 ∈ cl({a1, a2, a3}),
then we can interchange a3 and a4 to reduce to the case when i ≥ 4, which
we treat below. If a4 6∈ cl({a1, a2, a3}), then a4 ∈ cl∗({a1, a2, a3}). Thus
{a1, a2, a3, a4} contains a cocircuit of M containing a4. Since M\a3 is 3-
connected, it has {a1, a2, a4} as a triad. Now at least two of a1, a2, and a4

may be assumed to be in X, so (X ∪ {a1, a2, a4}, Y − {a1, a2, a4}) is a non-
sequential 3-separation of M\a3. Thus (X∪{a1, a2, a3, a4}, Y −{a1, a2, a4})
is a 3-separation of M . This 3-separation must be sequential so, by
Lemma 2.8, (X ∪{a1, a2, a4}, Y −{a1, a2, a4}) is a sequential 3-separation of
M\a3; a contradiction.

Now suppose that i ≥ 4. We may assume that at least two of a1, a2, and
a3 are in X. Hence each of X ∪ {a1, a2, a3},X ∪ {a1, a2, a3, a4}, . . . ,X ∪
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{a1, a2, . . . , ai−1} is 3-separating in M\ai, so (X ∪ {a1, a2, . . . , ai−1}, Y −
{a1, a2, . . . , ai−1}) is a non-sequential 3-separation of M\ai. Now ai ∈
cl({a1, a2, . . . , ai−1}), or ai ∈ cl∗({a1, a2, . . . , ai−1}). In the latter case,
r({a1, a2, . . . , ai} = r({a1, a2, . . . , ai−1}) + 1, so λM\ai

({a1, a2, . . . , ai−1}) =
1; a contradiction. Therefore ai ∈ cl({a1, a2, . . . , ai−1}) and (X ∪
{a1, a2, . . . , ai}, Y − {a1, a2, . . . , ai−1}) is a 3-separation of M . This 3-
separation must be sequential, yet this implies, by Lemma 2.8, that
(X ∪{a1, a2, . . . , ai−1}, Y −{a1, a2, . . . , ai−1}) is a sequential 3-separation of
M\ai; a contradiction. �

Next we prove the main theorem in the case that M is (4, 4)-connected.

Theorem 7.2. Let M be a (4, 4, S)-connected matroid that is not isomorphic

to a wheel or whirl of rank 3 or 4. Then M has an element x such that M\x
or M/x is (4, 5, S)-connected.

Proof. By Theorem 6.3, the result holds if M is (4, 3, S)-connected. Thus
we may assume that M has a 3-separation (X,Y ) with |X| = 4 and |Y | ≥
4 and with X sequential. Let (x1, x2, x3, x4) be a sequential ordering of
X. Then {x1, x2, x3} is a triangle or a triad of M . By duality, we may
assume that x4 ∈ cl({x1, x2, x3}). Then it is straightforward to show that
({x1, x2, x3}, E(M)−{x1, x2, x3, x4}) is a non-minimal 2-separation of M/x4.
Hence, by Lemma 2.5, co(M\x4) is 3-connected. Thus either

(i) M\x4 is 3-connected, or
(ii) M has a triad T ∗ containing x4.

Consider case (ii). As x4 ∈ cl({x1, x2, x3}), the triad T ∗ meets
{x1, x2, x3}. If T ∗ ⊆ {x1, x2, x3, x4}, then λM ({x1, x2, x3, x4}) = 1;
a contradiction. Hence |T ∗ ∩ {x1, x2, x3, x4}| = 2 so, by Lemma 2.4,
T ∗ ∪ {x1, x2, x3, x4} is 3-separating in M . If |E(M)| ≥ 10, then |E(M) −
(T ∗ ∪ {x1, x2, x3, x4})| ≥ 5, so we have a contradiction to the fact that
M is (4, 4, S)-connected. Now assume that |E(M)| < 10. We know that
|E(M)| ≥ 8. Hence, by Theorem 1.2, either M is a wheel or whirl of rank 4,
or M has an element e such that M\e or M/e is sequentially 4-connected.
The former case was excluded by assumption. In the latter case, because
|E(M)| < 13, either M\e or M/e is (4, 5, S)-connected.

