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Tutte’s wheels-and-whirls theorem states that if M is a 3-connected matroid 

and, for every element e, both the deletion and the contraction of e destroy 
3-connectivity, then it4 is a wheel or a whirl. We prove some extensions of this 

theorem, one of which states that if M is 3-connected and has both a wheel and a 
whirl minor, then either M has only seven elements or there is some element the 
deletion or contraction of which maintains 3connectivity and leaves a matroid with 

both a wheel and a whirl minor. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Suppose that A4 and N are 3-connected matroids such that N is a proper 
minor of M, IE( N)I 2 4, and if N is a wheel or a whirl, then A4 has no 
larger wheel or whirl as a minor. Then Seymour’s Splitter Theorem [S] 
asserts that A4 has an element that can be deleted or contracted from M 
to give a matroid N, that retains the two properties of being 3-connected 
and of having a minor isomorphic to N. 

Sometimes one is interested in N1 retaining even more of the properties 
of M. This paper is concerned with just such a situation. Suppose that the 
3-connected matroid A4 has a minor isomorphic to the rank-3 wheel W, 
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and, in addition, M is nonbinary. Our main result is that, provided 
JE(M)I 3 8, M had a single-element deletion or a single-element contrac- 
tion that retains the three properties of being 3-connected, having a IV3 
minor, and being nonbinary. This result has as a sequence a chain theorem 
for 3-connected matroids that extends the chain theorem implicit in Tutte’s 
wheels-and-whirls theorem. As part of the proof of the main theorem, we 
shall establish another extension of Tutte’s theorem. (This extension can 
also be viewed as an extension of Seymour’s Splitter Theorem, although we 
shall derive it as a consequence of the splitter theorem.) 

The recent matroid literature contains a number of other generalizations 
of Tutte’s theorem. (See, for example, [2, 3, 71.) A survey of such results 
and of their role in the development of matroid structure theory can be 
found in Seymour [6]. 

We assume familiarity with matroid theory; for an introduction, see 
Welsh [lo]. In Section 2, we give the necessary basic definitions and facts. 
In Section 3, we prove a “top-down” chain theorem, Theorem 3.1, which 
will be used in the proof of the main result. In Section 4, we prove 
the extensions of Tutte’s wheels-and-whirls theorem, Theorem 4.1 and 
Corollary 4.3. 

2. PRELIMINARIES 

Let A4 be a matroid on E with (Whitney) rank function r. M* denotes 
the dual of M, with rank function r*, where r*(A) = IAl - r(E) + r(E- A), 
for A E E. A loop (coZoop) of A4 is a l-element circuit (cocircuit). Two 
distinct elements e, f~ E are paraZZeZ (in series) in M if {e, f } is a circuit 
(cocircuit). The paraZZeZ (series) class of the element e is the set containing 
e together with all elements parallel to (in series with) e. A triangle (triad) 
of M is a 3-element circuit (cocircuit). 

For Xs E, M\X (M/X) denotes the matroid obtained from M by 
deleting (contracting) X. Given matroids N and A4 on sets E(N), E(M), 
respectively, N is a minor of A4 if E(N) z E(M) and E(M) - E(N) can be 
partitioned into sets X and Y such that N = M\X/Y. A4 is said to have an 
N minor if N z N’, for some minor N’ of M. 

To simplify (cosimplify) a matroid M means to delete all loops (coloops) 
and delete (contract) all but one element from each parallel (series) 
class. For e E E, M-e (MI e) is used to denote the matroid obtained by 
cosimplifying M\e (simplifying M/e). Note that M - e and 1 e are defined 
only up to isomorphism in the sense that the element left from each series 
class of M\e (parallel class of M/e) is not specified. 

Given integers n and m with 0 < n < m, U; denotes the uniform matroid 
on m elements in which every n-element subset is a base. Given a graph 
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G, M(G) denotes the usual polygon matroid on the edge-set of G. Let n 2 3 
be an integer, and let H,, be the simple graph on n + 1 nodes in which n 
of the nodes form a polygon P and the remaining node is adjacent to each 
node of P. H,, has 212 edges and is called a wheel. The edges of P are called 
rim edges and the remaining edges are called spokes. The matroid M(H,) 
is also called a wheel and is denoted Wn. The whirl matroid, Wn, is 
obtained from Wn by declaring E(P) to be independent and leaving the 
remaining independent sets the same. Define WZ to be the matroid Ui. The 
terms rim and spoke will be used in the obvious way in WY, when n 2 3. 

