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A graph is weakly symmetric if its automorphism group is both vertex-transitive 
and edge-transitive. In 1971, Chao characterized all weakly symmetric graphs of 
prime order and showed that such graphs are also transitive on directed edges. In 
this paper we determine all weakly symmetric graphs of order twice a prime and 
show that these graphs too are directed-edge transitive. ,f‘ 1987 Academic Press. Inc. 

I. INTRODUCTION 

A graph G is weakly symmetric if its automorphism group Aut(G) is 
transitive on both the vertex-set V(G) and the edge-set E(G) of G. Turner 
[ 151 determined all vertex-transitive graphs on a prime number p of ver- 
tices. In addition, he made a conjecture as to which of these is weakly sym- 
metric. Turner’s conjecture was verified by Chao [7] and later Berggren 
[2] simplified the proof of this result. A characterization of vertex-trans- 
itive graphs of order 2p was independently conjectured by Alspach and 
Sutcliffe [l] and Toida [14] and this characterization was proved by 
MaruE [ 111 provided p satisfies certain weak restrictions. The aim of this 
paper is to characterize weakly symmetric graphs of order 2~. This charac- 
terization will rely on several important group-theoretic results including 
the recently completed classification of finite simple groups. We shall also 
need the following result of Liebeck and Sax1 [lo] that solves a problem of 
Wielandt [ 16, p. 941. 

(1.1) THEOREM. Let p be a prime number. A primitive permutation group 
of degree 2p is doubly transitive provided p # 5. 
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If p = 5, the only primitive groups of degree 10 are S, and A, acting on 
the set of 2-element subsets of a 5-element set. 

The following technique for constructing weakly symmetric graphs is 
well known (see, for example, [4, p. 861). Let A be a transitive per- 
mutation group acting on a finite set X and consider the action of A on the 
set 2 of 2-element subsets of X. If 0 is an orbit of A under this action, then 
the graph with vertex-set A and edge-set 0 is certainly weakly symmetric. 
Moreover, every weakly symmetric graph G arises in this way by taking 
A = Aut(G) and X= V(G). A consequence of the classification of all finite 
simple groups is that all transitive permutation groups A that act on a set 
X of size 2p are known. From the point of view of permutation groups, this 
paper describes all possible orbits of such groups on p. 

Since it is routine to determine the non-simple weakly symmetric graphs 
on n vertices from a list of the simple weakly symmetric graphs on n ver- 
tices, throughout the rest of this paper the term “graph” will mean “simple 
graph.” If G, and G, are disjoint graphs, we shall denote their union by 
G, + GZ. The disjoint union of k copies of G, will sometimes be written as 
kG, If u is a vertex of a graph G, then NJu) will denote the neighbor set of 
v in G, that is, the set of vertices of G that are adjacent to U. For all other 
graph-theoretic terminology which is otherwise unexplained we shall follow 
Bondy and Murty [S]. 

Before proceeding further we note that Chao [7] uses the term “sym- 
metric graph” for what we have called a “weakly symmetric graph.” Our 
preference for the latter term is based on the widespread use of the term 
symmetric graph to describe a vertex-transitive graph G with the property 
that for every pair, uu and xy, of edges of G there is an automorphism 
mapping u to x and v to y (see, for example, [3, p. 1041). IEvidently every 
symmetric graph is weakly symmetric but the converse of this is not true in 
general (see, for example, [9]). It is true for graphs of prime order by 
Chao’s work and follows for graphs of order twice a prime from the results 
of this paper. The next result establishes the converse for graphs of odd 
degree. It is related to a group-theoretic result in [16, Theorem 16.51. We 
give a combinatorial proof of it. 

(1.2) PROPOSITION. Let G be a weakly symmetric graph of degree r 
where r is odd. Then G is symmetric. 

Proof: Evidently if G has an automorphism fixing slome edge and 
interchanging its endpoints, then, as G is edge-transitive, it is symmetric. 
We assume that G is not symmetric and fix an edge e of G. Now assign a 
direction to e. Then, for each edge f distinct from e, there is an 
automorphism mapping e to f and hence inducing a direction on f: 
Furthermore, if there are two such automorphisms c, and (T> inducing dif- 
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ferent directions on f, then o~‘o, fixes the edge -f and interchanges its 
endpoints-a contradiction. It follows that we obtain a directed graph G 
such that all the automorphisms of G are also automorphisms of G. Since 
G is vertex-transitive, the indegrees of all the vertices of G are the same. 
Likewise all the outdegrees are the same. But, since the sum of the 
indegrees equals the sum of the outdegrees, each vertex has its indegree and 
outdegree equal. Thus G has even degree-a contradiction. 1 

The following lemma will be used frequently to establish the edge-trans- 
itivity of various graphs. The routine proof is omitted. 

(1.3) LEMMA. Let G be a vertex-transitive graph having a vertex x such 
that ify and y’ are in NJx), there is an automorphism of G that fixes x and 
maps y to y’. Then G is symmetric and hence is edge-transitive. 

