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Abstract. This paper proves a preliminary step towards a splitter theorem

for internally 4-connected binary matroids. In particular, we show that, pro-
vided M or M∗ is not a cubic Möbius or planar ladder or a certain coexten-

sion thereof, an internally 4-connected binary matroid M with an internally

4-connected proper minor N either has a proper internally 4-connected minor
M ′ with an N -minor such that |E(M) − E(M ′)| ≤ 3 or has, up to duality,

a triangle T and an element e of T such that M\e has an N -minor and has

the property that one side of every 3-separation is a fan with at most four
elements.

1. Introduction

When dealing with matroid connectivity, it is often useful in inductive arguments
to be able to remove a small set of elements from a matroid M to obtain a minor
M ′ that maintains the connectivity of M . Results that guarantee the existence of
such removal sets are referred to as chain theorems. Tutte [16] proved that, when M
is 2-connected, if e ∈ E(M), then M\e or M/e is 2-connected. More significantly,
when M is 3-connected, Tutte [16] proved the Wheels-and-Whirls Theorem which
shows that M has a proper 3-connected minor M ′ such that |E(M)− E(M ′)| = 1
unless r(M) ≥ 3 and M is a wheel or a whirl. A 3-connected matroid is internally 4-
connected if, for every 3-separation (X,Y ), either X or Y is a triangle or a triad. In
[2], we proved a chain theorem for binary internally 4-connected matroids showing
that such a matroidM has an internally 4-connected proper minorM ′ with |E(M)−
E(M ′)| ≤ 3 unless M or its dual is the cycle matroid of a planar or Möbius quartic
ladder, or a 16-element graphic matroid that is a variant of such a planar ladder.

Seymour’s Splitter Theorem [15] extends the Wheels-and-Whirls Theorem for 3-
connected matroids by showing that if such a matroid M has a proper 3-connected
minor N , then M has a proper 3-connected minor M ′ that has an N -minor and
satisfies |E(M) − E(M ′)| = 1 unless r(M) ≥ 3 and M is a wheel or a whirl. The
current paper is the third in a series whose aim is to extend our chain theorem for
binary internally 4-connected matroids to a splitter theorem for such matroids. Our
overall goal is to obtain a theorem that says if M and N are internally 4-connected
binary matroids, and M has a proper N -minor, then M has a minor M ′ such that
M ′ is internally 4-connected with an N -minor, and M ′ can be produced from M
by a bounded number of simple operations.
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Johnson and Thomas [8] showed that, even for graphs, a splitter theorem in the
internally 4-connected case must take account of some special examples. For n ≥ 3,
let G2n+2 be the biwheel with 2n + 2 vertices, that is, G consists of a 2n-cycle
v1, v2, . . . , v2n, v1, the rim, and two additional hub vertices, u and w, both of which
are adjacent to every vi. Thus the dual of G2n+2 is a cubic planar ladder. Let M
be the cycle matroid of G2n+2 for some n ≥ 3 and let N be the cycle matroid of
the graph that is obtained by proceeding around the rim of G2n+2 and alternately
deleting the edges from the rim vertex to u and to w. Both M and N are internally
4-connected but there is no internally 4-connected proper minor of M that has a
proper N -minor. We can modify M slightly and still see the same phenomenon.
Let G+

n+2 be obtained from Gn+2 by adding a new edge a joining the hubs u and

w. Let ∆n+1 be the binary matroid that is obtained from M(G+
n+2) by deleting

the edge vn−1vn and adding the third element on the line spanned by wvn and
uvn−1. This new element is also on the line spanned by uvn and wvn−1. For r ≥ 3,
Mayhew, Royle, and Whittle [9] call ∆r the rank-r triangular Möbius matroid and
note that ∆r\a is the dual of the cycle matroid of a cubic Möbius ladder.

In [3], we proved a splitter theorem when M is a 4-connected binary matroid and
N is an internally 4-connected proper minor of M . In particular, we showed that,
unless M is a certain 16-element non-graphic matroid, we can find an internally 4-
connected matroid M ′ with |E(M)−E(M ′)| = 1 such that M ′ has an N -minor. In
view of this result, we are now able to assume that M is an internally 4-connected
matroid having a triangle or a triad. But we know nothing about how this triangle
or triad relates to the N -minors of M . Our second step towards the desired splitter
theorem was to consider the case when M is internally 4-connected and all triangles
and triads of M are retained in N . In this case, we have proved [4, Theorem 1.2]
the following result.

Theorem 1.1. Let M and N be internally 4-connected binary matroids such that
|E(N)| ≥ 7, and N is isomorphic to a proper minor of M . Assume that if T is a
triangle of M and e ∈ T , then M\e does not have an N -minor. Dually, assume
that if T ∗ is a triad of M and f ∈ T ∗, then M/f does not have an N -minor. Then
M has an internally 4-connected minor M ′ of M such that M ′ has an N -minor
and 1 ≤ |E(M)− E(M ′)| ≤ 2.

In view of this theorem, we are now able to assume, by replacing M by its
dual if necessary, that M has a triangle T that contains an element e for which
M\e has an N -minor. When we were proving our chain theorem for a binary
internally 4-connected matroid M , we began by finding a triangle that either formed
part of a very special type of substructure of M , or that had an element whose
deletion satisfied a weaker form of connectivity than internal 4-connectivity (see
Theorem 3.1). The only 3-separations allowed in an internally 4-connected matroid
have a triangle or a triad on one side. A 3-connected matroid M is (4, 4, S)-
connected if, for every 3-separation (X,Y ) of M , one of X and Y is a triangle, a
triad, or a 4-element fan, that is, a 4-element set {x1, x2, x3, x4} that can be ordered
so that {x1, x2, x3} is a triangle and {x2, x3, x4} is a triad.

The following is the main result of the paper.

Theorem 1.2. Let M be an internally 4-connected binary matroid with an inter-
nally 4-connected proper minor N such that |E(M)| ≥ 15 and |E(N)| ≥ 6. Then
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(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′ is
internally 4-connected with an N -minor; or

(ii) for some (M0, N0) in {(M,N), (M∗, N∗)}, the matroid M0 has a triangle
T that contains an element e such that M0\e is (4, 4, S)-connected having
an N -minor; or

(iii) M or M∗ is isomorphic to M(G+
r+1), M(Gr+1), ∆r or ∆r\z for some

r ≥ 5.

To complete the derivation of our desired splitter theorem, we begin by building
detailed structure around the triangle T in (ii). We have already completed the
next step in this process [5] and observe here that, while it has considerable addi-
tional difficulties posed by the need to retain an N -minor, this process has much
in common with the analysis used to prove the chain theorem [2].

The proof of Theorem 1.2 will be given in Section 6. Before that, we give some
basic definitions and preliminary results in Section 2 where we also state a weaker
form of our main theorem (Theorem 2.1) that will be be very helpful in deriving the
main theorem. We begin to work towards the proof of Theorem 2.1 in Section 3,
and we prove a major step towards the theorem in Section 4. We complete the
proof of Theorem 2.1 in Section 5 before finishing the proof of the main theorem.

2. Preliminaries

The matroid terminology used here will follow Oxley [11]. We shall sometimes
write N � M to indicate that M has an N -minor, that is, a minor isomorphic
to the matroid N . We will denote by C2

3 the graph that is obtained from K3 by
adding a new edge in parallel to each existing edge. A quad in a matroid is a 4-
element set that is both a circuit and a cocircuit. The property that a circuit and a
cocircuit in a matroid cannot have exactly one common element will be referred to
as orthogonality. It is well known ([11, Theorem 9.1.2]) that, in a binary matroid,
a circuit and cocircuit must meet in an even number of elements.

Let M be a matroid with ground set E and rank function r. The connectivity
function λM of M is defined on all subsets X of E by λM (X) = r(X) + r(E−X)−
r(M). Equivalently, λM (X) = r(X) + r∗(X)− |X|. We will sometimes abbreviate
λM as λ. For a positive integer k, a subset X or a partition (X,E −X) of E is k-
separating if λM (X) ≤ k−1. A k-separating partition (X,E−X) is a k-separation
if |X|, |E −X| ≥ k. If n is an integer exceeding one, a matroid is n-connected if it
has no k-separations for all k < n. This definition has the attractive property that
a matroid is n-connected if and only if its dual is. Moreover, this matroid definition
of n-connectivity is relatively compatible with the graph notion of n-connectivity
when n is 2 or 3. For example, if G is a graph with at least four vertices and with no
isolated vertices, M(G) is a 3-connected matroid if and only if G is a 3-connected
simple graph. But the link between n-connectivity for matroids and graphs breaks
down for n ≥ 4. In particular, a 4-connected matroid with at least six elements
cannot have a triangle. Hence, for r ≥ 3, neither M(Kr+1) nor PG(r − 1, 2) is
4-connected. This motivates the consideration of other types of 4-connectivity in
which certain 3-separations are allowed. Let n and k be integers with n ≥ 3 and
k ≥ 2. A matroid M is (n, k)-connected if M is (n − 1)-connected and, whenever
(X,Y ) is an (n − 1)-separating partition of E(M), either |X| ≤ k or |Y | ≤ k. In
particular, a matroid is (4, 3)-connected if and only if it is internally 4-connected.
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A graph G without isolated vertices is internally 4-connected if M(G) is internally
4-connected.

A k-separating set X or a k-separation (X,E−X) is exact if λM (X) = k− 1. A
k-separation (X,E−X) is minimal if |X| = k or |E−X| = k. It is well known (see,
for example, [11, Corollary 8.2.2]) that if M is k-connected having (X,E−X) as a
k-separation with |X| = k, then X is a circuit or a cocircuit of M . In a matroid M ,
the local connectivity uM (X,Y ) between sets X and Y is r(X) + r(Y )− r(X ∪ Y ).
In particular, uM (X,E(M)−X) = λM (X) = λM (E(M)−X).

Let M be a matroid. A subset S of E(M) is a fan in M if |S| ≥ 3 and there is an
ordering (s1, s2, . . . , sn) of S such that {s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn}
alternate between triangles and triads. We call (s1, s2, . . . , sn) a fan ordering of S.
We will be mainly concerned with 4-element and 5-element fans. For convenience,
we shall always view a fan ordering of a 4-element fan as beginning with a triangle
and we shall use the term 4-fan to refer to both the 4-element fan and such a fan
ordering of it. Moreover, we shall use the terms 5-fan and 5-cofan to refer to the
two different types of 5-element fan where the first contains two triangles and the
second two triads. The central element of a 5-cofan is the element that is in both
triads. This element will always be the third element in any fan ordering of the 5-
cofan. Fans are examples of sequential 3-separating sets in M . A subset X of E(M)
is sequential if it has a sequential ordering, that is, an ordering (x1, x2, . . . , xk) such
that {x1, x2, . . . , xi} is 3-separating for all i in {1, 2, . . . , k}. It is straightforward
to check that, when M is binary, a sequential set with 3, 4, or 5 elements is a fan.
A 3-connected matroid M is (4, k, S)-connected if M is (4, k)-connected and, for
every 3-separation (X,Y ), at least one of X and Y is sequential.

At this point, we introduce yet another form of connectivity. To motivate this,
we return to the example in the introduction letting M be the cycle matroid of
the biwheel G2n+2 and N be the cycle matroid of the graph that is obtained by
proceeding around the rim of G2n+2 and alternately deleting the edges from the
rim vertex to u and to w. Each triangle of M has an element whose deletion has
an N -minor but every such deletion has a 5-fan. We call a 3-connected matroid
(4, 5, S,+)-connected if, whenever it has (X,Y ) as a 3-separation, one of X and Y is
a triangle or a triad, a 4-fan, or a 5-fan. As a very useful preliminary step towards
Theorem 1.2, we shall first prove the following result.

Theorem 2.1. Let M be an internally 4-connected binary matroid with an inter-
nally 4-connected proper minor N such that |E(M)| ≥ 15 and |E(N)| ≥ 6. Then

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′ is
internally 4-connected with an N -minor; or

(ii) for some (M0, N0) in {(M,N), (M∗, N∗)}, the matroid M0 has a triangle T
that contains an element e such that M0\e is (4, 5, S,+)-connected having
an N -minor.

Although we do not retain internal 4-connectivity in (ii), the example described
above means that we cannot expect to do better than get (4, 5, S,+)-connectivity.
Let (X,Y ) be a 3-separation of a 3-connected matroid M . We shall frequently be
interested in 3-separations that indicate that M is, for example, not internally 4-
connected. We call (X,Y ) a (4, k)-violator if |X|, |Y | ≥ k+ 1. In this case, we may
also refer to X as a (4, k)-violator. Similarly, (X,Y ) is a (4, 4, S)-violator if, for each
Z in {X,Y }, either |Z| ≥ 5, or Z is non-sequential. Evidently M is internally 4-
connected if and only if it has no (4, 3)-violators; and M is (4, 4, S)-connected if and
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only if it has no (4, 4, S)-violators. It is well known and easy to check that if (X,Y )
is a (4, 3)-violator in a 3-connected binary matroid, and |X| = 4, then X is either
a quad or a 4-fan. If a matroid M is (4, k)-connected or (4, k, S)-connected, then
M∗ is, respectively, (4, k)-connected or (4, k, S)-connected. However, (4, 5, S,+)-
connectivity allows the presence of 5-fans but not 5-cofans, so a matroid M may
be (4, 5, S,+)-connected even if M∗ is not. A (4, 5, S,+)-violator is a 3-separation
(X,Y ) of M such that either min{|X|, |Y |} ≥ 6, or min{|X|, |Y |} ≤ 5 and neither
X nor Y is a triangle, a triad, a 4-fan, or a 5-fan.

Johnson and Thomas’s [8] work towards finding a splitter theorem for internally
4-connected graphs revealed, using the example given in the introduction, that we
can be forced to remove arbitrarily many elements to recover internal 4-connectivity
while maintaining a copy of a specified minor. By controlling the presence of
biwheels and ladders, Johnson and Thomas [8] were able to prove a type of splitter
theorem for internally 4-connected graphs. In their result, each intermediate graph
is obtained from its predecessor by removing, via deletion or contraction, at most
two edges, and the cycle matroid of each such intermediate graph is (4, 4)-connected
satisfying some additional constraints.

Geelen and Zhou [6] proved an analogue of Johnson and Thomas’s theorem for
internally 4-connected binary matroids. Subsequently, Zhou [18] proved a stronger
theorem showing that, with the exception of various matroids related to biwheels
and ladders, when one begins with an internally 4-connected binary matroid M
having an internally 4-connected minor N , one can remove at most two elements
from M to get a matroid that has an N -minor and is (4, 4)-connected. Both this
theorem and the graph result of Johnson and Thomas have the advantage that,
except in known special cases, each step involves removing only one or two ele-
ments. But the major disadvantage of each is that, in removing these elements,
one may lose internal 4-connectivity. We have already seen that we may be forced
to remove arbitrarily many elements to recover internal 4-connectivity while main-
taining a copy of a certain minor. Consider a modification of the example given
earlier. Begin with two non-adjacent edges u0v0 and unvn in a large complete
graph. Add disjoint paths u0, u1, . . . , un and v0, v1, . . . , vn together with the edges
u1v1, u2v2, . . . , un−1vn−1. This produces an internally 4-connected graph H. Now
add the edges u0v1, u1v2, . . . , un−1vn to produce another internally 4-connected
graph G. Certainly H is a minor of G, but there is no internally 4-connected graph
that lies properly between G and H in the minor order. To get a splitter theorem
for internally 4-connected matroids, Geelen (private communication) proposed that
one should allow, as a single move, the conversion of a quartic ladder into a cubic
ladder as occurs when one goes from G to H. We know of another related move
that will also be required to get the desired theorem.

The paper of Zhou cited above contains three results that will be very useful here.
The first is the following lemma [18, Lemma 2.13]. The second is the subsequent
lemma, and the third is stated as Lemma 4.1.

Lemma 2.2. Let N be an internally 4-connected minor of a 3-connected binary
matroid M with |E(N)| ≥ 10. Let (X,Y ) be a 3-separation of M such that X
contains a triangle T and X − T is either a triangle or a triad.

(i) If X − T is a triangle, then M\x has an N -minor for all x in X.
(ii) If X − T is a triad and uM (T,X − T ) = 2, then M\t has an N -minor for

all t in T .
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The case when |E(N)| ≥ 7 in the next result is implicit in Zhou [18]. We include
the proof here for completeness.

Lemma 2.3. Let M be an internally 4-connected binary matroid having a proper
internally 4-connected minor N where |E(M)| ≥ 15 and |E(N)| ≥ 6. Then M has
a proper internally 4-connected minor N ′ with an N -minor such that |E(N ′)| ≥ 10.

Proof. The result is immediate if |E(N)| ≥ 10 as we may take N ′ = N . Now assume
that 7 ≤ |E(N)| ≤ 9. In that case, by [6, Lemma 2.1], N is isomorphic to one of
F7, F

∗
7 ,M(K3,3), or M∗(K3,3). By taking duals when necessary, we may assume

that N is isomorphic to F7 or M(K3,3). Zhou [17] proved that an internally 4-
connected binary matroid with a proper F7-minor has a minor isomorphic to one of
five internally 4-connected binary matroids each of which has ten or eleven elements.
Thus if N ∼= F7, then we can find N ′ with |E(N ′)| in {10, 11}. Geelen and Zhou [6]
proved that an internally 4-connected binary matroid with a proper M(K3,3)-minor
has a minor isomorphic to one of eight internally 4-connected binary matroids each
of which has at least ten and at most fourteen elements. Thus if N ∼= M(K3,3),
then we can find N ′ with |E(N ′)| in {10, 11, 12, 13, 14}. Since |E(M)| ≥ 15, the
lemma follows when 7 ≤ |E(N)| ≤ 9.

Finally, suppose that |E(N)| = 6. Then N ∼= M(K4). Now every 3-connected
binary matroid with at least six elements has an M(K4)-minor. Hence, to prove
the result in this case, we need only show that M has an internally 4-connected
minor M ′ with |E(M ′)| in {10, 11, 12, 13, 14}. This follows by repeatedly applying
the main result of [2]. �

We close this section with one final lemma whose elementary proof is omitted.

Lemma 2.4. Let (X,Y ) be a (4, 3)-violator of a 3-connected binary matroid M
that has no 4-fans. Then neither X nor Y is sequential. Moreover, if some element
x of X is in the closure or coclosure of Y , then (X − x, Y ∪ x) is a (4, 3)-violator
of M .

3. Developing structure

In this section, we develop some more tools that will be needed in the proof of
the main theorem.

In [7], Geelen and Zhou introduced the following structure. Let M be an in-
ternally 4-connected matroid. A rotor with central triangle {a, b, c} is a 9-tuple
(a, b, c, d, e, Ta, Tc, A, Z) such that the following hold:

(i) E(M) = {a, b, c, d, e}∪Ta∪Tc∪A∪Z and A∪Z = E(M)− ({a, b, c, d, e}∪
Ta ∪ Tc);

(ii) a, b, c, d, and e are distinct, and Ta, Tc, and {a, b, c} are disjoint triangles
with d in Ta and e in Tc;

(iii) Ta ∪ {b, e} and Tc ∪ {b, d} are 3-separating in M\a and M\c, respectively;
(iv) Ta and Tc are 2-separating in M\a, b and M\b, c, respectively; and
(v) A and Z are disjoint and non-empty, and Ta∪a∪A is 3-separating in M\b.

We use the following result [2, Theorem 5.1].

Theorem 3.1. Let T be a triangle of an internally 4-connected binary matroid M
with |E(M)| ≥ 13. Then either

(i) T is the central triangle of a rotor; or
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(ii) T contains an element e such that M\e is (4, 4, S)-connected.