A matroid is binary if it is representable over GF(2). By Tutte’s charac- 
terization of binary matroids [S], M is binary if and only if M has no whirl 
minor. 

A bipartition {A, B} of E is a (Tutte) k-separation [9], for some positive 
integer k, if IA ( 2 k < IBI, and r(A) + r(B) < r(E) + k - 1. M is n-connected, 
for some integer n > 2, if M has no k-separation for all 0 <k < n. 
A k-separation is called minimal if min{ IA I, IBI } = k. 

The next five basic lemmas will be used implicitly throughout the paper. 
Their proofs are left to the reader. Assume M is a matroid on E. 

LEMMA 2.1. For a bipartition (A, B > of E, 

r(A) + r(B) - r(E) = r*(A) + r*(B) - r*(E) = r(A) + r*(A) - [Al. 

Thus, connectivity is invariant under duality. 

LEMMA 2.2. If {A, B} is a minimal k-separation of a k-connected 
matroid with I Al = k, then A is either a circuit and coindependent or a 
cocircuit and independent. 

LEMMA 2.3. If {A, B} is a nonminimal k-separation of A4 and X is a 
circuit or cocircuit with X n B = 1x1, then (A v x, B - x> is a k-separation 
ofA4. 

LEMMA 2.4. If N is a 3-connected matroid with at least four elements and 
(e, f ) is a circuit of M, then M has an N minor if and only if M\e has an 
N minor. 

LEMMA 2.5. Let N be a 3-connected minor of M and let (A, B) be a 
k-separation of A4, kd2. Then min(lAn E(N)I, IBn E(N)/} <k- 1. 

Two pairs of sets (A, B) and {C, O} cross if each of the sets A n C, 
A n D, B n C, B n D is nonempty. The following lemma is due to Bixby. 
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LEMMA 2.6 [ 1-j. Assume M is 3-connected and let e E E. Then every 
2-separation of M\e crosses every 2-separation of M/e, and one of 
M\e, Mfe has no nonminimal 2-separation; moreover, either M - e or M\e 
is 3-connected. 

The next lemma follows from Lemmas 2.3 and 2.6. 

LEMMA 2.7 [23. Assume M is 3-connected and elements x, y, z, w are 
distinct such that (x, y, z> is a triangle and either (x, y, w> or (x, y, z, w > 
is a cocircuit. Then M\z has no nonminimal 2-separation. 

3. A TOP-DOWN CHAIN THEOREM 

In this section we prove the following result. 

THEOREM 3.1. Let N and M be 3-connected matroids with [E(N)1 2 4, 
and let e E E(M) be such that M\e has an N minor and M/e has no N minor. 
Then either M\e has no nonminimal 2-separation, and hence M-e is 
3-connected, or, for some element f, either M/f or M/f is 3-connected, is 
nonbinary, and has an N minor. 

In order to prove Theorem 3.1, we use the following strengthened 
version of a theorem of Truemper [7], which appears in [2]. 

THEOREM 3.2. Let M be a 3-connected matroid and let N be a 
3-connected minor of M with 1 E(N)\ >, 4. Then one of the following holds: 

(a) There is some element x E E(M) - E(N) such that M\x or M/x is 
3-connected and has N as a minor. 

(b) There is some element x cz E(M) - E(N) such that N is a minor of 
both M\x and M/x, and there are distinct elements y, z E E(M) - E(N) and 
n, m, p E E(N) such that (x, y, z) is a triad (triangle) and (x, y, n>, 
( y, z, m >, (x, z, p > are triangles (triads). Moreover, M\h Y9 4 
(M/(x, y, z]) is 3-connected and has N as a minor. Also, M\a (M/a) is 
3-connected, for each a E (n, m, p >. 

(c) For every element x E E(M) - E(N), exactly one of Mix, M/x has 
N as a minor; moreover, there is an element y such that Mix/y or M/x\ y 
is 3-connected and has N as a minor. 

We will also use the following lemma due to Oxley. 

