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Abstract. Let M be an internally 4-connected binary matroid and N be an

internally 4-connected proper minor of M . In our search for a splitter theorem
for internally 4-connected binary matroids, we proved in the third paper in

this series that, except when M or its dual is a cubic Möbius or planar ladder

or a certain coextension thereof, either M has a proper internally 4-connected
minor M ′ with an N -minor such that |E(M)−E(M ′)| ≤ 3, or, up to duality,

M has a triangle T and an element e of T such that M\e has an N -minor

and has the property that one side of every 3-separation is a fan with at most
four elements. The fourth paper in the series proved that, when we cannot

find such a proper internally 4-connected minor M ′ of M , we can incorporate

the triangle T into one of two substructures of M , a good bowtie or a good
augmented 4-wheel. The goal of this paper is essentially to eliminate the need

to consider good augmented 4-wheels by showing that, when M contains such
a substructure, either it also contains a good bowtie, or, in an easily described

way, we can obtain an internally 4-connected minor of M with an N -minor.

1. Introduction

For 3-connected matroids, Seymour’s Splitter Theorem [10] has proved to have
numerous applications, both inductive and constructive. That theorem proves that
if a 3-connected matroid M has a proper 3-connected minor N , then M has a
proper 3-connected minor M ′ with an N -minor such that |E(M) − E(M ′)| = 1
unless r(M) ≥ 3 and M is a wheel or a whirl. The current paper is the fifth in a
series whose aim is to obtain a splitter theorem for binary internally 4-connected
matroids. Specifically, we believe we can prove that if M and N are internally
4-connected binary matroids, and M has a proper N -minor, then M has a proper
minor M ′ such that M ′ is internally 4-connected with an N -minor, and M ′ can be
produced from M by a small number of simple operations.

In earlier work [1], we found it useful to consider weaker variants of internal 4-
connectivity. The only 3-separations allowed in an internally 4-connected matroid
have a triangle or a triad on one side. A 3-connected matroid M is (4, 4, S)-
connected if, for every 3-separation (X,Y ) of M , one of X and Y is a triangle, a
triad, or a 4-element fan, that is, a 4-element set {x1, x2, x3, x4} that can be ordered
so that {x1, x2, x3} is a triangle and {x2, x3, x4} is a triad.
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To state our main theorem, we need to define some special structures. Let
M be an internally 4-connected binary matroid and N be an internally 4-
connected proper minor of M . Suppose M has disjoint triangles T1 and
T2 and a 4-cocircuit D∗ contained in their union. We call this structure a
bowtie and denote it by (T1, T2, D

∗). If D∗ has an element d such that M\d
has an N -minor and M\d is (4, 4, S)-connected, then (T1, T2, D

∗) is a good
bowtie. An augmented 4-wheel consists of a 4-wheel restriction of M with tri-
angles {z2, x1, y2}, {y2, x3, z3}, {z3, y3, x2}, {x2, y1, z2} along with two additional
distinct elements z1 and z4 such that M has {x1, y1, z1, z2}, {x2, y2, z2, z3}, and
{x3, y3, z3, z4} as cocircuits. We say that an augmented 4-wheel labelled in this
way is good if M\y1 is (4, 4, S)-connected having an N -minor, while M\y2 has
an N -minor. A diagrammatic representation of an augmented 4-wheel is shown
in Figure 1. Although the matroid M we are dealing with need not be graphic,
we follow the convention begun in [1] of using a modified graph diagram to keep
track of some of the circuits and cocircuits in M . By that convention, the cycles
in the graph diagram correspond to circuits of the matroid while a circled vertex
indicates a known cocircuit of M . We call {x2, y2, z2, z3} the central cocircuit of
the augmented 4-wheel. We require one further special graph. A terrahawk is the
graph that is obtained from a cube by adjoining one new vertex and adding edges
from the new vertex to each of the four vertices that bound some fixed face of the
cube.

z4

y3
z3

x2z2

y2

x3

x1

y1
z1

Figure 1. An augmented 4-wheel.

The purpose of this paper is to prove the following result.

Theorem 1.1. Let M and N be internally 4-connected binary matroids such that
N is a proper minor of M . Suppose that |E(M)| ≥ 16 and |E(N)| ≥ 6. If M
contains a good augmented 4-wheel, then

(i) M has an internally 4-connected minor M ′ that has an N -minor such that
either 1 ≤ |E(M)−E(M ′)| ≤ 3; or |E(M)−E(M ′)| = 4 and M ′ is obtained
from M by deleting the central cocircuit of the good augmented 4-wheel; or

(ii) M has a good bowtie; or
(iii) M is the cycle matroid of a terrahawk; or
(iv) M contains a configuration of the form shown in Figure 2 where all the

elements shown are distinct; for some n ≥ 5, there are n dashed elements;
and the deletion of all of the dashed elements produces an internally 4-
connected matroid having an N -minor.
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Figure 2. Delete all the dashed edges.

We now describe the role that this theorem plays in obtaining the desired splitter
theorem. Johnson and Thomas [6] showed that, even for graphs, a splitter theorem
in the internally 4-connected case must take account of some special examples. For
n ≥ 3, let G2n+2 be the biwheel with 2n+2 vertices, that is, G consists of a 2n-cycle
v1, v2, . . . , v2n, v1, the rim, and two additional vertices, u and w, both of which are
adjacent to every vi. Thus the dual of G2n+2 is a cubic planar ladder. Let M
be the cycle matroid of G2n+2 for some n ≥ 3 and let N be the cycle matroid of
the graph that is obtained by proceeding around the rim of G2n+2 and alternately
deleting the edges from the rim vertex to u and to w. Both M and N are internally
4-connected but there is no internally 4-connected proper minor of M that has a
proper N -minor. We can modify M slightly and still see the same phenomenon. Let
G+

n+2 be obtained from Gn+2 by adding a new edge a joining the hubs u and w. Let

∆n+1 be the binary matroid that is obtained from M(G+
n+2) by deleting the edge

vnv1 and adding the third element on the line spanned by wvn and uvn−1. This
new element is also on the line spanned by uvn and wvn−1. For r ≥ 3, Mayhew,
Royle, and Whittle [7] call ∆r the rank-r triangular Möbius matroid and note that
∆r\a is the dual of the cycle matroid of a cubic Möbius ladder. The following is
the main result of [3, Theorem 1.2].

Theorem 1.2. Let M be an internally 4-connected binary matroid with an inter-
nally 4-connected proper minor N such that |E(M)| ≥ 15 and |E(N)| ≥ 6. Then

(i) M has a proper minor M ′ such that |E(M) − E(M ′)| ≤ 3 and M ′ is
internally 4-connected with an N -minor; or

(ii) for some (M0, N0) in {(M,N), (M∗, N∗)}, the matroid M0 has a triangle
T that contains an element e such that M0\e is (4, 4, S)-connected having
an N -minor; or

(iii) M is isomorphic to M(G+
r+1), M(Gr+1), ∆r, or ∆r\z for some r ≥ 5.

That theorem prompted us to consider those matroids for which the second
condition in the last theorem holds. The next theorem, the main result of [4,
Theorem 1.3], identifies some more specific outcomes that occur when (ii) above
holds.

Theorem 1.3. Let M and N be internally 4-connected binary matroids such that
|E(M)| ≥ 16 and |E(N)| ≥ 6. Suppose that M has a triangle T containing an
element e for which M\e is (4, 4, S)-connected having an N -minor. Then one of
the following holds.

(i) M has an internally 4-connected minor M ′ that has an N -minor such that
1 ≤ |E(M)− E(M ′)| ≤ 3; or
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(ii) M or M∗ has a good bowtie; or
(iii) M or M∗ has a good augmented 4-wheel; or
(iv) N ∼= M(K4) and M is the cycle matroid of a terrahawk.

By combining this theorem with Theorem 1.1, we obtain the following result.

Corollary 1.4. Let M and N be internally 4-connected binary matroids such that
|E(M)| ≥ 16 and |E(N)| ≥ 6. Suppose that M has a triangle T containing an
element e for which M\e is (4, 4, S)-connected having an N -minor. Then one of
the following holds.

(i) M has an internally 4-connected minor M ′ that has an N -minor such that
either 1 ≤ |E(M) − E(M ′)| ≤ 3; or |E(M) − E(M ′)| = 4 and, for some
(M1,M2) in {(M,M ′), (M∗, (M ′)∗)}, the matroid M2 is obtained from M1

by deleting the central cocircuit of an augmented 4-wheel; or
(ii) M or M∗ has a good bowtie; or
(iii) M is the cycle matroid of a terrahawk; or
(iv) for some (M0, N0) in {(M,N), (M∗, N∗)}, the matroid M0 contains the

configuration shown in Figure 2 where the deletion of all of the dashed
elements is an internally 4-connected matroid having an N0-minor.

This points us towards examining internally 4-connected matroids having good
bowties and, indeed, the remaining papers in this series deal with precisely this
situation. As we can see from Figure 3, the operation of deleting all of the dashed
elements in Figure 2 is dual to the operation of contracting alternate side elements
in a quartic ladder segment, turning it into a cubic ladder segment.

Figure 3. Turning a quartic ladder segment into a cubic one.

2. Preliminaries

The matroid terminology used here will follow Oxley [8]. We shall sometimes
write N � M to indicate that M has an N -minor, that is, a minor isomorphic
to the matroid N . If x is an element of a matroid M and Y ⊆ E(M), we write

x ∈ cl(∗)(Y ) to mean that x ∈ cl(Y ) or x ∈ cl∗(Y ). The property that a circuit and
a cocircuit in a matroid cannot have exactly one common element will be referred
to as orthogonality. It is well known [8, Theorem 9.1.2] that, in a binary matroid,
a circuit and cocircuit must meet in an even number of elements.