Let (X,Y ) be an exact 3-separation of a simple binary matroid M . Since binary
matroids are uniquely representable over GF (2), we can view E(M) as a restriction
of PG(r − 1, 2), where r = r(M). Let clP be the closure operator of PG(r − 1, 2).
Then

r(X ∪ Y ) + r(clP (X) ∩ clP (Y )) = r(X) + r(Y ) = r(M) + 2 = r(X ∪ Y ) + 2

Thus clP (X)∩clP (Y ) is a line of PG(r−1, 2), that is, a triangle with some element
set {a, b, c}. We call {a, b, c} the guts line of the 3-separation (X,Y ). Let M and M ′

be matroids such that E(M)∩E(M ′) = {a, b, c}. Suppose that {a, b, c} is a triangle
of both matroids and that M ′ is isomorphic to M(K4). Then ∆{a,b,c}(M) denotes
the matroid obtained from M by performing a ∆-Y exchange on {a, b, c}, that is,
∆{a,b,c}(M) is obtained by deleting {a, b, c} from P{a,b,c}(M

′,M), the generalized
parallel connection of M ′ and M across the triangle {a, b, c} [11, p.449].

Lemma 3.2. Let (X,Y ) be an exact 3-separation of a simple, cosimple binary
matroid M of rank r and let N be an internally 4-connected minor of M with at least
seven elements. Then min{|E(N)∩X|, |E(N)∩ Y |} ≤ 3. Suppose |E(N)∩X| ≤ 3
and {a, b, c} is the guts line of (X,Y ). Then N is isomorphic to a minor of either
PG(r−1, 2)|(Y ∪{a, b, c}) or the matroid obtained from this matroid by performing
a ∆-Y exchange on the triangle {a, b, c}.

Proof. Suppose first that |X| = 3. Then X is a triangle or triad in M . In the first
case, X = {a, b, c} and M = PG(r− 1, 2)|(Y ∪{a, b, c}), as required. In the second
case, PG(r − 1, 2)|(X ∪ {a, b, c}) ∼= M(K4). Suppose |X ∩ E(N)| = 3. Then X is
a triad of N . Moreover, no element of {a, b, c} is in E(N), otherwise N contains
a 4-element fan; a contradiction. In this case, N is isomorphic to a minor of the
matroid obtained from PG(r − 1, 2)|(Y ∪ {a, b, c}) by performing a ∆-Y exchange
on {a, b, c}. Hence we may assume that |X ∩ E(N)| < 3. Then some element x
of X is not in E(N). Now N is a minor of M\x or M/x. In the former case, if
X−x = {y, z}, then {y, z} is a cocircuit of M\x, so, without loss of generality, y is
not in E(N) and N is a minor of M\x/y. Thus we may assume that N is a minor
of M/x. Then PG(r − 1, 2)|(Y ∪ {a, b, c}) has an N -minor, as required.

We may now assume that |X|, |Y | ≥ 4. Then, by [11, Propositions 9.3.4
and 11.4.16], letting PG(r − 1, 2)|(E(M) ∪ {a, b, c}) = M ′, we have that M ′ is
P{a,b,c}(MX ,MY ), the generalized parallel connection of MX and MY across the
triangle {a, b, c} where MX = M ′|(X∪{a, b, c}) and MY = M ′|(Y ∪{a, b, c}). Since
N is a minor of M , it is also a minor of M ′. Now |X ∩ E(N)| ≤ 3. Each element
of X − E(N) is deleted or contracted from M ′ to produce N . Let D be the set
of such elements that are deleted and C be the set of such elements that are con-
tracted. Then M ′\D = P{a,b,c}(MX\D,MY ). If clMX

(C) meets {a, b, c}, then it is
not difficult to see that N is isomorphic to a minor of MY . Thus we may assume
that clMX

(C) avoids {a, b, c}. Then M ′\D/C = P{a,b,c}(MX\D/C,MY ).
Now, |E(N)∩E(MX\D/C)| ≤ 3, so |E(MX\D/C)| ≤ 6. No element of E(N)∩

E(MX\D/C) is in a 1- or 2-element cocircuit of M ′\D/C. It follows that either
r(MX\D/C) = 2 or MX\D/C ∼= M(K4). In the first case, N is isomorphic to a
minor of MY . In the second, N is isomorphic to a minor of the matroid that is
obtained from MY by performing a ∆-Y exchange on {a, b, c}. �
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Let N be an internally 4-connected minor of a simple, cosimple binary matroid
M and (X,Y ) be an exact 3-separation of M with |X ∩ E(N)| ≤ 3. Let {a, b, c}
be the guts line of (X,Y ). By the last result, N is isomorphic to a minor of either
PG(r−1, 2)|(Y ∪{a, b, c}) or the matroid obtained from PG(r−1, 2)|(Y ∪{a, b, c}) by
performing a ∆-Y exchange on {a, b, c}. In these cases, we say that N is isomorphic
to a minor of the matroid obtained by replacing X by a triangle or a triad on the
guts line of (X,Y ). We also say that we can get an N -minor of the matroid obtained
by putting a triangle or a triad on the guts of (X,Y ).

The next two lemmas establish properties of M when M has a 4-fan or a quad.
The first is [4, Lemma 2.2]; the second follows easily from [3, Lemma 2.2].

Lemma 3.3. Let (1, 2, 3, 4) be a 4-element fan in a binary matroid M that has an
internally 4-connected minor N such that N has at least eight elements. Then M\1
or M/4 has an N -minor. Also, if (1, 2, 3, 4, 5) is a 5-fan in M , then either M\1, 5
has an N -minor, or both M/2\1 and M/4\5 have N -minors. In particular, both
M\1 and M\5 have N -minors.

Lemma 3.4. Let Q be a quad in a 3-connected binary matroid M that has an
internally 4-connected minor N such that N has at least eight elements. Then
either M\x has an N -minor for all x in Q, or M/x has an N -minor for all x in
Q. Moreover, if M\y has an N -minor for some y in Q, then M\y has an N -minor
for all y in Q; and if M/y has an N -minor for some y in Q, then M/y has an
N -minor for all y in Q.

1

2

3 5 7

4 6
8

9

Figure 1. A rotor structure, where {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits.

The next theorem proves a strengthening of the main result in the case that M
has a triangle T such that M\e has an N -minor for all e in T .

Theorem 3.5. Let T be a triangle of an internally 4-connected binary matroid M
with |E(M)| ≥ 13. Let N be an internally 4-connected minor of M . If, for all t in
T , the matroid M\t has an N -minor, then either

(i) M has an internally 4-connected proper minor M ′ with |E(M)−E(M ′)| ≤ 3
such that M ′ has an N -minor; or

(ii) for some element e of T , the matroid M\e is (4, 4, S)-connected having an
N -minor.

Proof. Assume that the theorem fails. Then, by Theorem 3.1, T is the central
triangle of a rotor. By [7], this means that the rotor can be labelled as in Figure 1
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where T = {4, 5, 6}, and both {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits of M . We
call 5 the central element of the rotor. Now, as M\4 has an N -minor and has
(1, 2, 3, 5, 7) as a fan, it follows from Lemma 3.3 that each of M\1 and M\7 have
N -minors. By symmetry, so do each of M\9 and M\3. As M\e has an N -minor
for all e in {3, 5, 7}, by using Theorem 3.1, we may assume that {3, 5, 7} is the
central triangle of a rotor. Then M has triangles X and Y where X = {x1, x2, x3}
and Y = {y1, y2, y3} such that X,Y , and {3, 5, 7} are disjoint. Moreover, by [3,
Lemma 2.10], for some labelling {a, b, c} of {3, 5, 7}, we have {x2, x3, a, b} and
{b, c, y1, y2} as cocircuits, while {x3, b, y1} is a triangle.

The following is shown in [2, Lemma 6.4].

3.5.1. The only triangles of M containing 5 are {4, 5, 6} and {3, 5, 7}, while the
only 4-cocircuits of M contained in {1, 2, . . . , 9} are {2, 3, 4, 5} and {5, 6, 7, 8}.

We show next that

3.5.2. b = 5.

Assume b 6= 5. Then we may assume that (a, b, c) = (5, 3, 7). Applying 3.5.1 to
the rotor with central triangle {5, 3, 7} and central element 3 gives that the only tri-
angles containing 3 are {5, 3, 7} and {x3, 3, y1}. But {1, 2, 3} is a triangle, so (x3, y1)
is either (1, 2) or (2, 1). In the first case, {x2, 1, 3, 5} is a cocircuit of M . By orthog-
onality with the triangle {4, 5, 6}, we see that x2 ∈ {4, 6}, so M has a 4-cocircuit
contained in {1, 2, . . . , 9} other than {2, 3, 4, 5} or {5, 6, 7, 8}; a contradiction. We
may now assume that (x3, y1) = (2, 1). Then the cocircuit {1, 3, 7, y2} implies, by
orthogonality with the triangle {7, 8, 9}, that y2 ∈ {8, 9}. Again we get a 4-cocircuit
contained in {1, 2, . . . , 9} other than {2, 3, 4, 5} or {5, 6, 7, 8}. Hence 3.5.2 holds.

Next we show the following.

3.5.3. M has triangles {2, 4, 11} and {6, 8, 10} such that |{1, 2, . . . , 11}| = 11.

By 3.5.1, we may assume that x3 = 4 and y1 = 6. Then the cocircuit {x2, x3, a, b}
is {x2, 4, a, 5}. By orthogonality, this cocircuit contains 3 or 7. In the latter case,
by orthogonality again, it also contains 8 or 9, and we have a 4-cocircuit contained
in {1, 2, . . . , 9} other than {2, 3, 4, 5} or {5, 6, 7, 8}. We deduce that (x2, x3, a, b) is
(2, 4, 3, 5) or (3, 4, 2, 5). But a ∈ {3, 5, 7}, so (x2, x3, a, b) = (2, 4, 3, 5). Thus c = 7,
so (b, c, y1, y2) = (5, 7, 6, 8). Hence M has disjoint triangles {2, 4, 11} and {6, 8, 10},
neither of which meets {3, 5, 7}. Thus |{1, 2, . . . , 11}| = 11 unless {10, 11} meets
{1, 9}. As {2, 4, 11} and {1, 2, 3} are triangles, 11 6= 1. By symmetry, it suffices to
show that 11 6= 9. If 11 = 9, then {1, 2, . . . , 9} is spanned by {2, 3, 4, 5}, and so
λ({1, 2, . . . , 9}) ≤ 2; a contradiction. We conclude that 3.5.3 holds.

3.5.4. Both M\1/2 and M\3, 4/5 have N -minors.

Assume first that M/4 has no N -minor. As M\5 has an N -minor having
(1, 3, 2, 4, 11) as a 5-fan, and M/4 has no N -minor, M\5/4 has no N -minor, so,
by Lemma 3.3, M\5\{1, 11} has an N -minor. Now we may assume that M\1 is
not internally 4-connected otherwise (i) holds. Thus, by [2, Lemma 6.5], M has a
4-cocircuit C∗ meeting {1, 2, . . . , 9} in {1, 2}. The triangle {2, 4, 11} implies that
11 ∈ C∗. Thus M\5\{1, 11} has a 2-cocircuit {2, z} where C∗ = {1, 2, 11, z}. Hence
M\{5, 1, 11}/2 has an N -minor and therefore so do each of M\1/2 and M/2; hence
M/2\3, 4 does also. But M\3, 4 has {2, 5} as a cocircuit. Thus M\3, 4/5 has an
N -minor. Hence 3.5.4 holds when M/4 has no N -minor.
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Now suppose that M/4 does have an N -minor. Clearly 2 and 5 are in dis-
tinct parallel classes of M/4. Hence M/4\2, 5 has an N -minor. But M/4\2, 5
has (3, 6, 7, 8, 9) as a 5-fan, so, by Lemma 3.3, M/4\2, 5, 3 has an N -minor. Thus
M\2, 3 has an N -minor and, as {4, 5} is a cocircuit in this matroid, M\2, 3/5 has
an N -minor. Thus so do M/5 and M/5\3, 4. As M\3, 4/5 ∼= M\3, 4/2, we deduce
that M/2 has an N -minor and so does M/2\1. We conclude that 3.5.4 holds.

By [2, Theorem 6.1], one ofM\1, M\9, M\1/2,M\9/8, orM\3, 4/5 is internally
4-connected. By 3.5.4 and symmetry, each of these five matroids has an N -minor.
Thus the theorem holds. �

The first part of the next lemma is in [13, Lemma 6.1], so we omit the proof. The
second part will be used repeatedly throughout the rest of the paper. In particular,
we shall need the two corollaries of the lemma that are proved following it.

Lemma 3.6. Let {e, f, g} be a triangle in an internally 4-connected binary matroid
M having at least eight elements. Then

(i) M\e is 3-connected; and
(ii) if (X,Y ) is a 2-separation of M\e, f with g in Y , then |X| ≤ 3; in partic-

ular, M\e, f is (3, 3)-connected.

Proof. Let (X,Y ) be a 2-separation of M\e, f with g in Y and |X| ≥ 4. Then
(X,Y ∪ f) is a 3-separation of M\e. Hence (X,Y ∪ {e, f}) is a 3-separation of M ,
contradicting the fact that M is internally 4-connected. We conclude that |X| ≤ 3
and (ii) holds. �

Corollary 3.7. Let {e, f, g} be a triangle in an internally 4-connected binary ma-
troid M having at least eight elements. Let X be a 2-separating set of M\e, f
such that |X| ≥ 2 and g 6∈ X. Then either X is a 2-cocircuit of M\e, f and
X ∪ {e, f} is a cocircuit of M , or X is a triangle and, for some {x1, x2} ⊆ X, the
set {x1, x2} ∪ {e, f} is a cocircuit of M .

Proof. By Lemma 3.6, |X| ≤ 3. If |X| = 2, then, as M is simple, X is a 2-cocircuit
of M\e, f ; and, as M is internally 4-connected, X ∪ {e, f} is a cocircuit of M .

Now let |X| = 3. Then r(X)+r∗M\e,f (X)−3 = 1. If r(X) = 3, then r∗M\e,f (X) =

1. But M\e is 3-connected and binary, so M\e, f has no series classes of size more
than two. Thus r(X) = 2, so r∗M\e,f (X) = 2. Hence X is a triangle. Since M is

binary, X is not a triad. Thus X contains a 2-cocircuit, and the corollary holds. �

Corollary 3.8. Let {e, f, g} be a triangle in an internally 4-connected binary ma-
troid M having at least eight elements. Then si(co(M\e, f)) is 3-connected and no
parallel class of co(M\e, f) has more than two elements.

Proof. The fact that si(co(M\e, f)) is 3-connected is an immediate consequence of
the last corollary. Now assume that co(M\e, f) has a parallel class of size at least
three. Then M\e, f has triangles {1, 2, 3} and {1, 4, 5} such that {2, 3} and {4, 5}
are cocircuits. Then {2, 3, e, f} and {4, 5, e, f} are cocircuits of M . Hence so is
{2, 3, 4, 5}. But {2, 3, 4, 5} is also a circuit of M , so M has a quad, contradicting
the fact that M is internally 4-connected. �

The next lemma will be used frequently.

Lemma 3.9. Let e be an element of an internally 4-connected matroid M .
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(i) If (U, V ) is a (4, k)-violator of M\e for some k ≥ 3 and C is a circuit of
M containing e, then C meets both U and V .

(ii) If (U, V ) is a (4, 4)-violator or a (4, 4, S)-violator of M\e and Z is a circuit
or a cocircuit of M\e such that V ∪ Z spans e, then |Z ∩ U | ≥ 2.

Proof. For (i), suppose C−e ⊆ U . Then e ∈ cl(U) and (U ∪e, V ) is a (4, k)-violator
of M ; a contradiction. Thus (i) holds. For (ii), observe first that U must meet Z
otherwise (U, V ∪ e) is a (4, 3)-violator of M ; a contradiction. Now either U is a
quad, or |U | ≥ 5. If U is a quad, then, by orthogonality, |Z ∩ U | ≥ 2 as desired.
Thus we may assume that |U | ≥ 5. Suppose that U contains a single element, say
z, of Z. Then z is in the closure or coclosure of V in M\e. Hence (U − z, V ∪ z∪ e)
is a (4, 3)-violator of M ; a contradiction. We conclude that |Z ∩ U | ≥ 2. �

Next we prove a lemma that extracts some common features from two of the
longer proofs in the paper, those of Lemma 4.3 and Theorem 2.1

Lemma 3.10. Let {e, f, g} be a triangle of an internally 4-connected matroid M .
Let (Xe, Ye) and (Xf , Yf ) be 3-separations of M\e and M\f , respectively, where f ∈
Xe and e ∈ Xf . Suppose that min{|Xe|, |Ye|, |Xf |, |Yf |} ≥ 4. Then the following
hold:

(i) g ∈ Ye ∩ Yf ;
(ii) either e ∈ cl(Xf − e), or Xf is a 4-element fan of M\f ;

(iii) either f ∈ cl(Xe − f), or Xe is a 4-element fan of M\e;
(iv) if Xf is not a 4-element fan of M\f and Xe is not a 4-element fan of M\e,

then
(a) e ∈ cl(Xf − e) and f ∈ cl(Xe − f);
(b) λM (Xe ∩ Yf ) + λM (Xf ∩ Ye) ≤ 4;
(c) λM\e,f (Xe ∩Xf ) + λM (Ye ∩ Yf ) ≤ 4; and
(d) |Ye∩Yf | ≥ 2 unless Ye is a 4-element fan of M\e and Yf is a 4-element

fan of M\f .

Proof. Part (i) is an immediate consequence of Lemma 3.9(i). To prove (ii), assume
that e /∈ cl(Xf − e). Then (Xf − e, Yf ∪ e) is a 3-separation of M\f . But f ∈
cl(Yf ∪ e), so (Xf − e, Yf ∪ e ∪ f) is a 3-separation of M . As M is internally
4-connected, it follows that |Xf − e| = 3. Hence Xf is a 4-element sequential 3-
separating set so Xf is a 4-element fan. Thus (ii) holds. Hence, by symmetry, so
does (iii).

Part (iv)(a) is immediate from (ii) and (iii). Now

(1) 2 = λM\f (Xf ) = λM\f,e(Xf − e).
Likewise, λM\e,f (Ye) = 2. Thus

2+2 = λM\e,f (Xf−e)+λM\e,f (Ye) ≥ λM\e,f ((Xf−e)∪Ye)+λM\e,f ((Xf−e)∩Ye).
Hence

(2) 4 ≥ λM\e,f (Yf ∩Xe) + λM\e,f (Xf ∩ Ye).
As Yf ∩Xe avoids Xf − e, and e ∈ cl(Xf − e), we have

λM\e,f (Yf ∩Xe) = λM\f (Yf ∩Xe) = λM (Yf ∩Xe)

where the last step follows as {e, g} ⊆ E(M\f)− (Yf ∩Xe). Therefore, by (2) and
symmetry,

(3) 4 ≥ λM (Yf ∩Xe) + λM (Xf ∩ Ye) = λM\f (Yf ∩Xe) + λM\e(Xf ∩ Ye).
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Hence (iv)(b) holds.
To prove (iv)(d), suppose |Ye ∩ Yf | < 2. Then, by (i), Ye ∩ Yf = {g}. Thus

min{|Xe∩Yf |, |Xf ∩Ye|} ≥ 3. Hence, by (3), λM\f (Yf ∩Xe) = 2 = λM\e(Xf ∩Ye),
so λM\f (Yf ∩Xe) = λM\f (Yf ). But Yf − (Yf ∩Xe) = {g}. Thus g ∈ cl(Yf ∩Xe) or
g ∈ cl∗M\f (Yf ∩Xe). The first possibility gives the contradiction that e ∈ cl(Xe)
since f ∈ Xe. Thus g ∈ cl∗M\f (Yf ∩ Xe) so g ∈ cl∗M ((Xe ∩ Yf ) ∪ f). Hence
g ∈ cl∗M (Xe) so g ∈ cl∗M\e(Xe). Thus (Xe ∪ g, Ye − g) is a 3-separation of M\e,
so (Xe ∪ g ∪ e, Ye − g) is a 3-separation of M . Hence |Ye − g| = 3. Thus Ye − g is a
triangle or a triad of M and hence of M\e. As g ∈ cl∗M\e(Ye− g) and M is binary,
we deduce that Ye − g is a triangle of M\e, and Ye is a 4-element fan of M\e. By
symmetry, Yf is a 4-element fan of M\f , and (iv)(d) holds.