LEMMA 3.3 [4]. Let M be a 3-connected nonbinary matroid such that for 
some element e, both M\e and M/e are binary. Then M 2 U z. 
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Proof of Theorem 3.1. We proceed by induction on IE(M)J. Let fi be 
a minor of M\e that is isomorphic to N. By assumption, N is not a minor 
of M/e. If M\e has no nonminimal 2-separation, then we are finished, so 
assume not. Then, applying Theorem 3.2 to the minor m of M, we see that 
(c) fails when x = e. Therefore either (a) or (b) holds. Suppose first that (b) 
holds, and let (x, y, z, n, m, p } be as given in (b). Suppose {x, y, z > is 
a triad. Since fl is a minor of M\ { x, y, z > = M\ ( y, z}/x, the element e # x. 
Similarly, e # y and e # z. Now since fl is not a minor of M/e but is a 
minor of M\e, we have that fl is a minor of M\(x, y, z, e} = 
M\(y, z, e}/x. As n is an element of m but e is not, e #n. By Theorem 3.2, 
M\n is 3-connected, Moreover, since fi is a minor of M\{ y, e}/x z 
M\(n, e)/x, M\n has an N minor that does not contain e. A similar 
argument shows that if {x, y, z} is a triangle, then M/n is 3-connected and 
has an N minor that does not contain e. 

We conclude that if (b) holds, then there exists an element fdistinct from 
e such that, for i@= M\f or A4/‘, i@ is 3-connected and fi\e has an 
N minor. But the same conclusion is true if (a) holds, where the fact that 
f # e follows in this case because neither M\e nor M/e is 3-connected and 
has an N minor. Note that, as M/e has no N minor, n/e has no N minor. 

If i@ is nonbinary, then we are finished, so assume i@ is binary. Then, 
by induction, @\e has no nonminimal 2-separation. 

Suppose first that fi = M\J: Let (A, B) be a nonminimal 2-separation 
of M\e; assume fE A. Since i@\e has no nonminimal 2-separation, 1 Al = 3; 
and in M\e, we have that r(A) + r*(A) = 4. Since f is in no triad of M, 
A = (a, b, S} is a triangle and either (a, b} or {a, b, f> is a cocircuit of 
M\e. If (a, b) is a cocircuit of M\e, then M\e/a has an N minor, implying, 
since (b, f } is a circuit of M\e/a, that M\{e, b)/a has an N minor. But 
{a, b, e> is a cocircuit of M, implying M\ (e, b >/a = M\{ a, b}/e, contra- 
dicting the fact that M/e has no N minor. Therefore, (a, b, f > is a triad and 
a triangle of M\e. This implies M\e is nonbinary, and thus, M is non- 
binary. By Lemma 3.3, since M\f is binary, M/f is nonbinary. But then 
M/f\b is nonbinary since {b, a} is a circuit of M/’ thus, M\b is non- 
binary. Since M\ (e, f } h as an N minor and {a, b} is a cocircuit of 
M\{e, f>9 M\{e, f >/a h as an Nminor; but M\{e, f }/aeM\(e, b)/a, 
implying M\b has an N minor. Next we show that M\b is 3-connected. As 
(a, b, f } is a triad of M\e, but f is in no triad of M, (a, b, f, e > is a cocir- 
cuit of M. Thus, by Lemma 2.7, M\b has no nonminimal 2-separation; so 
suppose b is in a triad of M. Since {a, b, f } is a triangle of M, any triad 
containing b must also contain a or J: But f is in no triad; thus there is 
some element g #f such that (a, b, g} is a triad of M. But then, since M\b 
is nonbinary, M/a is nonbinary implying, since {b, f } is a circuit of M/a, 
that M\ f is nonbinary, a contradiction. Thus, M\b is 3-connected, is non- 
binary, and has an N minor, as desired. 
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Now assume fi = M/J Let {A, B} be a nonminimal 2-separation of 
M\e; assume f~ A. Since a\e has no nonminimal 2-separation, IA 1 = 3; 
and, in M\e, r(A) + r*(A) = 4, implying, since f is in no triangle of M, 
r(A)=3 and r*(A)=l. Let A= (a, b, f}. Then every triple of (a, b,e, f} 
is a triad of A4. Thus, ((a, e}, E(M) - (b, a, e}}, ((e, f }, E(M) - 
{b, e, f } >, and { {a, f }, E(M) - {b, a, f } } are 2-separations of M\b. Since 
no bipartition of E(M) - b can cross each of these 2-separations, 
Lemma 2.6 implies that M/b is 3-connected. M/b has an N minor, since b 
is in series in M\e. Since M/f is binary, Lemma 3.3 implies M\f is non- 
binary, from which it follows that M/b is nonbinary, as desired. 1 