Two other results that we shall use heavily in our characterization are 
Chao’s classification of all weakly symmetric graphs of prime order [7] 
and the following theorem of Burnside [ 13, p. 531. If a is an element of the 
group Zz of non-zero elements of Z, and bg Z,, we shall abbreviate to 
ax + b the permutation of Z,, which maps each element .Y of Z, to the 
element ax + b. 

(1.4) THEOREM. Let A be a transitive permutation group of prime degree 
p. Then either A is doubly transitive or we can identlxbl A M’ith Z,, in such a 
wajl that 

Let r be an even positive integer dividing p - 1 where p is prime and 
let H(p, r) denote the unique order-r subgroup of Zz. We define G(p, r) 
to be the graph with vertex-set Z, and edge-set {XV: x, J’ E ZP and 
Y --xE WP, r)}. 

(1.5) THEOREM 171. The graph G(p, r) is symmetric and, provided 
r <p - 1, Aut(G(p, r)) = {ax + b: a E H(p, r), h E Z,}. Moreover, every non- 
null weakly symmetric graph of order p is isomorphic to G(p, r) for some 
even integer r dividing p - 1. 

In the next section we describe constructions for several classes of weakly 
symmetric graphs on 2p vertices and state the main theorem of the paper, 
that all weakly symmetric graphs on 2p vertices are contained in one of 
these classes. The proof of this theorem occupies the remainder of the 
paper. It falls naturally into two cases and these are treated separately in 
Sections 3 and 4. The last section lists the automorphism groups of all the 
weakly symmetric graphs of order 2p. 
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2. CONSTRUCTIONS 

The purpose of this section is to describe several classes of symmetric 
graphs of order 2~. Our main theorem will prove that every weakly sym- 
metric graph of order 2p is in one of these classes. Four obvious examples 
of symmetric graphs on 2p vertices are the null graph, the complete graph 
KzP, the complete bipartite graph KP,P, and the complement of Kp,pr 2KP. 
When p = 2, it is not difficult to check that these 4 graphs are the only 
weakly symmetric graphs of order 2~. From now on, we shall assume that 
p > 2. 

When p = 5, we get two special graphs that are well known to be sym- 
metric (see, for example, 14, p. 87]), but which do not belong to any of the 
general classes of symmetric graphs of order 2p that we shall describe in 
this section. These graphs are the Petersen graph O3 and its complement 
0;. 

The next three classes of graphs that we shall construct are based on the 
symmetric graphs G(p, r) of order p. Just as 2K, is symmetric, it is clear 
that in general 2G(p, v), the disjoint union of two copies of G(p, r), is also 
symmetric. 

Next let A and A’ be two disjoint copies of Z,. For each clement i of Z,, 
we shall denote the corresponding elements of A and A’ by i and i’, respec- 
tively. Two natural permutations on A u A’ which we shall use frequently 
in this paper are defined as follows: for all i in Z,, r(i) = i + 1 and r(i’) = 
(ifl)‘, and p(i)=(-i)’ and p(C)= -i. 

Now let r be a positive integer dividing p - 1 and recall that H(p, r) is 
the unique subgroup of Zz of order r. We define the graph G(2p, r) to have 
vertex-set A u A’ and edge-set {xy’: x, y E Z, and y - x E H(,u, r)}. It is easy 
to check that both r and p are automorphisms of G(2p, v) and using these 
automorphisms and L,emma 1.3 it is not difficult to prove that 

(2.1) LEMMA. The graph G(2p, r) is symmetric. 

Note that G(2p, 1) is isomorphic to pK,, a complete matching, and 
G( 2p, p - 1) is the bipartite complement of a complete matching. 

Next assume that r is an even positive integer dividing p - 1. We define 
G(2, p, r) to be the graph with vertex-set A u A’ and edge-set (xy, x’y, my’, 
x’y’: x, y E Z, and y -x E H(p, r)}. Again, both r and p are automorphisms 
of G(2, p, Y) and one easily checks that 

(2.2) LEMMA. The graph G(2, p, r) is symmetric. 

When Y =p - I, G(2, p, r) is the complementary graph of a complete 
matching. 
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The remaining symmetric graphs which we shall consider are obtained 
from certain symmetric (u, k, A)-designs. Let D be such a design, A be its 
set of points, and A’ be its set of blocks. The incidence graph B(D) of this 
design has vertex-set A u A’ and edge-set { xy: x E A, y E A’ and x E y}. We 
shall denote by B’(D) the incidence graph of the complementary design of 
D. Thus B’(D) has vertex-set A in A’ and edge-set {XY: .‘c E A, y E A’ and 

X!J+Y>. 
Let n be an integer greater than two and D be the symmetric design 

PG(n - 1, q) that has as its points and blocks the points and hyperplanes 
respectively of the (n - 1 )-dimensional projective space over GF(q) with the 
incidence relation being determined by inclusion. It is a routine exercise in 
linear algebra to verify that both B(PG(n - 1, q)) and B’(PG(n - 1, q)) are 
symmetric graphs. Each has 2(q”- l)/(q- 1) vertices and so, when 
(4” - 1 )/(q - 1) is a prime p, we have two symmetric graphs of order 2~. 
We note here that in the special case that n = 3 and q = 2, the graph 
B(PG(n - 1, q)) is isomorphic to G(2.7, 3). 