Next, we note that, by (1),

2 + 2 = λM\e,f (Xe − f) + λM\e,f (Xf − e)
≥ λM\e,f (Xe ∩Xf ) + λM\e,f ((Xe − f) ∪ (Xf − e))
= λM\e,f (Xe ∩Xf ) + λM (Xe ∪Xf ).

Thus (iv)(c) holds. �

In the next lemma, we will assume the following.

Hypothesis I. No triangle of M contains two elements e and f such that M\e
and M\f each have an N -minor, and no triad of M contains two elements e′ and
f ′ such that M/e′ and M/f ′ each have an N -minor.

Recall that the matroid M(C2
3 ) is obtained from a triangle by adding a new

element in parallel to each existing element.

Lemma 3.11. Let M be a binary internally 4-connected matroid and N be an
internally 4-connected proper minor of M with at least eight elements. If Hypothesis
I holds, then either

(i) M has a triangle T such that M\e is (4, 5, S,+)-connected with an N -minor
for some e ∈ T ; or

(ii) M∗ has a triangle T such that M∗\e is (4, 5, S,+)-connected with an N∗-
minor for some e ∈ T ; or

(iii) M has an internally 4-connected minor M ′ having an N -minor such that
|E(M)− E(M ′)| ≤ 3.

Proof. By Theorem 1.1 and duality, we may assume that M has a triangle {e, f, g}
such that M\e has an N -minor. We may also assume that M\e is not (4, 5, S,+)-
connected, so M\e has a (4, 5, S,+)-violator (X,Y ). Then |X|, |Y | ≥ 4, and neither
X nor Y is a 4-fan or a 5-fan, although either may be a 5-cofan. Since e is in
neither cl(X) nor cl(Y ), we may assume that f ∈ X and g ∈ Y . Let {a, b, c}
be the guts line of (X,Y ). Then M\e = P{a,b,c}(MX ,MY )|E(M\e) where MX =
PG(r − 1, 2)|(X ∪ {a, b, c}) and MY = PG(r − 1, 2)|(Y ∪ {a, b, c}). Note that
f ∈ E(MX) − {a, b, c} and g ∈ E(MY ) − {a, b, c}. As (E(N) ∩ X,E(N) ∩ Y ) is
not a (4, 3)-violator of N , we may also assume that |E(N) ∩ X| ≤ 3. Thus, by
Lemma 3.2, MY or ∆{a,b,c}(MY ) has an N -minor. As M is internally 4-connected,
it is easily shown [15, (4.3)] that MX is 3-connected.

We show first that

3.11.1. MX is graphic.
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Suppose MX is not graphic. Then, by Asano, Nishizeki, and Seymour [1], MX

has a minor M ′X isomorphic to F7 or M∗(K3,3) that uses {a, b, c}. Suppose f ∈
E(M ′X). Then M ′X/f has an M(C2

3 )-minor using the triangle {a, b, c}. Moreover,
M ′X\f has an M(K4)-minor using the triangle {a, b, c}. Since MY or ∆{a,b,c}(MY )
has an N -minor, we deduce that M\e\f or M\e/f has an N -minor. Indeed, this
assertion holds in general since it also holds when f 6∈ E(M ′X). Thus the triangle
{e, f, g} of M contains distinct elements x and y such that M\x and M\y have
N -minors. This contradiction to Hypothesis I completes the proof of 3.11.1.

Next we show that

3.11.2. co(MX\f) is 3-connected up to parallel classes of size 2. Moreover, {a, b, c}
is a triangle in co(MX\f).

Let (U, V ) be a 2-separation of MX\f . We may assume that |U ∩ {a, b, c}| ≥ 2.
Then (U ∪ {a, b, c}, V − {a, b, c}) is a 2-separation of MX\f . It follows easily that
((U ∪ E(MY )) ∩ E(M), V − {a, b, c}) is a 2-separation in M\e, f . Since g 6∈ V −
{a, b, c}, Corollary 3.7 shows that either V − {a, b, c} is a 2-cocircuit in M\e, f , or
V − {a, b, c} is a triangle that contains a 2-cocircuit. Using this, it is not difficult
to show that one side of every 2-separation of MX\f is either a 2-cocircuit, or a
triangle that contains a 2-cocircuit. This implies that co(MX\f) is 3-connected up
to parallel classes of size 2.

Suppose that {a, b, c} is not a triangle in co(MX\f). Then it contains a 2-
cocircuit in MX\f . Thus MX has a triad that contains f and two elements of
{a, b, c}. By possibly relabelling, we may assume that {a, b, f} is a triad in MX .
As MY is connected, it has a cocircuit that contains {a, b}, and therefore avoids
c. Hence MY has a hyperplane that meets {a, b, c} in {c}. The union of this
hyperplane with E(MX)−{a, b, f} is a hyperplane of P{a,b,c}(MX ,MY ). Thus there
is a cocircuit of P{a,b,c}(MX ,MY ) contained in E(MY ) ∪ f that contains {a, b, f}.
Assume that |E(MX) − {a, b, c}| ≥ 5. Then (E(MX) − {a, b, c, f}, E(MY ) ∪ f) is
a 3-separation of P{a,b,c}(MX ,MY ), and (X −{a, b, c, f}, Y ∪ (E(M)∩{a, b, c, f}))
is a 3-separation in M\e. As Y contains g, it follows that (X − {a, b, c, f}, Y ∪
(E(M) ∩ {a, b, c, e, f})) is a (4, 3)-violator of M . This contradiction shows that
|E(MX) − {a, b, c}| ≤ 4. Hence |E(MX)| ≤ 7, so MX is isomorphic to F7 or
M(K4). But MX is graphic. Thus MX is isomorphic to M(K4), and X = E(MX),
otherwise (X,Y ) is not a (4, 5, S,+)-violator in M\e. If ∆{a,b,c}(MY ) has an N -
minor, then deleting any element of {a, b, c} from M produces a matroid with an
N -minor, contradicting Hypothesis I. Therefore N � MY , so N � M/f . Hence
both M\e and M\g have N -minors. This contradiction shows that 3.11.2 holds.

Let G be a graph such that MX = M(G). We show next that M has elements
x, y, w, and z such that if G0 is the graph shown in Figure 2(a), where the edges of
the outside face are labelled a, b, and c, then

3.11.3. MX = M(G0).

Let H denote the graph obtained from G\f by suppressing degree-2 vertices.
Thus M(H) = co(MX\f). By 3.11.2, the parallel classes in H have at most two
edges. Moreover, H has at most two non-trivial parallel classes as G is simple.

As co(MX\f) contains the triangle {a, b, c}, its rank is at least two. Suppose
first that r(co(MX\f)) ≥ 3. By 3.11.2, si(co(MX\f)) is 3-connected. Since the last
matroid has rank at least three, it also has corank at least three. From [10, Corollary
3.7], we see that si(co(MX\f)), and hence co(MX\f), has an M(K4)-minor using
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the triangle {a, b, c}. By Hypothesis I, M\f has no N -minor, so ∆{a,b,c}(MY ) has
no N -minor. Thus N �MY .

Suppose that si(co(MX\f)) has at least seven elements. As si(co(MX\f)) is 3-
connected, [15, (4.1)] implies that si(co(MX\f)), and hence MX\f , has an M(C2

3 )-
minor in which {a, b, c} is a triangle. Now it follows easily that M\e, f has a minor
isomorphic to MY . Thus M\f has an N -minor, which contradicts Hypothesis I.
Therefore si(co(MX\f)) is a 3-connected binary matroid with rank at least three,
and at most six elements. Hence si(co(MX\f)) is isomorphic to M(K4). Thus the
graph H is obtained from K4 by possibly adding parallel edges.

Assume that a, b, or c is in a non-trivial parallel class in H. Then co(MX\f),
and hence MX\f , has an M(C2

3 )-minor in which {a, b, c} is a triangle. This implies
that M\e, f has a minor isomorphic to MY , and so has a minor isomorphic to N .
As this violates Hypothesis I, we deduce that none of a, b, and c is in a non-trivial
parallel class in H. If H is simple, then G is one of the graphs G1 or G2, shown in
Figure 2 where, as with G0, the edges in the outside face are labelled with a, b, and
c. As H has at most two non-trivial parallel classes, if H is non-simple, then G is
either G3 or G4, where the dashed edge in G4 may be either present or absent.

If G is G1 or G2, the set T ∗ of edges that are incident with the vertex v is a
triad of M\e that meets a triangle of M\e. As this triad does not contain f or
g, it follows, by orthogonality, that T ∗ is a triad in M . Thus M has a 4-element
fan; a contradiction. Now suppose that H is isomorphic to G3 or G4. Then each
of G3/h/f and G4/h/i/f has {a, b, c} as a triangle and has edges a′, b′, and c′

parallel to a, b, and c, respectively. Then M\e/f has a minor isomorphic to MY ,
so N � M/f . Thus N � M\e and N � M\g, contradicting Hypothesis I. We
conclude that r(co(MX\f)) 6≥ 3.

We now know that r(co(MX\f)) = 2. Then, as M(H) = co(MX\f), it follows
by 3.11.2 that H is obtained from the triangle {a, b, c} by adding parallel edges,
and no vertex of H has degree two. It follows easily that G = G0, that is, 3.11.3
holds.

Next we show the following.
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3.11.4. N � MY , no element of {a, b, c} is in E(M), and all of {f, w, y, e},
{f, x, z, e}, and {w, x, y, z} are cocircuits of M . Moreover, both M\e/y and M/y
are 3-connected.

Since MX = M(G0), if N � ∆{a,b,c}(MY ), then, as K4 � G0/f , we have
that N � M/f , so N � M\g; a contradiction. Thus N � MY . Suppose E(M)
meets {a, b, c}. Then MX/f has a rank-2 minor that uses the triangle {a, b, c} and
contains a triangle all of whose elements are in E(M)−{e, f}. Thus N �M/f , so
M\g has an N -minor; a contradiction. It follows that E(M) avoids {a, b, c}. Since
{f, x, w} is not in a 4-element fan of M , we deduce that {f, w, y, e} and {f, x, z, e}
are cocircuits of M . Hence {w, x, y, z} is a cocircuit of M .

As (y, w, f, x, z) is a 5-cofan in M\e, the dual of Lemma 3.3 implies that M/y has
an N -minor. Now (y, w, f, x, z) is a maximal fan in M\e as E(M) ∩ {a, b, c} = ∅.
Hence M\e/y is 3-connected. Thus M/y is 3-connected, otherwise {e, y} is in a
triangle of M and we contradict Hypothesis I since N �M/y. Hence 3.11.4 holds.

We shall assume that M/y is not internally 4-connected, otherwise (iii) holds.
We now show that

3.11.5. M/y has a triad {i, j, k} such that {w, y, i, j} is a circuit in M .

Assume that 3.11.5 fails. Suppose that M/y has a 4-fan, (x1, x2, x3, x4). Then
{y, x1, x2, x3} is a circuit of M . By orthogonality with {e, f, w, y}, we see that
{x1, x2, x3} and {e, f, w} intersect in exactly one element. In fact, as e, f , and w
are all in triangles of M , none is contained in any triads of M . Therefore x1 is in
{e, f, w}. Assume that x1 ∈ {e, f}. Then orthogonality between {y, x1, x2, x3} and
{w, x, y, z} requires that x2 or x3 is equal to x or z. As x is in a triangle of M , and
is therefore in no triad, it follows that z ∈ {x2, x3}. By symmetry, we may assume
that z = x2. Note that MX/y, z is isomorphic to M(C2

3 ), and {a, b, c} is a triangle
in this minor. As N � MY , it follows that M\e/y, z, and hence M/y, z, has an
N -minor. As {x1, x3} is a circuit of M/y, z, we see that M/y, z\x3, and hence
M\x3, has an N -minor. But {x2, x4} is a 2-cocircuit in M\x3. Hence {x2, x3, x4}
is a triad of M that contains two elements whose contractions have N -minors. This
contradiction to Hypothesis I shows that x1 = w. But now {x2, x3, x4} is a triad
of M/y, and {y, w, x2, x3} is a circuit of M . This contradicts our assumption that
3.11.5 fails. Thus we may assume that M/y has no 4-fans.

Using Lemma 2.4, we deduce that M/y has a (4, 3)-violator (U, V ) such that
{f, w, x} ⊆ U . If e ∈ U , then y ∈ cl∗M (U), because of the cocircuit {e, f, w, y}. This
implies (U ∪ y, V ) is a (4, 3)-violator of M , so e is in V . Similarly, as {w, x, y, z}
is a cocircuit in M , and w, x ∈ U , it follows that z ∈ V . If g is in U , then, by
using Lemma 2.4 again, we see that (U ∪ e, V − e) is a (4, 3)-violator of M/y, and
(U ∪ {e, y}, V − e) is a (4, 3)-violator of M . Thus g ∈ V . Now (U − f, V ∪ f) is a
(4, 3)-violator of M/y as {e, f, g} is a triangle and e, g ∈ V . The cocircuit {e, f, x, z}
shows that x is in cl∗M (V ∪ f). Hence (U − {f, x}, V ∪ {f, x}) is a (4, 3)-violator of
M/y. Now w is in clM (V ∪{f, x}), so (U−{f, w, x}, V ∪{f, w, x}) is a (4, 3)-violator
in M/y, and the cocircuit {w, x, y, z} shows that (U − {f, w, x}, V ∪ {f, w, x, y}) is
a (4, 3)-violator in M . This contradiction completes the proof of 3.11.5.

3.11.6. {i, j, k} ∩ {e, f, w, x, y, z} = ∅.

To prove this, note that, as each of e, f , w, and x is in a triangle, none can be
in the triad {i, j, k}. As {i, j, k} remains a triad in M/y, we see that if 3.11.6 fails,
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then z ∈ {i, j, k}. In this case, by orthogonality between {i, j, w, y} and {e, f, x, z},
we see that z = k. Then the 3-connected matroid M\e/y has {x, f, z} and {i, j, z}
as cocircuits and has {x, f, w} and {i, j, w} as circuits. Thus M\e/y has {x, f, i, j}
as a quad containing f . Lemma 3.4 now implies that M\f or M/f has an N -minor.
In each case, we get a contradiction to Hypothesis I. Thus 3.11.6 holds.

We show next that

3.11.7. M/k has an N -minor.

Since M\e is 3-connected, {i, j, k} is a triad in M\e. Hence (w, i, j, k) is a 4-fan of
M\e/y. By applying Lemma 3.3 and 3.11.4, we see that N is a minor of M\e/y/k,
or of M\e/y\w. In the latter case, N � M\e\w. As {f, y} is a 2-cocircuit in
M\e\w, this implies N � M/f , and this leads to a contradiction to Hypothesis I.
Thus N �M\e/y/k �M/k, so 3.11.7 holds.

Since M∗\k has an N∗-minor, we complete the proof of Lemma 3.11 by showing
that M∗\k is (4, 5, S,+)-connected. First note that, by Lemma 3.6, M/k is 3-
connected since k is in a triad ofM . Assume thatM∗\k is not (4, 5, S,+)-connected.
Then M/k has a 3-separation (U, V ) where |U |, |V | ≥ 4 and neither U nor V is a
4-fan or a 5-cofan.

3.11.8. If (U, V ) is a (4, 5, S,+)-violator of M∗\k, then neither U nor V contains
{i, j}.

This is immediate, otherwise (U ∪ k, V ) or (U, V ∪ k) is a (4, 3)-violator in M .

3.11.9. If (U, V ) is a (4, 5, S,+)-violator of M∗\k such that i ∈ U and j ∈ V , then
neither U nor V contains {w, y}.

To prove this, assume that {w, y} ⊆ P where {P,Q} = {U, V }. Let {p, q} =
{i, j}, where p ∈ P and q ∈ Q. Because {p, q, w, y} is the circuit {i, j, w, y} of
M , it follows that (P ∪ q,Q− q) is a 3-separation in M∗\k. Now k ∈ cl∗M (P ∪ q),
because {k, p, q} is a triad of M , so (P ∪{p, k}, Q−q) is a 3-separation in M∗. Thus
|Q− q| ≤ 3. Since (P,Q) is a (4, 5, S,+)-violator in M∗\k, this means that |Q| = 4,
so Q is a quad in M∗\k. However, this is impossible, as q is in the coclosure of P
in M∗\k. Hence 3.11.9 holds.

3.11.10. There is a (4, 5, S,+)-violator, (U, V ), of M∗\k such that {e, f, g} ⊆ U .

Let (U, V ) be a (4, 5, S,+)-violator of M∗\k, and assume that |U ∩{e, f, g}| ≥ 2.
If (U ∪{e, f, g}, V −{e, f, g}) is a (4, 5, S,+)-violator of M∗\k, there is nothing left
to prove. Therefore we assume that V contains a single element, α, of {e, f, g},
and that (U ∪ α, V − α) is not a (4, 5, S,+)-violator of M∗\k. This means that
|V − α| ≤ 5, so |V | ≤ 6. If V contains a quad in M/k, then α is not in this quad,
by orthogonality with {e, f, g}, so, in this case, V −α contains a quad of M/k, and
(U ∪ α, V − α) is a (4, 5, S,+)-violator of M∗\k. Hence V does not contain a quad
of M/k, so |V | > 4. Thus |V | ∈ {5, 6}.

Suppose |V | = 5. Then V is a 5-element fan of M/k. It must contain two
triangles in M/k, otherwise it is a 5-fan of M∗\k, which contradicts the fact that
(U, V ) is a (4, 5, S,+)-violator. Let (v′1, v

′
2, . . . , v

′
5) be a fan ordering of V in M/k,

where {v′1, v′2, v′3} is a triangle. Since α is in a triangle of M , it is not in the
triad {v′2, v′3, v′4}. Therefore, by replacing (v′1, v

′
2, . . . , v

′
5) with (v′5, v

′
4, . . . , v

′
1) as

necessary, we may assume that α = v′1.
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Next assume that |V | = 6. Then V − α is a 5-element fan in M/k with two
triads, otherwise V −α is a 5-cofan in M∗\k, which is impossible as (U ∪α, V −α)
is not a (4, 5, S,+)-violator. Let (v1, v2, . . . , v5) be a fan ordering of V −α in M/k,
where {v1, v2, v3} is a triad. Now it easy to see by orthogonality that {v1, v2, v4, v5}
is independent in M/k and spans V − α. It must also span α, for otherwise (U ∪
α, V − α) is a 2-separation in M/k. Orthogonality shows that one of {v1, v2, α},
{v4, v5, α}, or {v1, v2, v4, v5, α} is a circuit in M/k. In the second case, we can
reverse the fan (v1, v2, . . . , v5), and assume that {v1, v2, α} is a circuit.