COROLLARY 3.4. Let N be a 3-connected minor of a 3-connected binary 
matroid M, such that 1 E( N)I > 4, and let e E E(M) - E(N). Then either M\e 
or M/e has no nonminimal 2-separation and has an N minor. 

ProoJ: If both M\e and M/e have N minors, then the result follows 
from Lemma 2.6. Otherwise, it follows from Theorem 3.1 and duality. 1 

4. NONBINARY MATROIDS WITH WHEEL MINORS 

In this section we prove the following extension of Tutte’s wheels-and- 
whirls theorem to the case where M is a 3-connected matroid with both a 
wheel and a whirl minor. This is the main result of the paper. 

THEOREM 4.1. If M is a 3-connected nonbinary matroid with a W, minor, 
then M has a 3-connected nonbinary minor i@ such that W3 2 i@\e or i@/e 
for some element e. 

An alternative statement of this theorem is that if M is a 3-connected 
matroid having both W3 and ?#$ minors, then M has a 3-connected minor 
M that has both W3 and wz minors and has exactly seven elements. Since 
no matroid on fewer than seven elements has both W3 and wz minors, 
these two minors are packed into fi as efficiently as possible. It is natural 
to ask whether Theorem 4.1 can be extended to wheels W,, with n 3 4; that 
is, does a 3-connected matroid with both Wn and “w; minors have a 
(2n + 1 )-element minor fi having both Wn and %$ minors? We remark 
that such a minor i@ will necessarily be 3-connected. In Section 5, we 
answer this question negatively for n > 5. The case when n = 4 remains 
open. 

The proof of Theorem 4.1 requires some preliminaries. The following is 
a version of Seymour’s splitter theorem. 

582b/56/1-10 
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THEOREM 4.2 [S]. Let N be a 3-connected proper minor of a 3-connected 
matroid A4 such that ) E(N)1 2 4 and if N z Wk (Y$), then M has no Wk + 1 
(%$+ 1) minor. Then A4 has a 3-connected minor i@ such that, for some 
element e, i@\e or i@/e is isomorphic to N. 

Now we prove a slight strengthening of Seymour’s theorem. 

COROLLARY 4.3. Let M be a 3-connected matroid that is not a wheel or 
a whirl; let N be a 3-connected proper minor of A4 such that 1 E(N)] 2 4 and 
if N g W:, (wx), then M has no W4 (Y&) minor. Then M has a 3-connected 
minor A4 such that, for some element e, &\e or file is isomorphic to N. 

ProoJ: By Theorem 4.2, we may assume N is a wheel (whirl). Let k be 
the smallest integer for which M has a Wk (Wk) minor and M also has a 
3-connected minor # and an element e such that a\e z Wk (%$) or 
a/e E Wk (Wk). By duality, assume fi\e z Wk (#$). It suffices to show 
k<4 (k< 3). Suppose not. 

For every rim element y of Wk (9&), there is a spoke element x such 
that W,Jy\x E W,+ 1 (%+$/u\x 2 Wk- i), and hence is 3-connected. By the 
choice of k, M/y\x is not 3-connected. It follows that, in li?; e must be in 
a triangle with y and some element z #x. 

Suppose there are two nonadjacent rim elements, y, y’, such that 
{ y, e, z > and { y’, e, z’] are distinct triangles. Then, without loss of 
generality, we may assume y # z’, implying, by circuit elimination, that 
(v’, y, z’, z> contains a circuit that contains y. Since k > 4 (k > 3), this 
circuit must be {y, z’, z}, and z’, z must be the two spokes adjacent to y. 
But then, ( y’, y, z’, z> also contains a circuit containing y’, a contradiction. 
Thus, no two such nonadjacent rim elements and distinct triangles exist, 
implying k 6 4. If N is a wheel, we are finished. Assume NE WJ, and, for 
each of the two pairs y, y’ of nonadjacent rim elements, (v, y’, e} is a 
triangle. Then by circuit elimination, the set of rim elements contains a 
circuit, a contradiction. 1 

LEMMA 4.4. Let M be a 3-connected nonbinary matroid that has a W, 
minor, and let e E E(M). Then either A4 has a W3 minor that does not contain 
e or M has a 7-element 3-connected nonbinary minor that has a W3 minor. 