Let M be a matroid with ground set E and rank function r. The connectivity
function λM of M is defined on all subsets X of E by λM (X) = r(X) + r(E−X)−
r(M). Equivalently, λM (X) = r(X) + r∗(X)− |X|. We will sometimes abbreviate
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λM as λ. For a positive integer k, a subset X or a partition (X,E −X) of E is k-
separating if λM (X) ≤ k−1. A k-separating partition (X,E−X) is a k-separation
if |X|, |E −X| ≥ k. If n is an integer exceeding one, a matroid is n-connected if it
has no k-separations for all k < n. This definition [11] has the attractive property
that a matroid is n-connected if and only if its dual is. Moreover, this matroid
definition of n-connectivity is relatively compatible with the graph notion of n-
connectivity when n is 2 or 3. For example, when G is a graph with at least four
vertices and with no isolated vertices, M(G) is a 3-connected matroid if and only if
G is a 3-connected simple graph. But the link between n-connectivity for matroids
and graphs breaks down for n ≥ 4. In particular, a 4-connected matroid with at
least six elements cannot have a triangle. Hence, for r ≥ 3, neither M(Kr+1) nor
PG(r − 1, 2) is 4-connected. This motivates the consideration of other types of 4-
connectivity in which certain 3-separations are allowed. In particular, a matroid is
internally 4-connected if it is 3-connected and, whenever (X,Y ) is a 3-separation,
either |X| = 3 or |Y | = 3. Equivalantly, a 3-connected matroid is internally 4-
connected if and only if, for every 3-separation (X,Y ) of M , either X or Y is a
triangle or a triad of M . As Geelen and Zhou [5, p. 539] note, “For binary matroids,
internal 4-connectivity is certainly the most natural variant of 4-connectivity”. A
graph G without isolated vertices is internally 4-connected if M(G) is internally
4-connected.

Let M be a matroid. A subset S of E(M) is a fan in M if |S| ≥ 3 and there is an
ordering (s1, s2, . . . , sn) of S such that {s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn}
alternate between triangles and triads. We call (s1, s2, . . . , sn) a fan ordering of S.
We will be mainly concerned with 4-element and 5-element fans. For convenience,
we shall always view a fan ordering of a 4-element fan as beginning with a triangle
and we shall use the term 4-fan to refer to both the 4-element fan and such a
fan ordering of it. Moreover, we shall use the terms 5-fan and 5-cofan to refer to
the two different types of 5-element fan where the first contains two triangles and
the second two triads. Let (s1, s2, . . . , sn) be a fan ordering of a fan S. When
n ≥ 4, every fan ordering of S has its first and last elements in {s1, sn}. We call
these elements the ends of the fan while the elements of S − {s1, sn} are called the
internal elements of the fan. When (s1, s2, s3, s4) is a 4-fan, our convention is that
{s1, s2, s3} is a triangle, and we call s1 the guts element of the fan and s4 the coguts
element of the fan since s1 ∈ cl({s2, s3, s4}) and s4 ∈ cl∗({s1, s2, s3}).

A set U in a matroid M is fully closed if it is closed in both M and M∗. The
intersection of two fully closed sets is fully closed, and the full closure fcl(U) of U
is the intersection of all fully closed sets that contain U . Let (X,Y ) be a partition
of E(M). If (X,Y ) is k-separating in M for some positive integer k, and y is

an element of Y that is also in cl(∗)(X), then it is well known and easily checked
that (X ∪ y, Y − y) is k-separating, and we say that we have moved y into X.
More generally, (fcl(X), Y − fcl(X)) is k-separating in M . Let n be an integer n
exceeding one. If M is n-connected, an n-separation (U, V ) of M is sequential if
fcl(U) or fcl(V ) is E(M). In particular, when fcl(U) = E(M), there is an ordering
(v1, v2, . . . , vm) of the elements of V such that U∪{vm, vm−1, . . . , vi} is n-separating
for all i in {1, 2, . . . ,m}. When this occurs, the set V is called sequential. Moreover,
if n ≤ m, then {v1, v2, . . . , vn} is a circuit or a cocircuit of M . A 3-connected
matroid is sequentially 4-connected if all of its 3-separations are sequential. It is
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Figure 4. A quasi rotor.

straightforward to check that, when M is binary, a sequential set with 3, 4, or 5
elements is a fan.

To conclude this section, we note another special structure [12], which has
arisen frequently in our work towards the desired splitter theorem and which is
also important here. In an internally 4-connected binary matroid M , we call
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) a quasi rotor with cen-
tral triangle {4, 5, 6} and central element 5 if {1, 2, 3}, {4, 5, 6}, and {7, 8, 9} are dis-
joint triangles in M such that {2, 3, 4, 5} and {5, 6, 7, 8} are cocircuits and {3, 5, 7}
is a triangle (see Figure 4).

3. Some properties of good augmented 4-wheels and terrahawks

This section collects together a number of lemmas that will be needed in the
proof of the main theorem. The first is an easy modification of [9, Lemma 6.1] that
uses the fact that F7 and F ∗7 are the only 7-element internally 4-connected binary
matroids; the second is [2, Lemma 2.2].

Lemma 3.1. Let M be an internally 4-connected binary matroid with |E(M)| ≥ 7.
If e is an element of M that is not in a triad, then M\e is 3-connected. In particular,
if f is an element of M that is in a triangle, then M\f is 3-connected.

Lemma 3.2. Let (1, 2, 3, 4) be a 4-element fan in a binary matroid M that has
an internally 4-connected minor N such that N has at least seven elements. Then
M\1 or M/4 has an N -minor. Also, if (1, 2, 3, 4, 5) is a 5-fan in M , then either
M\1, 5 has an N -minor, or both M/2\1 and M/4\5 have N -minors. In particular,
both M\1 and M\5 have N -minors.

The following lemma will be used repeatedly in the proof of the main result.

2

3

1

7

6
4

5

Figure 5. The configuration in Lemma 3.3.
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Lemma 3.3. For some k in {2, 3}, let M be a k-connected matroid that contains
the configuration in Figure 5. If (U, V ) is a non-sequential k-separation of M , then
fcl(U) or fcl(V ) contains {1, 2, . . . , 7}.

Proof. Without loss of generality, we may assume that {2, 4, 7} ⊆ U . If 6 ∈ U ,
then we can add 5, then 3, then 1 to U to get the required result. Thus we may
assume that 6 ∈ V . Then 5 ∈ V otherwise we can move 6 into U . By symmetry,
{3, 1} ⊆ V , so {6, 5, 3, 1} ⊆ V . Hence {2, 4, 7} ⊆ cl(V ) and the lemma holds. �

Lemma 3.4. Let M and N be internally 4-connected binary matroids such that
N is a proper minor of M . Suppose that |E(N)| ≥ 7 and that M contains a good
augmented 4-wheel labelled as in Figure 1. Then N � M\y2, y1 and M\y2, y1 is
3-connected.

Proof. By the definition of a good augmented 4-wheel, as M\y2 has an N -minor
and has (y1, z2, x2, z3, y3) as a 5-fan, it follows by Lemma 3.2 that N � M\y2, y1.
Now, by [4, Lemma 2.1], M\y2, y1 is 3-connected unless M\y2 has a triad containing
{y1, z2}. In the exceptional case, M has a 4-cocircuit containing {y1, y2, z2}. Thus,
by orthogonality, x3 or z3 is in this cocircuit. Then λ({y1, z2, x2, y2, z3, x3}) ≤ 2; a
contradiction. �

Continuing to assume that M contains a good augmented 4-wheel labelled as
in Figure 1, we have, by the last lemma, that N � M\y2, y1. As M\y2, y1 has
(y3, x2, z3, z2) as a 4-fan, it follows that N � M\y1, y2, y3 or N � M\y1, y2/z2.
The first of these two cases is dealt with in the next lemma. The second is treated
in Theorem 4.1.

Lemma 3.5. Let M and N be internally 4-connected binary matroids such that
N is a proper minor of M . Suppose that |E(N)| ≥ 7 and that M contains a good
augmented 4-wheel labelled as in Figure 1. If N �M\y1, y2, y3, then either

(i) M has a 4-cocircuit containing {y1, x2, y3}; or
(ii) M\y1, y2, y3 is 3-connected.

Proof. As M\y1, y2 is 3-connected having (y3, z3, x2, z2) as a 4-fan, M\y1, y2, y3 is
3-connected unless M\y1, y2 has a triad T ∗ that avoids z2 but contains {y3, z3}
or {y3, x2}. If {y3, z3} ⊆ T ∗, then orthogonality implies that {x1, x3, z2} meets
T ∗, so {y1, y2, y3, z3, x1, x3, z2} contains a cocircuit of M containing y3, z3}, so
λM ({x1, x2, x3, y1, y2, y3, z2, z3}) ≤ 2; a contradiction. Thus {y3, z3} 6⊆ T ∗, so we
may assume that T ∗ = {y3, x2, t}. Then T ∗ ∪ y1, T ∗ ∪ y2, or T ∗ ∪ {y1, y2} is a
cocircuit C∗ of M . By orthogonality, y2 6∈ C∗. Thus {y3, x2, y2, t} is a cocircuit of
M . �

We omit the straightforward proof of the following result, which identifies all
internally 4-connected minors of the cycle matroid of the terrahawk.

Lemma 3.6. The only internally 4-connected proper minors of the cycle matroid of
the terrahawk are the cycle matroids of the cube, the octahedron, and K4. Moreover,
both the cube and the octahedron have K4 as a minor.

Lemma 3.7. Assume that M is an internally 4-connected binary matroid having
at least sixteen elements and containing the configuration in Figure 6 where all the
elements shown are distinct. Then M is isomorphic to the cycle matroid of the
terrahawk.
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a1
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b3 a3

b2

c4

c3
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a4

b1

d1

d3

d2

Figure 6. A partial terrahawk.

Proof. Let A be the set of fourteen elements shown in the configuration in Figure 6.
Then r(A−d3) ≤ 7 and A−d3 contains five cocircuits none of which is a symmetric
difference of any others. Thus λ(A − d3) ≤ 7 − 5 = 2. Since |E(M)| ≥ 16. we
deduce that λ(A − d3) = 2 and |E(M)| = 16. Moreover, r(A − d3) = 7. Let
E(M)−A = {b4, d4}. Clearly {b4, d4, d3} is a triangle or a triad of M . Since d3 is
already in a triad, {b4, d4, d3} must be a triad.