Let us assume that either |V | = 5, or |V | = 6 and {v1, v2, α} is a circuit. Next
we shall eliminate these two cases. In the first case, (α, v′2, v

′
3, v
′
4, v
′
5) is a fan with

two triangles in M/k, and, in the second case, (α, v1, v2, v3, v4) is. In both cases,
M/k has a 5-fan (α,w1, w2, w3, w4). Thus {α,w1, w2, k} and {w2, w3, w4, k} are cir-
cuits of M and {w1, w2, w3} is a triad. Orthogonality with the triad {i, j, k}, and
the fact that V contains only one element of {i, j}, means that w2 ∈ {i, j}. Thus
{w1, w2, w3} is a triad of M that meets the circuit {i, j, w, y}. Since |V ∩{i, j}| = 1,
and w is in no triads of M , we deduce that y ∈ {w1, w3}. Therefore {α,w1, w2, k}
or {w2, w3, w4, k} is a 4-element circuit, C, of M that contains k, y, and a single el-
ement from {i, j}. Thus, by orthogonality between C and the cocircuit {e, f, w, y},
it follows by 3.11.6 and 3.11.9 that α ∈ {e, f} and C is {k, y, α, i} or {k, y, α, j}.
Then C meets the cocircuit {w, x, y, z} in a single element. This contradiction
to orthogonality eliminates the two targeted cases. We deduce that |V | = 6,
and {v1, v2, v4, v5, α} is a circuit in M/k. By taking the symmetric difference of
this circuit with {v2, v3, v4}, and using the fact that M/k is simple, we see that
{v1, v3, v5, α} is a circuit in M/k.

By the dual of Lemma 3.3, either M/{k, v1, v5} or M/k\v2/v1 has an N -minor.
Assume that N �M/{k, v1, v5}. As {α, v3} is a 2-circuit in M/{k, v1, v5}, it follows
that N �M\v3. Now {v1, v2, v3} is a triad in M/k, and hence in M , so {v1, v2} is
a 2-cocircuit in M\v3. Thus M/v1 and M/v2 have N -minors, and Hypothesis I is
contradicted. It follows that N �M/k\v2/v1 �M\v2. But {v1, v3} is a 2-cocircuit
in M\v2, and we get exactly the same contradiction. Hence 3.11.10 holds.

Now we let (U, V ) be a (4, 5, S,+)-violator of M∗\k, where {e, f, g} ⊆ U . By
3.11.8 and 3.11.9, we can let {u, v} = {i, j} and {u′, v′} = {w, y}, where u, u′ ∈ U
and v, v′ ∈ V . Because {e, f, u′, v′} is a cocircuit in M/k, it follows that (U∪v′, V −
v′) is 3-separating in M/k. Now {u, v, u′, v′} is a circuit in M/k, so (U∪{v, v′}, V −
{v, v′}) is 3-separating in M/k. As {k, u, v} is a triad, (U ∪ {k, v, v′}, V − {v, v′})
is 3-separating in M , so |V − {v, v′}| ≤ 3. Thus |V | ≤ 5 and V is sequential.

As (U, V ) is a (4, 5, S,+)-violator of M∗\k, we see that V is a 5-fan in M/k. This
gives a contradiction to orthogonality between the cocircuit {e, f, u′, v′} and one of
the triangles of M/k contained in V . This completes the proof of Lemma 3.11. �

The next result is helpful in identifying N -minors of M .

Lemma 3.12. Let (X,Y ) be a 3-separation of a 3-connected binary matroid M with
|X| = 6 and |Y | ≥ 6. Let N be an internally 4-connected minor of M having at least
seven elements. Suppose r(X) = 3 and |X − cl(Y )| = 3. Let T = X ∩ cl(Y ). Then
M |X ∼= M(K4) and has T as a triangle and M = PT (M |X,M |cl(Y )). Moreover,
either

(i) for all x in X ∩ cl(Y ), the matroid M\x has an N -minor; or
(ii) for all y in X − cl(Y ), both M\y and M/y have an N -minor.
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Proof. Since |X − cl(Y )| = 3, the set X − cl(Y ) is a triad of M . As r(X) = 3, it
follows that X ∩ cl(Y ) is the guts line of the 3-separation (X,Y ) of M . Thus X ∩
cl(Y ) is a triangle of M and M |X ∼= M(K4). Now N is internally 4-connected with
at least seven elements and so has no 4-element fans. Thus either M\T has an
N -minor or M |cl(Y ) has an N -minor, and so (i) or (ii) holds. �

4. A big step

The goal of this section is to prove Lemma 4.3. When that result is combined
with the next two lemmas, it proves Theorem 2.1 when we replace (4, 5, S,+)-
connectivity by (4, 5)-connectivity. We begin the section with a result of Zhou [18,
Lemma 2.15].

Lemma 4.1. Let N be an internally 4-connected proper minor of an internally 4-
connected binary matroid M with |E(N)| ≥ 7. Suppose that M\e has an N -minor
and a 5-element 3-separating set A. If A is not a 5-fan or a 5-cofan, then either M
has a triangle T such that M\x has an N -minor for all x in T , or M has a triad
T ∗ such that M/y has an N -minor for all y in T ∗.

The next lemma follows from Lemma 4.1, Theorem 3.5, and duality.

Lemma 4.2. Let N be an internally 4-connected proper minor of an internally
4-connected binary matroid M such that |E(N)| ≥ 7 and |E(M)| ≥ 13. Suppose
e ∈ E(M) and {M\e,M/e} contains a member that has an N -minor and a 5-
element 3-separating set A. Then either A is a 5-fan or a 5-cofan, or one of the
following holds.

(i) M has an internally 4-connected proper minor that has an N -minor and
has at least |E(M)| − 3 elements; or

(ii) for some a in a triangle of M , the matroid M\a is (4, 4, S)-connected having
an N -minor; or

(iii) for some z in a triad of M , the matroid M/z is (4, 4, S)-connected having
an N -minor.

The following is the main result of this section.

Lemma 4.3. Let M be an internally 4-connected binary matroid with |E(M)| ≥ 15
and let {e, f, g} be a triangle of M . Let N be an internally 4-connected matroid
with |E(N)| ≥ 6. Suppose that both M\e and M\f have N -minors and have (4, 5)-
violators. Then

(i) M has an internally 4-connected proper minor M ′ with |E(M)−E(M ′)| ≤ 3
such that M ′ has an N -minor; or

(ii) M has a triangle T such that M\z has an N -minor for all z in T ; or
(iii) M has a triad T ∗ such that M/z has an N -minor for all z in T ∗.

Proof. In view of Lemma 2.3, we may assume that |E(N)| ≥ 10. Let (Xe, Ye)
and (Xf , Yf ) be (4, 5)-violators of M\e and M\f , respectively, where f ∈ Xe and
e ∈ Xf . Then min{|Xe|, |Ye|, |Xf |, |Yf |} ≥ 6. By Lemma 3.10,

4.3.1. g ∈ Ye ∩ Yf and e ∈ cl(Xf − e) and f ∈ cl(Xe − f).

The following are immediate consequences of Lemma 3.10(iv)(b).

4.3.2. (a) If |Xe ∩ Yf | ≥ 4, then |Xf ∩ Ye| ≤ 1.
(b) If |Xe ∩ Yf | ∈ {2, 3}, then |Xf ∩ Ye| ≤ 3.
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(c) If |Xf ∩ Ye| ≥ 4, then |Xe ∩ Yf | ≤ 1.
(d) If |Xf ∩ Ye| ∈ {2, 3}, then |Xe ∩ Yf | ≤ 3.

Since M is internally 4-connected and M\e, f is (3, 3)-connected, the following
is immediate from Lemma 3.10(iv)(c).

4.3.3. If |Xe ∩Xf | ≥ 4, then |Ye ∩ Yf | ≤ 3.

Next we show the following.

4.3.4. Either |Xe| ≤ |Ye| and |Xf | ≤ |Yf |; or |Xe| ≥ |Ye| and |Xf | ≥ |Yf |.

By symmetry, suppose that |Ye| < |Xe| and |Xf | < |Yf |. As |E(M)| ≥ 15, we
deduce that |Xe| ≥ 8 and |Yf | ≥ 8. Suppose |Xf ∩ Ye| ≥ 4. Then, by 4.3.2(c),
|Xe ∩ Yf | ≤ 1. Since |Xe| ≥ 8, it follows that |Xe ∩ Xf | ≥ 6. Thus, by 4.3.3,
|Ye ∩ Yf | ≤ 3. Hence |Yf | ≤ 4; a contradiction. We deduce that |Xf ∩ Ye| ≤ 3.

Suppose |Xf ∩ Ye| ∈ {2, 3}. Then, by 4.3.2(d), |Xe ∩ Yf | ≤ 3. As |Yf | ≥ 8,
it follows that |Ye ∩ Yf | ≥ 5. Thus, by 4.3.3, |Xe ∩ Xf | ≤ 3. Hence |Xe| ≤ 7; a
contradiction. Finally, suppose that |Xf ∩Ye| ≤ 1. Then, as |Ye|, |Xf | ≥ 6, we have
|Ye ∩ Yf | ≥ 5 and |Xf ∩Xe| ≥ 4. This contradicts 4.3.3, so 4.3.4 holds.

4.3.5. |Xe| ≤ |Ye| and |Xf | ≤ |Yf |.

Assume that this fails. Then, by 4.3.4, |Ye| ≤ |Xe| and |Yf | ≤ |Xf |. Moreover,
we may assume that equality does not hold for both of these, so, without loss of
generality, |Ye| < |Xe|. Suppose |Xe ∩Xf | ≤ 3. As |Xe|, |Xf | ≥ 6, it follows that
|Xe ∩ Yf |, |Xf ∩ Ye| ≥ 2. Thus, by 4.3.2, |Xf ∩ Ye|, |Xe ∩ Yf | ≤ 3. Hence |Xe| ≤ 7.
As |Ye| < |Xe|, it follows that |E(M)| ≤ 14; a contradiction.

We may now assume that |Xe ∩ Xf | ≥ 4. Then, by 4.3.3, |Ye ∩ Yf | ≤ 3. As
|Ye| ≥ 6, if |Ye∩Yf | ≤ 2, then |Xe∩Yf |, |Xf ∩Ye| ≥ 4 and we contradict 4.3.2. Thus
|Ye∩Yf | = 3 and |Xe∩Yf |, |Xf ∩Ye| ≥ 3. Hence, by 4.3.2, |Xe∩Yf | = 3 = |Xf ∩Ye|.
By Lemma 3.10(iv)(c), if λM (Ye∩Yf ) = 3, then λM\e,f (Xe∩Xf ) ≤ 1, so, as M\e, f
is (3, 3)-connected, |Xe∩Xf | ≤ 3; a contradiction. Hence λM (Ye∩Yf ) = 2, so Ye∩Yf
is a triangle or a triad of M . But g ∈ Ye ∩ Yf , so, by orthogonality, Ye ∩ Yf is a
triangle.

As |Xe ∩ Yf | = 3 = |Xf ∩ Ye|, it follows by Lemma 3.10(iv)(b) that each of
Xe ∩ Yf and Xf ∩ Ye is a triangle or a triad of M . If one of these is a triangle,
then, by Lemma 2.2, M\x has an N -minor for each element x in this triangle and
(ii) holds. Thus we may assume that Xf ∩ Ye and Xe ∩ Yf are triads of M .

Applying Lemma 2.2 to M\e taking Ye ∩ Yf to be T , we deduce that either (ii)
holds, or uM\e(Ye∩Yf , Ye∩Xf ) 6= 2. In the latter case, as r(Ye∩Yf ) = 2, it follows
that r(Ye ∩Xf ) 6= r(Ye), so

(4) r(Ye) ≥ 4.

Similarly, applying the dual of Lemma 2.2 to (M\e)∗ taking Xf ∩ Ye to be T , we
deduce that either (iii) holds, or u(M\e)∗(Xf ∩ Ye, Ye ∩ Yf ) 6= 2. In the latter case,
as r(M\e)∗(Xf ∩ Ye) = 2, it follows that

(5) r∗M\e(Ye) ≥ 4.

We may now assume that (4) and (5) hold. As Ye is 3-separating in M\e, we
have that r(Ye) + r∗M\e(Ye) = |Ye|+ 2 = 8, so

(6) r(Ye) = r∗M\e(Ye) = 4.
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Let Ye ∩Yf = {1, 2, 3} and Xf ∩Ye = {4, 5, 6}. Now {4, 5, 6} is a triad of M and
{1, 2, 3} is a triangle. Clearly {4, 5, 6} is contained in a basis B of Ye. As |B| = 4,
we may assume that 3 ∈ B. Let C be the fundamental circuit CM |Ye

(1, B). This
circuit does not contain the triad {4, 5, 6}. Moreover, |C| > 3, as M has no 4-
element fans. As |B| = 4, we deduce that |C| = 4. Hence |C ∩ {1, 2, 3}| = 2, so
C4{1, 2, 3} is a triangle of M that meets the triad {4, 5, 6}; a contradiction to the
fact that M is internally 4-connected. We conclude that 4.3.5 holds.

Since |Xe| ≤ |Ye| and |Xf | ≤ |Yf |, we have that

|Xe ∩Xf |+ |Xe ∩ Yf |+ 1 ≤ |Xf ∩ Ye|+ |Yf ∩ Ye|
and

|Xf ∩Xe|+ |Xf ∩ Ye|+ 1 ≤ |Xe ∩ Yf |+ |Ye ∩ Yf |.
Adding these two inequalities and simplifying, we get

(7) |Xe ∩Xf |+ 1 ≤ |Ye ∩ Yf |
From this and 4.3.3, it follows that |Xe ∩ Xf | ≤ 3. If |Xe ∩ Xf | ≤ 1, then |Xe ∩
Yf |, |Xf ∩ Ye| ≥ 4, which contradicts 4.3.2(a). Hence

(8) |Xe ∩Xf | ∈ {2, 3}.
As |Xe|, |Xf | ≥ 6, we have

(9) min{|Xe ∩ Yf |, |Xf ∩ Ye|} ≥ 6− (1 + |Xe ∩Xf |) ≥ 2.

Thus, by 4.3.2,

(10) max{|Xe ∩ Yf |, |Xf ∩ Ye|} ≤ 3.

As |E(M)| ≥ 15, we have |Ye ∩ Yf | ≥ 4. Hence, by Lemma 3.10(iv)(c),

(11) λM\e,f (Xe ∩Xf ) = 1.

Next we show the following.

4.3.6. The lemma holds when |Xe ∩Xf | = 2.

Assume that |Xe ∩ Xf | = 2. Then Xe ∩ Xf is a 2-element cocircuit {1, 2} of
M\e, f so {1, 2, e, f} is a cocircuit of M . By (10) and the first inequality in (9),
|Xf ∩ Ye| = 3 = |Xe ∩ Yf |. Let Xf ∩ Ye = {3, 4, 5} and Xe ∩ Yf = {6, 7, 8}. Then
each of {3, 4, 5} and {6, 7, 8} is a triangle or a triad of M by Lemma 3.10(iv)(b).

Suppose {3, 4, 5} is a triad of M . Then {3, 4, 5} and {1, 2, e} are triads of M\f .
By applying the dual of Lemma 2.2 to M\f , we deduce that (iii) holds. Thus
we may assume that both {3, 4, 5} and {6, 7, 8} are triangles. If rM\f (Xf ) = 3
or rM\e(Xe) = 3, then, by applying Lemma 2.2 to M\f or M\e, we get that (ii)
holds. By duality, if r∗M\f (Xf ) = 3 or r∗M\e(Xe) = 3, then (iii) holds. Hence we

may assume, since rM\e(Xe) + r∗M\e(Xe) = 8 and rM\f (Xf ) + r∗M\f (Xf ) = 8, that

rM\e(Xe) = r∗M\e(Xe) = rM\f (Xf ) = r∗M\f (Xf ) = 4.

As |E(N)| ≥ 10, we have that |Xf ∩E(N)| ≤ 3. Let L be the guts line of the 3-
separation (Xf , Yf ) of M\f . Let MX be the matroid obtained by extending M |Xf

by the elements of L−Xf . Then MX is a 3-connected matroid of rank 4. Moreover,
as M\f has {1, 2, e} as a cocircuit, so does MX . Thus MX\{1, 2, e} is a plane P
that contains L and {3, 4, 5}. As M is binary, L∩{3, 4, 5} is non-empty, so we may
assume that L∩{3, 4, 5} = {3}. Let L′ be the guts line of the triad {1, 2, e} of MX .
Then, viewing M as a restriction of a binary projective geometry, we see that L′ lies
in the plane of the projective geometry that is spanned by P . As r(Xf ) = 4, the
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lines L′ and {3, 4, 5} are distinct. Moreover, L 6= L′ otherwise {4, 5} is a 2-cocircuit
of MX ; a contradiction. Thus, letting t be the point where L′ meets {3, 4, 5}, we
have that MX has (t, u, v, w) as a 4-fan where {u, v, w} = {1, 2, e}. Moreover, we
may assume that t is 3 or 5. Thus MX is isomorphic to S8 or M(W4). In the
first case, MX is the rank-4 tipped cotipped binary spike with 3 as the tip and w
as the cotip. Hence {w, 4, 5} is a cocircuit of MX and so of M\f . As M has no
4-element fans, it follows that {f, w, 4, 5} is a cocircuit of M so, by orthogonality
with the circuit {e, f, g}, we deduce that w = e. Thus, when MX

∼= S8, we have
that MX/e ∼= F7. Consider the second case, when MX

∼= M(W4). Then MX has
{u, 4, 5} as a cocircuit, so M has {f, u, 4, 5} as a cocircuit and, by orthogonality,
u = e. In this case, si(MX/e) is isomorphic to M(K4) and uses the line L.

Now N is isomorphic to a minor of the matroid that is obtained by replacing Xf

by a triangle or a triad on the guts line L of (Xf , Yf ). For both of the choices of
MX , we see that M\f/e has an N -minor when we need to replace Xf by a triangle
on L and when we need to replace it by a triad. We conclude that M/e\g has
an N -minor and, therefore, so does M\g. Thus the lemma holds and so we have
proved 4.3.6.

By 4.3.6 and (8), we may now assume that |Xe ∩Xf | = 3. By (11) and Corol-
lary 3.7, Xe∩Xf is a triangle {0, 1, 2} containing a 2-element cocircuit, say {1, 2}, of
M\e, f . Moreover, as |Xf∩Ye| ∈ {2, 3} by (9) and (10), it follows that |Xf | ∈ {6, 7}.
By symmetry, |Xe| ∈ {6, 7}.

We show next that we may assume, by possibly interchanging e and f , that

4.3.7. |Xf ∩ E(N)| ≤ 3.

Since |E(N)| ≥ 10, this is immediate if |Xf | = 6. Now suppose that |Xf | = 7,
but that 4.3.7 fails. Then |Yf ∩E(N)| ≤ 3, so |E(N)| ≤ 10. Thus |Xf ∩E(N)| = 7
and |E(N)| = 10. Now |Xe ∩ E(N)| ≥ 4 otherwise we can interchange e and f to
get that 4.3.7 holds. Thus |Ye ∩ E(N)| ≤ 3. Hence |Xe ∩ E(N)| = 7. Therefore
E(N) ⊇ Xe ∪Xf so |E(N)| ≥ 11. This contradiction completes the proof of 4.3.7.