Proof: If M has a wheel minor Wk, k 3 4, then clearly A4 has a W, 
minor that does not contain e. Otherwise, by Theorem 4.2, M has a 
3-connected minor fi such that W 3 = @\x or a/x, for some x. By duality, - 
assume D\x Z W3. If i@ is nonbinary, then we are finished. Otherwise, 
i@z F7, the Fano matroid, and i@ certainly has a W3 minor that does not 
contain e. 1 
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LEMMA 4.5. If A4 is a 3-connected nonbinary matroid with rank and 
corank at least 3 and M has no wJ minor, then there is some element f such 
that both M\f and M/f are nonbinary. 

Proof We proceed by induction on 1 E(M)I. By Theorem 4.2 and 
duality, we may assume that there is some element e such that M/e is 
3-connected and nonbinary. Clearly M/e has corank at least 3. If M/e has 
rank at least 3, then we are finished by induction, so assume M/e has 
rank 2. Since M/e is 3-connected, it has no parallel elements, implying 
M/e z Ui, for some n >/ 5. Thus, M\f is nonbinary, for all elements f # e. 
If, for some such f, M\f is 3-connected, then, since M\f has rank 3, we 
can assume by induction that M\f has corank 2 and thus M\f z U :. It 
follows that, for g 4 {e, f >, M/g is nonbinary and hence, as M\g is also 
nonbinary, the lemma holds. Therefore we can assume that M\f is 
2-separable. Since M\fle is 3-connected, e and f are in a triad, {e, f, g>. 
But then, since M\f is nonbinary, M/g must be nonbinary. Thus, M\g 
and M/g are both nonbinary, as desired. 1 

LEMMA 4.6. If A4 is 3-connected and M\e z 9&, then there is some 
element f distinct from e such that either both M\f and M/f are nonbinary 
or M\fE W3. 

Proof. Let E(M\e) be as labeled on the Euclidean representation for 
^w; in Fig. 1. Let X= (x,, x2, x3} and Y= ( yi, y2, yJ}. For all y in 
Y, M/y is nonbinary. Thus we may assume that, for all such y, Mb is 
binary; otherwise the lemma holds. 

Clearly X spans e. Let C, be the circuit contained in Xu e. If 1 C,I = 3, 
then C, = (x1, x2, e>, say. But (x,, x2, y,) is also a circuit of M\y,. Thus, 
as M\ y, is binary, (e, yl) is a disjoint union of circuits of M\ y, and 
hence of M, a contradiction. Thus, I C,J = 4. Therefore, a binary representa- 
tion of M\y, is 

Xl x2 x3 Y2 Y3 e 

[ 0 0 1 0 0 10 0 1 0 101, 1 1 1 1 1 I 

and this represents W,. 

Proof of Theorem 4.1. We proceed by induction on IE(M)I. First we 
reduce to the case where there is some element f such that both M\f and 
M/f are nonbinary. If A4 has no w3 minor, then the existence of such an 
element follows from Lemma 4.5. Otherwise, by Corollary 4.3, M has a 
3-connected minor i@ such that w3 z fi\e or a/e, for some e. Now 
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21 

5 Yl Y3 

22 Y2 
x3 

FIG. 1. “w;. 

applying Lemma 4.6 and duality, we deduce that either the theorem holds 
or, for some element f, both i@\f and ri?/‘are nonbinary, and hence both 
M\f and M/’ are nonbinary. 

By Lemma 4.4 and duality, we may assume M\f both is nonbinary and 
has a IV3 minor. If M-f is 3-connected, then we are finished, by induc- 
tion. Assume not. Then, by Lemma 2.6, A4 1 f is 3-connected. If M/’ has a 
IV3 minor, then we are finished, by induction, so assume not. Now by 
Theorem 3.1, there is some element g such that either M\g or M/g is 
3-connected, is nonbinary, and has a W, minor. By induction, the theorem 
is proved. 1 

To conclude this section, we note that the following corollary along with 
the restatement of the main result given in the abstract follows without 
difficulty from Theorems 4.1 and 4.2. 