Now consider case (i). By Lemma 7.1, M\x4 is sequentially 4-connected.
Suppose this matroid has a 3-separation (J,K) with |J |, |K| ≥ 6. Without
loss of generality, at least two of x1, x2, and x3 are in J . Thus (J,K) ∼=
(J ∪{x1, x2, x3},K −{x1, x2, x3}) and (J ∪{x1, x2, x3, x4},K −{x1, x2, x3})
is a 3-separation of M . Since |J ∪{x1, x2, x3, x4}|, |K −{x1, x2, x3}| ≥ 5, we
have a contradiction to the fact that M is (4, 4, S)-connected. We conclude
that M\x4 is (4, 5, S)-connected. �

To complete the proof of the main theorem, we shall require some more
preliminaries some of which are extracted from Hall’s proof of Theorem 1.3.
A segment in a matroid N is a subset X of E(N) such that every 3-element
subset of X is a circuit of N . A cosegment of N is a segment of N∗.
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Lemma 7.3. [6, Lemma 4.1] If M is a (4, k)-connected matroid and X is

a 4-element segment, then M\x is (4, k)-connected for some x in X.

Lemma 7.4. Let A be a 5-element sequential 3-separating set in a (4, 5, S)-
connected matroid M having at least 13 elements. Let (a1, a2, a3, a4, a5) be

a sequential ordering of A. If i ∈ {1, 2, 3} and {a1, a2, a3} is a triangle, or

if i ≥ 4 and ai ∈ cl({a1, a2, . . . , ai−1}), then M\ai is 3-connected unless ai

is in a triad of M contained in A.

Proof. Suppose first that i ≥ 4 and ai ∈ cl({a1, a2, . . . , ai−1}). Then M/ai

has ({a1, a2, . . . , ai−1}, {ai+1, a5}∪B) as a non-minimal 2-separation. Hence,
by Lemma 2.5, co(M\ai) is 3-connected. Thus M\ai is 3-connected unless ai

is in a triad T ∗ of M . In the exceptional case, as ai ∈ cl({a1, a2, . . . , ai−1}),
it follows by orthogonality that T ∗ meets {a1, a2, . . . , ai−1}. Thus T ∗ and
A are 3-separating in M having at least two common elements. Therefore
T ∗∪A is 3-separating. If T ∗ 6⊆ A, then |T ∗∪A| = 6 and so we contradict the
fact that M is (4, 5, S)-connected. Hence, when i ≥ 4, the matroid M\ai is
3-connected unless ai is in a triad of M contained in A.

Now assume that i ∈ {1, 2, 3} and {a1, a2, a3} is a triangle. Since a1, a2,
and a3 can be arbitrarily reordered, we may assume that i = 1. Suppose
that (X,Y ) is a non-minimal 2-separation of M\a1. If a4 ∈ cl({a1, a2, a3}),
then {a1, a2, a3, a4} is a segment so, by Lemma 7.3, M\a1 is 3-connected.
We may now assume that a4 ∈ cl∗({a1, a2, a3}). Then M has a cocircuit
C∗ containing a4 and contained in {a1, a2, a3, a4}. Suppose that |C∗| = 4.
Then {a2, a3, a4} is a cocircuit of M\a1. We may assume that at least two
elements of {a2, a3, a4} are in X. Thus (X ∪ {a2, a3, a4}, Y − {a2, a3, a4})
is a 2-separation of M\a1. Hence (X ∪ {a1, a2, a3, a4}, Y − {a2, a3, a4}) is a
2-separation of M . But M is 3-connected, so |Y − {a2, a3, a4}| < 2, which
contradicts the fact that |Y | ≥ 3. We conclude that the only 2-separations
of M\a1 are minimal. Hence either M\ai is 3-connected, or a1 is in a triad
T ∗ of M . In the latter case, we argue as at the end of the previous paragraph
to deduce that T ∗ ⊆ A. �

The next lemma and its proof are lifted from Hall [6, p. 56].

Lemma 7.5. Let M be a (4, 5)-connected matroid with |E(M)| ≥ 16. Let

A be a 5-element 3-separating set in M with r(A) = 3. If a is an element of

A for which M\a is 3-connected and A−a contains no triangles, then M\a
is (4, 5)-connected.