The last example of a symmetric graph of order twice a prime arises from 
the unique symmetric ( 11, 5, 2)-design H( 11). The points of this design are 
the elements of Z,, and the blocks are the 11 sets R + i= {x + i: x E R} 
where i E Z,, and R is the set of non-zero quadratic residues modulo 11, 
namely { 1, 3,4, 5,9}. We note that B(H(ll)) z G(2. 11, 5). Hence 
B(H( 11)) is included amongst the symmetric graphs noted earlier. We also 
have that 

(2.3) LEMMA. B’( H( 11)) is a synmetrie graph 

ProuJ: The 11 blocks of the complementary design N’( 11) of H( 11) are 
the sets R’+i where iEZ,, and R’=10,2,6,7,8,10}=C2s’:x~~,~). 
Since B(H( 11)) is vertex-transitive, B’(H( 11)) is also vertex-transitive. By 
Lemma 1.3, it will follow that B’(H(1 I)) is edge-transitive if we can find an 
automorphism of the graph which fixes R’ and maps 2x” to 2y2 for any I 
and y in Z,, . We shall first show that such an automorphism exists when 
neither x nor y is zero. In that case, let z=.u-~J~’ and define the per- 
mutation c by a(u) = uz for all u in Z, r. Then 0(2x’) = 2x22 = 2x2x- ‘y2 = 
2y*. Moreover, o(R’+i) = cr{2t2+i:fEZ,Il} = {(2t’+i)z:teZ,,} = 
(2(t.x+)2+iZ: fE;Z,, } = R’ + iz. Hence, in particular, a(R’) = R’. Thus CJ 
induces the required automorphism of B’(H( 11)). To complete the proof of 
the lemma we need only show that B’(H( 11)) has an automorphism that 
fixes R’ and maps 0 to 2. It is not difficult to check that such an auto- 
morphism is induced by the permutation (0 2)(1 9)(3 4)(7 10)(5)(6)(g). 1 

We shall conclude this section by stating the main theorem of the paper 
and beginning its proof. Before doing this, however, we note that, as a con- 
sequence of the classification of all finite simple groups, one can charac- 
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terize all doubly transitive groups of prime degree [6, S] and hence deter- 
mine all doubly transitive symmetric designs on a prime number of points. 
The latter consist of the trivial (p, 1, 0)-design and its complementary 
design, together with the examples noted above: H( 11) and its complemen- 
tary design and PG(n - 1, q) and its complementary design where, for the 
last two, p = (q” - 1 )/(q - 1). 

(2.4) THEOREM. Let G be a weakly symmetric graph of order 2p where p 
is a prime. Then either 

(i) G is isomorphic to the null graph on 2p vertices, the complete 
graph K,, or the complete bipartite graph Kp,p; 

(ii) G is isomorphic to 2G(p, r) or G(2,p, r) for some even integer r 
dividing p - 1; 

(iii) G is isomorphic to G(2p, r) for some integer r dividing p - 1; 

(iv) G is isomorphic to B(PG(n- 1, q)) or B’(PG(n- 1, q)), and 
p=(q”- l)/(q- 1); 

(v) G is isomorphic to B’(H(l1)) andp= 11; or 

(vi) G is isomorphic to the Petersen graph O3 or its complement 05, 
andp=5. 

Before commencing the proof of this theorem, we recall that G(2.7, 3) z 
B(PG(2, 2)). In Section 5, we shall determine the automorphism groups of 
all the graphs in (if-(vi) above. It will follow from this that, except for the 
one coincidence just noted, all the graphs listed above are non-isomorphic. 

Proof of Theorem 2.4. Assume that G is a weakly symmetric graph of 
order 2p where p is a prime. The theorem was verified earlier for p = 2 and 
is straightforward to check when p = 3 (alternatively, see [12]). We 
therefore suppose that p > 5. 

By Theorem 1.1, either Aut(G) is doubly transitive, Aut(G) is 
imprimitive, or Aut(G) is primitive and p = 5. In the first case, G is either 
the null graph or the complete graph. In the last case we recall from the 
introduction that the only primitive groups of degree 10 are S, and A, 
acting on the set of 2-element subsets of a 5-element set. Thus Aut(G) is 
one of these two groups and it is not difficult to check that G is either the 
Petersen graph or its complement. 

For the rest of the proof we shall assume that Aut(G) is imprimitive. 
Thus Aut(G) has a block containing p vertices or a block containing 2 ver- 
tices. For the major part of the proof we shall treat these cases separately, 
the first in Section 3 and the second in Section 4. However, the next two 
lemmas will be used in both cases. The first of these is an easy consequence 
of edge-transitivity and we omit the proof. 
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(2.5) LEMMA. The graph G has the property that either no edge joins two 
vertices in different blocks of Aut(G), or no edge joins two vertices in the 
same block of Aut(G). 

