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Abstract. In an earlier paper, we proved that an internally 4-
connected binary matroid with at least seven elements contains an in-
ternally 4-connected proper minor that is at most six elements smaller.
We refine this result, by giving detailed descriptions of the operations
required to produce the internally 4-connected minor. Each of these
operations is top-down, in that it produces a smaller minor from the
original. We also describe each as a bottom-up operation, constructing
a larger matroid from the original, and we give necessary and sufficient
conditions for each of these bottom-up moves to produce an internally
4-connected binary matroid. From this, we derive a constructive method
for generating all internally 4-connected binary matroids.

1. Introduction

A chain theorem says that every matroid with a certain type of connec-
tivity contains a proper minor with the same type of connectivity that can
be obtained by deleting or contracting a bounded number of elements. The
most famous example of a chain theorem is due to Tutte [8], his well-known
“Wheels-and-Whirls Theorem”. It says that every non-empty 3-connected
matroid contains a 3-connected proper minor that is obtained by removing
at most two elements.

We have proved a chain theorem for internally 4-connected binary ma-
troids [1]. Every such matroid that has at least seven elements contains an
internally 4-connected proper minor that is obtained by removing at most
six elements.

Like the Wheels-and-Whirls Theorem, our result can be refined. Tutte
actually proved that every non-empty 3-connected matroid that is not a
wheel or a whirl has a 3-connected single-element deletion or contraction.
The bound of two elements is required only for the exceptional classes of
wheels and whirls. A similar phenomenon can be seen in our chain theorem.
Almost every internally 4-connected binary matroid contains an internally
4-connected proper minor that is at most three elements smaller. The bound
of six elements is needed only for one dual pair of matroids. Apart from this
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pair, a bound of four elements holds and even this is attained only in a few
exceptional classes. In particular, the analogous classes to wheels and whirls
in our chain theorem are the classes of quartic ladders.

For n ≥ 3, a planar quartic ladder is a graph with ver-
tex set {u1, v1, u2, v2, . . . , un, vn} that consists of two disjoint cycles,
{u1u2, u2u3, . . . , unu1} and {v1v2, v2v3, . . . , vnv1}, and two matchings
{u1v1, u2v2, . . . , unvn} and {u1vn, u2v1, . . . , unvn−1}. A Möbius quartic lad-
der consists of a Hamiltonian cycle {v0v1, v1v2, . . . , v2n−2v0} along with the
set of edges {vivi+n−1, vivi+n : 1 ≤ i ≤ n} where all subscripts are inter-
preted modulo 2n − 1. For n = 3, the Möbius and planar quartic ladders
coincide with K5 and the octahedron, K2,2,2, respectively. The cube is the
dual of the octahedron. A terrahawk is the graph, T , that is obtained from
the cube by adjoining one new vertex and adding edges from this vertex to
each of the four vertices that bound a face of the cube (see the left-hand
diagram in Figure 1). Clearly M∗(T ) ∼= M(T ) and T has both the cube and
the octahedron as minors. We shall later refer to the Wagner graph (see the
right-hand diagram in Figure 1). It is an example of a Möbius cubic ladder
(see, for example, [5, Fig. 12.5, p. 463]).
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Figure 1. The terrahawk, and the Wagner graph.

The refinement of our chain theorem is as follows.

Theorem 1.1. Let M be an internally 4-connected binary matroid such
that |E(M)| ≥ 7. Then M contains an internally 4-connected proper minor
M ′ such that |E(M)| − |E(M ′)| ≤ 3, unless M or its dual is the cycle
matroid of a planar or Möbius quartic ladder, or a terrahawk, or the cube.
If M or M∗ is the cycle matroid of a planar or Möbius quartic ladder or
a terrahawk, then M contains an internally 4-connected proper minor M ′

such that |E(M)| − |E(M ′)| = 4. If M or M∗ is the cycle matroid of the
cube, then M contains an internally 4-connected proper minor M ′, namely
M(K4), such that |E(M)| − |E(M ′)| = 6.

As it happens, our chain theorem can be refined even further. In Theo-
rem 1.2, we give a detailed analysis of the operations required to produce
M ′ from M when |E(M)|− |E(M ′)| is two or three. This theorem is proved
in Section 3. The proof is essentially contained in [1], although extracting
it requires some very careful reading of that paper.
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Tutte’s Wheels-and-Whirls Theorem is a top-down theorem: it describes
how the proper minor M ′ can be produced from M , by deleting or con-
tracting a single element, or, if M is a wheel or a whirl, by moving to the
next smallest wheel or whirl. This top-down theorem has bottom-up con-
sequences. We know that a single-element extension or coextension of a
3-connected matroid (with at least three elements) will also be 3-connected,
unless the new element is a loop, a coloop, or is in a series or parallel pair
(see [5, Proposition 8.2.7]). By combining this fact with Tutte’s Theorem,
we produce a constructive method for generating all 3-connected matroids.
We start with the set M(3) = {U1,3, U2,3}, since every 3-connected matroid
with at least three elements has either U1,3 or U2,3 as a minor. We perform

the following recursive procedure: for i > 3, let M(i) be defined so that M
is in M(i) if and only if there is a matroid N such that either

(i) N ∈ M(i−1), and M is a single-element extension or coextension of
N , where the new element is not in a circuit or cocircuit of M of
size at most two; or

(ii) N ∈ M(i−2), and both M and N are wheels or both are whirls, and
|E(M)| − |E(N)| = 2

It follows immediately by combining the Wheels-and-Whirls Theorem with
the characterization of 3-connected single-element extensions and coexten-
sions that M(i) is exactly the set of all i-element 3-connected matroids.

Geelen and Zhou [2, p.539] observed that: “For binary matroids, internal
4-connectivity is certainly the most natural variant of 4-connectivity and it
would be particularly useful to have an inductive construction for this class.”
Our main theorem (Theorem 1.4) is a bottom-up version of Theorem 1.2 that
gives us exactly such a construction.

To prove Theorem 1.4, we must characterize when the bottom-up moves
produce internally 4-connected matroids. This is exactly analogous to char-
acterizing when a single-element extension or coextension of a 3-connected
matroid will be 3-connected. In Section 4, we reverse each of the operations
(1)–(7) in Theorem 1.2. This gives us a number of operations which build a
binary matroid M , starting from the internally 4-connected binary matroid
N . We give necessary and sufficient conditions for M to be internally 4-
connected. With this information in hand, we can prove Theorem 1.4, and
thus describe a constructive method for generating all internally 4-connected
binary matroids.

Before we can state our theorems, we need two more definitions. A quasi
rotor with central triangle {4, 5, 6} is a tuple

({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7})

where {1, 2, 3}, {4, 5, 6}, and {7, 8, 9} are disjoint triangles, {2, 3, 4, 5} and
{5, 6, 7, 8} are cocircuits, and {3, 5, 7} is a triangle (see [1, p. 146]). A bowtie
(T1, T2, C

∗) consists of two disjoint triangles, T1 and T2, and a 4-element
cocircuit C∗ that is contained in their union.
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The following theorem, which we prove in Section 3, is the detailed top-
down chain theorem. Throughout the statement of Theorem 1.2, if some
subset of the variables {1, 2, . . . , 11, a, b, c} is used to label elements of a
matroid, it is assumed that distinct labels are applied to distinct elements.

Theorem 1.2. Let M be an internally 4-connected binary matroid with
|E(M)| ≥ 7 such that no single-element deletion or contraction of M is
internally 4-connected. Then M has a proper internally 4-connected minor
N such that, up to duality, one of the following occurs.

(1) M has an M(K4)-restriction with triangles {1, 2, 3}, {1, 5, 6},
{2, 4, 6}, and {3, 4, 5}, and M contains cocircuits {1, 3, 5, 7} and
{2, 3, 4, 8}, and N = M\3, 6.

(2) M has triangles {1, 2, 3} and {3, 4, 5} and cocircuits {2, 3, 4, 6} and
{1, 3, 5, 7}, and N = M\1, 4.

(3) M has ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}) as
a quasi rotor, triangles {6, 8, 10} and {2, 4, 11}, and N = M\3, 4/5.

(4) M has triangles {1, 2, 3}, {a, b, c}, and {4, 5, 6}, and has cocircuits
{1, 2, b, c} and {4, 5, a, c}. Moreover, either
(i) N = M/c\b; or
(ii) M has a triangle {7, 8, 9} and a cocircuit {a, b, 7, 8}, and N =

M/a, b, c.
(5) M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie, {2, 5, 7} as a tri-

angle, and {1, 2, 7, 8} as a cocircuit. Moreover, either
(i) N = M/4\6; or
(ii) M has {5, 6, 7, 9} as a cocircuit and N = M\1/8; or
(iii) M has {3, 4, 11} as a triangle and {4, 6, 10, 11} as a cocircuit

and N = M\1/8.
(6) M has ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) as a bowtie, {2, 5, 7} as a tri-

angle, and {1, 2, 7, 8} and {5, 6, 7, 9} as cocircuits. Moreover M
has a 4-circuit {7, 8, 9, b} and triads {a, b, 8} and {b, c, 9}, and
N = M/8, 9\b.

(7) M has bowties ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) and
({2, 5, 7}, {3, 4, 11}, {2, 3, 4, 5}) and cocircuits {1, 2, 7, 8} and
{4, 6, 10, 11}, and N = M\3, 6, 7.

(8) M is M(K5) or M(K3,3), or the cycle matroid of a cube, and N is
M(K4).

(9) M is the cycle matroid of (respectively) a planar quartic ladder, a
Möbius quartic ladder, or the terrahawk, and N has four fewer el-
ements than M and is the cycle matroid of (respectively) a quartic
planar ladder, a quartic Möbius ladder, or the cube.

Moreover, if |E(M)| ≤ 11, then, up to duality, M is isomorphic to M(K5)
or M(K3,3), and (8) holds. If |E(M)| = 12, then, up to duality, M is
isomorphic to the cycle matroid of the cube or the Wagner graph, or M is
isomorphic to one of D1, D2, or D3. If M is isomorphic to the cycle matroid
of the cube, then (8) holds. If M is isomorphic to the cycle matroid of the
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Wagner graph, then (3) holds for M∗ and N∗, where N = M(K3,3). If M is

isomorphic to D1 or D2, then (1) holds, where N = K̃∗
5 . If M is isomorphic

to D3, then (4) holds, where N = K̃5.

The matroid K̃5, which is discussed in more detail in Section 2, is the
unique 3-connected binary extension of M∗(K3,3). To describe the matroids
D1, D2, and D3 from Theorem 1.2, we use the notion of grafts, introduced
by Seymour [7]. A graft is a pair (G, {γ1, γ2, . . . , γn}) where G is a graph and
each γi is a subset of V (G). The incidence matrix of (G, {γ1, γ2, . . . , γn}) is
the matrix that is obtained from the 0-1 vertex-edge incidence matrix of G
by adjoining a new column for each γi. This column, which we label γi, has a
1 in each row corresponding to a vertex in γi and a 0 in every other row. The
matroid M(G, {γ1, γ2, . . . , γn}) is the vector matroid over GF (2) of the in-
cidence matrix of (G, {γ1, γ2, . . . , γn}). We shall call M(G, {γ1, γ2, . . . , γn})
a graft matroid and refer to γ1, γ2, . . . , γn as graft elements, or hyperedges.
Seymour [7] deals only with the case that n = 1 (see also [5, p. 386]). In
this case we write (G, {γ1}) as (G, γ1). Seymour also requires that |γ1| is
even, since otherwise γ1 is a coloop of M(G, γ1). We shall also impose this
restriction, as we will use grafts to illustrate connected extensions of graphs.
We show, in the relevant cases, that all graft elements that we consider are
incident with an even number of vertices. When we represent a graft hav-
ing a single graft element γ, we do so by colouring the vertices in γ, and
leaving the other vertices uncoloured. When we represent a graft with two
graft elements, then one of them corresponds to coloured vertices, and the
other corresponds to the vertices contained in boxes. Figure 2 shows graft
representations of D1, D2, and D3.
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Figure 2. Graft representations of D1, D2, and D3.

Since the statement of our main theorem is extremely long, we first present
a simplified version of it.