Now M\{b4, d4, d3} has {a1, a2, a3, a4, b1, b2, b3} as a basis. Thus adjoining d3 to
this set gives a basis B for M . For each element α of {b4, d4}, the triad {b4, d4, d3} of
M implies, by orthogonality, that the fundamental circuit C(α,B) must contain d3.
It follows by using the other known cocircuits of M that C(α,B) must also contain
a4 and a3, and must avoid b1 and b2. Moreover, C(α,B) contains exactly one of
{b3} and {a2, a1}. As |C(b4, B)4C(d4, B)| 6= 2, it follows that we may assume that
C(b4, B) = {b4, b3, d3, a3, a4} and C(d4, B) = {d4, d3, a4, a3, a2, a1}. Using this, we
are now able to construct a binary representation for the binary matroid M . But
that representation is the same as the one we get for the cycle matroid of the
terrahawk that is obtained by adding a new vertex to the configuration in Figure 6
where this new vertex is incident with d3, b4, and d4, while b4 and d4 have their
other ends meeting the vertices incident with {c1, c2} and {a1, d1}, respectively. We
conclude that M is isomorphic to the cycle matroid of the terrahawk. �

4. A four-element win

The purpose of this section is to prove the following theorem, which will be
a major step in the proof of Theorem 1.1. Although this theorem involves an
augmented 4-wheel, we are not assuming that this augmented 4-wheel is good.

Theorem 4.1. Let M and N be internally 4-connected binary matroids such that
|E(M)| ≥ 16 and |E(N)| ≥ 7. Assume that M contains an augmented 4-wheel
labelled as in Figure 1. Suppose that M\x2, y2/z2 has an N -minor. Then

(i) M has an internally 4-connected minor M ′ such that M ′ has an N -minor;
and either 1 ≤ |E(M)−E(M ′)| ≤ 3 or M ′ is obtained from M by deleting
the central cocircuit of the augmented 4-wheel; or

(ii) M is the cycle matroid of a terrahawk.
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Before proving this, we establish a number of preliminary lemmas. Throughout
this section and the next, we shall denote by Z the set of ten elements shown in
Figure 1, that is, Z = {x1, x2, x3, y1, y2, y3, z1, z2, z3, z4}.

z1

x1
z2

y2 z3

x2

y1

y3

x3

z4

t

Figure 7. The configuration in Lemma 4.2.

Lemma 4.2. Assume that M is an internally 4-connected binary matroid that
contains the configuration shown in Figure 7 where |Z ∪ t| = 11 and |E(M)| ≥
15. If T is a triangle of M that meets Z ∪ t, then either T is one of
{z2, y2, x1}, {y2, z3, x3}, {z3, x2, y3}, and {x2, z2, y1}, or T ∩ (Z ∪ t) is {x1, z1} or
{x3, z4}.

Proof. Suppose first that T meets {z2, y2, x2, z3} but that T is not one of the
four triangles shown in Figure 7. Then, by orthogonality, T contains exactly two
elements of the set {z2, y2, x2, z3}. By orthogonality again, the third element of
T must also be in Z ∪ t. If this third element avoids {z1, t, z4}, then we get a
contradiction to orthogonality. Thus the third element meets {z1, t, z4}, so r(Z ∪
t) ≤ 6 and λ(Z ∪ t) ≤ 2; a contradiction.

We may now assume that T avoids {z2, y2, x2, z3}. If t ∈ T , then, by orthogo-
nality and symmetry, we may assume that y3 ∈ T , so T is {t, y3, z4} or {t, y3, x3}.
Thus, again, r(Z ∪ t) ≤ 6 and so we obtain the contradiction that λ(Z ∪ t) ≤ 2.
We conclude that t 6∈ T . Thus T avoids {y1, y3} otherwise T must contain {y1, y3}
and meet both {x3, z4} and {x1, z1}; a contradiction. We conclude that T avoids
{z2, y2, x2, z3, t, y1, y3}. Thus T ∩(Z∪t) ⊆ {x1, z1, x3, z4}. Hence, by orthogonality,
T ∩ (Z ∪ t) is {x1, z1} or {x3, z4}, and the lemma holds. �

Lemma 4.3. Assume that M is an internally 4-connected binary matroid that
contains the configuration shown in Figure 7 where |Z ∪ t| = 11 and |E(M)| ≥ 16.
Then

(i) M/t is internally 4-connected; or
(ii) M has distinct elements u and v not in Z ∪ t such that

(a) {y1, t, u, z1} is a circuit and {z1, u, v} is a triad; or
(b) {y3, t, u, z4} is a circuit and {z4, u, v} is a triad.

Proof. We assume that M/t is not internally 4-connected otherwise the lemma
holds. Evidently M/t is cosimple. We show next that

4.3.1. M/t is simple.
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Suppose that M/t is not simple. Then M has a triangle T containing t. By
orthogonality, T must contain y1, x2, or y3. But each of y1, x2, and y3 is contained
in a 4-cocircuit contained in Z ∪ t other than {t, y1, x2, y3}. Thus T − t ⊆ Z. Hence
λ(Z ∪ t) ≤ 2. As |Z ∪ t| ≤ 11, this is a contradiction. Thus 4.3.1 holds.

Next we show that

4.3.2. M/t is 3-connected and has a 4-fan.

Since M/t is simple and cosimple, if it is not 3-connected, it has a non-sequential
2-separation. If M/t is 3-connected but has no 4-fan, then, as M/t is not internally
4-connected, it has a non-sequential 3-separation. Thus to prove 4.3.2, it suffices
to show the following.

4.3.3. For each k in {2, 3}, the matroid M/t has no non-sequential k-separations.

Suppose M/t has a non-sequential k-separation (U, V ) for some k in {2, 3}. Then
M/t contains the configuration in Figure 5 where the elements of this configuration
are labelled {x1, x2, y1, y2, y3, z2, z3}. By Lemma 3.3, we may assume that U con-
tains the last set. Then we can adjoin t to U to get a non-sequential k-separation
of M ; a contradiction. We conclude that 4.3.3 holds. Hence so does 4.3.2.

We now know that M/t has a 4-fan (s1, s2, s3, s4), so {s1, s2, s3, t} is a circuit
of M . By orthogonality, {s1, s2, s3} meets {y1, x2, y3}. But each of y1, x2, and y3
is in a triangle of M so none is in the triad {s2, s3, s4}. Thus s1 ∈ {y1, x2, y3}.
If s1 = x2, then, by orthogonality, {s2, s3} meets {z2, y2, z3}, so M has a 4-fan; a
contradiction. Thus, by symmetry, we may assume that s1 = y1. By orthogonality,
{s2, s3} meets {z1, x1, z2}, so, as neither s2 nor s3 is in a triangle, it follows, by
symmetry, that we may assume that z1 = s2. Then (ii)(a) holds provided {s3, s4}
avoids Z ∪ t. Certainly {s3, s4} ∩ {z1, y1, t} = ∅. As {s3, s4} is contained in a triad
and hence meets no triangle, {s3, s4} can only meet Z in z4. By orthogonality
between the circuit {t, y1, z1, s3} and the cocircuit {z3, x3, y3, z4}, we deduce that
z4 6= s3. If z4 = s4, then λ(Z∪t∪s3) ≤ 2. This is a contradiction as |Z∪t∪s3| = 12
but |E(M)| ≥ 16. �

Lemma 4.4. Let M be an internally 4-connected binary matroid with at least
sixteen elements. Suppose that M contains the configuration shown in Figure 8
where all the elements shown are distinct. Then M\y4 or M/z4\x3 is internally
4-connected.

Proof. We show first that

4.4.1. M/z4\x3 is both simple and cosimple.

As x3 is in a triangle of M , it is not in a triad. Hence M/z4\x3 is cosimple. Now
suppose M/z4\x3 has a 2-circuit C. Then C ∪ z4 is a triangle of M . Lemma 4.2
implies that x3 ∈ C; a contradiction. We conclude that 4.4.1 holds.

4.4.2. For each k in {2, 3}, the matroid M/z4\x3 has no non-sequential k-
separations.

Assume that M/z4\x3 has a non-sequential k-separation (U, V ) for some k in
{2, 3}. Then, by Lemma 3.3, we may assume that {x1, x2, y1, y2, y3, z2, z3} ⊆ U .
Thus we can adjoin x3 and then z4 to U to get a non-sequential k-separation of M ;
a contradiction. Therefore 4.4.2 holds.
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z1

x1
z2

y2 z3

x2

y1

y3

x3

z4

t

y4

Figure 8. The initial configuration in Lemma 4.4.

It follows immediately from 4.4.2 and Lemma 4.2 that M/z4\x3 is 3-connected.
If it is internally 4-connected, then the lemma holds. Thus, we may assume, by
4.4.2 again, that M/z4\x3 has a 4-fan (s1, s2, s3, s4).

4.4.3. M has distinct elements u and v that are not in Z ∪ t such that {u, v, t} is
a triad and {v, t, y3, z4} is a circuit.

Suppose first that {x3, s2, s3, s4} is a cocircuit of M . By orthogonality with the
circuit {x3, z4, y4}, it follows, since z4 6∈ {s2, s3, s4}, that y4 ∈ {s2, s3, s4}. By
orthogonality between {x3, s2, s3, s4} and {x3, y2, z3}, it follows that{y2, z3} meets
{s2, s3, s4}. If y2 ∈ {s2, s3, s4}, then so is x1 or z2. If z3 ∈ {s2, s3, s4}, then so is
x2 or y3. It follows that {x3, s2, s3, s4} ⊆ (Z − z1) ∪ y4, so λ((Z − z1) ∪ y4) ≤ 2;
a contradiction. We deduce that {x3, s2, s3, s4} is not a cocircuit of M . Thus
{s2, s3, s4} is a cocircuit of M . Hence {s1, s2, s3, z4} is a circuit of M .