(2.6) LEMMA. Suppose that the graph G is bipartite having as its vertex 
classes two distinct copies, (0, l,..., p - 1 } and {0’, l’,..., (p - l)‘], of Z,. If G 
has an automorphism 5 which, for all i in Z,, maps i to i + 1 and i’ to (i + 1 )‘, 
then G is a symmetric graph. 

ProoJ Consider the permutation p of V(G) which, for all i in L,, maps 
i to (-i)’ and i’ to -i. If ij’ E E(G), then so is p(zj’) since p(y) = 
(- j)( -i)’ = tei-i “’ (q ). Thus p is an automorphism of G. Since G is vertex- 
transitive, the lemma will follow if we can show that for any elements i’ and 
j’ of NJO), there is an automorphism fixing 0 and mapping i’ to j’. Since G 
is edge-transitive, it certainly has an automorphism p that maps (0, i’ > to 
[O j’}. If p fixes 0, p is the required automorphism. We therefore suppose 
that p maps 0 to j’ and i’ to 0. But then the automorphism pz -‘,u has the 
desired effect. 1 

3. BLOCKS OF SIZE p 

In this section, we assume that G is a weakly symmetric graph of order 
2p and that Aut(G) has a block A of size p, Evidently V(G) - A is also a 
block of Aut(G) and we denote it by A’. 

The following result follows easily from Lemma 2.5 and Theorem 1.5. Its 
proof is omitted. 

(3.1) LEMMA. Suppose that G has an edge that joins two vertices in A or 
joins two vertices in A’. Then G z 2G(p, r) for some even integer r dividing 
p- 1. 

In view of this lemma, we may assume for the remainder of this section 
that G is a bipartite graph having A and A’ as its vertex classes. One 
possibility here is that G is the complete bipartite graph on A and A’ but 
we shall also assume from now on that this is not the case. As G is vertex- 
transitive, G has an automorphism 7~ of order p. As p is odd, r(A) = A and 
n(A’) = A’. Thus z is a member of the subgroup Aut(G)’ of Aut(G) con- 
sisting of those automorphisms which fix both of the sets A and A’. Every 
such automorphism 0 can be represented by a pair (6,) 0,), where 0, is the 
restriction 01, of 8 to A and e2 is 81,‘. A key step in the proof of this case 
of the theorem will be to establish that the groups Aut(G)‘, Aut(G)‘I,, and 
Aut(G)‘I A, are all isomorphic. The next two lemmas are steps in the proof 
of this fact. 
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(3.2) LEMMA. Both ‘II, and x2 have order p. 

Proof. Suppose, without loss of generality, that n2 is trivial. Then 7-c* is 
a p-cycle. From this it follows that every vertex in A has the same neighbor 
set and hence that G g Kp,p-a contradiction. 1 

(3.3) LEMMA. If a and b are distinct vertices of G, then lV,(a) # N,(b). 

Proof: As G is a non-null bipartite graph, if aE A and b E A’, 
N,(a) #N,(b). Now assume that N,(a) = N,(b) for some pair a and b of 
distinct elements of A. Using the automorphism 7c it is easy to show that 
every element of A has the same neighbor set, namely N,(a). Then, as in 
the preceding proof, we get the contradiction that G z K,,p. 1 

We shall now verify the isomorphism of Aut(G)‘, Aut(G)‘I,, and 
Aut(G)‘I,.. 

(3.4) LEMMA. The restriction maps from Aut(G)’ onto Aut(G)‘I,, and 
onto Aut(G)‘I,, are both isomorphisms. 

Proqf. It suffices to show that the restriction map of Aut(G)’ onto 

Aut(G)‘/ A is an isomorphism. This map is clearly a surjective 
homomorphism. To prove it is injective, let Q be an element in the kernel. 
Then 6, acts trivially on A. Suppose that Bz does not act trivially on A’. 
Then there are distinct elements a’ and b’ of A’ such that 02(a’) = b’. Thus 
6(a’) = b’. Now, since both N,(a’) and N,(b’) are subsets of A and 0 fixes 
every element of A, we have 

N,(b’) = NJO(a’)) = Q(N,(a’)) = N,(a’). 

But this contradicts the preceding lemma. Thus e2 is the identity and so 0 
is the identity of Aut(G)‘. We conclude that the restriction map from 
Aut(G)’ onto Aut(G)‘I, is indeed an isomorphism. 1 

We now show that G must be symmetric. Evidently A and A’ may be 
identified with distinct copies, (0, l,..., p - 1 } and (O’, 1’ ,..., (p - 1)’ ) of 77,. 
Moreover, by Lemma 3.2, these identifications can be made in such a way 
that the permutation z of V(G) which, for all i in Z,, maps i to i + 1 and i’ 
to (i+ 1)’ is an automorphism of G. It now follows immediately from 
Lemma 2.6 that G is symmetric. 