Corollary 1.3. Let M(6) be {M(K4)}. For i > 6, let M (i) be defined

so that M0 ∈ M(i) if and only if M0 is an internally 4-connected binary
matroid, and there is a matroid N0, such that for some pair (M,N) in
{(M0, N0), (M

∗
0 , N

∗
0 )}, one of the following holds.
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(i) M has N as a minor, where N ∈ M(i−k) for some k ∈ {1, 2, 3} such
that |E(M)| − |E(N)| = k; or

(ii) N ∈ M(i−4), and either N = M(K4) and M = M(K5), or N is
the cycle matroid of a cube, and M is a terrahawk, or N and M are
cycle matroids of planar or Möbius quartic ladders, and M has four
more elements than N ; or

(iii) N ∈ M(i−6), and N = M(K4), while M is the cycle matroid of a
cube.

Then M(i) is exactly the set of all i-element internally 4-connected binary
matroids.

The next theorem is our main result. It describes a construction that will
generate every internally 4-connected binary matroid in a minor-closed class,
and produce only internally 4-connected binary matroids. Note that each of
the operations (I)–(VII) in Theorem 1.4 is the reverse of the corresponding
operation (1)–(7) in Theorem 1.2.

Theorem 1.4. Let M be a minor-closed class of binary matroids that con-
tains at least one internally 4-connected matroid with at least six elements.
Define M(6) to be {M(K4)}. For i > 6, let M(i) be the set of binary matroids

such that M0 ∈ M(i) if and only if M0 ∈ M, and there is a matroid N0 such
that for some pair (M,N) in {(M0, N0), (M

∗
0 , N

∗
0 )}, one of the statements

(i)–(iv) holds. Then, for i ≥ 6, the set of i-element internally 4-connected

members of M is exactly M(i).

(i) i = 12, and M is the cycle matroid of a cube, while N = M(K4); or

(ii) N ∈ M(i−4), and either N = M(K4) and M = M(K5), or N is
the cycle matroid of a cube, and M is a terrahawk, or N and M are
cycle matroids of planar or Möbius quartic ladders, and M has four
more elements than N ; or

(iii) M is a simple single-element extension of N by the element e, where

N ∈ M(i−1) and r(M) = r(N), and, if i > 7, there is no triad T ∗

of N such that e ∈ clM (T ∗); or
(iv) either i = 9, and M = M(K3,3), while N = M(K4), or M and

N are as described in one of the statements (I)–(VII) below, and

N ∈ M(i−k), where k = |E(M)| − |E(N)|, so k ∈ {2, 3}.
(I) |E(N)| ≥ 8, and N has {1, 2, 4, 5} as a circuit and {1, 5, 7} and

{2, 4, 8} as triads, but N has no triad {a, b, c} such that {1, 2, a, b}
or {2, 4, a, b} is a circuit; M is obtained from N by extending with
the elements 3 and 6 so that {3, 4, 5} and {2, 4, 6} are triangles.

(II) |E(N)| ≥ 8 and N has {3, 5, 7} and {2, 3, 6} as triads, but N has
no triad {a, b, c} such that {3, 2, a, b} or {3, 5, a, b} is a circuit; M
is obtained from N by extending with the elements 1 and 4 so that
{1, 2, 3} and {3, 4, 5} are triangles.

(III) N has {2, 6, 7, 8} as a cocircuit and {6, 8, 10}, {7, 8, 9}, {1, 2, 7}, and
{2, 6, 11} as triangles; M is obtained from N by adding the element
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5 in series with 2, and then extending by the elements 3 and 4 so
that {3, 5, 7} and {4, 5, 6} are triangles.

(IV) N has {1, 2, 3} and {4, 5, 6} as triangles and
(i) |E(N)| ≥ 8 and N has {1, 2, a, 4, 5} as a cocircuit; M is ob-

tained from N by adding the element b in parallel to a, and then
coextending by the element c so that {1, 2, b, c} is a cocircuit.

(ii) N has {7, 8, 9} as a triangle and {1, 2, 4, 5, 7, 8} as a co-
circuit, but N has no 4-cocircuit containing a pair in
{{1, 2}, {4, 5}, {7, 8}} and an element in {3, 6, 9}, and N has
no triangle {x, y, z} such that each of {y, z, 1, 2}, {x, z, 4, 5},
and {x, y, 7, 8} is a cocircuit; M is obtained from N by adding
the element a as a coloop, and then coextending by the elements
b and c so that {a, b, 7, 8} and {a, c, 4, 5} are circuits.

(V) |E(N)| ≥ 8 and
(i) N has {1, 2, 3} and {2, 5, 7} as triangles and {1, 2, 7, 8} as a

cocircuit, but N has no 4-cocircuit containing {2, 3, 5}; M is
obtained from N by adding the element 6 in parallel with 5,
and then coextending by the element 4 so that {2, 3, 4, 5} is a
cocircuit; or

(ii) N has {2, 5, 7} and {4, 5, 6} as triangles and has {2, 3, 4, 5} as a
cocircuit. Moreover, either N has {5, 6, 7, 9} as a cocircuit, or
N has {3, 4, 11} as a triangle and {4, 6, 10, 11} as a cocircuit.
In addition, N has no 4-cocircuit {2, 7, a, b} such that {a, b, c}
or {2, 3, a} is a triangle; M is obtained from N by extending by
the element 1 so that {1, 2, 3} is a triangle and then coextending
by the element 8 so that {1, 2, 7, 8} is a cocircuit.

(VI) N has {1, 2, 3}, {2, 5, 7}, and {4, 5, 6} as triangles and {2, 3, 4, 5},
{a, 1, 2, 7}, and {c, 5, 6, 7} as cocircuits, and N does not have {a, c, 7}
as a triangle; M is obtained from N by adding 8 and 9 in series with
a and c, respectively, and then extending by the element b so that
{b, 7, 8, 9} is a circuit.

(VII) N has {1, 2, 4, 11} as a circuit and {1, 2, 8}, {2, 4, 5}, and {4, 10, 11}
as triads, but N has no triad {8, u, v} such that {2, 5, 8, u} is a cir-
cuit, and has no triad {10, w, x} so that {4, 5, 10, w} is a circuit; M
is obtained from N by extending by the elements 3, 6, and 7, so that
{1, 2, 3}, {2, 5, 7}, and {4, 5, 6} are triangles.

2. Preliminaries

The matroid terminology used here will follow Oxley [5]. A quad in a
matroid is a 4-element set that is both a circuit and a cocircuit. The prop-
erty that a circuit and a cocircuit in a matroid cannot have exactly one
common element will be referred to as orthogonality. It is also well-known
([5, Theorem 9.1.2]) that, in a binary matroid, a circuit and cocircuit meet
in an even number of elements.
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Let M be a matroid with ground set E and rank function r. The con-
nectivity function λM of M is defined on all subsets X of E by λM (X) =
r(X)+ r(E−X)− r(M). Equivalently, λM (X) = r(X)+ r∗(X)−|X|. For a
positive integer k, a subset X or a partition (X,E−X) of E is k-separating
if λM (X) ≤ k − 1. A k-separating partition (X,E −X) is a k-separation if
|X|, |E−X| ≥ k. If n is an integer exceeding one, a matroid is n-connected if
it has no k-separations for all k < n. This definition has the attractive prop-
erty that a matroid is n-connected if and only if its dual is. Moreover, this
matroid definition of n-connectivity is relatively compatible with the graph
notion of n-connectivity when n is 2 or 3. For example, if G is a graph with
at least four vertices and with no isolated vertices, M(G) is a 3-connected
matroid if and only if G is a 3-connected simple graph. But the link between
n-connectivity for matroids and graphs breaks down for n ≥ 4. In particu-
lar, a 4-connected matroid with at least six elements cannot have a triangle.
Hence, for r ≥ 3, neither M(Kr+1) nor PG(r−1, 2) is 4-connected. For this
reason, other types of 4-connectivity have been investigated in which certain
3-separations are allowed. In particular, a matroid is internally 4-connected
if it is 3-connected, and whenever (X,Y ) is a 3-separation, either |X| = 3
or |Y | = 3.

A k-separating set X, or a k-separating partition (X,E − X), or a k-
separation (X,E−X) is exact if λM (X) = k−1. A k-separation (X,E−X)
is minimal if |X| = k or |E − X| = k. It is well known (see, for example,
[5, Corollary 8.2.2]) that if M is k-connected having (X,E − X) as a k-
separation with |X| = k, then X is a circuit or a cocircuit of M .

A set X in a matroid M is fully closed if it is closed in both M and M∗,
that is, cl(X) = X and cl∗(X) = X. The intersection of two fully-closed sets
is fully-closed, and the full closure of X is the intersection of all fully closed
sets that contain X. One way to obtain fcl(X) is to take cl(X), and then
cl∗(cl(X)) and so on until neither the closure nor coclosure operator adds any
new elements of M . The full closure operator enables one to define a natural
equivalence on exactly 3-separating partitions as follows. Two exactly 3-
separating partitions (A1, B1) and (A2, B2) of a 3-connected matroid M are
equivalent, written (A1, B1) ∼= (A2, B2), if fcl(A1) = fcl(A2) and fcl(B1) =
fcl(B2).

A subset S of a 3-connected matroid M is a fan in M if
|S| ≥ 3 and there is an ordering (s1, s2, . . . , sn) of S such that
{s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn} alternate between triangles and
triads beginning with either. We call (s1, s2, . . . , sn) a fan ordering of S. A
4-element fan will often be called just a 4-fan. We think of a fan as being
sequential. A matroid M is (4, 4, S)-connected if M is 3-connected and, if
(X,Y ) is a 3-separation where |X| ≤ |Y | and |X| > 3, then X is X is a
4-fan.

A 3-separation (X,Y ) of a 3-connected matroid M is a (4, 3)-violator if
|X|, |Y | ≥ 4. Evidently M is internally 4-connected if and only if it has no
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(4, 3)-violators. It is well known and easy to check that if (X,Y ) is a (4, 3)-
violator in a 3-connected binary matroid, and |X| = 4, then X is either a
quad or a 4-fan.

We shall require the some basic properties of graft matroids. In a graft,
we say that a set of edges E′ spans a hyperedge if, in the matroid of the
graft, the hyperedge is in a circuit with a subset of E′. It is worth noting
that any hyperedge that is incident with an even number of vertices in
each component of a graph is spanned by the edges of that graph. To
see this, recall that a connected graph contains a path between each pair
of vertices. Thus, for a component containing 2k vertices incident with a
hyperedge, we may assign each vertex to a unique pair and obtain k paths,
P1, P2, . . . , Pk, in this component, each between a pair of vertices incident
with the hyperedge. Let E′ be E(P1) △ · · · △ E(Pk). Then E′ is a forest
in G and, by considering the binary matrix representation of this graft, it is
easy to see that E′ together with the hyperedge is a circuit in the matroid of
the graft. Conversely, it is impossible for a hyperedge with an odd number
of vertices in a component to be contained in a circuit.

A hyperplane in a graph G = (V,E) is a set of edges E −B, where B is a
bond. For a graph, G, we say that subgraph H is induced by an edge set E′

if V (H) is the set of endpoints of all edges in E′ and E(H) = E′. Then a
hyperplane in M(G, {γ1, γ2, . . . , γn}) is a set E′ of edges that form a hyper-
plane of G together with the set Γ′ ⊆ {γ1, γ2, . . . , γn} of all of the hyperedges
that are spanned by this set of edges; that is, each component induced by
E′ contains an even number of vertices incident with each hyperedge in Γ′.
We state the complement of this result as the following lemma.

Lemma 2.1. Let (G, {γ1, γ2, . . . , γn}) be a graft. Let D be a set ED ∪ ΓD,
where ED ⊆ E(G) and ΓD ⊆ {γ1, γ2, . . . , γn}. Then D is a cocircuit of
M(G, {γ1, γ2, . . . , γn}) if and only if ED is a bond of G and each component
induced by E(G)−ED contains an even number of vertices incident with γi
if and only if γi /∈ ΓD.

The proof of Theorem 1.2 uses the following result of Qin and Zhou [6,
Theorem 1.3].

Theorem 2.2. Let M be an internally 4-connected binary matroid with
no minor isomorphic to any of M(K3,3), M∗(K3,3), M(K5), or M∗(K5).
Then either M is isomorphic to the cycle matroid of a planar graph, or M
is isomorphic to F7 or F ∗

7 .

Before stating the next theorem, we need to introduce some small inter-

nally 4-connected binary matroids. The matroid K̃5, which has the graft
representation shown in the right-hand picture in Figure 3, is the comple-
ment in PG(3, 2) of U2,3 ⊕ U2,2.