By orthogonality, {s1, s2, s3} meets {x3, y3, z3}. But x3 6∈ {s1, s2, s3}. As M has
no 4-fans, we deduce that s1 ∈ {y3, z3}. If s1 = z3, then {s2, s3} meets {x2, y2, z2};
a contradiction. If s1 = y3, then {s2, s3} meets {x2, y1, t}, so, by symmetry, we may
assume that s2 = t. Then, letting (s4, s3) = (u, v), we get that 4.4.3 holds unless
{u, v} meets Z ∪ t. Consider the exceptional case. As {u, v, t} is a triad, none of
its elements is in a triangle. Thus z1 ∈ {u, v}. If z1 = v, then {z1, t, y3, z4} is a
circuit, so λ(Z ∪ t ∪ z4) ≤ 2; a contradiction as |E(M)| ≥ 16. Hence z1 = u. Then
λ(Z ∪ t ∪ v) ≤ 2 and again we get a contradiction. We deduce that 4.4.3 holds.

We now know that M contains the configuration in Figure 9. Since y4 is in a
triangle, it follows that M\y4 is 3-connected. We show next that

4.4.4. M\y4 has no non-sequential 3-separations.

Suppose that M\y4 has a non-sequential 3-separation (U, V ). Then, by
Lemma 3.3, we may assume that {x1, x2, x3, y2, y3, z2, z3} ⊆ U . Thus we may
assume that z4 ∈ U , so we can adjoin y4 to U to get a non-sequential 3-separation
of M ; a contradiction. We deduce that 4.4.4 holds.

We may now assume that M\y4 has a 4-fan (t1, t2, t3, t4) otherwise M\y4 is
internally 4-connected and the lemma holds. Then {t2, t3, t4, y4} is a cocircuit of
M . Thus {t2, t3, t4} meets {x3, z4} in a single element. Suppose x3 ∈ {t2, t3, t4}.
Then {t2, t3, t4} also contains either z3 and some element of {x2, y3}, or y2 and
some element of {x1, z2}. In both cases, λ((Z − z1) ∪ y4) ≤ 2; a contradiction.
We deduce that z4 ∈ {t2, t3, t4}. Thus, by orthogonality, {v, y3, t} also meets
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z1

x1
z2

y2 z3

x2

y1

y3

x3

z4

t

y4

v

u

Figure 9. The configuration that results from 4.4.3.

{t2, t3, t4}. Suppose z4 = t4. Then {v, y3, t} meets the triangle {t1, t2, t3}. But
no triangle contains v or t. Thus, without loss of generality, y3 = t3. Hence, by
orthogonality, t2 is either x2 or z3, and we violate orthogonality with one of the
triangles {x2, y1, z2} and {z3, y2, x3}. We may now assume that z4 = t3. Then, by
Lemma 4.2, {t1, t2, t3} = {z4, x3, y4}; a contradiction. Thus Lemma 4.4 holds. �

z1

x1
z2

y2 z3

x2

y1

y3

x3
z4

t

v

u

Figure 10. The configuration in Lemma 4.5.

Lemma 4.5. Let M be an internally 4-connected binary matroid with at least
sixteen elements. Suppose that M contains the configuration shown in Figure 10
where all the elements shown are distinct. If M\x1/z1 is not internally 4-connected,
then there is an element w not in Z ∪ {t, u, v} such that either {v, t, w} is a triad
and {w, t, y1, z1} is a circuit, or {x1, y2, x3, w} is a cocircuit.

Proof. We show first that

4.5.1. M\x1/z1 is 3-connected.

As x1 is in a triangle, M\x1 is 3-connected. Moreover, the last matroid has
(x2, z2, y1, z1) as a 4-fan. Thus we may assume that z1 is in a triangle of M that
also contains z2 or y1 otherwise 4.5.1 holds. If {z1, z2} is contained in a triangle,
then that triangle also contains z3 and we contradict orthogonality. If {z1, y1}
is contained in a triangle, then orthogonality implies that that triangle must also
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contain x2, y3, or t. The first two possibilities yield contradictions. If the third
holds, then λ((Z − z4) ∪ t) ≤ 2; a contradiction. We conclude that 4.5.1 holds.

4.5.2. M\x1/z1 has no non-sequential 3-separations.

Suppose that M\x1/z1 has a non-sequential 3-separation (U, V ). By Lemma 3.3,
we may assume that {x2, x3, y1, y2, y3, z2, z3} ⊆ U . Thus we can adjoin x1 and then
z1 to U to obtain a non-sequential 3-separation of M ; a contradiction. We deduce
that 4.5.2 holds.

Since M\x1/z1 is not internally 4-connected, we now know that this matroid
has a 4-fan (s1, s2, s3, s4). Assume first that {x1, s2, s3, s4} is a cocircuit of M .
Then, by orthogonality, {s2, s3, s4} contains either z2 and a member of {y1, x2},
or y2 and a member of {x3, z3}. If {s2, s3, s4} contains {z2, x2}, then it also con-
tains y3 or z3 and we obtain the contradiction that λ({x1, y2, z2, x2, z3, y3}) ≤ 2. If
{s2, s3, s4} contains {z2, y1}, then we obtain the contradiction that {x1, s2, s3, s4}
is {x1, z2, y1, z1}. If {s2, s3, s4} contains {y2, z3}, then it also contains y3 or x2,
and λ({x1, y2, z2, x2, z3, y3}) ≤ 2; a contradiction. Finally, if {s2, s3, s4} contains
{y2, x3}, then M has a 4-cocircuit containing {x1, y2, x3}. Let w be the fourth ele-
ment of this cocircuit. Then the lemma holds, unless w ∈ Z∪{t, u, v}. Consider the
exceptional case. If w ∈ Z∪t, then λ(Z∪t) ≤ 2. If w = v, then we contradict orthog-
onality with the circuit {y3, z4, v, t}; and if w = u, then λ((Z − z1) ∪ {t, u, v}) ≤ 2;
a contradiction.

We may now assume that {s2, s3, s4} is a cocircuit of M . Then {s1, s2, s3, z1}
is a circuit of M . By orthogonality, {s1, s2, s3} must meet {z2, y1} so s1 ∈ {z2, y1}
otherwiseM has a 4-fan. If s1 = z2, then {s2, s3}meets {y2, z3, x2}; a contradiction.
Thus s1 = y1. Then {s2, s3} meets {x2, y3, t} and so contains t. By symmetry, we
may assume that s2 = t. By orthogonality, {s2, s3, s4} must meet {y3, v, z4}. But
y3 is not in a triad. Moreover, s3 6∈ {v, z4} by orthogonality with the cocircuit
{u, v, z4}. Thus s4 ∈ {v, z4}. Suppose s4 = z4. Then {y3, z3, z4, x3} 4 {t, s3, z4} is
a cocircuit {y3, z3, x3, t, s3} of M . Thus λ({x1, x2, x3, y1, y2, y3, z2, z3, t, s3}) ≤ 2; a
contradiction. We conclude that s4 = v. Then letting s3 = w, we have the required
result unless w is in Z ∪ {t, u, v}. Consider the exceptional case. As w is not in a
triangle and w 6∈ {z1, t, v}, it follows that w ∈ {z4, u}. Since {z4, u, v} and {t, w, v}
are distinct triads, w 6∈ {z4, u} and the lemma follows. �

With these preliminary results, we are now ready to prove the main theorem of
this section, the proof of which is quite long.

Proof of Theorem 4.1. Assume that the theorem fails. Then M is not isomorphic
to the cycle matroid of the terrahawk. First we show the following.

4.6.1. M\x2, y2/z2 is connected, simple, and cosimple.

Since M is 3-connected, M/z2 is certainly connected. Thus M/z2\x2, y2 is con-
nected since x2 and y2 are in disjoint 2-circuits of M/z2. Moreover, M/z2\x2, y2
is simple otherwise M has a triangle containing z2 but avoiding {x1, x2, y1, y2}.
By orthogonality, such a triangle must also contain {z1, z3} and some element of
{x3, y3, z4}; a contradiction. Suppose M/z2\x2, y2 is not cosimple. Then it has a
2-cocircuit C∗. Hence C∗∪{x2, y2} is a cocircuit of M . By orthogonality, C∗ meets
each of {z3, x3}, {z2, x1}, {z2, y1}, and {z3, y3}. Thus C∗ = {z2, z3}; a contradic-
tion. We conclude that M/z2\x2, y2 is cosimple. Hence 4.6.1 holds.
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4.6.2. For each k in {2, 3}, the matroid M\x2, y2/z2 has no non-sequential k-
separations.

Assume that M\x2, y2/z2 has a non-sequential k-separation (U, V ) for some k in
{2, 3}. By symmetry, we may assume that {y1, y3, z3} ⊆ U . Now x3 ∈ V otherwise
(U ∪ {x2, y2, z2}, V ) is a non-sequential k-separation of M ; a contradiction. It
follows that x1 ∈ V otherwise we can move x3 into U . Then z1 ∈ V otherwise we
can move x1 into U . But now we can move z3, y1, and y3 into V and we obtain the
contradiction that (U−{y1, z3, y3}, V ∪{y1, z3, y3}∪{y2, x2, z2}) is a non-sequential
k-separation of M ; a contradiction. We conclude that 4.6.2 holds.

By combining 4.6.1 and 4.6.2, we deduce that M\x2, y2/z2 is 3-connected. More-
over, we may assume that M\x2, y2/z2 has a 4-fan (s1, s2, s3, s4) otherwise, by 4.6.2,
M\x2, y2/z2 is internally 4-connected and the theorem holds.

Next we show that

4.6.3. M has a 4-cocircuit that contains {x1, y2, x3} or {y1, x2, y3} and also con-
tains an element, s, that is not in Z.

Suppose first that {s2, s3, s4} is a triad of M . Then {s1, s2, s3, z2} is a circuit
of M . Thus, by orthogonality, {s1, s2, s3} meets {y2, x2, z3}. But {x2, y2} avoids
{s1, s2, s3}, so z3 ∈ {s1, s2, s3}. As M has no 4-fans, we see that z3 = s1. Then
{z3, s2, s3, z2} is a circuit of M . By orthogonality, {s2, s3} meets each of {x1, y1, z1}
and {x3, y3, z4}. As none of x1, y1, x3, and y3 is in a triad, we deduce that {s2, s3} =
{z1, z4}. Then M has {z1, z2, z3, z4} as a circuit, so λ(Z) ≤ 2; a contradiction.