Proof. Assume that M\a has a 3-separation (X,Y ) with |X|, |Y | ≥ 6. Since
A − a contains no triangles and r(A) = 3, every 3-element subset of A − a
spans A. Since neither cl(X) nor cl(Y ) contains a, we deduce that |A∩X| =
2 = |A ∩ Y |. Since M\a is 3-connected, λM\a(A ∩ X) = 2 = λM\a(A ∩ Y ).
Thus, by the submodularity of λ, we deduce that both Y ∩ (E(M)−A) and
X ∩ (E(M)−A) are 3-separating in M\a. Because a ∈ cl(A− a), these sets
are also 3-separating in M . Thus |X ∩ (E(M)−A)|, |Y ∩ (E(M)−A)| ≤ 5.
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Since |A| = 5, it follows that |E(M)| ≤ 15; a contradiction. We conclude
that M\a is (4, 5)-connected. �

Lemma 7.6. Let M be a (4, 5, S)-connected matroid with |E(M)| ≥ 12.
Let {a1, a2, a3, a4, a5} be a 5-element fan F in M having {a1, a2, a3} and

{a3, a4, a5} as triangles and {a2, a3, a4} as a triad. Then M\a3/a4 is se-

quentially 4-connected.

Proof. If a4 is in a triangle T other than {a3, a4, a5}, then, by orthogonality
and the fact that M is 3-connected, it follows that T = {a2, a4, a6} for some
new element a6. Then F ∪T is a 6-element 3-separating set in M ; a contra-
diction since |E(M)| ≥ 12. We deduce that {a3, a4, a5} is the unique triangle
containing a4. A similar argument (or see [9, Lemma 3.4]) establishes that
{a2, a3, a4} is the unique triad of M containing a3. Hence if M\a3/a4 is not
3-connected, it has a 2-separation (J,K) with |J |, |K| ≥ 3. On the other
hand, if M\a3/a4 is 3-connected but not sequentially 4-connected, it has
a non-sequential 3-separation (J,K). We shall prove simultaneously that
M\a3/a4 is 3-connected and that it is sequentially 4-connected by consider-
ing a k-separation (J,K) of M\a3/a4 for some k ∈ {2, 3}, where |J |, |K| ≥ 3
if k = 2, while (J,K) is non-sequential if k = 3.

We may assume that at least two elements of {a1, a2, a5} are in J , so
(J ∪ {a1, a2, a5},K − {a1, a2, a5}) is a k-separation of M\a3/a4. Moreover,
if k = 3, this 3-separation is non-sequential while if k = 2, then |K −
{a1, a2, a5}| ≥ 2. Hence (J∪{a1, a2, a5, a3},K−{a1, a2, a5}) is a k-separation
of M/a4. As a4 ∈ cl∗({a2, a3}), it follows that (J∪F,K−F ) is a k-separation
of M . If k = 2, then, as |K − F | ≥ 2, we contradict the fact that M is 3-
connected. We conclude M\a3/a4 is 3-connected. If k = 3, then, since M
is sequentially 4-connected, (J ∪ F,K − F ) is a sequential 3-separation of
M . Thus, by Lemma 2.8, (J ∪ {a1, a2, a5},K − {a1, a2, a5}) is a sequential
3-separation of M\a3/a4; a contradiction. We conclude that M\a3/a4 is
sequentially 4-connected. �

We are now ready to complete the proof of the main theorem of the paper.

Proof of Theorem 3.1. If M is (4, 4, S)-connected, then the theorem follows
by Theorem 7.2. We may now assume that M is (4, 5, S)-connected but not
(4, 4, S)-connected. Then M has a 3-separation (A,B) with |A|, |B| ≥ 5.
Since M is sequentially 4-connected, we may assume that A is sequential
having exactly 5 elements.

Suppose that A contains a 4-element segment. Then, by Lemma 7.3, A
contains an element e such that M\e is (4, 5)-connected. In particular, M\e
is 3-connected so, by Lemma 7.1, M\e is sequentially 4-connected. Hence
M\e is (4, 5, S)-connected and the theorem holds.