The matroid M(K3,3) has a unique non-regular internally 4-
connected single-element extension N10. This matroid, which is self-dual,
is the graft matroid M(K3,3, γ), where γ consists of the vertex set of some
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b b

b b

b

bC

M∗(K3,3)
b b

bb

bC

K̃5

Figure 3. Graft representations of M∗(K3,3) and K̃5.

4-cycle of K3,3. The matroid T12, which was discovered by Kingan [3], is
represented over GF (2) by the matrix A12 shown below. From this, we can
see that T12 is self-dual. Furthermore, Kingan showed that T12 has a transi-
tive automorphism group. Hence it has a unique single-element deletion and
a unique single-element contraction, which we denote by T12\e and T12/e,
respectively.

A12 =


1 0 0 0 0 0 1 1 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 1 1 1 0
0 0 0 0 1 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 1 0 0 0


The next result is due to Zhou [9].

Theorem 2.3. Let M be an internally 4-connected binary matroid with no

minor isomorphic to K̃5 or K̃∗
5 . Then M is non-regular if and only if M is

isomorphic to F7, F
∗
7 , N10, T12, T12\e, or T12/e.

Oxley [4, Theorem 2.1] determined all the 3-connected simple graphs with
no minor isomorphic to the 5-wheel W5. The next result is an immediate
corollary of that theorem (see [4, Table I]). We shall use it here to prove the
two subsequent results.

Theorem 2.4. Let G be a graph. Then G is internally 4-connected having
no W5-minor if and only if G is isomorphic to K4, K3,3, K5, the cube, or
the octahedron.

Lemma 2.5. No internally 4-connected regular matroid has exactly eleven
elements.

Proof. Assume that M is a counterexample to the lemma. Since M is
regular, by Seymour’s decomposition theorem [7], M ∼= R10, or M or
M∗ is graphic. Thus, by duality, we may assume that M is graphic, say
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M ∼= M(G). Then M(G) has no M(W5)-minor because, as one can easily
check, there is no 11-edge internally 4-connected graph that is obtained from
W5 by adding an edge or splitting a vertex. The lemma follows by Theo-
rem 2.4 since none of the graphs listed there has exactly eleven edges. �

Lemma 2.6. Let G be a 12-edge graph. Then G is internally 4-connected if
and only if G is the cube, the octahedron, or the Wagner graph.

Proof. It is straightforward to check that each of the graphs listed is in-
ternally 4-connected. Now assume that G is internally 4-connected. By
Theorem 2.4, we may also assume that G has a 5-wheel minor H with ver-
tex set {a, b, c, d, e, f}, where H has abcdea as a cycle and f is adjacent
to every other vertex. Suppose that G has a simple 3-connected minor H ′

that is obtained from H by adding an edge. By symmetry, we may assume
that this edge is ac. Now M(H ′) has two disjoint fans, (ac, ab, bc, bf) and
(ae, ef, de, df, cd), and it is easy to check that no graph obtained from H ′

by splitting a vertex or adding an edge is internally 4-connected. Thus G
is not internally 4-connected, a contradiction. By Seymour’s Splitter The-
orem [7], we may now assume that G has a simple 3-connected minor H ′

that is obtained from H by splitting the vertex f into vertices f1 and f2.
Suppose first that H ′ is planar. Then we may assume that the set N(f1)
of neighbors of f1 is {a, b, c, f2} and that N(f2) is {d, e, f1}. Then M(H ′)
has (ae, af1, ab, bf1, bc, cf1, cd) and (df2, de, ef2, ae) as fans, and it is easy
to check that no graph obtained by splitting a vertex or adding an edge to
H ′ is internally 4-connected, a contradiction. We deduce that H ′ is non-
planar. By symmetry, we may assume that N(f1) is {a, c, f2} and N(f2)
is {b, d, e, f1}. Because of the fan (ae, ef2, de, df2, cd) in M(H ′), we can see
that no edge can be added to H ′ to produce an internally 4-connected graph.
Thus G is obtained by a splitting a vertex. The only vertex with degree more
than three is f2, so we split this vertex into f3 and f4. Since M(G) has no
4-fans, neither f3 nor f4 is adjacent to both d and e. Thus, up to isomor-
phism, N(f3) and N(f4) are {e, f1, f4} and {b, d, f3}. Then it is not difficult
to check that G is the Wagner graph. �

Finally, we consider necessary and sufficient conditions for the binary ma-
troid M to be internally 4-connected when M is a single-element extension
of an internally 4-connected matroid.

Lemma 2.7. Let N be an internally 4-connected binary matroid with at least
seven elements, and let M be a single-element binary extension of N by the
element e. Then M is internally 4-connected if and only if M is simple,
r(M) = r(N), and there is no triad, T ∗, of N such that e ∈ clM (T ∗).

Proof. If M is not simple, or if r(M) > r(N), then M is not 3-connected,
and therefore not internally 4-connected. If N has a triad T ∗ such that
e ∈ clM (T ∗), then T ∗ ∪ e is 3-separating in M , and as M has at least eight
elements, M is not internally 4-connected.
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This completes the proof of the “only if” direction. Therefore we assume
that r(M) = r(N), that M is simple, and that there is no triad of N that
spans e in M . Certainly M is 3-connected since M is simple having the same
rank as N [5, Proposition 8.2.7]. Suppose thatM has a (4, 3)-violator (X,Y )
where e ∈ X. Then (X − e, Y ) is a 3-separation of N , so X − e is a triangle
or a triad of M\e. If rM\e(X − e) < rM (X), then λN (X − e) < λM (X) = 2,
a contradiction. Thus e ∈ clM (X − e) and we see that, since M is binary
and simple, X − e is not a triangle. Thus X − e is a triad T ∗ of N . �

3. Proving the detailed chain theorem

In this section, we prove Theorem 1.2 by mining the work done in [1].

Proof of Theorem 1.2. Let M be an internally 4-connected binary matroid
such that |E(M)| ≥ 7, and assume that no single-element deletion or con-
traction of M is internally 4-connected.

1.2.1. If |E(M)| ≥ 13, and M is neither a 2-element coextension of the
octahedron, nor a 2-element extension of the cube, then one of the cases
(1)–(9) holds.

Proof. Throughout the proof of (1.2.1), every cited lemma or theorem comes
from [1]. By Theorem 6.1, if M has a quasi rotor

({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {2, 3, 4, 5}, {5, 6, 7, 8}, {3, 5, 7}),

then one of the following three things happens: either (3) holds; or we can
relabel 1, 2, 3, 4, 5, 6 as 6, 4, 5, 3, 2, 1, and see that 5(i) holds; or we can relabel
2, 3, 4, 5, 6, 7, 8, 9 as 8, 7, 1, 2, 3, 5, 4, 6 and see that 5(i) holds. Assume, then,
that M has no quasi rotor. If M has an M(K4)-restriction with triangles
{1, 2, 3}, {1, 5, 6}, {2, 4, 6}, and {3, 4, 5}, then we apply 7.5, Lemma 7.9, and
Lemma 7.10, together with the symmetry of pair {1, 4} with {2, 5}, and
conclude that either M\3, 6 or M\1, 4 is internally 4-connected. In the first
case (1) holds, and in the second, (2) holds. Therefore we make the following
assumption.

Assumption 1. M has no quasi rotor and no M(K4)-restriction.

If M is 4-connected, then Theorem 2.7 says that M has a single-element
deletion or contraction that is internally 4-connected. Therefore, we can
apply duality and assume that M has a triangle, T . By Theorem 5.1, there
is an element e in T such that M\e is (4, 4, S)-connected. Since M\e is not
internally 4-connected, there is a 4-fan, {a, b, c, d}, in M\e, where {a, b, c}
is a triangle and {b, c, d} is a triad. As M has no 4-element fans, {b, c, d, e}
is a cocircuit of M . By orthogonality, T − e contains an element of {b, c, d}.
By symmetry, there are two possibilities:

(A) T contains d or
(B) T contains b.
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If (A) holds, then M contains a bowtie. We first consider the following
case.

Case 1. M has no bowties.

Therefore, for every element in a triangle of M whose deletion produces
a (4, 4, S)-connected matroid, (A) does not hold, so (B) does. This means
that there is a triangle T = {3, 4, 5} in M , such that M\4 is (4, 4, S)-
connected, and {1, 2, 3} and {2, 3, 4, 6} are a triangle and a cocircuit in M
respectively. By Theorem 9.1 and Lemma 9.5, there is a cocircuit {1, 3, 5, 7}
in M . Although M need not be graphic, it will be convenient to use graph
diagrams to keep track of some of the circuits and cocircuits in M . For
example, Figure 4 shows the triangles and cocircuits in {1, 2, 3, 4, 5, 6, 7}. In
this figure and the other figures in this proof, the edges incident with circled
vertices make up a cocircuit.

b

b

bb

b

b

1

2
3
4

5

6

7

Figure 4. Structure diagram for (2).

It also follows from Theorem 9.1 that M\1, 4 is internally 4-connected, so
(2) holds. Therefore we can consider the next case.

Case 2. M has a bowtie.

Let ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}) be a bowtie of M , as shown in Figure 5.

b

b

b

b

b
2

3
1 6

5

4

Figure 5. A bowtie.

We first consider the following subcase.

Case 2.1. M has no bowtie (T1, T2, C
∗) containing triangle {1, 2, 3} or tri-

angle {4, 5, 6}, unless C∗ meets this triangle in {2, 3} or {4, 5}, respectively.
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Neither (i) nor (ii) in Lemma 6.3 holds, so we can assume that M has a
triangle {2, 5, 7} and cocircuit {1, 2, 7, 8}, as shown in Figure 6(i). We will
now show that one of the three cases from Lemma 10.3 holds. These cases
are as follows.

10.3(a) M has a cocircuit {5, 6, 7, 9} where 9 /∈ {1, 2, . . . , 8} as shown in
Figure 6(ii); or

10.3(b) M/4\6 is internally 4-connected; or
10.3(c) M has a triangle {3, 4, 11} and a cocircuit {4, 6, 10, 11}, where

10, 11 /∈ {1, . . . , 8}, as depicted in Figure 6(iii).

b

b

b

b

b

b

1
2

3 4

5
6

78

(i)

b

b

b

b

b

b b

1
2

3 4

5
6

78 9

(ii)

b

b

b

b

b

b

b

1
2

3 4

5
6

78

11
10

(iii)

Figure 6. Structure diagrams for (5). Note (iii) is also the
diagram for (7).

If M\1 has a unique fan, then Theorem 10.3 immediately implies that
10.3(a), 10.3(b), or 10.3(c) holds. Therefore we assume that M\1 has two
fans. ThenM\1 has two distinct triads, S1 and S2, such that S1∪1 and S2∪1
are cocircuits of M . We may as well assume S1 = {2, 7, 8}. Suppose 3 is not
in S2. By orthogonality with triangle {1, 2, 3}, we know that 2 ∈ S2. If 7 ∈
S2, then S1△S2 is a series pair in M , a contradiction. So orthogonality with
the triangle {2, 5, 7} implies that 5 ∈ S2. By orthogonality with {4, 5, 6}, we
have that 4 or 6 is in S2. Now

rM ({1, 2, . . . , 7}) + r∗M ({1, 2, . . . , 7})− |{1, 2, . . . , 7}| ≤ 4 + 5− 7 = 2,

which contradicts the fact that M is internally 4-connected. Evidently,
3 is in the triad of a 4-fan of M\1. Assume that 3 is not in a triangle
of a fan of M\1. Then {1, 3, a, b} is a cocircuit of M and {a, b, c} is a
triangle, so ({1, 2, 3}, {a, b, c}, {1, 3, a, b}) is a bowtie that contains {1, 2, 3},
but {1, 3, a, b}∩ {1, 2, 3} is {1, 3}, contradicting the assumption in Case 2.1.
Therefore 3 is in the triangle of a 4-fan in M\1. As M has no M(K4)-
restriction, this triangle meets cocircuit {2, 3, 4, 5} in elements 3 and 4, thus
we have a triangle {3, 4, 9} and cocircuit {1, 3, 9, 11} in M . By symmetry of
7 and 1 now, we may relabel the elements to obtain the case that 10.3(a)
holds. This completes the proof that 10.3(a), 10.3(b), or 10.3(c) holds.