We may now assume that {s2, s3, s4} is not a triad of M . Then M has a cocircuit
C∗ such that {s2, s3, s4} $ C∗ ⊆ {s2, s3, s4, x2, y2}. Suppose C∗ contains {x2, y2}.
Then, since z2 6∈ C∗, it follows, as M is binary, that C∗ avoids z3. Then, by
orthogonality, C∗ contains {x1, x3, y1, y3}; a contradiction. We deduce that C∗

does not contain {x2, y2}, so C∗ contains exactly one of x2 and y2. We shall
assume that x2 ∈ C∗. A symmetric argument will cover the case when y2 ∈ C∗.

By orthogonality with {x2, z2, y1}, we see that y1 ∈ C∗. As x2 ∈ C∗, or-
thogonality implies that z3 or y3 is in C∗. Suppose z3 ∈ C∗. Then x3 ∈ C∗,
so C∗ = {x2, y1, z3, x3} and therefore λ({y1, z2, x2, y2, z3, x3}) ≤ 2; a contradic-
tion. We deduce that z3 6∈ C∗, so y3 ∈ C∗. Hence C∗ is a 4-cocircuit containing
{x2, y1, y3}. Let the fourth element of this cocircuit be s. If s ∈ Z, then λ(Z) ≤ 2;
a contradiction as |E(M)| ≥ 16. Hence s 6∈ Z and 4.6.3 holds.

By 4.6.3 and symmetry, we may assume that M has a 4-cocircuit {y1, x2, y3, t}
where t 6∈ Z, so M contains the configuration in Figure 7. Since M\x2, y2/z2
is 3-connected having an N -minor and having (z3, y1, y3, t) as a 4-fan, either
M\x2, y2/z2/t or M\x2, y2/z2\z3 has an N -minor. Next we establish the following.

4.6.4. If N �M\x2, y2, z3/z2, then there is an element u that is not in Z ∪ t such
that {z1, x1, u} or {x3, z4, u} is a circuit of M .

Because the theorem fails, we know that M\x2, y2, z3/z2 is not internally 4-
connected. Now M\x2, y2/z2\z3 is 3-connected unless z3 is in a triad T ∗ of
M\x2, y2/z2. Consider the exceptional case. Then T ∗ meets {x1, x3} and {y1, y3},
so λ({x1, x2, x3, y1, y2, y3, z2, z3}) ≤ 2; a contradiction. Thus M\x2, y2, z3/z2 is
indeed 3-connected.

Now assume that M\x2, y2, z3/z2 has a non-sequential 3-separation (U, V ). We
may also assume that {y1, y3, t} ⊆ U . Suppose x3 or x1 is in U . Then we may as-
sume that {x3, x1} ⊆ U and hence that {z4, z1} ⊆ U . Thus (U∪{z2, x2, y2, z3}, V ) is
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a non-sequential 3-separation of M . It follows that we may assume that {x3, x1} ⊆
V . Then {z4, z1} ⊆ V otherwise we can move x3 or x1 into U . But now we can move
y1 and y3 into V to get that {U − {y1, y3}, V ∪ {z2, x2, y2, z3} ∪ {y1, y3}) is a non-
sequential 3-separation of M ; a contradiction. We conclude that M\x2, y2, z3/z2 is
sequentially 4-connected, so it must have a 4-fan (t1, t2, t3, t4).

First observe that {t1, t2, t3} is a triangle of M otherwise {t1, t2, t3, z2} is a circuit
of M that violates orthogonality with {x2, y2, z2, z3}. As M has no 4-fans, it has a
cocircuit C∗ such that {t2, t3, t4} $ C∗ ⊆ {t2, t3, t4, x2, y2, z3}. Moreover, z2 6∈ C∗.

Now {t1, t2, t3, t4} avoids {x2, y2, z2, z3}. Thus, by Lemma 4.2, either {t1, t2, t3}
meets Z ∪ t in {x1, z1} or {x3, z4}; or {t1, t2, t3} avoids Z ∪ t. In the former case,
4.6.4 holds. Now consider the latter case. Then C∗ meets {x2, y2, z3} as |C∗| ≥ 4.
Suppose z3 ∈ C∗. Then the circuits {z3, x3, x1, z2} and {z3, y3, y1, z2} imply, by
orthogonality, that t4 ∈ {x1, x3}∩{y1, y3}. This contradiction implies that z3 6∈ C∗.
If x2 ∈ C∗, then, as z3 6∈ C∗, orthogonality implies that t4 ∈ {z2, y1} ∩ {y3}; a
contradiction. Thus x2 6∈ C∗ and, similarly, y2 6∈ C∗. Hence C∗ avoids {x2, y2, z3};
a contradiction. We conclude that 4.6.4 holds.

Now observe that

M\x2, y2/z2 ∼= M\x2, y2/z3 ∼= M/z3\x3, y3 ∼= M\x3, y3/z4.
Thus, as N �M\x2, y2/z2, we see that

4.6.5. N �M/z4.

Next we show that

4.6.6. N 6�M\x2, y2, z3/z2, so N �M\x2, y2/z2, t.

Assume that N � M\x2, y2, z3/z2. Then, by 4.6.4 and symmetry, M contains
the configuration shown in Figure 8. As N � M/z4, we see that N � M/z4\y4
and N �M/z4\x3. Thus N �M\y4 and N �M/z4\x3. By Lemma 4.4, M\y4 or
M/z4\x3 is internally 4-connected; a contradiction. We conclude that 4.6.6 holds.

We now know that N � M/t. By Lemma 4.3 and symmetry, we may assume
that M contains the configuration in Figure 10.

z1

x1
z2

y2 z3

x2

y1

y3

x3
z4

t

v

u

s

Figure 11. A configuration obtained by Lemma 4.5.

As N � M\x2, y2/z2 and M\x2, y2/z2 ∼= M/z2\x1, y1 ∼= M\x1, y1/z1, we see
that N �M\x1/z1. As M\x1/z1 is not internally 4-connected, Lemma 4.5 implies
that there is an element s not in Z ∪ {t, u, v} such that either {v, t, s} is a triad
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and {s, t, y1, z1} is a circuit, or {x1, y2, x3, s} is a cocircuit. If the first option
occurs, then M contains a relabelled form of the configuration shown in Figure 6,
so Lemma 3.7 implies that M is the cycle matroid of the terrahawk; a contradiction.
We conclude that {x1, y2, x3, s} is a cocircuit, and thatM contains the configuration
in Figure 11, where all of the elements shown are distinct.

Now rotate the configuration in Figure 11 a quarter turn clockwise and compare
the resulting configuration with that shown in Figure 7. By 4.6.5, N � M/z4 so
M/z4 is not internally 4-connected. Thus, by Lemma 4.3, M has distinct elements
q and w not in (Z−z1)∪{s, t} such that either {y3, z4, q, t} is a circuit and {t, q, w}
is a triad, or {x3, z4, q, s} is a circuit and {s, q, w} is a triad. Suppose {x3, z4, q, s}
is a circuit. Orthogonality with the cocircuit {u, v, z4} implies that q is in {u, v}. If
q = v, then λ((Z − z1)∪{t, v, s}) ≤ 2; a contradiction. Thus q = u. Again rotating
the configuration in Figure 11 a quarter turn clockwise and comparing the resulting
configuration with that shown in Figure 6, we deduce, by Lemma 3.7, that M is
the cycle matroid of the terrahawk; a contradiction. We conclude that {y3, z4, q, t}
is a circuit and {t, q, w} is a triad. Thus q = v and M contains the configuration
shown in Figure 12.

4.6.7. w 6∈ Z ∪ {s, t, u, v}.

By construction, w /∈ (Z − z1) ∪ {s, t}, and clearly w 6= v. If w ∈ {z1, u}, then
λ((Z − z1) ∪ {t, v, w}) ≤ 2; a contradiction. Hence 4.6.7 holds.

z1

x1
z2

y2 z3

x2

y1

y3

x3
z4

t

v

u

w

s

Figure 12

Now M\x2, y2/z2, t ∼= M\x2, y2/z3, t ∼= M/z3\x3, y3/t ∼= M\x3, y3/z4, t. Since
N �M\x2, y2/z2, t, we deduce that N �M\y3/z4, t.

As y3 is in a triangle, M\y3 is 3-connected . Since M\y3 has (y2, x3, z3, z4) as
a 4-fan and has no triangle containing z4, it follows that M\y3/z4 is 3-connected.
We deduce that M\y3/z4, t is 2-connected and cosimple. It is also simple since, by
orthogonality, M has no 4-circuit that contains {z4, t} but avoids y3.

4.6.8. For each k in {2, 3}, the matroid M\y3/z4, t has no non-sequential k-
separations.

Suppose M\y3/z4, t has a non-sequential k-separation (U, V ) for some k in {2, 3}.
Then, by Lemma 3.3, we may assume that {x1, x2, x3, y1, y2, z2, z3} ⊆ U . Thus we
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can adjoin y3, then t and z4 to U to get a non-sequential k-separation of M ; a
contradiction. We conclude that 4.6.8 holds.

By 4.6.8, we deduce that M\y3/z4, t is 3-connected. Since it is not internally
4-connected, it must have a 4-fan (s1, s2, s3, s4).

4.6.9. {s2, s3, s4} is a triad of M avoiding v.

Suppose {s2, s3, s4} is not a triad of M . Then {s2, s3, s4, y3} is a cocircuit of
M . By orthogonality, {s2, s3, s4} meets each of {z4, v, t}, {z3, x2}, and {x3, x1, y1}.
But {s1, s2, s3, s4} avoids {z4, t}. Thus v ∈ {s2, s3, s4}. As {s2, s3, s4} ⊆ (Z −
{z1, z4}) ∪ v, it follows that λ(Z ∪ {t, v}) ≤ 2; a contradiction. We conclude that
{s2, s3, s4} is a triad of M . This triad avoids v since the circuit {t, y3, z4, v} implies
that the only triads containing v contain z4 or t, but {z4, t} avoids {s1, s2, s3, s4}.
Thus 4.6.9 holds.