Now Aut(G)‘/ A is a transitive permutation group of degree p. The rest of 
this section will distinguish the cases when Aut(G)‘I, is doubly transitive 
and when it is not. In the first of these cases we shall show that G is the 
incidence graph of a doubly transitive symmetric (v, k, /Z)-design that has 
the elements of A as its points and the elements of A’ as its blocks. Cer- 
tainly this incidence structure D has the same number of points as blocks. 
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Moreover, as G is vertex-transitive, G is regular of degree d, say. Thus all 
the blocks of D are incident with d points and all the points of D are 
incident with d blocks. Next suppose that x and y are any two distinct 
points of D. The number of blocks that are incident with both .X and y is 
IN,(x) n NJ)‘)/. Since Aut(G)‘J, is doubly transitive, this number is 
independent of x and y. This proves that D is indeed a doubly transitive 
symmetric (2;, k, /2)-design having G as its incidence graph B(D). It follows 
from Section 2 that G is isomorphic to one of pK,, G(2p, p - I), B(H( 11)) 
B’(H(ll)), B(PG(n- 1, q)) or B’(PG(n- 1, q)) where, for that last two, 

P = (4” - I)/(4 - 1). 
We now suppose that Aut(G)‘/, is not doubly transitive. We shall 

continue to use our earlier identification of A and A’ with distinct 
copies {0, l,..., p - 1 ) and { 0’, l’,..., (p - 1 )‘I of 77,. By Theorem 1.4, there 
are permutations of the labels on the elements of A and on the elements 
of A’ so that 

and 

Let X= (n,, nz) be an order-p element of Aut(G)’ that, for all i in Z,, maps 
i to i+ 1. Then, by Lemma 3.4, rt is the unique such element and, 
moreover, B,* has an element nz such that, for all i in ZP, n maps i’ to 
(i + m)‘. Using the automorphism 7c we may now determine the edge-set of 
G in terms of N,(O). 

(3.5) LEMMA. E(G)= {ij’: i, jEZ,, md (j-mi)‘~N&O)j. 

ProoJ: Since G is a bipartite graph on A and A’, every edge has the 
form ij’ for some i and ,j in Z,. Moreover, N,(i) = N,(n’(O)) = n’(N,(O)). 
Thus j’ E N,(i) if and only if j’ E n’(N,(O)). Since the latter occurs precisely 
when (i - mi)’ E N,(O), the lemma is proved. 1 

Our ultimate goal in this case is to show that G z G(2p, r) for some 
integer r dividing p - 1. To do this, we shall first determine NJO) in terms 
of the stabilizer To of the vertex 0. Evidently, To E Aut(G)’ and 
TOIA E {ax: a E Zf>. As the last group is cyclic, To IA is also cyclic. 
Therefore, by Lemma 3.4, To is cyclic. Now let v be a generator for r,. 
Then v = (v,, v2) = (ax, (cx + d)‘) for some elements a and c of Z; and 
some element d of Z,. If c = 1, then it follows by Lemma 3.4 that v, has 
order p-a contradiction. Hence c # 1. 

The next two technical lemmas concern v. The proof of the second of 
these is a routine induction argument. 
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(3.6) LEMMA. Zj" k’ E NJO), then (ck + d)’ # k’. 

ProoJ If (ck + d)’ = k’, then T, fixes k’. But, as G is symmetric, T, acts 
transitively on NJO), hence NJO) = (k’} and G is a complete matching 
pK,. This contradicts the fact that G has a block of size p. fl 

(3.7) LEMMA. Ij‘k’~ A’ aud iEZ+, then 

v’(k’) = 
c’- 1 

c’k + - 
c-l 

We now determine NG(r) for all t in A. Let the order of c in Zp* be Y and 
fix an element k’ of N&O). Then, by Lemmas 3.6 and 3.7, NJO) = ((c’k + 
((c’-l)/(c-l))d)‘:O<i<~}. Thus, for all tin A, 

No(f) = mt + c’k + zd)‘:O<i<r] (3.8) 

The following lemma completes the proof of the theorem in the case 
when Aut(G) has a block of size p. 

(3.9) LEMMA. G z G(2p, r). 

Proof: We begin by recalling the structure of G(2p, r). Let B and B’ be 
two distinct copies of Z,. For each element i of Z,, we denote the 
corresponding elements in B and B’ by i and i’, respectively. Since the 
element c of Zp* has order r, this element generates the unique subgroup 
H(p, r) of Zz of order Y. The graph G(2p, v) has vertex-set B u B’ and edge- 
set (XJJ’: X, y E Z, and y - x = ei for some 0 < i < r>. 

Define q: BuB’+AuA’ by 

v(X)J-l)k+d 
(c-l)??? X 

for all x in B, 

for all x’ in B’. 

We shall show that y is an isomorphism between G(2p, r) and G. Since, by 
Lemma 3.6, (c- 1) k+ d#O, 9 is a bijection. Now, by (3.8) and the 
definition of G(2p, Y), we have that, for all t in Z,, 

N G(Zp,r)(t)= {(t+c’)‘:Odi<r), 

zd)‘:O<i<r]. 
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It is straightforward to show that 

vl(NG,,, r,(t)) = N,(vl(t)). 