If 10.3(b) holds, then (5)(i) holds, so we assume not. If 10.3(c) holds,
then by Lemma 10.11, we let N = M\3, 6, 7 and (7) holds, or N = M\1/8
and (5)(iii) holds, or, up to symmetry, M has a 4-element cocircuit con-
taining {1, 3, 11} or {5, 6, 7}. Therefore we will assume that {5, 6, 7, 9} is a
4-cocircuit. This means that we can assume that 10.3(a) holds. We sum-
marize our current assumptions in the following statement.
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Assumption 2. M has a bowtie ({1, 2, 3}, {4, 5, 6}, {2, 3, 4, 5}), a triangle
{2, 5, 7}, and cocircuits {1, 2, 7, 8} and {5, 6, 7, 9}.

First we consider the case when M\1 has more than one 4-fan. State-
ment (ii) in Lemma 10.7 does not arise, by the assumption in Case 2.1.
Since 2 and 5 are in a triangle, 2 and 4 are not in a triangle, or else M has
an M(K4)-restriction consisting of {2, 4, 5, 6, 7} and the element that is in a
triangle with 2 and 4. Similarly, 3 is not in a triangle with 5. Now we may
deduce from Lemma 10.7 that there are elements 11, 12 /∈ {1, . . . , 9} such
that {3, 4, 11} is a triangle of M , and {1, 3, 11, 12} is a cocircuit.

If M\11 has a unique 4-fan, then we can relabel 1, 2, 3, 4, 5, 7, 8, 11, 12
as 7, 5, 2, 3, 4, 6, 9, 1, 8, and we will have exactly the same structure as in
Assumption 2, except that M\1 will have a unique 4-fan. Therefore we
assume thatM\11 has more than one 4-fan. By again applying Lemma 10.7,
and arguing as in the previous paragraph, we deduce that there is an element
10 /∈ {1, . . . , 9, 11, 12} such that {4, 6, 10, 11} is a cocircuit. Therefore the
hypotheses of Lemma 10.15 apply.

Lemma 10.15 tells us that M.{1, . . . , 12} is the cycle matroid of the octa-
hedron. If statement (iii) in Lemma 10.15 holds, then M is the terrahawk,
and the dual of (9)(iii) holds. If (ii) is true, then, up to relabelling, M
has a 4-element circuit {7, 8, 9, b} and triads {8, b, c} and {a, b, 9}, where
|{1, 2, . . . , 12, a, b, c}| = 15. This structure is shown in Figure 7.

b

b

b

b

b

b

b bb

b b

1
2

3 4

5
6

7
8 9

a
b

c

Figure 7. Structure diagram for (6).

In this case M\b/8, 9 is internally 4-connected, and (6) holds. Therefore
we assume that statements (ii) and (iii) in Lemma 10.15 do not hold. A close
reading of the proof of Lemma 10.15 shows that this implies |E(M)| = 14
and that M is a 2-element coextension of the octahedron. This contradicts
the hypotheses of Lemma 1.2.1, so now we make the following assumption.

Assumption 3. M\1 has a unique 4-fan.

If M\1, 5 is internally 4-connected, then we relabel 2, 3, 4, 5, 7, 8 as
3, 2, 6, 4, 5, 7, and we see that (2) holds. If M\1/8 is internally 4-connected,
then 5(ii) holds. Therefore we make the following assumption.

Assumption 4. Neither M\1/8 nor M\1, 5 is internally 4-connected.
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Next we assume that M has triangles {6, 9, 10} and {1, 8, 11} and a cocir-
cuit {1, 3, 11, 12}, where |{1, 2, . . . , 12}| = 12. This means that we can apply
Lemma 10.8, and deduce that M\11/12 is internally 4-connected. By rela-
beling 1, 2, 3, 4, 5, 7, 8, 11, 12 as 7, 5, 2, 3, 4, 6, 1, 8, 9 we see that (5)(ii) holds.
Hence we will assume that this structure does not exist in M . This means
that the hypotheses of Lemma 10.6 hold, but that statements (i) and (iii)
in that Lemma do not apply. Therefore statement (ii) in Lemma 10.6 holds,
so M has a triangle {3, 4, 11}.

By relabeling 1, 2, 3, 4, 5, 6, 7, 8, 9, 11 as 10, 3, 4, 5, 2, 7, 1, 9, 8, 6, we can ap-
ply Lemma 10.9, and deduce that M has a 4-element cocircuit containing
{1, 3, 11} or {4, 6, 11} and an element not in {1, 2, . . . , 9, 11}. By symmetry,
we will assume that {4, 6, 10, 11} is a cocircuit of M . Thus the hypotheses
of Lemma 10.13 hold. We have assumed no single-element deletion of M is
internally 4-connected, so statement (i) of Lemma 10.13 does not hold. If
M\11/10 is internally 4-connected, then we can relabel 2, 3, 4, 5, 6, 7, 9, 10, 11
as 4, 3, 2, 5, 7, 6, 9, 8, 1, and conclude that (5)(ii) holds. Therefore we as-
sume M\11/10 is not internally 4-connected. We have already assumed
that M\1/8 is not internally 4-connected. Therefore statement (ii) in
Lemma 10.13 does not hold. If M\1, 11, 5 is internally 4-connected, then by
swapping the labels on 1 and 7, 3 and 5, and 6 and 11, we see that (7) holds.
Therefore we assume that statement (iii) in Lemma 10.13 does not hold,
and deduce that M has a 4-cocircuit {1, 3, 11, 12}. Thus the hypotheses of
Lemma 10.15 again hold, and we can again deduce that either (9)(iii) or (6)
holds, or M is a 2-element coextension of the octahedron.

This completes the analysis in Case 2.1, so we consider the following case.

Case 2.2. M has a bowtie ({1, 2, 3}, {a, b, c}, {1, 2, b, c}) and another bowtie
({4, 5, 6}, {a, b, c}, {4, 5, a, c}) where |{1, 2, . . . , 6, a, b, c}| = 9.

This structure is illustrated in Figure 8.

b b

b

b

b

b

b

3

1

2 b

c

a 4

5

6

Figure 8. Structure diagram for (4).

IfM has ({7, 8, 9}, {a, b, c}, {7, 8, a, b}) as a bowtie, then by relabeling a as
c, b as a, and c as b, we can apply Lemma 8.3, and see that N = M/a, b, c is
internally 4-connected. In this case (4)(ii) holds. Therefore we assume there
is no such bowtie. By relabeling 1, 2, 3, a, b, c as 3, 2, 1, c, a, b, we can apply
Lemma 8.4. A close reading of the proof of Lemma 8.4 reveals that state-
ment (i) cannot apply, or else there is a bowtie ({7, 8, 9}, {a, b, c}, {7, 8, a, b}).
Certainly statement (ii) cannot apply, as M has no quasi rotor. If M/c\b is
internally 4-connected, then (4)(i) holds, so we assume that statement (iii)
does not hold. Therefore, without loss of generality, M has {2, b, 7} as a
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triangle and {7, 8, a, b} as a cocircuit, where |{1, 2, . . . , 8, a, b, c}| = 11. We
can assume that every bowtie in M sits inside a larger string of bowties, as
otherwise we reduce to Case 2.1. Therefore the hypotheses of Theorem 11.1
apply. A careful reading of the proof of Theorem 11.1 shows that if M has
an internally 4-connected minor N such that |E(M)| − |E(N)| ≤ 3, then
one of (1)–(7) applies. Therefore M is isomorphic to the cycle matroid of a
quartic planar ladder or quartic Möbius ladder, and hence (9)(i) or (9)(ii)
holds.

This concludes the proof of (1.2.1). �

Because of (1.2.1), we can now assume that either |E(M)| ≤ 12, or, up
to duality, M is a 2-element extension of the cube. The next lemma deals
with one of these cases.

1.2.2. If M is a 2-element extension of the cube, then case (1) holds.

Proof. Let us assume that M\a\b is equal to the cycle matroid of the cube.
Let G be obtained from two four-vertex cycles v1v2v3v4v1 and v5v6v7v8v5
by adding edges v1v5, v2v6, v3v7, and v4v8 to obtain a cube. Assume that
M\a\b = M(G). For convenience, we let Ma = M\b and Mb = M\a. Since
we have assumed no single-element deletion of M is internally 4-connected,
neither Ma nor Mb is internally 4-connected.

Lemma 2.7 (henceforth, all citations refer to results in this paper) implies
that the single-element extension, Ma, ofM(G) by the element a is internally
4-connected if and only if a is not a loop or coloop in Ma, and there is no
triad, T ∗, of M(G) such that a is in the closure of T ∗ in Ma. Certainly a is
not a loop or coloop in Ma, as M has no loops and no cocircuits of size at
most two. Therefore there is a triad, T ∗

a , of M(G) such that a ∈ clMa(T
∗
a ).

Similarly, there is a triad, T ∗
b , of M(G) such that b ∈ clMb

(T ∗
b ). If T ∗

a is a
triad in M , then (T ∗

a ∪a,E(M)−(T ∗
a ∪a)) is a (4, 3)-violator in M . Therefore

T ∗
a , and by the same argument T ∗

b , is not a triad in M .
Each triad of M(G) consists of the set of edges incident with a vertex, and

the automorphism group of G is transitive on triads. So up to symmetry,
a — considered as a hyperedge in the graft (G, {a, b}) — is incident with
{v2, v4} or {v1, v2, v4, v5}. Suppose first that a is the edge v2v4. ThenMa has
two 4-fans, so b is incident with an even number of vertices of G including v1
and v3. Since b is also in the closure of a triad, T ∗

b , up to isomorphism, b is
incident with {v1, v3} or {v1, v2, v3, v6}. In the first case, M has an M(K4)-
restriction, and it is easy to see that (1) holds. In the latter, M\{v3v4} is
internally 4-connected.

Therefore we assume that a is incident with {v1, v2, v4, v5}. By a sim-
ilar argument, we can assume that b is incident with more than two ver-
tices. As M is internally 4-connected, b is incident with v1, thus we may
assume, without loss of generality, that b is incident with {v1, v2, v3, v6}.
Then M\{v1v5} is internally 4-connected. This contradiction completes the
proof of (1.2.2). �
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By combining (1.2.1) and (1.2.2) and exploiting duality, we can now as-
sume that |E(M)| ≤ 12. The next result restricts the number of options
further.

1.2.3. If |E(M)| ≤ 12, then, up to duality, one of the following statements
holds.

(i) M is isomorphic to M(K5) or M(K3,3); or
(ii) M is isomorphic to the cycle matroid of the Wagner graph or the

cube; or

(iii) |E(M)| = 12 and M has a K̃5-minor.

Proof. As F7 and F ∗
7 are a single-element extension and coextension, re-

spectively, of the internally 4-connected matroid M(K4), we know that M
is neither of these. Then, by Theorem 2.2, either M is isomorphic to the
cycle matroid of a planar graph, or M or its dual has a minor isomorphic
to M(K3,3) or M(K5). We first assume that M is planar graphic. Consider
the case that M has no M(W5)-minor. Then, by Theorem 2.4, M or its
dual is isomorphic to the cycle matroid of the cube. Therefore we assume
that M has a M(W5)-minor. As W5 contains ten edges, and is not inter-
nally 4-connected, it follows that |E(M)| > 10. Then Lemmas 2.5 and 2.6
imply that M is the cycle matroid of a cube, an octahedron, or the Wagner
graph. None of these options is possible, as M is planar graphic, and has
an W5-minor.

Now we will assume that M is not planar graphic, and that (by switching
to M∗ as necessary) M contains an M(K3,3)-minor or an M(K5)-minor.
Consider the case that M is regular. Then, as R10 has M(K3,3) as a single-
element deletion, and M(K3,3) is internally 4-connected, it follows that M
is not isomorphic to R10. Thus, by Seymour’s decomposition theorem [7],
M is graphic or cographic. Since M has M(K3,3) or M(K5) as a minor,
it follows that M is graphic. Assume that M has no M(W5)-minor. By
Theorem 2.4 and the fact that M has an M(K3,3)-minor or an M(K5)-
minor, M is isomorphic to M(K3,3) or M(K5). Therefore we assume that
M has an M(W5)-minor. This minor must be proper. Hence, Lemmas 2.5
and 2.6 imply that M is the cycle matroid of the Wagner graph.

Now we assume M is non-regular. Assume that M has no minor isomor-

phic to K̃5 or K̃∗
5 . Then, by Theorem 2.3, M is isomorphic to one of F7,

F ∗
7 , N10, T12, T12\e, or T12/e. Since M has a proper minor isomorphic to

M(K3,3) or M(K5), it follows that M is not isomorphic to F7 or F ∗
7 . More-

over, N10 and T12 have the internally 4-connected single-element deletions
M(K3,3) and T12\e respectively. Therefore, we can assume that, up to dual-
ity, M is isomorphic to T12\e. In this case M has a single-element deletion
isomorphic to the internally 4-connected matroid M∗(K5).