From 4.6.9, it follows that M has a circuit C such that {s1, s2, s3} $ C ⊆
{s1, s2, s3, z4, t}. If z4 ∈ C, then, by orthogonality, {s1, s2, s3} meets both {u, v}
and {x3, z3}; so s1 ∈ {x3, z3} and u ∈ {s2, s3}. If t ∈ C, then, by orthogonality,
{s1, s2, s3} meets both {v, w} and {y1, x2}; so s1 ∈ {y1, x2} and w ∈ {s2, s3}. By
combining the last two sentences, we immediately obtain that C contains exactly
one of z4 and t.

Suppose t ∈ C. Then z4 6∈ C. Moreover, as noted above, s1 ∈ {y1, x2} and
w ∈ {s2, s3}. By orthogonality, s1 6= x2 otherwise {s2, s3} meets {y2, z2, z3}; a
contradiction. Therefore s1 = y1. Hence, by orthogonality with the cocircuit
{y1, x1, z2, z1}, we deduce that z1 ∈ {s2, s3}. Thus C = {y1, z1, w, t}. Hence M
contains the configuration in Figure 6, so M is the cycle matroid of the terrahawk;
a contradiction.

We may now assume that z4 ∈ C, so C = {z4, s1, s2, s3} with s1 ∈ {x3, z3} and
u ∈ {s2, s3}. If s1 = z3, then orthogonality implies that {s2, s3} meets {x2, y2, z2};
a contradiction. Thus s1 = x3. Then orthogonality implies that C = {z4, x3, s, u}.
Adding this circuit to the configuration in Figure 12 and then inverting the resulting
configuration, we see that M contains the configuration in Figure 6. Thus, by
Lemma 3.7, M is the cycle matroid of the terrahawk; a contradiction. �

5. Proof of the main theorem

In this section, we complete the proof of the main result of the paper.

Proof of Theorem 1.1. We shall assume that the theorem fails. First assume that
|E(N)| = 6. Then N ∼= M(K4). As |E(M)| ≥ 16, it follows by [1, Theorem 1.3]
that M has an internally 4-connected minor M ′ with 1 ≤ |E(M) − E(M ′)| ≤ 3
unless M or M∗ is the cycle matroid of a planar or Möbius quartic ladder. If
such an M ′ exists, then, since every 3-connected binary matroid with at least six
elements has an M(K4)-minor, M ′ has an N -minor; a contradiction. We deduce
that the exceptional case arises. But then we obtain the contradiction that M does
not contain an augmented 4-wheel. We may now assume that |E(N)| ≥ 7. Then,
by Lemma 3.4, N � M\y2, y1 and M\y2, y1 is 3-connected. Since M\y2, y1 has
(y3, x2, z3, z2) as a 4-fan, we know that N � M\y1, y2/z2 or N � M\y1, y2, y3.
By Theorem 4.1, N 6� M\y1, y2/z2. Thus N � M\y1, y2, y3. By Lemma 3.5,
either M\y1, y2, y3 is 3-connected, or M has {y1, x2, y3, t} as a cocircuit for some
element t. Assume the latter holds. As N � M\y1, y2, y3, we have that N �
M\y1, y3\y2/x2, so N � M\y2/x2\z2, z3. Hence N � M\x2, y2, z2, z3, so N �
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M/z2\y1, y2; a contradiction. Thus M\y1, y2, y3 is 3-connected. Since the theorem
fails, M\y1, y2, y3 is not internally 4-connected. Next we show the following.

Lemma 5.1. M\y1, y2, y3 is sequentially 4-connected.

Proof. Assume that M\y1, y2, y3 has a non-sequential 3-separation (U, V ). Without
loss of generality, {z2, z3, x2} ⊆ U . If x1 or x3 is in U , then (U ∪ {y1, y2, y3}, V ) is
a non-sequential 3-separation of M ; a contradiction. Thus {x1, x3} ⊆ V . It follows
that z1 ∈ V , otherwise we can move x1 into U . By symmetry, we deduce that
z4 ∈ V . Then {z2, z3} ⊆ cl∗M\y1,y2,y3

(V ), so (U − {z2, z3, x2}, V ∪ {z2, z3, x2}) is a
non-sequential 3-separation ofM\y1, y2, y3. Hence (U−{z2, z3, x2}, V ∪{z2, z3, x2}∪
{y1, y2, y3}) is a non-sequential 3-separation of M ; a contradiction. �

It follows immediately from the last lemma that M\y1, y2, y3 has a 4-fan and
this fact will play a key role in the proof of the next lemma. Recall that Z =
{x1, x2, x3, y1, y2, y3, z1, z2, z3, z4}.

Lemma 5.2. The matroid M has a triangle {x3, z4, y4} for some element y4 not
in Z.

Proof. IfM has a triangle containing {x3, z4}, then the third element of this triangle
is not in Z, otherwise r(Z) ≤ 5 and we obtain the contradiction that λ(Z) ≤ 2.
We assume now that M has no triangle containing {x3, z4}. Let (a, b, c, d) be a
4-fan in M\y1, y2, y3. Since M has no 4-fans, M has a cocircuit C∗ such that
{b, c, d} $ C∗ ⊆ {b, c, d, y1, y2, y3}.

5.2.1. {a, b, c}∩{x2, z2, z3} = ∅ and {a, b, c} contains neither {x1, x3} nor {z1, z4}.

Suppose {a, b, c} meets {x2, z2, z3}. Then, by orthogonality, {a, b, c} contains
two elements of {x2, z2, z3}. As {a, b, c} avoids {y1, y3}, it follows that {z2, z3} ⊆
{a, b, c}. This yields a contradiction to orthogonality. If {a, b, c} contains {x1, x3}
or {z1, z4}, then we also get a contradiction to orthogonality. Thus 5.2.1 holds.

Next we show that

5.2.2. y2 6∈ C∗.

Suppose y2 ∈ C∗. Then C∗ meet both {x1, z2} and {x3, z3}. By 5.2.1, {b, c}
avoids {z2, z3}, and {b, c} 6= {x1, x3}. Thus d ∈ {x1, z2, x3, z3}, and {x1, x3} meets
{b, c} in a single element. Hence x1 or x3 is in the triangle {a, b, c}. But M\y1 is
(4, 4, S)-connected, so x1 is not in a triangle avoiding {y1, y2}. Hence x3 ∈ {b, c},
so the triangle {a, b, c} must contain z4; a contradiction. Thus 5.2.2 holds.

It follows immediately from 5.2.2 that C∗ meets {y1, y2, y3} in {y1}, {y3}, or
{y1, y3}.

5.2.3. If C∗ ∩ {y1, y2, y3} = {y3}, then d = z3 and {b, c} = {x3, z4}.

By orthogonality, x2 or z3 is in {b, c, d}. Now 5.2.1 implies that neither x2 nor
z3 is in {a, b, c}. Thus d is x2 or z3. Assume first that d = x2. Then {y3, x2, b, c}
is a cocircuit, so z2 ∈ {b, c}; a contradiction to 5.2.1. We deduce that d = z3,
so {y3, z3, b, c} is a cocircuit of M . Hence, by orthogonality, x3 ∈ {b, c}. Thus
{y3, z3, b, c} is the cocircuit {y3, z3, x3, z4} so {b, c} = {x3, z4}. We conclude that
5.2.3 holds.

Since 5.2.3 implies that the lemma holds, we deduce that C∗∩{y1, y2, y3} 6= {y3}.

5.2.4. C∗ ∩ {y1, y2, y3} 6= {y1}.
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By symmetry from 5.2.3, we see that if C∗∩{y1, y2, y3} = {y1}, then d = z2 and
{b, c} = {x1, z1}. But this means that M\y1 has a triangle containing {x1, z1} and
so it is not (4, 4, S)-connected; a contradiction. Hence 5.2.4 holds.

We now know that C∗ ∩ {y1, y2, y3} = {y1, y3}. Next we show that

5.2.5. d = x2 and {a, b, c} ∩ Z = ∅, so C∗ = {b, c, x2, y1, y3}.

As {y1, y3} ⊆ C∗, either x2 ∈ {b, c, d}, or {z2, z3} ⊆ {b, c, d}. By 5.2.1, {b, c} ∩
{x2, z2, z3} = ∅. Thus x2 = d, so C∗ = {b, c, x2, y1, y3}. We now show that
{a, b, c} ∩ Z = ∅. Clearly {a, b, c} avoids {y1, y2, y3} and, by 5.2.1, {a, b, c} avoids
{z2, z3, x2}. Now x1 6∈ {b, c} otherwise, by orthogonality, z2 ∈ {b, c}. Similarly,
x3 6∈ {b, c}. If x1 = a, then z1 ∈ {b, c} so M\y1 has a 5-fan; a contradiction. If
x3 = a, then z4 ∈ {b, c}; so M has a triangle containing {x3, z4}; a contradiction.
Finally, suppose z1 ∈ {a, b, c}. Then x1 or z2 is in {a, b, c}; a contradiction. Hence
z1 avoids {a, b, c} and, by symmetry, so does z4. We conclude that 5.2.5 holds.

Since M\y1, y2, y3 has (a, b, c, x2) as a 4-fan and has an N -minor, either

(i) N �M\y1, y2, y3/x2; or
(ii) N �M\y1, y2, y3\a.

In the first case, N � M/x2\y2, z2, z3, so N � M\y2, z2, z3, x2. Hence N �
M/z2\x2, y2 and we obtain a contradiction by Theorem 4.1. Thus we may assume
that (ii) holds. Then N �M\a.

As a is in a triangle, M\a is 3-connected. Next we show that

5.2.6. M\a is sequentially 4-connected.

Assume that M\a has a non-sequential 3-separation (U, V ). Then we may as-
sume that b ∈ U and c ∈ V . Moreover, by Lemma 3.3, we may assume that
{x2, x3, y1, y2, y3, z2, z3} ⊆ U . Now, since C∗ = {b, c, x2, y1, y3}, we can move c
into U and then adjoin a to U to get a non-sequential 3-separation of M\a; a
contradiction. Hence 5.2.6 holds.