Suppose r(Xf ) = 4. Let L be the guts line of the 3-separation (Xf , Yf ) of M\f .
Let MX be the matroid obtained by extending M |Xf by the elements of L −Xf .
As M\f is 3-connected, so is MX . Now {1, 2, e} is a cocircuit of M\f and so is a
cocircuit of MX . As co(MX\e) is not simple, Bixby’s Lemma implies that si(MX/e)
is 3-connected. Since {e, 1, 2} is a cocircuit of MX , it follows by orthogonality that
e is not on the line L. The matroid MX/e has rank 3 and both L and {0, 1, 2}
span lines of MX/e. These lines either coincide or meet in a single point. In each
case, si(MX/e) has M(K4) as a restriction. This means that, in M/e\f , we can
put a triangle or a triad, as desired, on L. Thus, by Lemma 3.2, M/e\f , and so
M/e\g, has an N -minor. Therefore M\g has an N -minor. Hence the lemma holds
if r(Xf ) = 4.

Next suppose that r(Xf ) ∈ {5, 6} and |Xf | = r(Xf )+1. Then r∗M\f (Xf ) = 3, so

(M\f)∗|Xf is isomorphic to M(K4) or F7 and has {1, 2, e} as a triangle. Moreover,
(M\f)∗|Xf has a triangle, T1, that avoids e and contains 1. Thus T1 or T1 ∪ f is
a cocircuit of M . In the first case, as 1 ∈ T1 and {0, 1, 2} is a triangle of M , we
obtain the contradiction that M has a 4-element fan. Thus T1 ∪ f is a cocircuit of
M avoiding e. By orthogonality, g ∈ T1 so g ∈ Xf ; a contradiction.

Now assume that r(Xf ) = 5 and |Xf | = 7. Then r∗M\f (Xf ) = 4 and |Xf ∩Ye| =
3. Let Xf ∩ Ye = {3, 4, 5}. Then {3, 4, 5} is a triangle or triad of M . Assume
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it is a triangle. Then, as M |Xf has rank 5 and contains {0, 1, 2} and {3, 4, 5} as
disjoint triangles, it has e as a coloop; a contradiction to 4.3.1. Thus {3, 4, 5} is a
triad of M . Since r∗M\f (Xf ) = 4, the set Xf contains at least three cocircuits of

M\f . Two of these are {1, 2, e} and {3, 4, 5}. Let C∗ be a third such cocircuit. If
C∗ ⊆ {0, 1, 2, e}, then λM\f ({0, 1, 2, 3}) ≤ 1; a contradiction. We deduce that C∗

meets {3, 4, 5}. If |C∗ ∩ {3, 4, 5}| = 2, then C∗ 4 {3, 4, 5} is a cocircuit meeting
{3, 4, 5} in just one element. Hence we may assume that C∗∩{3, 4, 5} = {3}. Thus
3 ∈ C∗ ⊆ {3, 0, 1, 2, e}. As {1, 2, e} is a cocircuit of M\f , by replacing C∗ by
C∗4{1, 2, e} if necessary, we may assume that |C∗ ∩{1, 2, e}| = 1. Since |C∗| ≥ 3,
it follows that |C∗| = 3 and {0, 3} ⊆ C∗. By orthogonality with the circuit {0, 1, 2},
we deduce that C∗ is {0, 1, 3} or {0, 2, 3}. As {e, f, g} is a triangle of M , it follows,
by orthogonality again, that C∗ is a cocircuit of M , so M has a 4-element fan; a
contradiction.

It remains to consider the case when r(Xf ) = 3. Since {1, 2, e} is a cocircuit of
M\f , it follows that |Xf | = 6 and Xf −{1, 2, e} is a triangle T that equals the guts
line L of the 3-separation (Xf , Yf ) of M\f . Then, by Lemma 3.12, either M\f/e
has an N -minor, so M\g has an N -minor and the lemma holds; or, for all z in T ,
the matroid M\z has an N -minor and again the lemma holds. This completes the
proof of Lemma 4.3. �

5. Proof of Theorem 2.1

The purpose of this section is to prove the last major step towards the proof of
the main result of the paper.

Proof of Theorem 2.1. By Lemma 2.3, we may assume that |E(N)| ≥ 10. Suppose
that the theorem does not hold. By Lemma 3.11, Hypothesis I does not hold for
M and we may assume, up to duality, that M has a triangle {e, f, g} such that
N �M\e and N �M\f . Then M\e and M\f have (4, 5, S,+)-violators (Xe, Ye)
and (Xf , Yf ), respectively, such that e ∈ Xf and f ∈ Xe. By Lemma 3.10(i),
g ∈ Ye ∩ Yf . Without loss of generality, we may assume that

(12) min{|Xe|, |Ye|} ≤ min{|Xf |, |Yf |}.
We now show that this implies that

5.1.1. (Xe, Ye) is not a (4, 5)-violator.

Assume the contrary. Then, by Lemma 4.3 and Theorem 3.5, (Xf , Yf ) is not a
(4, 5)-violator otherwise the theorem holds. Hence min{|Xf |, |Yf |} ≤ 5. It follows
by (12) that min{|Xe|, |Ye|} ≤ 5; a contradiction.

Next we observe the following.

5.1.2. Either Xe or Ye is a 5-cofan or a quad in M\e. Moreover, if Z ∈ {Xh, Yh}
for some h in {e, f} and |Z| ≤ 5, then Z is a 5-cofan or a quad in M\h. In
particular, if Z is a 5-cofan (v, w, x, y, z) in M\h, then {v, w, x, y, z} ∩ {e, f, g} =
{x} and {h, x, v, w} and {h, x, y, z} are cocircuits of M .

Since (Xe, Ye) is not a (4, 5)-violator but is a (4, 5, S,+)-violator, Lemma 4.2
implies that Xe or Ye is a 5-cofan or a quad in M\e. Using the same lemma, we
also see that if |Z| = 5 for some Z in {Xe, Ye, Xf , Yf}, then Z is a 5-cofan. The
rest of 5.1.2 follows by using orthogonality and the fact that M has no 4-fans.

By Theorem 3.5,
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5.1.3. N is not a minor of M\g.

By Lemma 3.10,

5.1.4. e ∈ clM\f (Xf − e) and f ∈ clM\e(Xe − f).

Next we show that

5.1.5. ∅ 6∈ {Xe ∩Xf , Xe ∩ Yf , Xf ∩ Ye}.

Suppose Xe ∩ Xf = ∅. Then Xe − f ⊆ Yf , so f ∈ cl(Yf ). Hence (Xf , Yf ∪ f)
is a 3-separation of M ; a contradiction. Thus Xe ∩ Xf 6= ∅. Similar arguments
establish that Xe ∩ Yf and Xf ∩ Ye are non-empty. Thus 5.1.5 holds.

By Lemma 3.10(iv)(c),

5.1.6. 4 ≥ λM (Ye ∩ Yf ) + λM\e,f (Xe ∩Xf ).

Next we show the following.

5.1.7. If |Xe| ≥ |Ye|, then |Ye ∩ Yf | ≤ 3.

Assume that |Ye ∩ Yf | ≥ 4. As |Ye| ≤ 5, it follows, by 5.1.5, that |Xf ∩ Ye| = 1
and |Ye| = 5. Since min{|Xe|, |Ye|} ≤ min{|Xf |, |Yf |}, we deduce that |Xf | ≥ 5.
Now λM (Ye∩Yf ) ≥ 3 otherwise M has a (4, 3)-violator. Thus by 5.1.6, λM\e,f (Xe∩
Xf ) ≤ 1. Hence, by Lemma 3.6, |Xe ∩ Xf | ≤ 3, so |Xf | = 5 and |Xe ∩ Xf | = 3.
Therefore, by 5.1.2, Xf is a 5-cofan of M\f . Moreover, by Corollary 3.7, Xe ∩Xf

is a triangle. But, by 5.1.4, e ∈ cl(Xf − e). This contradicts the fact that Xf is a
5-cofan of M\f . Thus 5.1.7 holds.

We break up the rest of the proof into the following four cases.

(I) |Xe| ≥ |Ye| and |Xf | ≥ |Yf |.
(II) |Xe| ≥ |Ye| and |Xf | < |Yf |.

(III) |Xe| < |Ye| and |Xf | ≥ |Yf |.
(IV) |Xe| < |Ye| and |Xf | < |Yf |.
The first of these cases is the most difficult.

Case I: |Xe| ≥ |Ye| and |Xf | ≥ |Yf |.

In this case, we first observe that 5.1.7 immediately gives that

5.1.8. |Ye ∩ Yf | ≤ 3.

We now know, by Lemma 3.10(iv)(d), that |Ye ∩ Yf | is 2 or 3. Each of these
cases will require a very detailed analysis. We begin with the following case.

(I)(A) Ye ∩ Yf = {z, g}.

First we show that

5.1.9. Ye is a quad of M\e and Yf is a quad of M\f .

Suppose that Ye is not a quad of M\e. By 5.1.1, |Ye| = 5, so |Xf∩Ye| = 3. Then,
by 5.1.2, Ye is a 5-cofan with g as its central element. Hence g is in the coclosure
of Xf ∩ Ye in M\e, so g is in the coclosure of Xf in M\f . Thus (Xf ∪ g, Yf − g)
is a 3-separation of M\f , so (Xf ∪ g ∪ f, Yf − g) is a 3-separation of M . Thus
Yf is a 4-element sequential 3-separating set in M\f , so Yf is a 4-fan in M\f ; a
contradiction. We deduce that Ye is a quad in M\e, so Ye is a circuit of M , and
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Ye ∪ e is a cocircuit of M . Since {z, g} ⊆ Yf and {e, f, g} is a triangle, it follows
that

2 = λM\f (Xf ) ≥ λM\f (Xf ∪ {z, g}) ≥ λM (Xf ∪ {z, g, f}).
Thus Yf − {z, g} is a 3-separating set in M . Hence |Yf | ≤ 5 so, by 5.1.2, Yf is a
quad or a 5-cofan in M\f . Suppose Yf is a 5-cofan of M\f . Then g is its central
element, so g is in two triads of M\f that are contained in Yf . By orthogonality
with the circuit Ye, each of these triads contains z. Hence M\f has a 2-cocircuit, so
M has a triad containing f and therefore has a 4-fan; a contradiction. We conclude
that Yf is a quad of M\f , so 5.1.9 holds.

z

g

f e

a
bd

c

Figure 3

Now M has the structure shown in Figure 3, where Ye = {a, b, g, z} and Yf =
{c, d, g, z} while the 5-element cocircuits Ye∪e and Yf∪f have been circled. Observe
that {a, b, c, d}, the symmetric difference of the circuits Ye and Yf , is itself a circuit
of M . We now show that

5.1.10. M has no triad meeting {a, b, c, d, e, f, g, z}.

As M is internally 4-connected, no triad contains e, f , or g. Suppose x is in a
triad T ∗ for some x in {a, b, c, d, z}. Without loss of generality, we may assume
that x ∈ {a, b, z}. By orthogonality with the circuit {a, b, g, z}, we know that two
elements of T ∗ are in {a, b, g, z}. Thus T ∗ ⊆ cl∗M ({a, b, g, z}). As e is not in a triad
of M , we know that e /∈ T ∗. Thus T ∗ ⊆ cl∗M\e({a, b, g, z}). Hence {a, b, g, z} ∪ T ∗
is a 5-element 3-separating set of M\e that is not a fan, and the result follows by
Lemma 4.2. We conclude that 5.1.10 holds.

Next we show that

5.1.11. M/z is 3-connected having an N -minor.

We know that N is internally 4-connected, N � M\e, and g is in a quad of
M\e. Thus, by Lemma 3.4, N � M\e, g or N � M\e/g. The first option contra-
dicts 5.1.3, so the second occurs. Since g is in a quad with z in M\e, it follows, by
Lemma 3.4, that N �M/z.

As M\e is 3-connected having {a, b, g, z} as a quad, as noted in [12, Lemma
2.9], it is routine to check that si(M\e/z) is 3-connected. It follows that M/z
is 3-connected unless z is in a triangle T of M . In the exceptional case, since
{a, b, e, g, z} and {c, d, f, g, z} are cocircuits of M , it follows by orthogonality that
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T meets each of {a, b, e, g} and {c, d, f, g} in a single element. Suppose g 6∈ T . Then
it is straightforward to check that λ({a, b, c, d, e, f, g, z}) ≤ 2. This is a contradiction
since |E(M)| ≥ 15. We deduce that g ∈ T . Let h be the element of T − {z, g}.
Then (Xf −h, Yf ∪h) is a (4, 5, S,+)-violator for M\f with |Yf ∪h| = 5. But Yf ∪h
is not a 5-cofan, so 5.1.2 fails; a contradiction. We conclude that 5.1.11 holds.

We may assume that M/z is not internally 4-connected otherwise the theorem
holds. We show next that

5.1.12. M has a circuit {z, g, v1, v2} and a triad {v1, v2, v3} such that
{a, b, c, d, e, f, g, z} ∩ {v1, v2, v3} = ∅.

As M/z is not internally 4-connected, it has a (4, 3)-violator (Uz, Vz) such that
|Uz ∩ {e, f, g}| ≥ 2. We show next that we may assume that

5.1.13. {e, f, g} ⊆ Uz.

Assume not. Then (Uz ∪ {e, f, g}, Vz − {e, f, g}) is not a (4, 3)-violator of M/z.
Thus Vz −{e, f, g} is a triad {v1, v2, v3} of M/z and hence of M . Hence, by 5.1.10,
{a, b, c, d} ⊆ Uz. Now {e, g, a, b, z} and {f, g, c, d, z} are cocircuits of M . Thus, as
|Uz ∩ {e, f, g}| ≥ 2, it follows that {e, f} ⊆ Uz and g ∈ Vz otherwise (Uz ∪ z, Vz) is
a (4, 3)-violator of M ; a contradiction. Then Vz is a 4-fan (g, v1, v2, v3) in M/z, so
{z, g, v1, v2} is a circuit of M and 5.1.12 holds. We deduce that 5.1.13 holds.

If {a, b} or {c, d} is contained in Uz, then (Uz ∪ z, Vz) is a (4, 3)-violator of M ;
a contradiction. Thus, without loss of generality, we may assume that {b, d} ⊆ Vz.
Suppose a ∈ Uz. Then b ∈ clM/z(Uz), so (Uz ∪ b∪ z, Vz − b) is a 3-separation of M .
Since d ∈ Vz − b, by 5.1.10, Vz − b is not a triad of M . Thus (Uz ∪ b ∪ z, Vz − b)
is a (4, 3)-violator of M ; a contradiction. We deduce that a 6∈ Uz, so a ∈ Vz. The
circuit {a, b, c, d} implies that c ∈ cl(Vz), so (Uz − c, Vz ∪ c) is a (4, 3)-violator of
M/z unless Uz − c is a triad containing {e, f, g}; a contradiction. Thus we may
assume that {a, c} ⊆ Vz.

Now λM/z(Vz) ≥ λM/z(Vz∪g) ≥ λM/z(Vz∪g∪{e, f}), where the second inequal-
ity holds since {e, f, g} is a circuit of M/z and {e, f, a, b, c, d} is a cocircuit of M/z.
Thus |Uz−{e, f, g}| ≤ 3 otherwise (Uz−{e, f, g}, Vz∪{e, f, g}∪z) is a (4, 3)-violator
of M ; a contradiction. Suppose |Uz −{e, f, g}| = 3. Then, as Uz − g is a 5-element
3-separating set in M/z, the theorem follows by Lemma 4.2 unless Uz−g is a 5-fan
or a 5-cofan. In the exceptional case, by 5.1.10, (e, u1, u2, u3, f) is a 5-fan of M/z
where {e, u1, u2} is a triangle of M/z that meets the cocircuit {a, b, c, d, e, f} of
M/z in a single element; a contradiction. Suppose next that |Uz − {e, f, g}| = 2.
Then Uz is a 5-element 3-separating set in M/z and we again apply Lemma 4.2
to obtain the desired result because Uz is neither a 5-fan nor a 5-cofan otherwise
e, f , or g is in a triad of M ; a contradiction to 5.1.10. We may now assume that
|Uz − {e, f, g}| = 1. Then Uz is a 4-fan in M/z containing the triangle {e, f, g} of
M . Thus M has a 4-fan; a contradiction. We deduce that 5.1.12 holds.

We now show that

5.1.14. (M/v3)∗ is (4, 5, S,+)-connected with an N∗-minor.

Now M/z has an N -minor, and M/z has (g, v1, v2, v3) as a 4-fan. By Lemma 3.3,
M\g or M/v3 has an N -minor. The first possibility contradicts 5.1.3, so N �M/v3.

Next we show that M/v3 is 3-connected. This is certainly true if M/z/v3 is 3-
connected so assume it is not. Then we have a 5-fan (g, vi, vj , v3, v4) in M/z where
{i, j} = {1, 2}. Thus {z, vj , v3, v4} is a circuit of M . By orthogonality with the
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cocircuits {a, b, g, z, e} and {c, d, g, z, f} of M , we deduce from 5.1.10 that v4 = g;
a contradiction. Hence M/v3 is indeed 3-connected.

Let (Uv3 , Vv3) be a (4, 5, S,+)-violator of M∗\v3. We may assume that v1 ∈ Uv3

and v2 ∈ Vv3 . Now v1 6∈ clM/v3(Vv3), otherwise Uv3 − v1 is a (4, 3)-violator of M ;
a contradiction. Likewise, v2 /∈ clM/v3(Uv3). As each of {z, g, v1, v2}, {a, b, v1, v2},
and {c, d, v1, v2} is a circuit ofM , we may assume that {a, c, g} ⊆ Uv3 and {b, d, z} ⊆
Vv3 because of the symmetry between a and b, and between c and d.

Suppose that {e, f} ⊆ Vv3 . Then we obtain the contradiction that (Uv3 − g −
v1, Vv3 ∪ g ∪ v1 ∪ v3) is a (4, 3)-violator of M unless |Uv3 − g − v1| ≤ 3. But, in the
exceptional case, Uv3 is a sequential 3-separating set that is contained in clM/v3(Vv3)
and again we have a contradiction. We deduce that {e, f} 6⊆ Vv3 .

Since we have maintained symmetry between e and f , we may assume that
e ∈ Uv3 . Now (Uv3 ∪f, Vv3

−f) is a (4, 5, S,+)-violator in M∗\v3 because Vv3
−f is

not a 4-fan or a 5-fan of M∗\v3, otherwise b, z, or d is in a triad of M ; a contradiction
to 5.1.10. Therefore we may assume that f ∈ Uv3 . Then, because M has {a, b, c, d}
as a circuit and {a, b, c, d, e, f} as a cocircuit, and Uv3 contains {a, c, e, f}, it follows
that λM/v3(Uv3 ∪{b, d}) ≤ 2. Observe that Uu3 ∪{b, d} spans z in M/v3. Thus, by
5.1.12, Uu3

∪ {b, d} spans v2 in M/v3. It follows that (Uv3 ∪ {b, d} ∪ v2 ∪ v3, Vv3 −
{b, d} − v2) is 3-separating in M . Thus |Vv3 | ≤ 6. Suppose |Vv3 | = 4. Then Vv3
is a quad in M/v3, so {b, d, z, v2} and {b, d, z, v2, v3} are a cocircuit and a circuit,
respectively, of M . Thus, letting Z = {a, b, c, d, e, f, g, z, v1, v2, v3}, we have that
λM (Z) = r(Z)+r∗(Z)−|Z| ≤ 6+7−11 = 2. Hence |E(M)| ≤ 14; a contradiction.
Next suppose |Vv3 | = 5. Then, by Lemma 4.2, Vv3 is a 5-fan or a 5-cofan of M/v3,
so b, d, or z is in a triad of M ; a contradiction to 5.1.10. We conclude that |Vv3 | = 6
and Vv3 − {b, d} is a 4-fan of M/v3 with z in its triad; a contradiction to 5.1.10.
This completes the proof in case I(A).