Therefore we assume that, up to duality, M has a minor isomorphic to K̃5.

Note that M is not equal to K̃5, since then it would have a single-element
deletion isomorphic to M∗(K3,3). Since M has no internally 4-connected
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single-element deletions or contractions, and K̃5 has ten elements, it follows
that M has twelve elements. This completes the proof of (1.2.3). �

Note that (1.2.3) implies that if |E(M)| ≤ 11, then, up to duality, M is
isomorphic to M(K5) or M(K3,3), and (8) holds, so the case in Theorem 1.2
where |E(M)| ≤ 11 is now proved. Therefore we will assume that |E(M)| =
12. If M is the cycle matroid of the Wagner graph, then it is not difficult
to see that M∗ has a quasi rotor, and (3) holds. Hence, by (1.2.3), we can

assume that M has a K̃5-minor or a K̃∗
5 -minor.

1.2.4. If |E(M)| = 12, and M has either a K̃5-minor or a K̃∗
5 -minor, then,

up to duality, M is isomorphic to D1, D2, or D3. If M is isomorphic to D1

or D2, then (1) holds, where N = K̃∗
5 . If M is isomorphic to D3, then (4)

holds, where N = K̃5.

Proof. By duality, we will assume that M has a K̃∗
5 -minor. Seymour’s split-

ter theorem [7] implies that M contains a 3-connected single-element dele-
tion or contraction, call it M ′, which is itself a single-element extension or

coextension of K̃∗
5 . Note that M

′ is not internally 4-connected. Since K̃5 has

no triad, Lemma 2.7 implies that every 3-connected extension of K̃5 is inter-

nally 4-connected. Thus every 3-connected coextension of K̃∗
5 is internally

4-connected, so M ′ is a single-element extension of K̃∗
5 .

In the following case-analysis, we use the software package macek,
developed by Petr Hlinĕný. The macek package is available to down-
load, along with supporting documentation. The current website is http:
//www.fi.muni.cz/∼hlineny/MACEK, and the interested reader is invited
to download macek and use it to confirm the details of the case analysis.

We shall represent K̃∗
5 as the matroid of the graft (G, γ) shown in Figure 9.

We rename the edges v1v2, v2v3, v3v4, v4v5, v5v6, v1v6, v1v7, v3v7, and v5v7
of G as 2, 5, −3, −1, 1, 3, 4, −4, and −2. This labeling accords with

that used for K̃∗
5 in the macek library of well-known matroids. Note that

{1, 2, 3, 4, 5, γ} is a basis of M(G, γ). We refer to the graft matroid M(G, γ)

as N , so that N ∼= K̃∗
5 . Let ε be the unique element in E(M ′)−E(N), and

let δ be the unique element of E(M)− E(M ′).
By Lemma 2.7, ε is in the closure of a triad T ∗ of N . It follows from [5,

Lemma 10.3.13] that interchanging the labels on every pair of edges meeting
a degree-2 vertex in G gives another graft representation of N . By exploiting
such symmetries, we may assume that T ∗ is {5,−3,−4} or {−1,−3, γ}. Up
to isomorphism, there are six choices for ε, which we shall view as a new
graft element adjoined to (G, γ). In these six cases, we rename ε as a, b, c, d,
e, or f respectively. Let a be the edge v2v7 and let Ma be obtained from N
by adding a. Likewise, let Mb, Mc, Md, Me, and Mf be the single-element
extensions of N obtained by adding b, c, d, e, and f , respectively, where
b and d are the edges v2v4 and v3v5, while c, e, and f are the hyperedges
{v2, v3, v4, v7}, {v2, v3, v6, v7}, and {v2, v3, v4, v5, v6, v7}. Note that c is in a

http://www.fi.muni.cz/~hlineny/MACEK
http://www.fi.muni.cz/~hlineny/MACEK
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Figure 9. A graft (G, γ) such that M(G, γ) ∼= K̃∗
5 .

circuit with {5,−3,−4} in Mc, that {e,−3, γ} is a circuit in Me, and that
{f,−1,−3, γ} is a circuit in Mf . Adding an element in a triangle with −3
and −4 gives a matroid isomorphic to Ma. Adding an element in a triangle
with−1 and γ gives a matroid isomorphic toMe. ThereforeM

′ is isomorphic
to one of Ma, Mb, Mc, Md, Me, or Mf .

Consider the case when M ′ is isomorphic to Ma. Then M ′ has a graft
representation (H, γ), where H is obtained from G by adding the edge v2v7.
Suppose first that M is an extension of M ′. Then M can be represented by
a graft obtained from (H, γ) by adding an edge or hyperedge, δ. As M ′ has
{a, 2, 4, 3} and {a,−4, 5,−3} as 4-fans, and M is internally 4-connected, δ
is incident with an even number of vertices of H including v1 and v3. If δ
is incident with only these two vertices, then M is isomorphic to D1, and
by relabeling 2, 3, 4, 5,−3,−4, a, δ as 1, 7, 5, 2, 8, 4, 6, 3, we see that (1) holds.
Therefore we assume that δ is incident with more than two vertices. As
M\a is not internally 4-connected, Lemma 2.7 implies δ is in the closure of
a triad of N that is not a triad of M(H, γ). Up to symmetry, this triad is
{2, 5, γ} or {2,−1,−4}. It follows, as δ is incident with an even number of
vertices, that δ is incident with {v1, v2, v3, v4, v6, v7}, {v1, v2, v3, v5, v6, v7},
or {v1, v2, v3, v7}. In the first case, consider M/{−2} and, in the second,
consider M/{−3}. A straightforward check establishes that both of the
last two matroids are internally 4-connected, a contradiction, as no single-
element deletion or contraction of M is internally 4-connected. Evidently,
δ is incident with {v1, v2, v3, v7}. Then M is isomorphic to D2. Since
M |{2, 4, 5,−4, a, δ} is M(K4), and {2, 3, 4, δ} and {5,−3,−4, δ} are cocir-
cuits, by relabeling 2, 3, 4, 5,−3,−4, a, δ as 1, 7, 5, 4, 8, 2, 6, 3, we see that (1)
holds.

Next assume that M∗ is an extension of M∗
a . It is not difficult to check

that the latter matroid has (H ′, a), as depicted in Figure 10, as a graft
representation.
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Figure 10. A graft representation, (H ′, a), of M∗
a , where a

is incident with coloured vertices.

In the following argument, it is necessary to contract a hyperedge from a
graft representation. This is accomplished by deleting a vertex from the un-
derlying graph that is incident with the hyperedge. Then each other edge or
hyperedge that was incident with that vertex is now incident with the sym-
metric difference of its original incidences and the original incidences of the
contracted hyperedge. Since M has no 4-fan and is internally 4-connected,
δ is incident with an even number of vertices including u1 and u4. Up
to symmetry, δ is incident with {u1, u4}, {u1, u2, u3, u4}, {u1, u3, u4, u5},
{u1, u2, u3, u4, u5, u6}, or {u1, u2, u4, u6}. First we assume that δ is incident
with {u1, u4}. Then M∗ is isomorphic to D3. Moreover, N∗ = M∗/a\δ,
and by relabelling 1, 5,−1,−2,−3,−4, γ, a, δ as 4, 2, 5, 6, 3, 1, a, c, b, respec-
tively, we see that (4) holds for M∗ and N∗. Therefore we assume that
δ is incident with {u1, u2, u3, u4}, {u1, u3, u4, u5}, {u1, u2, u3, u4, u5, u6}, or
{u1, u2, u4, u6} In the first case, M∗/a is internally 4-connected, a contradic-
tion. In the second and third cases, M∗\{−3} is internally 4-connected and
M∗\3 is internally 4-connected, respectively. In the last case, {2, 4, a, δ} is
a quad in M , which contradicts the fact that M is internally 4-connected.
This completes the analysis in the case that M ′ = Ma. Henceforth we will
assume that M has no minor isomorphic to Ma.

We assume that M ′ is isomorphic to Mb, which may be represented as
graft (H, γ), where H is obtained from G by adding edge b = v2v4. Sup-
pose M is an extension of M ′. Since {b, 5,−3,−4} is a 4-fan of Mb and
M is internally 4-connected, δ may be represented as an edge or hyper-
edge incident with an even number of vertices of H including v3. Since
M\b is not internally 4-connected, δ is in the closure of a triad of N
that is not a triad of Mb. Up to symmetry, this triad is {−1,−3, γ} or
{3,−2,−3} and, up to symmetry, δ is incident with {v3, v5}, {v2, v3, v6, v7},
{v2, v3, v4, v5, v6, v7}, {v1, v3, v4, v6}, {v1, v3, v4, v5, v6, v7}, or {v3, v4, v5, v7}.
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Then, respectively, M/3, M/{−1}, M/4, M/1, or M/1 is internally 4-
connected, or {δ,−1,−4, 2} is a 4-fan of M . In any case we have a contradic-
tion, so we assume that M∗ is an extension of M∗

b , which has graft represen-
tation (H ′, 4), as shown in Figure 11. As M is internally 4-connected, δ is in-
cident with an even number of vertices of H ′ including u1. Up to symmetry,
keeping in mind that δ is parallel with another element in M∗/b, we know
that δ is incident with {u1, u6}, {u1, u4}, {u1, u2, u3, u5}, {u1, u3, u4, u5},
{u1, u2, u4, u6}, {u1, u4, u5, u6}, {u1, u2, u5, u6}, or {u1, u3, u5, u6}. Then,
respectively, Ma is a minor of M∗\1, or M∗\1 is internally 4-connected, or
{5,−3, b, δ} is a quad of M , or M∗\3 is internally 4-connected, or M∗\1 is
internally 4-connected, or M∗\2 is internally 4-connected, or M∗\{−1} is
internally 4-connected, or M∗\1 is internally 4-connected; all contradictions.
Evidently, M has no minor isomorphic to Mb.
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b b
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bC

u1
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u3 u4

u5

u6

1

2

3

b5

γ

−1
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−3 −4

Figure 11. Graft representation (H ′, 4) of M∗
b , where 4 is

incident with coloured vertices.

Suppose M ′ is isomorphic to Mc, which may be represented as graft
(G, {γ, c}), where c is incident with {v2, v3, v4, v7}. Assume M is an ex-
tension of M ′. Since {5,−3,−4, c} is a quad of Mc and M is internally
4-connected, δ may be represented as an edge or hyperedge incident with
an even number of vertices of G including v3, but δ does not have the
same incidences as c. Since M\c is not internally 4-connected, δ is in
the closure of a triad of N that is not a triad of Mc. Up to symmetry,
this triad is {2, 5, γ}, {1, 4, 5}, or {2,−1,−4}. Since {1, 4, 5} is isomorphic
to {5,−3,−4}, we do not need to consider the case that δ is in a trian-
gle with two elements in {1, 4, 5}, as such an extension is isomorphic to
Ma or Mb. Thus, up to symmetry, δ is incident with {v1, v2, v3, v5, v6, v7},
{v3, v4, v6, v7}, {v1, v2, v3, v4, v6, v7}, or {v1, v2, v3, v4, v5, v7}. Then, respec-
tively, M/4, M/2, M/2, or M/2 is internally 4-connected, a contradiction.
Suppose then that M∗ is an extension of M∗

c , which has graft representation
(H ′, {5,−4}), as shown in Figure 12. We know that M\c has δ in a series
pair. Up to symmetry, δ is in series with −1, −2, γ, −3, −4, 2, or 4. As M
is internally 4-connected, δ is incident with an even number of vertices of
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H ′ including u1. Up to symmetry, we know that δ is incident with {u1, u3},
{u1, u6}, {u1, u2, u3, u4}, {u1, u2, u3, u6}, {u1, u2, u4, u5}, {u1, u2, u4, u6}, or
{u1, u2, u5, u6}. Then, respectively, M∗\{−3}, M∗\{−4}, M∗\2, M∗\4,
M∗\2, M∗\2, or M∗\4 is internally 4-connected, a contradiction. Therefore
we can assume that M has no minor isomorphic to Mc.

rS
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rSrS
b

b b

bb
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u2 u3

u4
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34
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γ
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−2
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Figure 12. Hypergraph representation (H ′, {5,−4}) of M∗
c ,

where 5 is incident with coloured vertices and −4 is incident
with boxed vertices.