We now know, since M\a is not internally 4-connected, that it has a 4-fan.

5.2.7. If (α, β, γ, δ) is a 4-fan in M\a, then δ ∈ {b, c} and {α, β, γ}∩ {a, b, c} = ∅.

Since {β, γ, δ, a} is a cocircuit of M , it follows that {b, c} meets {β, γ, δ} in a
single element. Suppose δ 6∈ {b, c}. Then {b, c} meets {β, γ} so, by symmetry, we
may assume that γ = c. Since {α, β, γ} 6= {a, b, c}, it follows that b 6∈ {α, β}. By
orthogonality between {α, β, c} and the cocircuit {b, c, x2, y1, y3}, we deduce that
{α, β} meets {x2, y1, y3} in a single element.

Suppose x2 ∈ {α, β}. Then {z2, z3} avoids {α, β, c} otherwise the triangle
{α, β, c} contains y1 or y3; a contradiction. Thus, by orthogonality, y2 ∈ {α, β}.
Hence {x2, y2, c} is a triangle of M . By taking the symmetric difference of this
triangle with each of the circuits {x1, y1, x2, y2} and {x2, y2, x3, y3}, separately, we
deduce that M has {c, x1, y1} and {c, x2, y2} as circuits. The cocircuit {a, c, β, δ}
must have {β, δ} meeting each of {x2, y2}, {x1, y1}, and {x3, y3}; a contradiction.
We deduce that x2 6∈ {α, β}.

Next suppose that y1 ∈ {α, β}. Then, by orthogonality, {α, β} also meets
{z1, x1, z2}. As {α, β, c} 6= {y1, z2, x2}, we see that {α, β} meets {z1, x1}. If
x1 ∈ {α, β}, then M has {x1, y1, c} as a circuit and so has {x2, y2, c} and
{x3, y3, c} as circuits. This gives a contradiction as above. We conclude that
{α, β} = {y1, z1}. Moreover, c 6∈ Z by 5.2.5. We deduce that M has
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({y1, z1, c}, {x1, z2, y2}, {y1, z1, x1, z2}) as a bowtie. Moreover, this bowtie is good
as M\y1 is (4, 4, S)-connected having an N -minor; a contradiction. Hence y1 6∈
{α, β}.

Finally, suppose that y3 ∈ {α, β}. Then, by a symmetric argument to that given
in the last paragraph, we get that M has ({y3, z4, c}, {x3, z3, y2}, {y3, z4, x3, z3})
as a bowtie and c 6∈ Z. Since N � M\y3 and this bowtie is not good, we de-
duce that M\y3 is not (4, 4, S)-connected. We now switch attention to the bowtie
({x1, y2, z2}, {x2, z3, y3}, {y2, z2, x2, z3}) and use [4, Lemma 2.6]. By that result,
{x2, z3, y3} is the central triangle of a quasi rotor whose other traingles include
{x1, y2, z2} and whose 4-cocircuits include {y2, z2, x2, z3}.

Suppose z3 is the central element of this quasi rotor. By orthogonality, M has no
triangle containing {z2, z3}. Thus the second triangle of the quasi rotor containing
z3 also contains y2 and so is {z3, y2, x3}. Hence the second 4-cocircuit of the quasi
rotor apart from {y2, z2, x2, z3} must contain {z3, y3, x3} and so is {z3, y3, x3, z4}.
Thus the quasi rotor contains a triangle containing {x3, z4}; a contradiction.

We may now assume that x2 is the central element of this quasi rotor. Then the
4-cocircuit, D∗, of the quasi rotor other than {y2, z2, x2, z3} must contain {x2, y3}.
By orthogonality, D∗ must meet {y1, z2} and {z4, c}. If z2 ∈ D∗, then D∗ also meets
{x1, y2} so |D∗| ≥ 5; a contradiction. Thus y1 ∈ D∗, so D∗ contains {y1, x2, y3}.
Then D∗4{b, c, x2, y1, y3} is a triad that must meet {b, c}, so M has a 4-fan. This
contradiction completes the proof that δ ∈ {b, c}. Certainly {α, β, γ} avoids a; if it
meets {b, c}, then M is not internally 4-connected; a contradiction. We conclude
that 5.2.7 holds.

We show next that

5.2.8. M\a is (4, 4, S)-connected.

Assume that this fails. Then, by 5.2.6, M\a has a sequential 3-separating set
with at least five elements and so has a sequential 3-separating set with exactly five
elements. Thus M\a has a 5-fan or a 5-cofan. First suppose that M\a has a 5-fan
(α, β, γ, δ, ε). Then, by 5.2.7, δ ∈ {b, c} and β ∈ {b, c}. Thus a ∈ cl({α, β, γ, δ, ε}),
so M is not internally 4-connected; a contradiction. We deduce that M\a has a
5-cofan (ω, α, β, γ, δ). Then M\a has (α, β, γ, δ) and (γ, β, α, ω) as 4-fans. Thus
δ ∈ {b, c} and ω ∈ {b, c}, so a ∈ cl({ω, α, β, γ, δ}). Hence M is not internally
4-connected; a contradiction. We conclude that 5.2.8 holds.

Now let (α, β, γ, δ) be a 4-fan in M\a. Then, by 5.2.7, δ ∈ {b, c}. By symmetry,
we may assume that δ = b and so ({α, β, γ}, {a, b, c}, {a, b, β, γ}) is a good bowtie
in M since M\a is (4, 4, S)-connected having an N -minor. This contradiction com-
pletes the proof of Lemma 5.2. �

By Lemma 5.2, M contains the structure shown in Figure 13. This means that,
for some k ≥ 3, we have a configuration of the form shown in Figure 14 where the
following hold:

(i) M\y1 is (4, 4, S)-connected;
(ii) N 6�M\x1, y1/z2;
(iii) all the elements shown are distinct; and
(iv) M\y1, y2, . . . , yk is sequentially 4-connected having an N -minor.

We shall assume that k is chosen to be maximal subject to these conditions. The
particular form of Figure 14 may suggest to the reader that we are requiring k to
be odd, but no such assumption is being made.
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Figure 13. The configuration that arises from Lemma 5.2.

For the rest of the proof of Theorem 1.1, we shall be arguing in terms of the
configuration shown in Figure 14 and assuming that conditions (i)–(iv) above hold.

Lemma 5.3. If N � M\xj , yj/zj for some j with 2 ≤ j ≤ k, then N �
M\x2, y2/z2 and N �M\x1, y1/z2.

Proof. In M/zj , we have {xj , yj−1} and {yj , xj−1} as 2-circuits. Thus
M/zj\xj , yj ∼= M/zj\xj−1, yj−1 ∼= M\xj−1, yj−1/zj−1. By repeatedly applying
this observation, we obtain the required result. �

Now consider M\y1, y2, . . . , yk. It is 3-connected having an N -minor and having
(yk+1, zk+1, xk, zk) as a 4-fan. Thus either

(i) N �M\y1, y2, . . . , yk\yk+1; or
(ii) N �M\y1, y2, . . . , yk/zk.

If (ii) holds, then N � M/zk\yk, yk−1, so N � M/zk\yk, xk. Thus, by
Lemma 5.3, N �M/z2\y1, x1; a contradiction.

Lemma 5.4. M\y1, y2, . . . , yk, yk+1 is 3-connected.

Proof. Assume that the lemma fails. Then M\y1, y2, . . . , yk has a triad con-
taining yk+1 and one of xk and zk+1. Thus either M\y1, y2, . . . , yk, yk+1/xk

z1 z2
zk+1

x2

z3 zk

y3y1

x1 y2 x3 xk yk+1yk−1

xk−1 yk

Figure 14. N �M\y1, y2, . . . , yk, which is sequentially 4-connected.



22 CAROLYN CHUN, DILLON MAYHEW, AND JAMES OXLEY

or M\y1, y2, . . . , yk, yk+1/zk+1 has an N -minor. In the first case, N �
M\y1, y2, . . . , yk/xk\zk+1, so N � M\y1, y2, . . . , yk\zk+1/zk. Hence N �
M\xk, yk/zk. We obtain the same conclusion in the second case, as N �
M/zk+1\xk, yk. Thus, in both cases, we may apply Lemma 5.3 to get that
N �M/z2\x1, y1; a contradiction. �

Lemma 5.5. M\y1, y2, . . . , yk, yk+1 is sequentially 4-connected.

Proof. Assume that M\y1, y2, . . . , yk, yk+1 has a non-sequential 3-separation
(U, V ). Then, without loss of generality, we may assume that {zk, xk, zk+1} ⊆ U .
Thus (U ∪ yk+1, V ) is a non-sequential 3-separation of M\y1, y2, . . . , yk; a contra-
diction. �

We observe that M has ({yk+1, zk+1, xk}, {zk, yk, xk−1}, {zk+1, xk, zk, yk}) as a
bowtie. The following is an immediate consequence of [4, Lemma 2.6].

Lemma 5.6. Exactly one of the following holds.

(i) M\yk+1 is internally 4-connected; or
(ii) M\yk+1 is (4, 4, S)-connected but not internally 4-connected; or

(iii) {yk+1, zk+1, xk} is the central triangle of a quasi rotor in M .

Because M\yk+1 has an N -minor but the theorem fails, (i) of the last lemma
cannot occur.

Lemma 5.7. When M\yk+1 is (4, 4, S)-connected but not internally 4-connected,
M\yk+1 has a unique 4-fan. Moreover, this 4-fan has yk as its guts element and
has zk+1 as an internal element.

Proof. Let (u1, u2, u3, u4) be a 4-fan in M\yk+1. Then M has {u2, u3, u4, yk+1}
as a cocircuit. Thus, by orthogonality and symmetry, {u3, u4} meets {xk, zk+1}.
Now u4 6∈ {xk, zk+1} otherwise ({u1, u2, u3}, {xk, zk+1, yk+1}, {u2, u3, u4, yk+1}) is
a good bowtie in M since N �M\yk+1. Thus we may assume that u3 ∈ {xk, zk+1}.