COROLLARY 4.7. Let A4 be a 3-connected nonbinary matroid having a 
wheel minor. Then there is a chain M, , M2, . . . . M, of 3-connected matroids, 
each a single-element deletion or single-element contraction of its successor, 
such that M, = M, M, z W3, and M, is nonbinary. 

5. FURTHER QUESTIONS 

It is natural to ask whether Theorem 4.1 can be extended to wheels Wn 
with n 2 4. That is, given a 3-connected nonbinary matroid M that has a 
Wn minor, does M have a (2n + 1 )-element nonbinary minor that is 
3-connected and has a W, minor? In this section we provide a class of 
examples to show that A4 does not always have such a minor, for n > 5. 
The case where n = 4 remains open, 

Let IF be a field of characteristic two having at least three elements, and 
let p E IF - (0, 1 }. Given an integer n > 4, let D, be the matrix in Fig. 2, with 
columns as labeled, and let G, be the graph in Fig. 3, with edges as labeled. 
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I n+l 

Yl Y2 Y3 *  *  l Yn-2 Yn-1 Yn 

1 0 0 *** 0 0 1 
0 0 0 l ” 0 1 1 

0 0 0 *** 1 1 0 
. . . . . . 
. . . . . . 
. . . . . . 

0 0 1 l ** 0 0 0 

0 1 1 l ‘* 0 0 0 

1 1 0 a” 0 0 0 

0 1 0 a’* 0 0 1 

6 
0 
1 
0 
. . . 
0 
0 
1 - 
P 
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FIG. 2. D,. 

Let M, be the matroid represented by D, over IF. We wish to show 
that for n 2 5, M, is 3-connected, is nonbinary, and has a Wn minor, and 
that no proper minor of M, has these three properties. Since 
M,\{y,, y,, y4, . . . . u,}/(x,, x2, . . . . x,-i) z Uz, we conclude that M, is 
nonbinary. To see that M, has a Wn minor, note that M,\b/a = 
M(G,\b/a) E Wn. Moreover, M,\b = M(G,\b) and M,/a= M(G,/a). It 
follows that A4,\b and M,/a are both binary and 3-connected. The fact 
that M, is 3-connected now follows from the fact that M,\b is 3-connected, 
together with the fact that b is not a loop, coloop, or parallel element 
of M,. 

Since M,, has 2n + 2 elements, it remains to show that, for each element 
z, both the deletion and the contraction of z yield a matroid that is either 
binary, is 2-separable, or has no Wn minor. By the symmetry of D,, we see 
that M, is self dual. Thus, it suffices to consider A&,/z, for each element z. 
We have already established that M,/a is binary. And each element 

FIG. 3. G,. 
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ZE {Yl, Y3, Y4 , ***, Y, - 1 , Xl, x2, ‘.‘, x,} is in a triangle, implying M,/z is 
2-separable. It remains to check the members of (b, y2, y,}. We shall show 
in this case that M,/z has no Wn minor. Since M, has corank n + 1 and 
Wn has corank n, if M,/z has a Wn minor, then it must be of the form 
M,/z\w, for some element w. 

We leave it to the reader to establish the following facts: 

(1) No member of (b, y2, y, > is in a triangle of M,. 

(2) Element y2 is in no 4-element circuit with y, or with b. (Note: 
This is not true if n = 4.) 

Suppose Mn/z \w z IV,, for some elements z and w, where z E {b, yn >. By 
(1) and (21, ~2 is in no triangle of M,/z. Since every element of Wn is in 
a triangle, it must be that w  = y2. But (y2, y3, x,-~} is a triad of M,, 
implying M,/z\ y, has series elements, contradicting the 3-connectivity 
of wn. 

Now suppose M/y,\w z Wn, for some element w. Since neither y, nor b 
is in a triangle in M,/y,, at least one of these two elements remains in no 
triangle in M,/y2\w, a contradiction. 

Thus we have established for each z E (b, y2, y,} that M/z has no Wn 
minor, completing the argument. 
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