Suppose M ′ is isomorphic to Md, which may be represented as graft
(H, γ), where H is obtained from G by adding edge d = v3v5. Suppose M is
an extension of M ′. Since {d,−3,−1, γ} is a 4-fan of Md and M is internally
4-connected, δ may be represented as an edge or hyperedge incident with
an even number of vertices of H including v4, but δ does not have the
same incidences as γ. Since M\d is not internally 4-connected, δ is in the
closure of a triad of N that is not a triad of Md. We assume that M has
no minor isomorphic to Ma, Mb, or Mc, thus the triad contains γ and is, up
to symmetry, {2, 5, γ} or {−1,−3, γ}. Since these are both triads of Md, by
Lemma 2.7, M is not internally 4-connected, a contradiction. Suppose then
that M∗ is an extension of M∗

d , which has graft representation (H ′, {5,−3}),
as shown in Figure 13. We know that M\d has δ in a series pair. Up to
symmetry, δ is in series with 5, 4, −3, −4, or γ in M\d. As M is internally
4-connected, by Lemma 2.7, δ is not in the closure of triad {−2,−4, d} or
triad {−1,−3, d} of M∗

d , so δ is not parallel with −3,−4, or γ in M∗/d.
Evidently, δ is parallel with 5, 4, 2, or −1 in M∗/d, so δ is incident with
{u1, u2, u3, u4, u5, u6}, {u3, u4, u5, u6}, or {u1, u4, u5, u6} in H. Then M∗\2
is internally 4-connected, a contradiction. Therefore we can assume that M
has no minor isomorphic to Md.

Suppose M ′ is isomorphic to Me, which may be represented as graft
(G, {γ, e}), where e is incident with {v2, v3, v6, v7}. Suppose M is an ex-
tension of M ′. Since {e,−3, γ,−1} is a 4-fan of Me and M is internally
4-connected, δ may be represented as an edge or hyperedge incident with
an even number of vertices of G including v4, but δ does not have the same
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Figure 13. Hypergraph representation (H ′, {5,−3}) of M∗
d ,

where 5 is incident with coloured vertices and −3 is incident
with boxed vertices.

incidences as γ. Since M\e is not internally 4-connected, δ is in the closure
of a triad of N that is not a triad of Me. We assume that M has no minor
isomorphic to Ma, Mb, Mc, or Md, thus the triad contains γ and is, up to
symmetry, {2, 5, γ} or {1, 3, γ}. Since M ′ also has a graft representation
obtained from (G, {γ, e}) by relabeling the edges of the cycle v1v2v3v4v5v6v1
in G as 5, 2, −1, −3, 3, and 1, respectively, and changing the incidences of
e to {v2, v5, v6, v7}, we see that these two triads are actually isomorphic to
one another, thus we restrict our attention to {2, 5, γ}. Now, δ is not the
edge v1v3, as M\e is not isomorphic to Md. By combining these restric-
tions, up to symmetry, δ is incident with {v1, v4, v6, v7}, {v3, v4, v6, v7}, or
{v1, v2, v3, v4, v6, v7}. Then M\γ, M/2, or M/2 is internally 4-connected,
respectively. Therefore we assume that M∗ is an extension of M∗

e , which
has graft representation (H ′, {5,−3}), as shown in Figure 14. We know
that M∗/e has δ in a parallel pair. Up to symmetry, δ is parallel with −3,
γ, 1, 4, 2, −4, or 5 in M∗/e. As M is internally 4-connected, Lemma 2.7
implies that δ is not in the closure of triad {−3, γ, e}, so δ is not parallel
with −3 or γ in M∗/d. Evidently, δ is parallel with 1, 4, 2, −4, or 5 in
M∗/d, but M contains no parallel pair, so M∗\1, M∗\1, M∗\2, M∗\{−1},
or M∗\2 is internally 4-connected, a contradiction. Evidently, M has no
minor isomorphic to Me.

Suppose M ′ is isomorphic to Mf , which may be represented as graft
(G, {γ, f}), where f is incident with {v2, v3, v4, v5, v6, v7}. Suppose M is
an extension of M ′. Since {−1,−3, γ, f} is a quad of Mf and M is inter-
nally 4-connected, δ may be represented as an edge or hyperedge incident
with an even number of vertices of G including v4, but δ does not have the
same incidences as γ or f . Since M\e is not internally 4-connected, δ is
in the closure of a triad of N that is not a triad of Mf . We assume that
M has no minor isomorphic to a matroid in {Ma,Mb,Mc,Md,Me}, thus,
up to symmetry, δ is in a quad with {2, 5, γ} in M\f . Then δ is incident
with {v1, v2, v3, v4, v6, v7} in G, and M\1 is internally 4-connected, a con-
tradiction. Suppose then that M∗ is an extension of M∗

f , which has graft
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Figure 14. Hypergraph representation (H ′, {5,−3}) of M∗
e ,

where 5 is incident with coloured vertices and −3 is incident
with boxed vertices.

representation (H ′, γ), as shown in Figure 15. This representation of M∗
f

displays the symmetries of the matroid, including the symmetry between f
and −1, so we know that M∗/f has δ in a parallel pair and M∗/{−1} has δ
in a parallel pair, or else contracting one of these two elements in M∗ is in-
ternally 4-connected. Up to symmetry, δ is incident with {u3, u5}, {u4, u6},
{u1, u3, u5}, or {u3, u4, u5, u6} andM∗\{−4} is internally 4-connected, or M
has {f,−1,−3, γ} as a quad, orM∗\4 is internally 4-connected, orM∗\{−1}
is internally 4-connected, respectively, contradicting either the fact that M
is internally 4-connected, or the assumption that M has no internally 4-
connected single-element deletion or contraction. �

Now Theorem 1.2 follows without difficulty from (1.2.1), (1.2.2), (1.2.3),
and (1.2.4). �
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Figure 15. Graft representation (H ′, γ) of M∗
f .

4. Constructions

In this section we consider what happens when we reverse the operations
that produce N from M in statements (1)–(7) of Theorem 1.2. In each case
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we assume that N is an internally 4-connected binary matroid, and that
M is a binary matroid produced from N by reversing the operations. We
arrive at a set of necessary and sufficient conditions for M to be internally 4-
connected. We start with the operations that involve adding three elements.
The next lemma concerns the operation in case (3).

Lemma 4.1. Let N be a binary internally 4-connected matroid having a 4-
cocircuit {2, 6, 7, 8} and triangles {6, 8, 10}, {7, 8, 9}, {1, 2, 7}, and {2, 6, 11}.
Let M be the binary matroid that is obtained by adding the element 5 in
series with 2, and then extending by the elements 3 and 4 so that {3, 5, 7}
and {4, 5, 6} are triangles. Then M is internally 4-connected.

Proof. The construction of M ensures that it is connected. Moreover, M
has {5, 6, 7, 8} and {2, 3, 4, 5} as cocircuits and has {1, 2, 3} and {2, 4, 11} as
circuits. We show next that M is 3-connected. Assume that M contains a
parallel pair. This parallel pair must contain 3 or 4. We consider the first
case, as the second yields to an identical argument. Let {3, x} be a circuit of
M . By orthogonality with the cocircuit {2, 3, 4, 5}, x is 2, 4, or 5. It cannot
be 2 or 5, since {2, 3} and {3, 5} are contained in triangles. Therefore {3, 4}
is a circuit of M . It is also a circuit of M/5, and so are {4, 6} and {3, 7}.
Thus {6, 7} is a circuit in M/5. Since N is simple, this means that {5, 6, 7}
is a triangle of M that meets the cocircuit {5, 6, 7, 8} in three elements. This
is impossible, so M is simple.

Assume that M contains a series pair. This pair must contain 5. There-
fore it meets one of the triangles {4, 5, 6} and {3, 5, 7} in a single element,
violating orthogonality.

Let (X,Y ) be a 2-separation of M . Since M is simple and cosimple,
|X|, |Y | ≥ 3. But N is 3-connected, so (X − {3, 4, 5}, Y − {3, 4, 5}) is not
a 2-separation of N . Therefore we can assume that |X| ≤ 4. Since r(X) +
r∗(X) = |X| + 1 ≤ 5, either r(X) ≤ 2 or r∗(X) ≤ 2. In either case, we
see that |X| = 3, as X does not contain a parallel pair or series pair. Then
r(X) and r∗(X) must both be equal to 2, and X must be both a triangle
and a triad. This is impossible, as a circuit and a cocircuit of M meet in an
even number of elements. Thus M is 3-connected.

To complete the proof, we need to show that M has no (4, 3)-violators.
Assume that M does have a (4, 3)-violator (X,Y ). We show next that

4.1.1. if |{3, 5, 7} ∩ X| ≥ 2, then (X ∪ {3, 5, 7}, Y − {3, 5, 7}) is a (4, 3)-
violator.

Clearly (X ∪ {3, 5, 7}, Y − {3, 5, 7}) ∼= (X,Y ). Thus (4.1.1) holds unless
Y − {3, 5, 7} is a triad, hence Y itself is a 4-fan. Consider the exceptional
case. Then Y has a fan ordering (g1, g2, g3, e) where {g2, g3, e} is a triangle
and e is 3, 5, or 7. Suppose e = 7. Then the cocircuit {5, 6, 7, 8} implies that
{g2, g3} meets {6, 8}. Thus the triad {g1, g2, g3} meets {6, 8} but avoids 5,
thus it is a triad of M/5. As N has no series pair or coloop, it is also a
triad of M/5\3, 4, which is N . Hence 6 or 8 is in a triad of N , so N has a



INTERNALLY 4-CONNECTED BINARY MATROIDS 27

4-fan; a contradiction. We deduce that e ̸= 7. Suppose e is 3 or 5. Then the
cocircuit {2, 3, 4, 5} implies that {g1, g2, g3} meets {2, 4} and avoids {3, 5}.
Thus either N has a 2-cocircuit, or N has a triad containing 2. Neither is
possible. Hence e ̸∈ {3, 5}. We conclude that (4.1.1) holds.

We show next that

4.1.2. M has no (4, 3)-violator (X,Y ) with {3, 4, 5, 6, 7} ⊆ X.

Suppose M does have such a (4, 3)-violator. Then (X∪8, Y −8) ∼= (X,Y ),
so we may assume that 8 ∈ X unless Y is a 4-fan having a triad T ∗ containing
8. In the exceptional case, as 5 ∈ X, it follows that 8 is in both a triangle
and a triad of N ; a contradiction. Thus we may indeed assume that 8 ∈ X.
Then X ⊇ {3, 4, 5, 6, 7, 8}. Thus (X−{3, 4, 5}, Y ) is a 3-separation of N . As
{6, 7, 8} is neither a triangle nor a triad of N , it follows that |X−{3, 4, 5}| ≥
4. Hence we have a (4, 3)-violator of N ; a contradiction. Therefore (4.1.2)
holds.

By (4.1.1), we may assume that M has a (4, 3)-violator (X,Y ) with
{3, 5, 7} ⊆ X. By (4.1.1) and the symmetry between {3, 5, 7} and {4, 5, 6},
if |X ∩ {4, 5, 6}| ≥ 2, then (X ∪ {4, 6}, Y − {4, 6}) is a (4, 3)-violator of M .
This contradicts (4.1.2), so {6, 4} ⊆ Y .

Suppose 2 ∈ X. Then (X ∪ 4, Y − 4) ∼= (X,Y ) and using (4.1.1) and
(4.1.2) we get a contradiction unless 4 is in a triad contained in Y . This
exceptional case does not arise, otherwise N has a 2-cocircuit. Hence 2 ∈ Y .

Now (X,Y ) ∼= (X − 5, Y ∪ 5) ∼= (X − 5− 3, Y ∪ 5∪ 3). As M has no triad
containing 3 but avoiding 5, since M/5\3, 4 has no series pair or coloop, it
follows that both (X−5, Y ∪5) and (X−5−3, Y ∪5∪3) are (4, 3)-violators
of M . Using (4.1.1) and (4.1.2), we now get a contradiction. We conclude
that M is internally 4-connected. �

The next lemma considers the case that M∗ is obtained from N∗ by
reversing the operations in (4)(ii).