Suppose u3 = xk. By orthogonality, the cocircuit {u2, u4, xk, yk+1}
must meet both {zk, yk−1} and {yk, yk−2, xk−2}. Thus {u2, u4, xk, yk+1} ⊆
{xk−2, yk−2, xk−1, yk−1, zk−1, xk, yk, zk, yk+1, zk+1}. Letting the last set be Z ′, we
see that λ(Z ′) ≤ 2; a contradiction. We deduce that u3 = zk+1.

The triangle {zk+1, u1, u2} meets the cocircuit {xk, zk+1, yk, zk}. As {zk+1, zk}
is not contained in a triangle and xk 6∈ {u1, u2}, we deduce that yk ∈ {u1, u2}.
If yk = u2, then {yk, zk+1, yk+1, u4} is a cocircuit, so u4 ∈ {zk, xk−1} and hence
λ({xk−1, yk, zk, xk, yk+1, zk+1}) ≤ 2; a contradiction. It follows that yk = u1. Thus
every 4-fan of M\yk+1 has yk as its guts element and has zk+1 as an internal
element. It follows by [4, Lemma 2.11] that there is a unique such fan, so the
lemma holds. �

Lemma 5.8. When M\yk+1 is (4, 4, S)-connected but not internally 4-connected,
M\y1, y2, . . . , yk, yk+1 is internally 4-connected.

Proof. Assume that this is false. Then, by Lemma 5.7, M\yk+1 has a unique 4-fan
and this 4-fan has yk as its guts element and has zk+1 as an internal element. Let
xk+1 be the other internal element of this 4-fan and zk+2 be its coguts element.
Then M has {yk, zk+1, xk+1} as a triangle and has {xk+1, yk+1, zk+1, zk+2} as a
cocircuit. Moreover, since M\y1, y2, . . . , yk, yk+1 is sequentially 4-connected, this
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matroid must have a 4-fan (w1, w2, w3, w4). Then M has {w1, w2, w3} as a triangle
and has a cocircuit C∗ such that {w2, w3, w4} $ C∗ ⊆ {w2, w3, w4, y1, y2, . . . , yk+1}.

Next we show that

5.8.1. {w1, w2, w3} ∩ {z1, z2, . . . , zk+2, x1, x2, . . . , xk+1} = ∅.

First observe that {x1, z1} is not in a triangle as M\y1 is (4, 4, S)-connected.
Let i = min{j : zj ∈ {w1, w2, w3}}. If i = 1, then, by orthogonality, {w1, w2, w3}
contains {z1, z2}. By orthogonality again, {w1, w2, w3} is {z1, z2, x2}. This is a
contradiction as {y1, z2, x2} is a triangle too. Thus i > 1. Suppose i = k + 2.
Then {zk+2, xk+1} is contained in a triangle, so M\yk+1 is not (4, 4, S)-connected;
a contradiction. Hence i < k + 2. Now, as zi−1 6∈ {w1, w2, w3}, we must have that
xi−1 ∈ {w1, w2, w3}. Hence {w1, w2, w3} coincides with the triangle {zi, xi−1, yi};
a contradiction. We conclude that {w1, w2, w3} avoids {z1, z2, . . . , zk+2}. Then, by
orthogonality, {w1, w2, w3} avoids {x1, x2, . . . , xk+1}. Hence 5.8.1 holds.

5.8.2. For j in {1, 2, . . . , k}, if yj ∈ C∗, then w4 ∈ {zj+1, xj+1}. For i in
{2, 3, . . . , k + 1}, if yi ∈ C∗, then w4 ∈ {xi−1, zi}.

To see the first part, observe that {yj , zj+1, xj+1} is a triangle. Then, by orthog-
onality, {zj+1, xj+1} meets {w2, w3, w4}. The first part follows immediately from
5.8.1. A similar argument establishes the second part. Thus 5.8.2 holds.

Suppose ym ∈ C∗ for some m with 2 ≤ m ≤ k. Then, by 5.8.2,
w4 ∈ {zm+1, xm+1} ∩ {xm−1, zm}; a contradiction. We deduce that C∗ avoids
{y2, y3, . . . , yk}. Hence y1 or yk+1 is in C∗. If both y1 and yk+1 are in C∗, then
w4 ∈ {z2, x2} ∩ {xk, zk+1}; a contradiction as k ≥ 3. Thus C∗ contains exactly one
of y1 and yk+1.

Suppose yk+1 ∈ C∗. Then w4 ∈ {xk, zk+1}. Also (w1, w2, w3, w4) is a 4-fan of
M\yk+1. But the unique 4-fan of M\yk+1 has yk as its guts element. This contra-
diction to the fact that (w1, w2, w3, w4) is a 4-fan of M\y1, y2, . . . , yk+1 establishes
that yk+1 6∈ C∗.

We now know that y1 ∈ C∗. Thus w4 ∈ {x2, z2}. If w4 = x2, then, by orthogo-
nality, {z3, y3} meets {w2, w3}; a contradiction. If w4 = z2, then, by orthogonality,
{x1, y2} meets {w2, w3}; a contradiction. We conclude that Lemma 5.8 holds. �

This completes the treatment of the case when (ii) of Lemma 5.6 holds. It
remains to consider what happens when (iii) of Lemma 5.6 holds.

Lemma 5.9. If {yk+1, zk+1, xk} is the central triangle of a quasi rotor in M , then
M has elements xk+1, zk+2, and yk+2 such that this quasi rotor is labelled as in
Figure 15(a).

Proof. By orthogonality, M has no triangle containing {zk, zk+1}. Thus
the quasi rotor is labelled as in (a), (b), or (c) of Figure 15. In (b),
by orthogonality, the triangle {yk−1, zk−1, xk−2} must contain α. Then
λ({xk−2, xk−1, xk, yk−2, yk−1, yk, yk+1, zk−1, zk, zk+1}) ≤ 2; a contradiction. In (c),
the other circuits of M imply that {xj , yj , γ} is a circuit for all j in {1, 2, . . . , k}.
Thus, by orthogonality, δ ∈ {xk−1, yk−1} ∩ {xk−2, yk−2}; a contradiction. We con-
clude that (a) holds. �

By the last lemma, M contains the configuration shown in Figure 16.

Lemma 5.10. {xk+1, zk+2, yk+2} ∩ {x1, . . . , xk, y1, . . . , yk+1, z1, . . . , zk+1} = ∅.
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Figure 15. Possible labelled quasi rotors.

Proof. First we observe that {xk+1, zk+2, yk+2} avoids {xk−1, xk, yk, yk+1, zk, zk+1}.
Moreover, yk−1 6∈ {xk+1, zk+2} by orthogonality; and yk−1 6= yk+2 oth-
erwise λ({xk−1, xk, xk+1, yk−1, yk, yk+1, yk+2, zk, zk+1, zk+2}) ≤ 2; a contradic-
tion. Now suppose that {xk+1, zk+2, yk+2} meets {x1, x2, . . . , xk−2, y1, y2, . . . , yk−2,
z1, z2, . . . , zk−1}. Then, because the last set can be covered by the set of 4-cocircuits
of the form {zi, xi, yi, zi+1} for 1 ≤ i ≤ k − 2, the triangle {xk+1, zk+2, yk+2} must
contain exactly two elements of one of these 4-cocircuits. Now, by orthogonality,
no set of the form {zi, zi+1} with 1 ≤ i ≤ k − 2 is contained in a triangle.

5.10.1. {xk+1, zk+2, yk+2} contains no set {xi, yi} with 1 ≤ i ≤ k − 2.

Suppose that {xi, yi} is contained in {xk+1, zk+2, yk+2} for some i in {1, 2, . . . , k−
2}, say {xk+1, zk+2, yk+2} = {xi, yi, t}. Since {xi, yi, xk, yk} is a circuit of
M , so is {xk, yk, t}. Suppose t = xk+1. Then the triangles {xk, yk, t} and
{yk, xk+1, zk+1} are equal. Thus xk = zk+1; a contradiction since the members
of {x1, x2, . . . , xk, y1, y2, . . . , yk+1, z1, z2, . . . , zk+1} are distinct. We deduce that

z1 z2 zk+2

x2

z3 zk+1

y3y1

x1 y2 x3 yk+1

yk+2

xk

yk xk+1

Figure 16. Our basic configuration extended.
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t ∈ {zk+2, yk+2}. Thus xk+1 ∈ {xi, yi}. Then the triangle {zk+1, xk+1, yk} and
the cocircuit {xi, yi, zi, zi+1} have a single common element; a contradiction. We
conclude that 5.10.1 holds.

We now know that {xk+1, zk+2, yk+2} meets {xi, yi, zi, zi+1} in
{xi, zi}, {xi, zi+1}, {yi, zi}, or {yi, zi+1}. Thus {xk+1, zk+2, yk+2} coincides
with {xi, zi, yi−1}, {xi, zi+1, yi+1}, {yi, zi, xi−1}, or {yi, zi+1, xi+1} unless i = 1
and {xk+1, zk+2, yk+2} contains {x1, y1} or {y1, z1}. Provided the exceptional case
does not occur, xk+1 is in {xi−1, yi−1, xi, yi, zi, xi+1, yi+1, zi+1} so the triangle
{yk, zk+1, xk+1} meets some 4-cocircuit {xj , yj , zj , zj+1} for j in {i − 1, i, i + 1}
in a single element; a contradiction since i + 1 ≤ k − 1. It remains to consider
the exceptional case. Because M\y1 is (4, 4, S)-connected, {x1, z1} is not con-
tained in a triangle. Hence we may assume that {y1, z1} ⊆ {xk+1, yk+2, zk+2}.
Letting x0 be the element of {xk+1, yk+2, zk+2} − {y1, z1}, we deduce that M has
({x0, y1, z1}, {x1, y2, z2}, {x1, y1, z1, z2}) as a good bowtie; a contradiction. This
completes the proof of Lemma 5.10. �

As we now know that all the elements in Figure 16 are distinct and that
M\y1, y2, . . . , yk+1 is sequentially 4-connected having an N -minor, we have con-
tradicted the choice of k, thereby completing the proof of the theorem. �
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