α1

α2 α3

gy

z

Figure 4

To complete the proof of case I, it remains to consider the following.

(I)(B) Ye ∩ Yf = {y, z, g}.
As |E(M)| ≥ 15 and |Xf | ≥ |Yf |, we must have that |Xf | ≥ 7. By 5.1.1,

|Ye| ∈ {4, 5}, so |Ye ∩ Xf | ≤ 2. Hence |Xe ∩ Xf | ≥ 4. Thus, by Lemma 3.6,
λM\e,f (Xe ∩Xf ) ≥ 2. Hence, by 5.1.6, λM (Ye ∩ Yf ) ≤ 2, so λM (Ye ∩ Yf ) = 2 and
{y, z, g} is a triangle or a triad of M . As g is in a triangle of M , we know that
{y, z, g} is not a triad, so it is a triangle. By 5.1.2, Ye is a 5-cofan (x1, y, g, z, x2) in
M\e and {e, g, y, x1} and {e, g, z, x2} are cocircuits of M . We have λM\f (Xf ) = 2.
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Thus λM\f (Xf ∪ z) ≤ 3, so λM\f (Xf ∪ z ∪ g) ≤ 3 as g ∈ cl∗M\f ({e, x2, z}). Hence

λM\f (Xf ∪ {y, z, g}) ≤ 2, as y ∈ clM\f ({z, g}) and y ∈ cl∗M\f ({e, g, x1}). Thus

λM (Xf ∪ {y, z, f, g}) ≤ 2, so |Yf ∩ Xe| ≤ 3. Moreover, by 5.1.2, as Ye ∩ Yf is a
triangle, |Yf | ≥ 5, so |Yf ∩Xe| ∈ {2, 3}.

We show next that

5.1.15. |Yf ∩Xe| = 2.

Suppose |Yf ∩Xe| = 3. Then Yf ∩Xe is a triangle or a triad of M . If Yf ∩Xe is
a triangle, then, by Lemma 2.2, M\f has a triangle T such that M\f\t, and hence
M\t, has an N -minor for each element t in T ; and we can apply Theorem 3.5 to
obtain the desired result. We deduce that Yf ∩Xe is a triad. By Lemma 2.2, the
result follows if r(Yf ) = 3. Thus we may assume that r(Yf ) ≥ 4. If r(Yf ) = 5,
then r∗M\f (Yf ) = 3, so (M\f)∗|Yf ∼= M(K4). Hence, in M\f , we know that Yf
is as depicted in Figure 4, where circled vertices correspond to cocircuits of M\f .
By orthogonality, {z, y, α2} is a triad of M , so M has a 4-fan; a contradiction. We
deduce that r(Yf ) = 4.

Now Yf ∩ Xe is a triad of M and it spans the guts line L′ of the 3-separation
(Yf ∩ Xe, E(M) − (Yf ∩ Xe)) of M . As r(Yf ) = 4, we must have that L′ meets
{y, z, g}. Since M is binary, we deduce that the triad Yf ∩Xe is in a 4-fan with an
element of {y, z, g} ∩ L′; a contradiction. Hence 5.1.15 holds.
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Figure 5

We may now assume that we are dealing with the situation shown in Fig-
ure 5. By 5.1.2, we may also assume that (x1, y, g, z, x2) is a 5-cofan in M\e and
(w1, y, g, z, w2) is a 5-cofan in M\f . Thus {e, g, y, x1}, {e, g, z, x2}, {f, g, y, w1}, and
{f, g, z, w2} are cocircuits of M . Therefore M contains the two rank-5 structures
shown in Figure 6, where some elements are common to the two structures and
each circled set is a cocircuit of M . Observe that {y, z, x1, x2}, {y, z, w1, w2}, and
their symmetric difference, {x1, x2, w1, w2}, are also cocircuits of M .

By Lemma 3.3, M\e/x1 has an N -minor. Thus N � M/x1. Likewise,
M/x2, M/w1, and M/w2 has an N -minor. We will show next that

5.1.16. (M/x1)∗, (M/x2)∗, (M/w1)∗, and (M/w2)∗ are (4, 5, S,+)-connected.

By symmetry, it suffices to prove that (M/x1)∗ is (4, 5, S,+)-connected. First
we show that this matroid is 3-connected. Since M\e has (x1, y, g, z, x2) as a
5-cofan, by Bixby’s Lemma, as co(M\e\x1) is not 3-connected, either {x1, y} is
contained in a triangle of M\e, or M\e/x1 is 3-connected. Suppose first that
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{x1, y} is contained in a triangle with some element t. Then {x1, y, t} meets both
of the cocircuits {y, w1, g, f} and {y, w1, z, w2}, so t = w1. Then, letting Z =
{e, f, g, y, z, x1, x2, w1, w2}, we have λM (Z) = r(Z) + r∗(Z)− |Z| ≤ 6 + 5− 9 = 2;
a contradiction. Hence {x1, y} is not in a triangle.

As we now know that M\e/x1 is 3-connected, it follows that M/x1 is 3-connected
unless {x1, e} is contained in a triangle T of M . In the exceptional case, by orthogo-
nality, T must meet each of {g, y, w1} and {g, z, w2}, so T = {x1, e, g} contradicting
the fact that {e, f, g} is a triangle. We conclude that M/x1 is 3-connected.

Suppose that (M/x1)∗ has a (4, 5, S,+)-violator (U, V ). We may assume that

(13) |U ∩ {y, z, g}| ≥ 2.

Thus {y, z, g} ⊆ clM/x1
(U). Then (U ∪ {y, z, g}, V − {y, z, g}) is 3-separating in

(M/x1)∗, and |V − {y, z, g}| ≥ 4. If e or x2 is in U , then, as {e, g, y, x1} and
{y, z, x1, x2} are cocircuits of M , it follows that (U ∪ {y, z, g} ∪ x1, V −{y, z, g}) is
a (4, 3)-violator of M ; a contradiction. Thus {e, x2} ⊆ V .

We show next that

5.1.17. {e, x2, f} ⊆ V .

From above, we need only show that f ∈ V . Suppose that f ∈ U . Then
(U ∪{y, z, g}∪e, V −{y, z, g, e}) is 3-separating in M/x1. Thus |V −{y, z, g, e}| ≤ 3
otherwise we obtain the contradiction that (U ∪ {y, z, g} ∪ e ∪ x1, V − {y, z, g, e})
is a (4, 3)-violator of M . Hence V is a 5-fan (v1, v2, v3, v4, e) of M/x1 with v1 in
{y, z, g} and x2 in {v2, v3, v4}. SinceM is internally 4-connected, neither {v1, v2, v3}
nor {v3, v4, e} is a circuit of M . Hence both {v1, v2, v3, x1} and {v3, v4, e, x1} are
circuits. By orthogonality between the last circuit and the cocircuit {y, z, x1, x2},
we deduce that x2 ∈ {v3, v4}.

Suppose x2 = v4. Then, by orthogonality, {v1, v2, v3} meets both {y, z}
and {g, y}. As {v2, v3} ∩ {y, z, g} = ∅, we deduce that v1 = y. The co-
circuit {f, g, y, w1} and the circuits {y, v2, v3, x1} and {e, x2, v3, x1} imply that
w1 ∈ {v2, v3} and w1 6= v3, so w1 = v2. Now λM\e,f ({y, z, g}) ≤ 2 and
(x1, y, g, z, x2) and (w1, y, g, z, w2) are 5-cofans inM\e andM\f , respectively. Thus
{x1, x2, w1, w2} ⊆ cl∗M\e,f ({y, z, g}), so λM\e,f ({y, z, g, x1, x2, w1, w2}) ≤ 2. Hence
λM\e({y, z, g, x1, x2, w1, w2, f}) ≤ 3, so λM ({y, z, g, x1, x2, w1, w2, f, e}) = 3. But
v3 ∈ cl∗({w1, x2}) and v3 ∈ cl({y, w1, x1}), so we obtain the contradiction that
λM ({y, z, g, x1, x2, w1, w2, f, e, v3}) = 2 unless v3 ∈ {y, z, g, x1, x2, w1, w2, f, e}. In
the exceptional case, v3 = w2 so {y, w1, w2, x1} is a circuit meeting the cocircuit
{x1, x2, w1, w2} in exactly three elements; a contradiction. We deduce that x2 6= v4.
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We may now assume that x2 = v3. Then {v1, v2, x1, x2} and {x1, x2, v4, e} are
circuits of M . Recall that {y, g, z} ∩ {v1, v2, v3, v4, e} = {v1}. By orthogonality
between the circuit {v1, v2, x1, x2} and the cocircuits {x1, y, g, e} and {x1, y, z, x2},
we deduce that v1 ∈ {y, g} but v1 6= y. Hence v1 = g. The symmetric difference of
the circuits {g, v2, x1, x2}, {x1, x2, v4, e}, and {e, f, g} is {v2, v4, f}, which must be a
triangle of M . As this triangle meets the triad {v2, v3, v4}, we have a contradiction.
Hence 5.1.17 holds.

As {x1, x2, w1, w2} is a cocircuit of M , it follows that {w1, w2} 6⊆ V otherwise
(U, V ∪ x1) is a (4, 3)-violator of M ; a contradiction. Therefore w1 or w2 is in U .
Thus f ∈ cl∗M/x1

(U∪{y, z, g}) and e ∈ clM/x1
(U∪{y, z, g, f}), so (U∪{y, z, g, f, e}∪

x1, V − {y, z, g, f, e}) is 3-separating in M . Hence

(14) |V | ≤ 6.

Now, in the 3-separation (U, V ) of M∗\x1, we know that V contains {e, f, x2}.
Thus the triangle {e, f, g}, the cocircuit {e, g, x2, z}, and the triangle {y, g, z} of
M imply that (U − g − z − y, V ∪ g ∪ z ∪ y) is 3-separating in M∗\x1. As M∗ has
{y, x1, z, x2} as a circuit, (U − {g, z, y}, V ∪ {g, z, y} ∪ x1) is 3-separating in M .
Thus |U | ≤ 6. But, by (14), |V | ≤ 6, so |E(M)| ≤ 13; a contradiction. We conclude
that (M/x1)∗ is (4, 5, S,+)-connected, so 5.1.16 holds.

We will now show that x1, x2, w1, or w2 is in a triad of M , and conclude that
(ii) of the theorem holds, or that contracting one of these elements in M yields an
internally 4-connected matroid, in which case (i) holds. Assume neither of these
occurs. Suppose (J,K) is a (4, 3)-violator of M/x1. Then, without loss of generality,
|J ∩ {y, z, g}| ≥ 2. Then (J ∪ {y, z, g},K − {y, z, g}) is a (4, 3)-violator of M/x1
unless K − {y, z, g} is a triad of M . In the exceptional case, {w1, w2, x2} ⊆ J .
But {w1, w2, x1, x2} is a cocircuit of M , so (J ∪ x1,K) is a (4, 3)-violator of M ; a
contradiction. We conclude that we may assume that {y, z, g} is contained in J .
As no triad of M meets this triangle, it follows, by 5.1.16, that K is a 4-fan or a
5-cofan of M/x1. Now {e, g, y, x1} and {y, z, x1, x2} are cocircuits of M . Hence if
e or x2 is in J , then (J ∪ x1,K) is a (4, 3)-violator of M ; a contradiction. Thus
{e, x2} ⊆ K. But, at most one element of K is not in a triad of M/x1, and we
have assumed that x2 is not in a triad of M . Thus e is in a triad of M . This
contradiction completes the proof of case I.

Case II: |Xe| ≥ |Ye| and |Xf | < |Yf |.
Since |E(M\f)| ≥ 14, it follows that

(15) |Yf | ≥ 8.

Suppose that |Xf∩Ye| ≥ 2. Then λM (Xf∩Ye) ≥ 2. Thus, by Lemma 3.10(iv)(b),
λM (Xe ∩ Yf ) ≤ 2, so |Xe ∩ Yf | ≤ 3. This is a contradiction as |Yf | ≥ 8 yet, by
5.1.7, |Ye ∩ Yf | ≤ 3. We deduce that |Xf ∩ Ye| ≤ 1. Hence |Xf ∩ Ye| = 1 and
|Ye ∩Yf | = 3, so Ye is a quad of M\e. Thus Ye ∩Yf is neither a triangle nor a triad
in M , so λM (Ye ∩ Yf ) ≥ 3. Thus, by Lemma 3.10(iv)(c), λM\e,f (Xe ∩Xf ) = 1, so,
by Lemma 3.6, |Xe ∩ Xf | ≤ 3. Therefore |Xf | ≤ 5 so, by 5.1.2, Xf is a quad or
a 5-cofan of M\f . Thus the unique element of Xf ∩ Ye is in a cocircuit of M\f
that is contained in Xf . This cocircuit meets the circuit Ye in a single element; a
contradiction. We conclude that case II does not arise.

Case III: |Xe| < |Ye| and |Xf | ≥ |Yf |.
First we show that
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5.1.18. |Xe| = 5.

Assume that 5.1.18 fails. Then, by 5.1.2, Xe is a quad of M\e. Thus |Ye| ≥ 10.
By 5.1.5, |Xe ∩ Yf | ≥ 1. Since |Xf | ≥ |Yf |, we deduce that |Ye ∩ Xf | ≥ 4. Thus
λM (Ye ∩ Xf ) ≥ 3, so, by Lemma 3.10(iv)(c), λM (Xe ∩ Yf ) ≤ 1. Hence, by 5.1.5,
|Xe ∩ Yf | = 1 so |Xe ∩Xf | = 2. Suppose |Ye ∩ Yf | ≥ 4. Then λM (Ye ∩ Yf ) ≥ 3, so,
by Lemma 3.10(iv)(c), λM\e,f (Xe ∩Xf ) ≤ 1. Thus Xe ∩Xf is a 2-cocircuit {a, b}
in M\e, f . Then {a, b, f} is a cocircuit of M\e properly contained in the quad Xe;
a contradiction. We conclude that |Ye ∩ Yf | ≤ 3, so |Yf | = 4. Thus Yf is a quad of
M\f . Then Yf is a circuit of M that meets cocircuit Xe ∪ e in a single element; a
contradiction to orthogonality. We conclude that 5.1.18 holds.

By 5.1.18, |Ye| ≥ 9. Moreover, by (12), |Yf | ≥ |Xe|. It follows that |Yf | ≥ 5.
By 5.1.2, Xe is a 5-cofan with f as its central element. For each triad T ∗ of M\e
contained in Xe, the set T ∗ ∪ e is a cocircuit of M . The symmetric difference of
the two such cocircuits, which is Xe − f , is a cocircuit of M . Suppose Xe ∩ Yf
contains a single element, say z. Then, since Xe ∩ Xf = Xe − {f, z}, we deduce
that z ∈ cl∗M\f (Xe ∩ Xf ), so (Xf ∪ z, Yf − z) is a 3-separation of M\f . Hence
(Xf ∪ z ∪ f, Yf − z) is a (4, 3)-violator of M ; a contradiction. Thus |Xe ∩ Yf | ≥ 2.
It follows that |Xe ∩Xf | ≤ 2 and λM (Xe ∩ Yf ) ≥ 2. Thus, by Lemma 3.10(iv)(b),

λM (Xf ∩ Ye) ≤ 2, so |Xf ∩ Ye| ≤ 3. But |Xf | ≥ |Yf |, so |Xf | ≥ |E(M\f)|
2 ≥ 7.

Hence |Xf ∩ Ye| ≥ 4; a contradiction. We conclude that case III does not arise.

Case IV: |Xe| < |Ye| and |Xf | < |Yf |.
Since |E(M\f)| ≥ 14, we deduce that

(16) |Yf | ≥ 8.

By 5.1.2, since |Xe| ∈ {4, 5}, either Xe is a quad of M\e, or Xe is 5-cofan of
M\e with f as its central element. By 5.1.5, Xe ∩ Xf 6= ∅. Hence |Xe ∩ Yf | ≤
3. As |Yf | ≥ 8, it follows that |Ye ∩ Yf | ≥ 5, so λM (Ye ∩ Yf ) ≥ 3. Hence, by
Lemma 3.10(iv)(c),

(17) λM\e,f (Xe ∩Xf ) ≤ 1.

We show next that

5.1.19. |Xe ∩ Yf | ≥ 2 and |Xf ∩ Ye| ≤ 3.

Suppose |Xe ∩ Yf | ≤ 1. Then, by 5.1.5, we may assume that Xe ∩ Yf contains a
single element, say z. Suppose Xe is a quad of M\e. Then |Xe ∩ Xf | = 2 so, by
(17) and Corollary 3.7, Xe ∩Xf is a 2-cocircuit of M\e, f . Thus (Xe ∩Xf )∪{e, f}
is a cocircuit of M that is properly contained in the cocircuit Xe ∪ e of M . Hence
Xe is not a quad of M\e. Thus Xe is a 5-cofan of M\e. It follows, by arguing as in
case III, that (Xf ∪ z, Yf − z) is a 3-separation of M\f , so (Xf ∪ z ∪ f, Yf − z) is a
(4, 3)-violator of M ; a contradiction. Thus |Xe ∩ Yf | ≥ 2. Hence λM (Xe ∩ Yf ) ≥ 2,
so, by Lemma 3.10(iv)(b), λM (Xe ∩ Yf ) ≤ 2. Thus |Xf ∩ Ye| ≤ 3 and 5.1.19 holds.

Next we show that

5.1.20. |Xe ∩Xf | = 1.

Suppose that |Xe ∩ Xf | ≥ 2. Then, as |Xe| ≤ 5, we deduce, by 5.1.19, that
|Xe ∩Xf | = 2 and Xe is a 5-cofan of M\e having f as its central element. Since,
by (17), λM\e,f (Xe ∩ Xf ) ≤ 1, it follows that Xe ∩ Xf is a 2-cocircuit {a, b} of
M\e, f . Thus {a, b, f} is a cocircuit of M\e. Hence we may assume that Xe =
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(a, b, f, y, z) where {y, z} = Xe ∩ Yf . Thus {a, b, f, e} and {y, z, f, e} are cocircuits
of M . Therefore e ∈ cl∗M\f (Yf ). Thus, as |Xf | ≥ |Xe| = 5, we deduce that
(Xf − e, Yf ∪ e ∪ f) is a (4, 3)-violator of M ; a contradiction. Hence 5.1.20 holds.

Let Xe ∩Xf = {a}. We show next that

5.1.21. Xe is a quad of M\e.

Assume 5.1.21 is false. Then Xe is a 5-cofan (x1, x2, f, x3, x4) in M\e and
{x1, x2, f, e} and {x3, x4, f, e} are cocircuits of M . Thus the symmetric differ-
ence, {x1, x2, x3, x4}, of these two cocircuits is a cocircuit of M containing a. Hence
(Xf−a, Yf∪a) is a 3-separation of M\f , and Xf is not a quad of M\f , so |Xf | ≥ 5.
The circuit {x2, f, x3} of M implies that (Xf − a, Yf ∪ a ∪ f) is a (4, 3)-violator of
M ; a contradiction. Hence 5.1.21 holds.