By the last paragraph and duality, we may assume that A contains no
4-element segments or cosegments of M . By Theorem 1.2, either M is
neither a wheel nor a whirl and M has an element e such that M\e or
M/e is sequentially 4-connected; or M is a wheel or a whirl and co(M\e) or
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si(M/e) is sequentially 4-connected for every element e. Since a sequentially
4-connected matroid N is certainly (4, 5, S)-connected when |E(N)| ≤ 12,
we deduce that the theorem holds when |E(M)| ≤ 12. Thus we may assume
that |E(M)| ≥ 13. Hall’s proof of Theorem 1.3 distinguishes the cases when
|E(M)| ≥ 16 and when 13 ≤ |E(M)| ≤ 15, and, since we will be relying on
her results, we shall use the same dichotomy.
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3
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a
a

a5
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Figure 2. The five possibilities for the 3-separating set A.

Since A is a 3-separating set in M , we have r(A) + r∗(A) − |A| = 2, so
r(A) + r∗(A) = 7. Because A contains no 4-element segments or coseg-
ments of M , we may assume by duality that r(A) = 3. Moreover, since M
is (4, 5)-connected, A is a flat of M . Hall [6, p. 58] distinguishes eleven
possibilities for A. Since we have the additional requirement that A is se-
quential, we can reduce the number of possibilities to five. In particular,
using Hall’s terminology, A is a 5-element fan or a 3-separating set of type
A, type B, type D, or type F. In each case, we have labelled A in Figure 2
such that (a1, a2, a3, a4, a5) is a sequential ordering of it. To interpret this
diagram, observe that, in each case, we have drawn M |A. The line in the
diagram marking the boundary between the plane A and the hyperplane
cl(B) corresponds to cl(A) ∩ cl(B).

Suppose that |E(M)| ≥ 16. If A is a 5-element fan, then, by Hall [6,
pp. 57–58], either M\a1 or M\a3/a4, which is isomorphic to co(M\a3),
is (4, 5)-connected. Hence, by Lemmas 7.1 and 7.6, M\a1 or co(M\a3) is
(4, 5, S)-connected. We may now assume that A has type A, B, D, or F. By
Lemma 7.4, taking i = 4 when A has type A or B and taking i = 3 when
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A has type D or F, we see that the matroid M\ai is 3-connected. Thus,
by Lemma 7.1 M\ai is sequentially 4-connected. Moreover, by Lemma 7.5,
M\ai is (4, 5)-connected and so is (4, 5, S)-connected. We conclude that the
theorem holds when |E(M)| ≥ 16.

Now suppose that 13 ≤ |E(M)| ≤ 15. In this case, if A is a fan, then, by
Hall [6, 5.2.10], one of M\a1,M\a5, or co(M\a3) is (4, 5)-connected. Again,
by Lemmas 7.1 and 7.6, M\a1, M\a5, or co(M\a3) is (4, 5, S)-connected.
Now assume that A has type A, B, D, or F. In each of these cases, Hall iden-
tified a pair of elements {ai, aj} such that M\ai or M\aj is (4, 5)-connected.
In particular, {i, j} is {4, 5} if A has type A or B [6, 5.2.2, 5.2.3]; {i, j} is
{2, 3} if A has type D [6, 5.2.4]; and {i, j} is {3, 5} if A has type F [6, 5.2.5].
By Lemma 7.1, we get that M\ai or M\aj is (4, 5, S)-connected and this
completes the proof of the theorem. �

Figure 3. Simplification and cosimplification are needed.

It is natural to ask whether there is a (4, 5, S)-connected matroid M other
than a wheel or a whirl in which there is no element e such that M\e or M/e
is (4, 5, S)-connected. In other words, are we forced to allow cosimplification
or simplification in Theorem 1.5? The cycle matroid M of the graph G in
Figure 3 is (4, 5, S)-connected. All 18 elements of M lie in triangles. Nine
of the elements, including all those bounding the infinite face F of G, also
lie in triads. The remaining nine elements are of two types: those that meet
a degree-4 vertex on the boundary of F ; and those bounding the innermost
triangular face of G. The deletion of an edge of the first type creates a
6-element fan, while deletion of an edge of the second type leaves a 3-vertex
cut corresponding to a 3-separation in which each part has 8 or 9 elements.
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