Therefore, under q, every edge of G(2p, r) is mapped to an edge of G. Since 
IE(G(2p, r))i = IE(G)I, it follows easily that every edge of G is the image of 
an edge of G(2p, r) under q. We conclude that q is an isomorphism. i 

4. BLOCKS OF SIZE 2 

In this section, we assume that G is a weakly symmetric graph of order 
2~ and that Aut(G) has a non-trivial block A, of size 2 and has no blocks 
of size p. As Aut(G) is transitive on V(G), there is an automorphism r of G 
of order p. Moreover, A,, s(A,), z’(A,),..., TV-’ are distinct blocks of 
Aut(G). For convenience, we shall denote these blocks by A,, Ai,..., A, _ ,, 
where, for all iin L,, A,= (i, i’} and z maps i to i+ 1 and i’ to (i+ 1)‘. As 
before, we denote the sets (0, l,..., p- 1 } and {0’, l’,..., (p- l)‘} by A and 
A’, respectively. 

We first note that, by Lemma 2.5, if G has an edge ii’ for some i in Z,, 
then G zpPKx. For the remainder of this section, we shall assume that, for 
all i in Z,, ii’ is not an edge of G. Let G be the graph induced on the blocks 
of Aut(G) by G. Thus G has vertex-set (E: iE Z,} and edge-set { ij: G has 
an edge between the blocks Ai and Ai]. If 8~Aut(G), then % induces an 
automorphism % on G. Thus the map from Aut(G) to Aut(G) that sends % 
to % is a group homomorphism. Let Aut(G) be the image of Aut(G) under 
this homomorphism. Evidently Aut(G) acts transitively on both P’(G) and 
E(G) and so G is a weakly symmetric graph of order p. 

Next we consider the number e(A,, Aj) of edges between the blocks Ai 
and Aj of Aut(G). Clearly 0 6 e(A,, Aj) d 4. Moreover, it is not difficult to 
check that, for all pairs of adjacent blocks, A, and Ai, e(Ai, Aj) takes the 
same value, say e(G). 

(4.1) LEMMA. Suppose that e(G) 3 3. Then e(G) = 4. 

ProoJ For any pair Ai and A, of blocks, the subgraph induced on 
A, u A, is bipartite and edge-transitive. No such graph has exactly 3 
edges. 1 

The next result is a straightforward consequence of Theorem 1.5. 

(4.2) LEMMA. If e(G) = 4, then G z G(2, p, r) for some even integer r 
dividing p - 1. 

As a consequence of the last two lemmas, we may assume, for the rest of 
this section, that e(G) is 1 or 2. Now Aut(G) acts transitively on V(G). In 
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-- 
the rest of the proof we shall distinguish the cases when Aut(G) acts doubly 
transitively on V(c) and when it does not. Suppose that the first of these 
occurs. Then G is complete. Moreover, 

(4.3) LEMMA. If i and j are distinct elements of Zp, then ij6 E(G) or 
ij’ E E(G). 

ProoJ Let 7~ and ii be the permutation characters of Aut(G) on V(G) 
and Aut(G) on V(c), respectively. As Aut(G) is doubly transitive, 
71= 1 + x, where x is an irreducible character of degree p - 1. Since Aut(G) 
is transitive on V(G), we have that (71, 1) = 1 and (z, E) d 3. Suppose 
that (E, it) = 3. Then n = 1 + 2~ + E, where I is a linear character. The ker- 
nel ker E of E is non-trivial. Hence it is intransitive. Now the orbits of ker e 
form blocks of Aut(G) [ 16, Proposition 7.11. Since we have assumed in 
this section that Aut(G) has no blocks of size p, ker E must have p orbits. 
This contradicts the fact that nlkerE = 2+23:lkeri:. Hence (qE)=2 and so, 
by the Frobenius reciprocity theorem, the stabilizer of a block has exactly 2 
orbits, one of which is the block itself. If neither ij nor ijl is in E(G), then 
the stabilizer of the block Aj has at least three orbits on V(G), namely A,, 
an orbit contained in N,(j) u NJ j’), and an orbit contained in the set of 
remaining vertices. This contradiction completes the proof. 1 

By this lemma, e = 2 and, moreover, if A,, A j and Ak are distinct blocks, 
then the subgraph induced on Aiu Aiu A, is either 2K, or C,. The next 
lemma shows that the subgraphs induced on any two sets of three distinct 
blocks are isomorphic. 

(4.4) LEMMA. If G[A, u Aju Ali] FT 2K, for Some set {Ai, A,, Ak} of 
distinct blocks, then the subgraph induced on every set of 3 distinct blocks is 
isomorphic to 2K,. 

ProoJ: Suppose that G[A,u A,u A,] 2 2K, for some set (A,, A,, A,} 
of distinct blocks. Then G[A, u A, u A,] g C,. Now consider the graph G’ 
that is obtained from the complement of G by deleting the p edges 
00’, 1 I’,..., (p - l)(p - 1)‘. It is not difficult to check that G’ is weakly 
symmetric and has the same automorphism group as G. Moreover, 
G’[A,uA,~uA,]z~K,. 