We now show that

5.1.22. Xf is a quad of M\f .

Assume that this is false. Then, by 5.1.19 and 5.1.20, |Xf | = 5, so Xf is
a 5-cofan (x1, x2, e, x3, x4) in M\f . Thus {x1, x2, e, f}, {x3, x4, e, f}, and hence
{x1, x2, x3, x4} are cocircuits of M . By 5.1.20, the last of these meets the circuit
Xe of M in a single element. This contradiction to orthogonality establishes 5.1.22.
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Figure 7

We may now assume that Xe∩Yf = {y, z} and Ye∩Xf = {b, c}, as shown in Fig-
ure 7. Then Xe ∪Xf = {a, b, c, e, f, y, z}. Note that {a, b, c, e, f} and {a, y, z, e, f}
are cocircuits of M . Hence so is their symmetric difference, {b, c, y, z}. Next we
show that

5.1.23. M has no triangle other than {e, f, g} meeting {a, b, c, e, f, y, z}.

Suppose 5.1.23 does not hold. Then, without loss of generality, some element of
{a, b, c, f} is in a triangle T of M , where T 6= {e, f, g}. By orthogonality with the co-
circuit {a, b, c, e, f}, we know that T contains exactly two elements in {a, b, c, e, f}.
If T ⊆ Xe ∪ Xf , then λM (Xe ∪ Xf ) = r(Xe ∪ Xf ) + r∗(Xe ∪ Xf ) − |Xe ∪ Xf | ≤
4 + 5 − 7 = 2, contradicting the fact that M is internally 4-connected. Hence
|T ∩ (Xe ∪Xf )| = 2. By orthogonality with the cocircuit {b, c, y, z}, either T con-
tains {b, c}, or T contains two elements of {a, e, f}. As T 6= {e, f, g}, we deduce that
T contains {b, c}, {a, e}, or {a, f}. Thus T is contained in clM\e(Xe) or clM\f (Xf ),
so M\e or M\f has a 5-element 3-separating set that is not a 5-fan or a 5-cofan.
By Lemma 4.2, we have a contradiction. Thus 5.1.23 holds.
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As M\e has an N -minor and a quad {a, f, z, y}, by Lemma 3.4, M\e, f or M\e/f
has an N -minor. If M/f has an N -minor, then M/f\g has an N -minor, as {e, g} is
a circuit in M/f ; a contradiction to 5.1.3. Thus N �M\e, f , and so, as {a, f, z, y}
is a quad of M\e, it follows, by Lemma 3.4, that N �M\e, a. Hence N �M\a.

We show next that

5.1.24. M\a is 3-connected.

First we show that M\a has no 2-cocircuits. Assume M\a has a 2-cocircuit S.
Then S ∪ a is a triad of M which, by orthogonality, must be contained in Xe ∪Xf .
Since Xe ∪Xf also contains two 5-element cocircuits, r∗(Xe ∪Xf ) ≤ 4 and hence
λM (Xe ∪ Xf ) ≤ 2; a contradiction. Thus M\a has no 2-cocircuits. Hence every
2-separation of M\a is non-minimal. Let (X,Y ) be such a 2-separation. Then we
may assume that |X∩{e, f, g}| ≥ 2, so (X∪{e, f, g}, Y −{e, f, g}) is a 2-separation
of M\a. As M\a has {e, f, b, c} and {e, f, y, z} as cocircuits, and M has {e, b, c, a}
and {f, y, z, a} as circuits, it is not difficult to see that {b, c, y, z} ⊆ Y . Thus
(X ∪{e, f, g}∪a, Y −{e, f, g}) is a 3-separation and hence is a (4, 3)-violator of M ;
a contradiction. We conclude that 5.1.24 holds.

If M\a is internally 4-connected, then the theorem holds. Thus we may as-
sume that M\a has a (4, 3)-violator (U, V ) with |{e, f, g} ∩ U | ≥ 2. Then
(U∪{e, f, g}, V −{e, f, g}) is a (4, 3)-violator of M\a unless V is a 4-fan (x, v1, v2, v3)
having {x, v1, v2} as a triangle and {v1, v2, v3} as a triad and with x ∈ {e, f, g}.
In the exceptional case, by 5.1.23, we deduce that x = g. As M is internally 4-
connected, {v1, v2, v3, a} is a cocircuit of M . By orthogonality with the circuits
{a, f, y, z} and {a, b, c, e}, we get that two elements in {y, z, b, c} are in {v1, v2, v3};
a contradiction to 5.1.23 as {g, v1, v2} is a triangle other than {e, f, g}.

We may now assume that {e, f, g} ⊆ U . If U contains {b, c} or {y, z}, then
(U ∪ a, V ) is a (4, 3)-violator of M ; a contradiction. Without loss of generality, we
may assume that {c, z} ⊆ V . If b ∈ U , then (U ∪ c ∪ a, V − c) is a (4, 3)-violator
of M unless V − c is a triangle of M containing z; a contradiction to 5.1.23. Thus
b ∈ V and, likewise, y ∈ V . Therefore

5.1.25. {e, f, g} ⊆ U and {b, c, y, z} ⊆ V .

The symmetric difference {a, b, c, e} 4 {a, f, y, z} 4 {e, f, g}, which equals
{b, c, y, z, g}, is a circuit of M , so

2 = λM\a(V ) ≥ λM\a(V ∪ g) ≥ λM\a(V ∪ g ∪ {e, f}) ≥ λM (V ∪ g ∪ {e, f} ∪ a).

Thus 4 ≤ |U | ≤ 6.
Suppose that |U | = 6. Then |U − g| is a 5-element 3-separating set in M\a. By

Lemma 4.2, this 3-separating set is a 5-fan or a 5-cofan of M\a. If U − g is a 5-fan,
then e or f is in a triangle of M that is not {e, f, g}; a contradiction to 5.1.23.
Thus U − g is 5-cofan (e, u1, u2, u3, f) of M\a and {a, e, u1, u2} is a cocircuit of M ;
a contradiction to orthogonality with {e, f, g}. Thus |U | 6= 6.

Suppose next that |U | = 5. By Lemma 4.2, this 3-separating set is a 5-fan or a 5-
cofan of M\a. By 5.1.23, as before, we deduce that U is a 5-cofan (u1, u2, u3, u4, u5)
in M\a where {u2, u3, u4} = {e, f, g}. Moreover, {a, u1, u2, u3} and {u3, u4, u5, a}
are cocircuits of M . By orthogonality with the circuits {a, f, y, z} and {a, e, b, c},
we deduce that {u1, u2, u3} meets {f, y, z} and {e, b, c}. But {u1, u2, u3} avoids
{y, z, b, c}, so {u1, u2, u3} contains {f, e}. By symmetry, {u3, u4, u5} contains {f, e};
a contradiction. Hence |U | 6= 5.
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We may now assume that |U | = 4. Then U−g is a triad of M\a containing {e, f}
but avoiding g. Hence M has a 4-cocircuit C∗ containing {e, f, a}. Thus M\e, f
has a 2-cocircuit, {a, x} say. Moreover, x ∈ Ye ∩ Yf otherwise λM (Xe ∪Xf ) ≤ 2;
a contradiction. Clearly (Xe ∪ x, Ye − x) is a 3-separation of M\e. Thus, by
Lemma 4.2, Xe ∪ x is a 5-fan or a 5-cofan of M\e contradicting 5.1.21. This
completes the proof of the theorem. �

6. Proof of the main theorem

In this section, we prove the main result of the paper, Theorem 1.2. To do this,
we shall use two more lemmas.

Lemma 6.1. Let M and N be internally 4-connected binary matroids with
|E(M)| ≥ 15. Let {e, f, g} be a triangle of M such that M\e has an N -minor
and is (4, 5, S,+)-connected. Let (1, 2, 3, 4, 5) be a 5-fan in M\e. If M\5 has a
quad, then 4 ∈ {f, g} and either

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′ is
internally 4-connected with an N -minor; or

(ii) M\1 is (4, 4, S)-connected having an N -minor.

Proof. Assume that the lemma fails. By Lemma 3.3, N � M\e\1, so N � M\1.
Thus M\1 is not (4, 4, S)-connected. As M is binary, {2, 3, 4} contains a single
element of f and g, say f . Let Q be a quad of M\5. Then Q∪5 is a cocircuit of M
as M has no quads. Hence, by orthogonality with the triangle {3, 4, 5}, we deduce
that Q contains 3 or 4. Indeed, since M is binary, Q contains exactly one of 3 and
4.

Now M has {2, 3, 4, e} as a cocircuit. This cocircuit meets the circuit Q in two or
four elements. But {3, 4} 6⊆ Q, so |Q∩{2, 3, 4, e}| = 2. Next we show the following.

6.1.1. If e 6∈ Q, then Q = {2, 3, q3, q4} for some q3, q4 not in {1, 2, 3, 4, 5, e}.
Moreover, 4 = f .

Assume e 6∈ Q. Then Q meets the cocircuit {2, 3, 4, e} in {2, 4} or {2, 3}. First
suppose that Q∩{2, 3, 4, e} = {2, 4}. Then, as Q∪5 is a cocircuit of M and {1, 2, 3}
is a circuit, it follows, by orthogonality, that 1 ∈ Q. Thus Q is {1, 2, 4, z}. Hence
{1, 2, 3, 4, 5, z} is 3-separating in M\e; a contradiction to the fact that this matroid
is (4, 5, S,+)-connected. We deduce that Q ∩ {2, 3, 4, e} = {2, 3}.

Now let Q = {2, 3, q3, q4}. Then {1, q3, q4}, which is Q4 {1, 2, 3}, is a circuit of
M . Hence, as M\e is (4, 5, S,+)-connected, {q3, q4} ∩ {1, 2, 3, 4, 5, e} = ∅. Suppose
f ∈ {2, 3}. Then g ∈ {q3, q4}. Let Z = {1, 2, 3, 4, 5, e, q3, q4}. Then r(Z) ≤ 4.
Moreover, r∗(Z) ≤ |Z|−2 as Z contains the cocircuits {2, 3, 4, e} and {2, 3, q3, q4, 5}.
Hence λ(Z) ≤ 2; a contradiction as |E(M)| ≥ 15. Thus f = 4, so 6.1.1 holds.

6.1.2. If e 6∈ Q, then M\1 is (4, 4)-connected.

Let (U, V ) be a (4, 4)-violator for M\1. Then |U |, |V | ≥ 5. The triangles {1, 2, 3}
and {1, q3, q4} imply that we may assume that {2, q3} ⊆ U and {3, q4} ⊆ V . Observe
that both U ∪ {2, 3, 4, e} and V ∪ {2, 3, 4, e} span 1 in M . By Lemma 3.9(ii),
|{2, 3, 4, e}∩V | ≥ 2 and |{2, 3, 4, e}∩U | ≥ 2. Therefore {4, e} 6⊆ U and {4, e} 6⊆ V .

Suppose 4 ∈ U and e ∈ V . Then 5 6∈ U otherwise 1 ∈ cl(U). Thus 5 ∈ V . Then
4 ∈ cl(V ) and 2 ∈ cl∗M\1(V ∪4). Hence (U−4−2, V ∪4∪2∪1) is a 3-separation of
M . Thus |U | = 5 and U−4−2 is a triangle of M . It follows that {2, 4} is contained
in a triangle of M . But this is a contradiction as M\e is (4, 5, S,+)-connected.
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We may now assume that e ∈ U and 4 ∈ V . Suppose 5 ∈ V . Then (U − 2, V )
is a 3-separation of M\1, 2. But q3 ∈ U − 2 and {3, q4, 5} ⊆ V . Hence, by 6.1.1,
q3 ∈ cl∗M\1,2(V ), so (U − 2 − q3, V ∪ q3) is 3-separating in M\1, 2. But {1, 2} ⊆
cl(V ∪q3). Thus (U−2−q3, V ∪q3∪{1, 2}) is 3-separating in M , so |U−2−q3| = 3.
As e is in the 3-separating set U − 2 − q3, this set is a triangle of M that meets
the cocircuit {2, 3, 4, e} in {e}; a contradiction. We conclude that 5 ∈ U . Then
5 ∈ cl(V ), so (U − 5, V ∪ 5) is a 3-separation of M\1. Hence |U | = 5 otherwise
|U − 5| ≥ 5 and we can replace (U, V ) by (U − 5, V ∪ 5) to obtain a contradiction
as above. Now q4 ∈ cl∗M\1,3(U), so (U ∪ q4, V − 3− q4) is 3-separating in M\1, 3.
But 1 ∈ cl(U ∪ q4) and 3 ∈ cl(U ∪ q4 ∪ 1). Hence (U ∪ q4 ∪ 1 ∪ 3, V − 3 − q4) is
3-separating in M . Thus |V | = 5, so |E(M)| = 11; a contradiction. Hence 6.1.2
holds.

We now strengthen 6.1.2 to show the following.

6.1.3. e ∈ Q.

Assume e 6∈ Q. Since M\1 is not (4, 4, S)-connected, by 6.1.2, the assertion
holds unless M\1 has a quad Q′. Consider the exceptional case. Then Q′ ∪ 1 is a
cocircuit of M , so exactly one of q3 and q4 is in Q′ since {1, q3, q4} is a triangle of
M . Without loss of generality, we may assume that q3 ∈ Q′.

6.1.4. 3 6∈ Q′ and 2 ∈ Q′

Clearly |Q′∩{2, 3}| = 1. Suppose that 3 ∈ Q′. Then 4 or 5 is in Q′, so Q′∪{4, 5}
is a (4, 4)-violator of M\1; a contradiction to 6.1.2. We conclude that 6.1.4 holds.

Next we show that

6.1.5. 4 6∈ Q′ and e ∈ Q′

Since 2 ∈ Q′ and {2, 3, 4, e} is a cocircuit, exactly one of 3, 4 and e is in Q′.
By 6.1.4, 3 6∈ Q′. Suppose 4 ∈ Q′. Then Q′ = {2, q3, 4, v} for some element v, so
{2, q3, 4, v, 1} is a cocircuit of M . As 3 6∈ Q′ and {3, 4, 5} is a circuit, it follows that
5 ∈ Q′ so v = 5. Thus Q′ = {2, q3, 4, 5}. Taking the symmetric difference with
{1, 2, 4, 5}, we see that {q3, 1} contains a circuit of M ; a contradiction. We deduce
that 4 6∈ Q′. Therefore e ∈ Q′. Thus 6.1.5 holds.

We may now assume that Q′ = {2, q3, e, w} for some element w that is not
in {1, 2, 3, 4} and so is not in {1, 2, 3, 4, 5} by orthogonality between Q′ ∪ 1 and
the triangle {3, 4, 5}. Let Z ′′ = {1, 2, 3, 4, 5, q3, q4, e, w}. Then r(Z ′′) ≤ 5 and
r∗(Z ′′) ≤ |Z ′′|−3 as Z ′′ contains the cocircuits {2, 3, 4, e}, Q∪5, and Q′∪1. Hence
λ(Z ′′) ≤ 2; a contradiction, so 6.1.3 holds.

6.1.6. Q = {e, 4, q3, q4} for some q3, q4 not in {1, 2, 3, 4, 5, e, g}. Moreover, f = 4
and {g, q3, q4} is a circuit of M .

As e ∈ Q, exactly one of 2, 3, and 4 is in Q. Suppose that Q ∩ {2, 3} 6= ∅.
Then, by orthogonality, 1 ∈ Q, so {1, 2, 3, 4, 5} ∪Q is a 7-element 3-separating set
in M ; a contradiction. Thus Q ∩ {2, 3} = ∅, so 4 ∈ Q. We now know that Q =
{e, 4, q3, q4} for some elements q3, q4 not in {1, 2, 3, 4, 5}. Suppose f ∈ {2, 3}. Then,
as |{e, 4, q3, q4, 5}∩{e, f, g}| = 2, we may assume that q3 = g. Thus Q4{e, f, g} =
{4, f, q4}. Then q4 ∈ cl({1, 2, 3, 4, 5}), so {1, 2, 3, 4, 5, q4} is 3-separating in M\e;
a contradiction. We conclude that f 6∈ {2, 3}. Thus f = 4 and so g 6∈ {q3, q4}.
Moreover, Q4 {e, f, g}, which is {g, q3, q4}, is a circuit of M . Hence 6.1.6 holds.
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Since N �M\e and (1, 2, 3, 4, 5) is a maximal fan of M\e, it follows that M\e\5
is 3-connected. Moreover, N � M\e\5. Now M\e\5 has {4, q3, q4} as a triad and
has {g, q3, q4} as a triangle, so has (g, q3, q4, 4) as a fan. Thus N � M\e\5\g or
N � M\e\5/4. In the latter case, as 4 = f and {e, g} is a circuit of M/4, we
deduce that N �M\g. This also holds in the former case.

As the quad Q of M\5 is {4, e, q3, q4} and M\5\e has an N -minor, Lemma 3.4
implies that N �M\5\4. But f = 4. Hence N �M\f . We now know that, for all
t in the triangle {e, f, g}, the matroid M\t has an N -minor. Then, by Theorem 3.5,
since we have assumed that (i) of the lemma does not hold, we deduce that

6.1.7. M\f or M\g is (4, 4, S)-connected.

Recall that M\1 is not (4, 4, S)-connected and that 4 = f . Next we show the
following.

6.1.8. Let (U, V ) be a (4, 4, S)-violator of M\1 with 4 in U . Then g ∈ U , and V
is a 5-fan (e, 2, s1, s2, s3) where {s1, s2, s3} ∩ {1, 2, 3, 4, e, g} = ∅. Moreover, M\g
is (4, 4, S)-connected.

We may assume that |U |, |V | ≥ 5, or U or V is a quad of M\1. Neither U nor
V spans 1, so we may also assume that a ∈ U and b ∈ V where {a, b} = {2, 3}.
Suppose e ∈ U . Then (U∪b∪1, V −b) is a 3-separation of M . Therefore |V −b| ≤ 3,
so |V | = 4. Hence V is a quad of M\1. But V is sequential in M\1; a contradiction.
We conclude that e ∈ V . Then (U ∪ b, V − e− b) is 3-separating in M\1\e. Hence
(U ∪ b ∪ 1, V − e− b) is 3-separating in M\e. Thus |V | ≤ 7.

Suppose g ∈ V . Then f ∈ cl(V ). But, by 6.1.6, f = 4, so 4 ∈ cl(V ) and
a ∈ cl∗M\1(V ∪ 4). Thus (U − 4− a, V ∪ 4∪ a∪ 1) is 3-separating in M , so |U | ≤ 5.
Hence |E(M)| ≤ 13; a contradiction. We deduce that g ∈ U .

Now e ∈ cl(U) and b ∈ cl∗M\1(U∪e). Thus (U∪e∪b∪1, V−e−b) is 3-separating in
M . Hence V is a 5-fan (e, b, s1, s2, s3) in M\1, and {s1, s2, s3}∩{1, 2, 3, 4, e, g} = ∅.
Thus {1, b, s1, s2} is a cocircuit of M . Suppose that b = 3. Then the circuit {3, 4, 5}
implies, by orthogonality, that 5 ∈ {s1, s2}. But {e, 3, 5} is not a circuit of M , so
5 = s2. Taking the symmetric difference of the circuits {e, 3, s1}, {s1, 5, s3}, and
{3, 4, 5}, we deduce that {e, s3, 4} is a circuit. Thus s3 = g; a contradiction. We
conclude that b 6= 3, so (a, b) = (3, 2).

Finally, suppose that M\g is not (4, 4, S)-connected and recall, from 6.1.6, that
f = 4. Then, by 6.1.7, M\f is (4, 4, S)-connected. As (U − 4 − 3, V ∪ 3) is 3-
separating in M\1\4, we deduce that (U − 4− 3, V ∪ 3∪ 1) is 3-separating in M\4.
Hence |U | ≤ 6, so |E(M)| ≤ 12; a contradiction. Thus M\g is (4, 4, S)-connected.
We conclude that 6.1.8 holds.