Lemma 4.2. Let N be a binary internally 4-connected matroid. Let
{1, 2, 3}, {4, 5, 6}, and {7, 8, 9} be triads of N and {1, 2, 4, 5, 7, 8} be a 6-
circuit. Let M be the binary matroid that is obtained from N by adding the
element a as a coloop, and then coextending by the elements b and c so that
{a, b, 7, 8} and {a, c, 4, 5} are circuits. Then M is internally 4-connected if
and only if

(A) there is no 4-circuit of N containing a pair in {{1, 2}, {4, 5}, {7, 8}}
and an element in {3, 6, 9}; and

(B) there is no triad {x, y, z} of N such that each of {y, z, 1, 2},
{x, z, 4, 5}, and {x, y, 7, 8} is a circuit.

Proof. The construction of M guarantees that it is simple, connected and
has {a, b, c} as a triad. Observe that {b, c, 1, 2} is a circuit of M since it
is the symmetric difference of the circuits {1, 2, 4, 5, 7, 8}, {a, b, 7, 8}, and
{a, c, 4, 5}.
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First we prove the “only if” direction. Assume that M is internally 4-
connected but that either (A) or (B) fails. We start by assuming that
there is a 4-circuit of N containing 1, 2, and 6. The other cases are sym-
metric. By orthogonality with the triad {4, 5, 6}, the circuit containing
{1, 2, 6} contains 4 or 5. We will assume that {1, 2, 4, 6} is a circuit of
N . Then {1, 2, 4, 6} △ {1, 2, b, c} = {4, 6, b, c} is a circuit of M , and so is
{1, 2, 4, 6}△{7, 8, a, b}△{1, 2, 4, 5, 7, 8} = {5, 6, a, b}. Thus {4, 5, 6, a, b, c} is
spanned by {4, 5, 6, b} in M . Since it is spanned by {4, 5, a, b} in M∗, it fol-
lows that λM ({4, 5, 6, a, b, c}) ≤ 4+4− 6 = 2. This leads to a (4, 3)-violator
in M , contradicting our assumption that M is internally 4-connected. Sym-
metric arguments show that (A) must hold.

Therefore (B) fails. Then it is easy to see that {a, b, c, x, y, z} is spanned
by {a, b, c, x} in M and by {a, b, x, y} in M∗. Thus we obtain an identical
contradiction. This completes the proof of the “only if” direction.

For the “if” direction, we assume that (A) and (B) hold. BecauseM\a, b, c
is 3-connected and M has {a, b, c} as a triad, M has no 2-cocircuits. We
show next that M is 3-connected. Let (X,Y ) be a 2-separation of M . Then
(X,Y ) is non-minimal. Without loss of generality, |X ∩ {a, b, c}| ≥ 2. Thus
(X ∪ {a, b, c}, Y − {a, b, c}) is a non-minimal 2-separation of M . Hence we
may assume that {a, b, c} ⊆ X. Now r(X) + r∗(X) − |X| = 1. Moreover,
|X| ≤ 4 otherwise (X−{a, b, c}, Y ) is a 2-separation of M\a, b, c. If |X| = 3,
then {a, b, c} is a circuit of M contradicting the fact that M is binary. Thus
|X| = 4 and either r(X) or r∗(X) is at most two. Thus X contains a
series or parallel pair, and we have a contradiction. We conclude that M is
3-connected.

Now suppose that (X,Y ) is a (4, 3)-violator of M . Assume first that
|X∩{a, b, c}| = 2. Then (X∪{a, b, c}, Y −{a, b, c}) is a 3-separation of M . If
|Y −{a, b, c}| = 3, then Y is a 4-fan of M and Y −{a, b, c} is a triangle. Thus
Y contains a triad ofM meeting {a, b, c} in a single element. HenceM\a, b, c
has a 2-cocircuit; a contradiction. We conclude that |Y −{a, b, c}| ≥ 4. Thus
we may suppose that X ⊇ {a, b, c}.

If |X| ≥ 7, then (X−{a, b, c}, Y ) is a (4, 3)-violator for N ; a contradiction.
Hence |X| ≤ 6. We show next that

4.2.1. M has no triangle T with |T ∩ {a, b, c}| ≥ 2.

Assume that M has such a triangle. Since {a, b, c} is a cocircuit of M and
M is binary, {a, b, c} is not a triangle. By symmetry, we may assume that T
contains {a, b}. Then T△{a, b, 7, 8} is a triangle of M and hence of N . This
triangle meets the triad {7, 8, 9} of N , so N has a 4-fan; a contradiction.
Thus (4.2.1) holds.

If |X| = 4, then it follows from (4.2.1) that X is a quad of M . This is a
contradiction, as it contains the triad {a, b, c}. Now assume that |X| = 5.
It follows easily from (4.2.1) that X cannot contain a triangle. It is routine
to verify that X must contain a quad, and a single element that is the
coclosure of that quad. Since {a, b, c} is not contained in a quad, we can
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assume without loss of generality that a is the single element in X that is
not in the quad. By taking the symmetric difference of {a, b, c} with X − a,
we see that X − {b, c} is a disjoint union of cocircuits in M . Therefore
X − {a, b, c} contains a cocircuit of N with at most two elements. This
contradiction implies that |X| = 6.

We observe that r(X) + r∗(X) = 8. If r(X) = 3, then M |X ∼= M(K4)
and so M has a triangle containing at least two elements of {a, b, c}; a
contradiction to (4.2.1). We deduce that r(X) ≥ 4. We show next that

4.2.2. r(X) = 4

If not, then r(X) = 5, so r∗(X) = 3. Then M∗|X ∼= M(K4). As {a, b, c}
is a triangle of M∗|X, there is a triad of M∗ contained in X that meets
{a, b, c} in two elements. Therefore M has a triangle contained in X that
meets {a, b, c} in two elements. This contradiction to (4.2.1) shows that
(4.2.2) holds.

Let X − {a, b, c} = {x, y, z}. Next we show that

4.2.3. {x, y, z} is a triad of M\a, b, c.

As ({x, y, z}, Y ) is a 3-separation of M\a, b, c, it follows that {x, y, z} is
a triangle or a triad of M\a, b, c. Assume the former. As r(X) = 4, there is
a circuit C of M |X other than {x, y, z}. As M is binary, |C ∩ {a, b, c}| = 2.
Thus, by (4.2.1), |C| = 4, so |C ∩ {x, y, z}| = 2. Then C △ {x, y, z} is a
triangle of M containing two of a, b, and c; a contradiction to (4.2.1). We
conclude that (4.2.3) holds.

Since {a, b, c} is a triad of M and {x, y, z} is a triad of M\a, b, c, by sym-
metry and using symmetric difference, we may assume that either {x, y, z}
or {x, y, z, a} is a cocircuit of M .

4.2.4. {x, y, z} is a cocircuit of M .

Assume not. Then we can assume that {x, y, z, a} is a cocircuit of M . As
r(X) = 4, the matroid M |X has at least two circuits C1 and C2. Clearly
|Ci ∩ {a, b, c}| = 2 for each i. If C1 ∩ {a, b, c} = C2 ∩ {a, b, c}, then C1 △
C2 is the disjoint union of circuits contained in {x, y, z}. As M is binary,
and {x, y, z, a} is a cocircuit, each circuit in {x, y, z} contains exactly two
elements, soM contains a parallel pair; a contradiction. Thus C1∩{a, b, c} ̸=
C2∩{a, b, c}. Now |C1△C2| ≤ 5, so C1△C2 is a circuit of M |X. Moreover,
|(C1△C2)∩{a, b, c}| = 2. The circuits C1, C2, and C1△C2 imply that M |X
has circuits Dab and Dac meeting {a, b, c} in {a, b} and {a, c}, respectively.
Each of these circuits has even intersection with {x, y, z, a}. Since |Dab △
Dac| ≥ 3, it follows that |Dab| or |Dac| is 3. This leads to an immediate
contradiction with (4.2.1). We conclude that (4.2.4) holds.

Since {a, b, c} and {x, y, z} are triads of M and r(X) = 4, after a possible
relabelling, we deduce that {a, b, x, y}, {a, c, x, z}, and {b, c, y, z} are circuits
of M . We also know that {a, b, 7, 8} is a circuit of M . Thus either {x, y} =
{7, 8} or {x, y} ∩ {7, 8} = ∅. In the first case, since {x, y, z} and {7, 8, 9}
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are triads of M , we deduce that {x, y, z} = {7, 8, 9} and z = 9. Then
{a, c, 4, 5} △ {a, c, x, z}, which equals {4, 5, x, 9} is a circuit of M\{a, b, c};
a contradiction to (A). We deduce that {x, y} ∩ {7, 8} = ∅. By symmetry,
{x, z} ∩ {4, 5} = ∅ and {y, z} ∩ {1, 2} = ∅. Thus {x, y, 7, 8}, {x, z, 4, 5}, and
{y, z, 1, 2} are circuits of N , contradicting (B). �

The next lemma concerns the case when M is constructed from N using
the reverse of the operations in case (6).

Lemma 4.3. Let N be an internally 4-connected binary matroid with tri-
angles {1, 2, 3}, {2, 5, 7}, and {4, 5, 6} and cocircuits {2, 3, 4, 5}, {a, 1, 2, 7},
and {c, 5, 6, 7}. Let M be the binary matroid obtained from N by adding 8
and 9 in series with a and c, respectively, and then extending by the element
b so that {b, 7, 8, 9} is a circuit. Then M is internally 4-connected if and
only if {a, c, 7} is not a triangle of N .

Proof. We first prove the “only if” direction. Assume that {a, c, 7} is a
triangle of N . Then there is a circuit C of M such that {a, c, 7} ⊆ C ⊆
{a, c, 7, 8, 9}. By orthogonality with the triads {a, b, 8} and {b, c, 9}, we see
that {a, c, 7, 8, 9} is a circuit of M . Taking the symmetric difference with
the circuit {b, 7, 8, 9}, we deduce that {a, b, c} is a disjoint union of circuits
in M . By again using orthogonality with {a, b, 8} and {b, c, 9}, we see that
{a, b, c} is a triangle of M . Therefore {8, a, b, c} is a 4-fan, and M is not
internally 4-connected.

To prove the “if” direction, we assume that {a, c, 7} is not a triangle of
N . Certainly M is connected and has {a, b, 8} and {b, c, 9} as triads. If
M has a parallel pair, then it must contain b, but neither 8 nor 9. Then
orthogonality with either {a, b, 8} or {b, c, 9} is violated. So M is simple. If
M contains a series pair, it must contain 8 or 9, but it cannot contain b.
Orthogonality with the circuits {b, 7, 8, 9} and {2, 5, 7} means that {8, 9} is
a series pair of M . Then {8, 9}, {a, 8}, and {c, 9} are series pairs of M\b,
so {a, c} is a series pair of N . This contradiction shows M is simple and
cosimple.

Let (X,Y ) be a 2-separation of M . Then |X|, |Y | ≥ 3. Without loss of
generality, two of 8, a, and b are in X, so we may assume that all three are.
Let Z = {b, 8, 9}. If 9 ∈ X, then ((X ∪ c) − Z, Y − c) is a 2-separation of
N . Therefore 9 ∈ Y . Now (X − Z, Y − Z) is a 2-separation of N unless
|X−Z| = 1. In the exceptional case, X = {a, b, 8} and r(X)+r∗(X) = 4. As
r∗(X) = 2, we deduce that r(X) = 2, so X contains a circuit C. As {b, c, 9}
is a cocircuit, C does not contain b. Then C = {8, a}; a contradiction. We
conclude that M is 3-connected.

We now show that

4.3.1. none of a, b, c, 8, and 9 is in a triangle of M .

Take x ∈ {a, b, c, 8, 9} and suppose that T is a triangle of M containing x.
As N is simple, T is not a triangle of M\b. Thus b ∈ T . As M is binary with
the cocircuits {a, b, 8} and {b, c, 9}, this triangle meets {a, 8} and {c, 9}. If 8
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or 9 is in T , then, by orthogonality, T meets {1, 2, 7} or {5, 6, 7}, so |T | ≥ 4;
a contradiction. Thus T = {a, b, c}. Then {a, b, c} △ {b, 7, 8, 9} is a circuit,
{a, c, 7, 8, 9}, of M , so {a, c, 7} contains a circuit of N , contradicting our
assumption. Thus (4.3.1) holds.

Now suppose that (X,Y ) is a (4, 3)-violator of M . We show first that

4.3.2. if (X,Y ) is a (4, 3)-violator of M , then neither X nor Y contains
{b, 8, 9}.