In the argument that follows, the graph H is one of G and G’. Let 
{x, y, z} be the vertex-set of a triangle of H and n be the number of K4- 
subgraphs of H that contain this triangle. The number m of triangles of H 
containing a fixed edge does not depend on the edge. Now H has m -n - 1 
vertices that are joined to x and y but not z, and therefore has 3(m - n - 1) 
vertices that are joined to exactly two of x, y, and Z. Since every block of H 
other than those containing x, JJ, and z contains exactly one vertex that is 
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joined to at least two of x, .v, and Z, H has exactly 3(m - n - 1) + n + 3 
blocks. But H has p blocks so p = 3m - 2n. Applying this formula to both 
G and G’ and adding, we get that 2p = 3(m(G) + m(G’)) - 2(n(G) + n(G’)). 
But m(G) + m(G’) =p - 2, hence p = 2(n(G) f n(G’) + 3)-a contradiction 
since p is odd. 1 

By this lemma, either every subgraph of G induced on the union of 3 
blocks is isomorphic to 2K,, or every such subgraph is isomorphic to C,. 
It is straightforward to show that, in the first case, G z 2K,, while in the 
second, G z G(2p, p - 1). 

TO complete the proof of Theorem 2.4 for Am(G) having blocks of size 2, 
we now consider the case when Aut(G) is not doubly transitive. By 
Theorems 1.4 and 1.5, we may identify V(G) with Z, so that 

- - 
(x+b:bEZP}CAut(G) $ {nx+h:a~Z;,b~Z~} (4.5) 

and 

N,(O) is a subgroup oj‘ZE. (4.4) 

One important consequence of (4.5) that we shall use frequently is that a 
member of Aut(G) that fixes two distinct members of V(G) must be the 
identity. We note that no generality is lost in assuming that the 
automorphism r of G acts as previously defined, that is, for all i in Z,, 
z(i) = i + 1 and r( i’) = (i + 1)‘. We also recall that e(G) is 1 or 2. The next 
lemma shows that no vertex of G is joined to two vertices in the same 
block. 

(4.7) LEMMA. [f i andj are in Z,, then at least one oj’ij and ij’ is not in 

E(G) and at least one of i’j and i’j’ is not in E(G). 

ProoJ It suffices to show that if a E Z,,, then Oa and Oa’ cannot both be 
in E(G). Assume the contrary. Then, by applying zU to Oa and Oa’, we get 
that both a(2a) and a(2a)’ are edges. Moreover, since e(G) 6 2, neither 
a’(2a) nor a’(2a)’ is in E(G). Also, neither O’a nor O’a’ is in E(G). Now G 
has an automorphism 0 that maps (0, a} to 10, a’]. Hence either (i) 
Q(0) = 0 and Q(a) = a’, or (ii) e(O) = a’ and Q(a) = 0. In case (i), @fixes both 
0 and 6 and hence is the identity. Thus 8 fixes 2a. Since d(a) = a’, @a’) = a 

and so 0( {a’, 2a, (2a)‘j) = (a, 2a, (2a)‘). However, G[ {a’, 2n, (2a)‘}] is 
null, while G[ {a, &I, (2a)‘}] is not-a contradiction. In case (ii), 0(0’) = a 
and &a’) = 0’. Thus 0( {O, a’} ) = {a’, 0’ f Since Oa’ E E( G ), O’a’ E E(G)-a 
contradiction. 1 

On combining the last lemma with the following result we get that no 
vertex of G is joined to vertices in both A and A’ where we recall that 
A = { 0, 1, 2 ,..., p - 1 } and A’ = { 0’, 1’) 2’,..., @ - 1 )‘}. 
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(4.8) LEMMA. IJ’i, j, and k are distinct elements of Zp, then at least one 
of ki and kj’ is not in E(G) and at least one of k’i and k’j’ is not in E(G). 

ProoJ: It suffices to prove the first assertion. Assume that Z, does con- 
tain distinct elements i, j, and k such that both ki and kj’ are in E(G). As 
the automorphism z Pk maps k to 0, we lose no generality in assuming that 
k=O. Then, as G is edge-transitive, there is an automorphism 6 of G such 
that Q( (0, i}) = (0, j’). Hence either (i) 6(O) =0 and e(i) =f, or (ii) 
e(O) = j’ and Q(i) = 0. ~ - 

Consider case (i). As Aut(G) c (ax + b: a E Zp*, b E Z,], g(Z) = ax + b for 

all x in ZP. Now e(6) = @ and @( 1:) =j, so S(,i!) = - for all x in Z,. In 
particular, @(ti) = 3 for all t in Z. Thus 6( ti) E {tj, (z‘j)‘} and we show next 
that, for all nonnegative integers t, 

f3( ti) = tj when t is even and 0( ti) = (tj)’ when t is odd. (4.9) 

This is certainly true if t is 0 or 1. Suppose now that (4.9) holds for all 
integers not exceeding t. We also assume initially that t is odd. We want to 
prove that, in that case, 6((t + 1) i) = (t + 1) j. If not, then Q((t + 1) i) = 
((t+l)j)’ and so z-~Bt”({O,i})=~~~~6({ti,(t+l)i))=t~~({(tj)’, 
((t+l)j)‘})={O’,j’}. S ince Oi E E(G), O’j’ E E(G). But Oj’ is also in E(G) 
and we have a contradiction to the previous lemma. If t is even, a similar 
argument shows that e( (t + 1) i) = ((t + 1) j)‘. We therefore conclude, by 
induction, that (4.9) holds. Hence, as p is odd, 0(pi) = (pj)‘, that is, 
O(O) = 0’-a contradiction. 