As M\g is not internally 4-connected, it has a 4-fan (t1, t2, t3, t4). Then
{t2, t3, t4, g} is a cocircuit of M . By orthogonality, {t2, t3, t4} contains exactly
one element of {e, f} and contains exactly one element of {q3, q4}, say q3.

Suppose f ∈ {t2, t3, t4}. Then, by orthogonality, 3 or 5 is in {t2, t3, t4}. If 3 ∈
{t2, t3, t4}, then {t2, t3, t4} meets {1, 2}; a contradiction as q3 ∈ {t2, t3, t4}. Thus
5 ∈ {t2, t3, t4}, so {f, 5, q3, g} is a cocircuit of M . Let Z = {1, 2, 3, 4, 5, e, g, q3, q4}.
Then r(Z) ≤ 5 and r∗(Z) ≤ |Z| − 3 as Z contains the cocircuits {2, 3, 4, e}
{f, 5, q3, g}, and {e, 4, q3, q4, 5}. Thus λ(Z) ≤ 2; a contradiction.

We may now assume that e ∈ {t2, t3, t4}. First suppose that e = t4. As q3 ∈
{t2, t3}, we may assume that t3 = q3. Orthogonality between the circuit {t1, t2, q3}
and the cocircuit {e, 4, q3, q4, 5} implies that 4, 5, or q4 is in {t1, t2}. If q4 ∈ {t1, t2},
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then {t1, t2, t3} = {q3, q4, g}; a contradiction. If 4 ∈ {t1, t2}, then 2 or 3 is in
{t1, t2} by orthogonality with {2, 3, 4, e}. Thus {2, 4} or {3, 4} is in a triangle
of M other than {3, 4, 5}; a contradiction. We deduce that 5 ∈ {t1, t2}. Let
Z ′ = {1, 2, 3, 4, 5, e, g, q3, q4, t1, t2}. Then r(Z ′) ≤ 5 and r∗(Z ′) ≤ |Z ′| − 3 as Z ′

contains the cocircuits {2, 3, 4, e}, {t2, q3, e, g}, and {e, 4, q3, q4, 5}. Thus λ(Z ′) ≤ 2;
a contradiction. We conclude that e 6= t4. Thus e ∈ {t2, t3}. Also q3 ∈ {t3, t4}.

Next we show that

6.1.9. q3 6= t3

Assume the contrary. Then e = t2. Orthogonality between {t1, e, q3} and
{2, 3, 4, e} implies that t1 ∈ {2, 3, 4}. By 6.1.1, 4 = f , so t1 6= 4. Hence t1 ∈ {2, 3}.
Then {t1, e, q3}4 {g, q3, q4}4 {e, f, g} = {t1, f, q4}. Thus {t1, f, q4} is a circuit, so
q4 ∈ cl({1, 2, 3, 4, 5}); a contradiction. We conclude that 6.1.9 holds.

We now know that q3 = t4. By symmetry, we may assume that e = t2. Thus
(t1, e, t3, q3) is a 4-fan in M\g. From 6.1.8, M has {e, 2, s1} as a triangle and g 6= s1.
It follows by orthogonality that {2, s1} must meet {t3, q3, g}. If q3 ∈ {2, s1}, then
{t1, e, t3, q3}∪{2, s1} is a 5-element 3-separating set in M\g. This is a contradiction
as M\g is (4, 4, S)-connected. Therefore {e, 2, s1} = {e, t1, t3}. Thus 2 is t3 or t1.

If 2 = t3, then orthogonality between the cocircuit {e, 2, q3, g} and the circuit
{1, 2, 3} implies that q3 ∈ {1, 3}, contradicting 6.1.6. Thus 2 = t1, so t3 = s1.
The cocircuit {e, s1, q3, g} meets the circuit {s1, s2, s3}, so {s2, s3} meets {e, q3, g}.
But, by 6.1.8, {s2, s3} avoids {e, g}, so q3 ∈ {s2, s3}. Then the 4-fan (t1, e, s1, q3)
in M\g can be extended to a 5-fan; a contradiction. Thus Lemma 6.1 holds. �

Although the matroid M we are dealing with need not be graphic, we follow
[2] in using a modified graph diagram to keep track of some of the circuits and
cocircuits in M (see Figure 8). By convention, the cycles in the graph correspond
to circuits of the matroid while a circled vertex indicates a known cocircuit of M .

Lemma 6.2. Let M and N be internally 4-connected matroids with |E(M)| ≥ 15.
Let {e, f, g} be a triangle of M such that M\e has an N -minor and is (4, 5, S,+)-
connected. Let (1, 2, 3, 4, 5) be a 5-fan in M\e. Then each of M\e, 1 and M\e, 5
has an N -minor. Moreover,

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′ is
internally 4-connected with an N -minor; or

(ii) M\1 or M\5 is (4, 4, S)-connected having an N -minor; or
(iii) both M\1 and M\5 are (4, 5, S,+)-connected and M contains one of the

configurations shown in Figure 8 where all the indicated elements are dis-
tinct unless f = 3, |E(M)| = 15, and v3 = w3.

Proof. Certainly both M\e, 1 and M\e, 5 have N -minors. Moreover, as (1, 2, 3, 4, 5)
is a maximal fan in M\e, by [14, Lemma 1.5], each of M\e, 1 and M\e, 5 is 3-
connected. Assume that neither (i) nor (ii) holds. Then, by Lemma 6.1 and sym-
metry, we may assume that neither M\1 nor M\5 has a quad. Let (U5, V5) be a
(4, 4, S)-violator of M\5. Then |U5|, |V5| ≥ 5. Without loss of generality, we may
assume that 3 ∈ U5 and 4 ∈ V5. By Lemma 3.9(ii), each of U5 and V5 must contain
at least two elements of {2, 3, 4, e}, so {2, e} 6⊆ U5 and {2, e} 6⊆ V5.

Next we show that

6.2.1. 2 ∈ U5 and e ∈ V5.
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Figure 8. Circled vertices correspond to known cocircuits.

Assume that this fails. Then 2 ∈ V5 and e ∈ U5. It follows that 1 ∈ U5 otherwise
V5 contains {1, 2, 4} and so spans 5, a contradiction. Now (U5 ∪ 2, V5 − 2) and
(U5 ∪ 2 ∪ 4, V5 − 2− 4) are 3-separations of M\5. Thus (U5 ∪ 2 ∪ 4 ∪ 5, V5 − 2− 4)
is 3-separating in M . Hence |V5 − {2, 4}| ≤ 3, so |V5| ≤ 5.

Now (U5 − e, V5) is 3-separating in M\5\e. Hence so is (U5 − e − 3, V5 ∪ 3).
Thus (U5 − e− 3, V5 ∪ 3∪ 5) is 3-separating in M\e. Therefore |U5 − e− 3| ≤ 5, so
|U5| ≤ 7. But |V5| ≤ 5. Thus |E(M)| ≤ 13; a contradiction. Thus 6.2.1 holds.

We show next that
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6.2.2. |V5| ≤ 7 and |U5| ≥ 7.

We know that (U5, V5 − e) is a 3-separation of M\5\e, so (U5 ∪ 4, V5 − e− 4) is
3-separating in M\5\e. Hence (U5 ∪ 4 ∪ 5, V5 − e − 4) is 3-separating in M\e, so
|V5 − e− 4| ≤ 5 and |V5| ≤ 7. Thus |U5| ≥ 7 and 6.2.2 holds.

Next we show the following.

6.2.3. If f = 4, then g ∈ V5.

Assume g ∈ U5. We have λM\5(U5) = 2, so λM\5(U5 ∪ 4) ≤ 3. But e ∈
clM\5(U5 ∪ 4) ∩ cl∗M\5(U5 ∪ 4) since {f, g} ⊆ U5 ∪ 4 and {2, 3, 4} ⊆ U5 ∪ 4. Thus
λM\5(U5 ∪ 4 ∪ e) ≤ 2. Hence (U5 ∪ {4, e, 5}, V5 − {4, e}) is 3-separating in M , so
|V5 − {4, e}| ≤ 3. But |V5| ≥ 5. Thus V5 − {4, e} is a triangle or a triad of M .

Now (U5, V5−e) is a 3-separation ofM\5\e and 4 ∈ cl∗M\5,e(U5). Thus V5−{4, e}
is a triangle {v1, v2, v3} of M\5, e where {4, v1, v2} is a triad of M\5, e. As 4 = f
and g ∈ U5, it follows that {4, v1, v2, e} is a cocircuit of M\5. We know that
M\5 has no quads and that V5 is a 5-element 3-separating set in this matroid that
contains the triangle {v1, v2, v3}. Suppose r(V5) = 3. Then V5 is a 5-fan in M\5.
Thus {4, e} is contained in a triangle contained in V5; a contradiction. We deduce
that r(V5) = 4. Thus V5 is a 5-cofan in M\5 in which the triangle is {v1, v2, v3}
and the other two elements are e and 4. Thus e is in a triad of M\5. But M\5, e
is 3-connected; a contradiction. We conclude that 6.2.3 holds.

6.2.4. If f ∈ {2, 3}, then g ∈ U5.

Suppose g ∈ V5. First assume that f = 3. Then (U5−3, V5∪3) is a 3-separation
of M\5, so (U5−3, V5∪3∪5) is a 3-separation of M ; a contradiction as |U5−3| ≥ 4.
We may now assume that f = 2. Then (U5 − 2, V5 ∪ 2) and (U5 − 2− 3, V5 ∪ 2∪ 3)
are 3-separations of M\5. Hence (U5 − 2− 3, V5 ∪ 2 ∪ 3 ∪ 5) is 3-separating in M .
Thus |U5 − 2− 3| ≤ 3. This contradicts 6.2.2. Hence 6.2.4 holds.

6.2.5. If f ∈ {2, 3}, then V5 is a 5-fan (e, 4, v1, v2, v3) in M\5 and {4, v1, v2, 5} is
a cocircuit of M . Moreover, {v1, v2, v3} ∩ {1, 2, 3, 4, 5, e, g} = ∅.

First we note that, as f ∈ {2, 3}, by 6.2.4, g ∈ U5. Thus each of (U5 ∪ e, V5 − e)
and (U5 ∪ e ∪ 4, V5 − e − 4) is 3-separating in M\5, so (U5 ∪ e ∪ 4 ∪ 5, V5 − e − 4)
is 3-separating in M . Hence |V5 − e − 4| ≤ 3, so |V5| = 5. As e ∈ clM\5(U5) and
4 ∈ cl∗M\5(U5 ∪ e), it follows that V5 is a 5-fan (e, 4, v1, v2, v3) as asserted. As M
has no 4-fans, we deduce that {4, v1, v2, 5} is a cocircuit of M .

Now {2, 3, 4, 5, e, g}∩ {v1, v2, v3} = ∅ as {2, 3, g} ⊆ U5 and |{e, 4, v1, v2, v3}| = 5.
Clearly 1 6∈ {v1, v2} by orthogonality between the cocircuit {4, v1, v2, 5} and the
circuit {1, 2, 3}. Finally, v3 6= 1 otherwise r({1, 2, 3, 4, 5, e, v1, v2}) ≤ 4 and then
λ({1, 2, 3, 4, 5, e, v1, v2}) ≤ 2; a contradiction. Thus 6.2.5 holds.

Now let (U1, V1) be a (4, 4, S)-violator of M\1. As M\1 has no quads, |U1|, |V1| ≥
5. Without loss of generality, we may assume that 3 ∈ U1 and 2 ∈ V1. By 6.2.1,
6.2.3, 6.2.5, and symmetry, we get the following.

6.2.6. (i) 4 ∈ U1 and e ∈ V1;
(ii) if f = 2, then g ∈ V1; and
(iii) if f ∈ {3, 4}, then V1 is a 5-fan (e, 2, w1, w2, w3) in M\1 where {2, w1, w2, 1}

is a cocircuit of M and {w1, w2, w3} ∩ {1, 2, 3, 4, 5, e, g} = ∅.

We now show the following.
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6.2.7. If f = 4, then V5 is a 5-fan (e, 4, g, h, i) in M\5 and {4, g, h, 5} is a cocircuit
of M where {h, i} ∩ {1, 2, 3, 4, 5, e, g} = ∅.

By 6.2.3, g ∈ V5. If w1 ∈ V5, then (U5 − 2, V5 ∪ 2) and (U5 − 2 − 3, V5 ∪ 2 ∪ 3)
are 3-separating in M\5, so (U5 − 2 − 3, V5 ∪ 2 ∪ 3 ∪ 5) is is 3-separating in M ;
a contradiction as |U5| ≥ 7 by 6.2.2. We deduce that w1 ∈ U5. Then e ∈ cl(U5)
and 4 ∈ cl∗M\5(U5 ∪ e). Thus (U5 ∪ e ∪ 4 ∪ 5, V5 − e − 4) is 3-separating in M .
Hence |V5| = 5 and V5 is a 5-fan (e, 4, g, h, i) in M\5. It follows that {4, g, h, 5} is
a cocircuit of M . Clearly {h, i} ∩ {2, 3, 4, 5, e, g} = ∅. Moreover, h 6= 1 otherwise
the circuit {1, 2, 3} and the cocircuit {4, g, h, 5} meet in a single element. Finally,
i 6= 1 otherwise λ({1, 2, 3, 4, 5, e, g, h}) ≤ 2; a contradiction. Thus 6.2.7 holds.

The case when f = 2 is symmetric to that when f = 4. We may now combine
the information above to obtain that both M\1 and M\5 are (4, 5, S,+)-connected,
and that M contains one of the configurations shown in Figure 8. It is not difficult
to check that all of the elements shown are distinct unless |E(M)| = 15, f = 3, and
v3 = w3, otherwise M has a (4, 3)-violator. �

We are now ready to complete the proof of the main theorem. This will
use the following notion, which was motivated by Zhou’s [18] definition of a
double k-fan. For an integer k ≥ 3, we shall say that an internally 4-
connected binary matroid M has a good k-configuration if M has distinct elements
c1, c2, . . . , ck, a0, a1, . . . , ak−1, b0, b1, . . . , bk−1 such that

(i) for all i in [k − 1], the set {ci, ai, bi, ci+1} is a cocircuit and each of
{ai−1, ci, ai} and {bi−1, ci, bi} is a triangle of M ; and

(ii) when k is even, {ak−1, ck, ak} is a triangle for some element
ak not in {a1, b1, c1, a2, b2, c2, . . . , ak−1, bk−1, ck−1}; and, when k
is odd, {bk−1, ck, bk} is a triangle for some element bk not in
{a1, b1, c1, a2, b2, c2, . . . , ak−1, bk−1, ck−1}; and

(iii) if i is odd, then M\bi is (4, 5, S,+)-connected and has an N -minor, while
if j is even, then M\aj is (4, 5, S,+)-connected and has an N -minor.

Proof of Theorem 1.2. Assume that neither (i) nor (ii) holds. By Theorem 2.1,
taking the dual when necessary, we may assume that M has a triangle T that
contains an element e such that M\e is (4, 5, S,+)-connected. Let T = {e, f, g}.
Since M\e is not (4, 4, S)-connected, it has a 5-fan (1, 2, 3, 4, 5) where we may
assume that f ∈ {2, 3, 4}. By Lemma 6.1, neither M\1 nor M\5 has a quad.
Thus neither M\1 nor M\5 is (4, 4)-connected. Hence, by Lemma 6.2, both M\1
and M\5 are (4, 5, S,+)-connected having N -minors, and M contains one of the
configurations shown in Figure 8.

By symmetry, we may assume that f ∈ {3, 4}. Now, in M , we have distinct
elements c1, c2, c3, a0, a1, a2, b0, b1, b2, b3 where (a0, a1, a2) = (5, 3, 1), (b1, b2, b3) =
(e, w1, w3), (c1, c2, c3) = (4, 2, w2), and b0 = g when f = 4, while b0 = v1 when
f = 3. We also know that each of M\a0, M\b1, and M\a2 is (4, 5, S,+)-connected
having an N -minor. We deduce that M has a good k-configuration when k = 3.
Let n be the largest value of k for which M has a good k-configuration. We shall
show that M is isomorphic to one of M(G+

n+1), M(Gn+1), ∆n, or ∆n\a.
By taking symmetric differences, we see that if M has a good k-configuration,

then {a0, b0, ai, bi} is a circuit of M for all i in [k− 1]. The arguments for the cases
when n is odd and when n is even are essentially identical. We shall present only
the former. In that case, M\an−1 is (4, 5, S,+)-connected having an N -minor and



40 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

having (bn−2, cn−1, bn−1, cn, bn) as a fan. Applying Lemma 6.2 taking (e, f, g) =
(an−1, cn−1, an−2), we get that M\bn is (4, 5, S,+)-connected having an N -minor
and a 5-fan (an−1, cn, an, cn+1, an+1) for some elements an, cn+1, an+1 where
{cn, an, cn+1, bn} is a cocircuit of M . Moreover, M\an+1 is (4, 5, S,+)-connected
having an N -minor. Now, by orthogonality between the circuit {an−1, cn, an} and
the cocircuits {c1, a1, b1, c2}, {c2, a2, b2, c3}, . . . , {cn−2, an−2, bn−2, cn−1}, we deduce
that an 6∈ {c1, b1, a1, c2, b2, a2, . . . , cn−1, bn−1, an−1}. Moreover, an 6∈ {cn, bn}. In
addition, as {an−1, bn−1, an, bn} and {a0, b0, an−1, bn−1} are circuits, their symmet-
ric difference is either a 4-circuit or it is empty. Hence either {a0, b0}∩{an, bn} = ∅
and {a0, b0, an, bn} is a 4-circuit of M , or {an, bn} = {a0, b0}.

Suppose first that {a0, b0} ∩ {an, bn} = ∅. The cocircuit {cn, an, cn+1, bn}
implies, using orthogonality, that cn+1 6∈ {a0, b0, a1, b1, c1, . . . , an, bn, cn}. Now
N � M\an+1 and, by Lemma 6.2, M\an+1 is (4, 5, S,+)-connected. Moreover,
using orthogonality, it follows that an+1 6∈ {a1, b1, c1, a2, b2, c2, . . . , an, bn, cn}. We
conclude that if {a0, b0} ∩ {an, bn} = ∅, then M has a good (n + 1)-configuration;
a contradiction. It follows that {a0, b0} = {an, bn}. In that case, either

(i) (a0, b0) = (an, bn); or
(ii) (a0, b0) = (bn, an).

If (i) holds, the triangles {a0, c1, a1} and {a0, cn+1, an+1} imply that either
{a1, an+1, c1, cn+1} is a circuit, or {a1, c1} = {an+1, cn+1}. The former contradicts
orthogonality with the cocircuit {b0, a0, cn, cn+1}. Thus {a1, c1} = {an+1, cn+1}
and it is not difficult to check using orthogonality that (a1, c1) = (an+1, cn+1). In
case (ii), a similar argument establishes that (b1, c1) = (an+1, cn+1).

Now let Z = {a1, b1, c1, a2, b2, c2, . . . , an, bn, cn}. Then r(Z) ≤ n+1 and r∗(Z) ≤
|Z| − n. Thus λ(Z) ≤ 1. Hence either Z = E(M), or E(M) − Z contains a
single element, say z. In the latter case, let Z ′ = E(M) − {an, bn, z}. Then
r(Z ′) ≤ n + 1 and r∗(Z ′) ≤ |Z ′| − n − 1. It follows that equality holds in each
of the last two inequalities and λ(Z ′) = 2. Thus {an, bn, z} is a triangle of M . It
is now straightforward to check that, in case (i), M is isomorphic to M(G+

n+1) or
M(Gn+1) depending on whether z does or does not exist; and, in case (ii), M is
isomorphic to ∆n or ∆n\a depending on whether z does or does not exist. �
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