In case (ii), we let 0 = ~~‘0. Then o(O) = 0’ and o-(i) = -j. The rest of the 
argument is similar to that given in case (i). 1 

We now establish that every edge of G must join a vertex in A to a ver- 
tex in A’. 

(4.10) LEMMA. Both G[A] and G[A’] are null. 

Proof: Suppose that ij E E(G) for some pair i and j of distinct elements 
of Z,. Then z -‘( ij) E E(G), that is, O(j - i) E E(G). If Ok’ E E(G) for some k 
in iZ,, then we have a contradiction to one of the last two lemmas. Hence 
N&O) c A and so, for all m in Z,, 

N,(m) = NG(P(0)) = P(N,(O)) c A. 

Thus G has no edge joining A and A’. It follows easily that, for all i, Ai is 
not a block of Aut(G). This contradiction establishes that G[A] is null 
and, by symmetry, G[A’] is also null. 1 

By the last lemma, G is a bipartite graph on A and A’. The next two lem- 
mas complete the argument in the cases when e(G) = 2 and e(G) = 1 respec- 
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tively and thereby finish the proof of Theorem 2.4. We omit the routine 
proof of the first lemma; the second proof uses the fact that G is symmetric 
which follows from Lemma 2.6, since G is a bipartite graph on A and A’. 

(4.11) LEMMA. Zf e(G) = 2, then G is isomorphic to G(2p, r) for some 
even integer r dividing p - 1. 

(4.12) LEMMA. If e(G)= 1, then G is isomorphic to G(2p, r,) for some 
odd integer r I dividing p - 1. 

Proof: As G g G(p, rj for some integer r dividing p - 1, 0 1 E E(G). 
Therefore, since e(G) = 1, exactly one of 01’ and 0’1 is in E(G). By sym- 
metry, we may assume that 01’ EE(G). Now, by (4.6), N,-(O) is a subgroup 
of Z’f. Let D= (i: i’ E NG(0)}. As \lv,(O)l = (N,(O’)( and e(G)= 1, we have 
that IDI = t IN,@)l. We shall show next that D is a subgroup of N&j). 
Evidently i E B. Now suppose that i and j are in D. Then i’ and j’ are in 
NG(0). Thus, as G is symmetric, it has an automorphism 6 that fixes 0 and 
maps i’ to j’. Since BE Aut(G) and the latter is a subgroup of {ax + b: 
ai ZE; b ETpj,itfollows that g(i) =i-‘jx for all x in Z,. Thus, in par- 
ticular, Q( 1) = i- ‘j, and so, as G is bipartite, Q(O1’) = O(i- 7)‘. Therefore 
(i.-lj)‘ENJO) d T an so I J E D. We conclude that D is indeed a subgroup of 
NG(C). Since IDI =$liVc(O)l and N&S) is the cyclic group H(p, r), it 
follows that D = H(p, r/2) and hence that G z G(2p, r/2). Finally, we note 
that r/2 must be odd otherwise - 1 E D and e(G) = 2. 1 

TABLE 1 

The Automorphism Groups of the Symmetric Grsphs of Order 2p. 

G Aut(G) IAut(G)I 

Null graph; KZ,, 
K ,.,,;~K,=~G(P,P-~) 
ZG(p, r); r <p - 1 
G(2,p,r);rcp-l 
G(2p,r);l<r<p-1 
(P. r)#(7,3), (11,5) 
G&A 1) =PKZ 
G(~P>P- 1) 
B(H(ll))=G(2.11, 5);B’(H(ll)) 
03; 0; 
B(PG(n - 1,q)); B’(PG(n - 1. q)) 
[B(PG(2,2)) = G(2 7, 3)] 

s v (2PY 
s;x z, 2(P!Y 

VP, r? x p* 2r’p’ 

q x T(P, r) 2Qp 

UP, r) xl zz 2pr 

qxs, 2Pp! 

spxz, 2p! 
PSL(2, 11) xl z, 1320 

S5 120 
PTL(n, q) x Z? 2ql’” I)/2 n:=z(4’-1) 

where q = s’ 
for s prime. 
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5. THE AUTOMORPHISM GROUPS OF THE GRAPHS 

In this section we list the automorphism groups of the symmetric graphs 
in our main theorem. The determination of these automorphism groups is 
not difficult and we omit the details of the argument. Recall from 
Theorem 1.5 that, for r<p- 1, Aut(G(p, r)) is the group (ax+b: 
OE H(p, r), b E Z,} of permutations of Z,. In the table a.bove we have 
denoted Aut(G(p, r)) by T(p, r). In addition, we have written XX Y for the 
semidirect product of the group X by the group Y, and x” for the direct 
product of n copies of X. The structure of the graphs listed in Table 1 is 
given in Section 2. 
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