Assume that {b, 8, 9} ⊆ X. Then (X,Y ) ∼= (X∪7, Y −7). If (X∪7, Y −7)
is not a (4, 3)-violator of M , then Y is a 4-fan of M . As |E(N)| ≥ 9, this
implies that (X−{b, 8, 9}, Y ) is a (4, 3)-violator ofN . Therefore (X∪7, Y−7)
is a (4, 3)-violator of M . The same argument shows that (X ∪ {7, a}, Y −
{7, a}), and (X ∪ {7, a, c}, Y − {7, a, c}) are (4, 3)-violators of M . Since

((X − {b, 8, 9}) ∪ {7, a, b}, Y − {7, a, b})

is not a (4, 3)-violator of N , it follows that X = {b, 8, 9}. This contradicts
the fact that (X,Y ) is a (4, 3)-violator of M . Thus (4.3.2) holds.

Let (X,Y ) be a (4, 3)-violator of M . We assume that {8, b} ⊆ X and
9 ∈ Y . Assume that c ∈ X. Then (X,Y ) ∼= (X ∪ 9, Y − 9). It follows from
(4.3.2) that (X ∪ 9, Y − 9) is not a (4, 3)-violator of M . Thus Y is a 4-fan
of M whose triad T ∗ contains 9. By orthogonality with {b, 7, 8, 9}, we have
that 7 ∈ T ∗. Thus T ∗ meets the circuits {2, 5, 7} and

{1, 3, 4, 6, 7} = {1, 2, 3} △ {2, 5, 7} △ {4, 5, 6}

in at least two elements. Therefore T ∗ has at least four elements, a contra-
diction. We deduce that c ∈ Y .

If 7 ∈ X, then, as (4.3.2) implies that (X ∪ 9, Y − 9) is not a (4, 3)-
violator, Y is a 4-fan whose triangle contains 9; a contradiction to (4.3.1).
Thus 7 ∈ Y . Then (X − b, Y ∪ b) is a (4, 3)-violator of M unless X is a
4-fan whose triad contains b. In the exceptional case, by orthogonality with
the circuit {b, 7, 8, 9}, this triad contains 8, so the triangle contained in X
contains 8 or b, contradicting (4.3.1). Thus (X − b, Y ∪ b) is indeed a (4, 3)-
violator of M . Then (X−{b, 8}, Y ∪{b, 8}) is a (4, 3)-violator contradicting
(4.3.2), unless 8 is in the triangle of a 4-fan, contradicting (4.3.1).

From the last paragraph and symmetry, we deduce that neither {8, b} nor
{9, b} is contained in X. It remains to consider the case when {8, 9} ⊆ X
and b ∈ Y . As M has {7, 8, 9, b}, {7, 2, 5}, and {7, 1, 3, 4, 6} as circuits, it
follows by orthogonality that

4.3.3. M has no triad containing 7.

Suppose that a ∈ X. By (4.3.2), (X ∪ b, Y − b) is not a (4, 3)-violator.
Thus Y is a 4-fan with b in its triad T ∗. Then T ∗ meets {7, 8, 9}, so 7 ∈ T ∗,
contradicting (4.3.3). Thus we may assume that a ∈ Y and, by symmetry,
c ∈ Y . Then (X − 8, Y ∪ 8) is a (4, 3)-violator, reducing to a previous case,
unless X is a 4-fan with 8 in its triad. In the exceptional case, this triad
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contains 7 or 9, so, by (4.3.3), the triad contains 9. Thus the triangle of this
fan contains 8 or 9, which contradicts (4.3.1). �

The next lemma corresponds to case (7) in Theorem 1.2.

Lemma 4.4. Let N be a binary internally 4-connected matroid with
{1, 2, 4, 11} as a circuit and {1, 2, 8}, {2, 4, 5}, and {4, 10, 11} as triads. Let
M be the binary matroid obtained from N by extending by the elements 3,
6, and 7, so that {1, 2, 3}, {2, 5, 7}, and {4, 5, 6} are triangles. Then M is
internally 4-connected if and only if the following conditions hold.

(A) N has no triad {8, u, v} such that {2, 5, 8, u} is a circuit; and
(B) N has no triad {10, w, x} such that {4, 5, 10, w} is a circuit.

Proof. Assume that condition (A) fails. It is easy to see, using orthogonality,
that {8, u, v} is a triad of M . Moreover, {7, 8, u} = {2, 5, 7} △ {2, 5, 8, u} is
a triangle of M , so {v, u, 7, 8} is a 4-fan in M . A similar argument shows
that if (B) fails, then {x,w, 6, 10} is a 4-fan in M . This completes the “only
if” direction of the proof.

We assume (A) and (B) hold. Since r(M) = r(N), we observe that M is
3-connected provided M has no parallel pairs. If M has a parallel pair, then
it contains 3, 6, or 7. Consider the case that 3 is in a parallel pair with the
element x. If x = 6, then {1, 2, 6} is a circuit, and by symmetric difference
with {4, 5, 6}, so is {1, 2, 4, 5}. This circuit meets the cocircuit {4, 10, 11}
of N in a single element, so x ̸= 6. Similarly, if x = 7, then {3, 4, 11} =
{1, 2, 3}△{1, 2, 4, 11} and {2, 5, 3} are circuits, so {2, 4, 5, 11} is a circuit ofN
that meets {1, 2, 8} in a single element. Thus x is neither 6 nor 7, so {1, 2, x}
is a triangle of N that meets the triad {2, 4, 5} in a single element. Very
similar arguments show that if 6 or 7 is in in a parallel pair, then {6, 7} must
be a circuit of M . In this case {2, 5, 7} △ {4, 5, 6} = {2, 4, 6, 7} is a disjoint
union of circuits, so {2, 4} contains a circuit of M . This contradiction shows
that M has no parallel pairs, and is therefore 3-connected.

Now let (X,Y ) be a (4, 3)-violator of M . Let Z = {3, 6, 7}. As N is
internally 4-connected, |X−Z| ≤ 3 or |Y −Z| ≤ 3. Assume that |X−Z| ≤ 2.
As |X| ≥ 4, it follows that |X−Z| = 1, 1. Note that r(X)+r∗(X) = |X|+2.
Since M has no parallel pairs, r(X) ≥ 3, so r∗(X) < |X|. Thus X contains a
cocircuit of M . As r(M) = r(N), we deduce that X−Z contains a cocircuit
of N , a contradiction.

We may now assume that |X − Z| = 3. Likewise, |Y − Z| ≥ 3. Hence

2 ≤ r(X − Z) + r(Y − Z)− r(N) ≤ r(X) + r(Y )− r(M) ≤ 2.

Thus r(X−Z) = r(X) and r(Y −Z) = r(Y ). NowX−Z is a triangle or triad
ofN . In the former case, we contradict the fact thatM is binary as r(X) = 2
and |X| ≥ 4. Thus X − Z is a triad T ∗ of N , and 3 = r(X − Z) = r(X).

Assume that X − Z is not a triad in M . Then there is a cocircuit C∗ of
M such that X − Z ⊆ C∗ ⊆ X. As X − Z must be independent in N , it is
independent in M , and therefore spans C∗. Assume that x and y are distinct
elements in C∗ − (X −Z). Since M is simple, (X −Z)∪ x and (X −Z)∪ y
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are circuits of M , or else they contain triangles of M that are contained in
C∗. Thus {x, y} contains a circuit of M , which is impossible. So if X −Z is
not a triad of M , then there is a single element x ∈ Z such that (X−Z)∪x
is a circuit and a cocircuit. But x is contained in a triangle that meets Z in
exactly x. By using orthogonality, and taking the symmetric difference of
this triangle with (X − Z) ∪ x, we see that X − Z spans an element in N .
Thus N has a 4-fan, which is impossible. We deduce from this that X − Z
is a triad of M .

Since |X| ≥ 4, one of 3, 6, and 7 is contained in a triangle T such that
T −Z ⊆ X −Z. By orthogonality between T and the cocircuits {1, 2, 3, 8},
{3, 4, 10, 11}, and {2, 3, 4, 5}, it follows that X−Z must contain at least one
element from {1, 2, 4, 5, 8, 10, 11}. Assume that 2 ∈ X−Z. By orthogonality
between X − Z and the triangles {2, 5, 7} and {1, 2, 3}, we see that X −
Z = {1, 2, 5}. But {1, 2, 8} and {2, 4, 5} are also triads of N , and this
implies that N has a series pair, a contradiction. Therefore 2 /∈ X − Z.
Similarly, if 4 ∈ X −Z, then the triangles {4, 5, 6} and {3, 4, 11} imply that
X −Z = {4, 5, 11}. As {4, 10, 11} and {2, 4, 5} are triads of N , this leads to
an impossible situation.

Therefore 2, 4 /∈ X −Z. If 1 ∈ T , then orthogonality between X −Z and
{1, 2, 3} implies that 2 ∈ X − Z, contradicting our conclusion. Similarly, if
11 ∈ X − Z, then the triangle {3, 4, 11} implies 4 ∈ X − Z. Thus 1, 11 /∈
X − Z. The triangles {2, 5, 7} and {4, 5, 6} lead to the conclusion that
5 /∈ X − Z.

By orthogonality with the cocircuit {2, 3, 4, 5}, we now see that T does
not contain 3. Suppose it contains 6. By orthogonality with the cocircuit
{4, 6, 10, 11}, it must contain 10. Thus 10 is in a triad {10, w, x} of N ,
where {6, 10, w} is a triangle of M . As {6, 10, w} △ {4, 5, 6} = {4, 5, 10, w}
is a circuit of N , we have violated (A). A similar argument shows that if 7
is in T , then there is a triad {8, u, v} and a circuit {2, 7, 8, u} of N . This
completes the proof. �

We now move on to the operations in Theorem 1.2 that involve the re-
moval of two elements. We will make repeated use of the following two
observations.

Lemma 4.5. Let M be a connected binary matroid and N be a 3-connected
minor of M with |E(M) − E(N)| ≤ 2 and |E(N)| ≥ 4. Then M is 3-
connected provided it has no 2-circuit or 2-cocircuit meeting E(M)−E(N).

Proof. Let (X,Y ) be a 2-separation of M . Then (X ∩ E(N), Y ∩ E(N))
is a 2-separation of N provided |X ∩ E(N)|, |Y ∩ E(N)| ≥ 2. But N is
3-connected so, without loss of generality, |X ∩E(N)| ≤ 1. If |X| = 2, then
(X,Y ) is a minimal 2-separation of M and X is a 2-circuit or a 2-cocircuit
of M meeting E(M) − E(N). Thus we may assume that |X ∩ E(N)| = 1
and |X| = 3, so E(M) − E(N) ⊆ X. Hence r(X) + r∗(X) = 4. If r(X)
or r∗(X) is 1, then X contains a 2-circuit or a 2-cocircuit of M meeting
E(M) − E(N). Thus we may assume that r(X) = r∗(X) = 2. Hence X
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contains both a circuit and a cocircuit. Since M is binary, X is not both
a circuit and a cocircuit, so X contains a 2-circuit or a 2-cocircuit of M
meeting E(M)− E(N). �
Lemma 4.6. Let N be a 3-connected matroid with at least four elements
and let e be an element of N . Add an element f in parallel to e and coextend
the resulting matroid by an element g to give a binary matroid M in which
{e, f, g} is a triangle and neither {e, g} nor {f, g} is a cocircuit. Then M
is 3-connected.

Proof. By construction, M is connected. By the last lemma, if M is not
3-connected, then M has a 2-element subset V that is either a circuit or a
cocircuit. Now N = M\f/g and N is simple and cosimple. Thus either V is
a 2-circuit containing f or a 2-cocircuit containing g. As M has {e, f, g} as
a triangle but neither {e, g} nor {f, g} as a cocircuit, the second possibility
does not occur. Thus V is a 2-circuit containing f . Hence V is a 2-circuit
of M/g, so V = {e, f} contradicting the fact that {e, f, g} is a circuit of
M . �

The next lemma concerns the reversal of the operations in (1).

Lemma 4.7. Let N be an internally 4-connected binary matroid with at least
eight elements, such that {1, 2, 4, 5} is a circuit and {1, 5, 7} and {2, 4, 8}
are triads. Let M be the binary matroid obtained from N by extending with
the elements 3 and 6 so that {3, 4, 5} and {2, 4, 6} are triangles. Then M
is internally 4-connected if and only if N has no triad {a, b, c} such that
{1, 2, a, b} or {2, 4, a, b} is a 4-circuit.

Proof. Assume that {a, b, c} is a triad, and {1, 2, a, b} is a 4-circuit in N . It
is easy to see that {a, b, c}∩{1, 2, 3, 4, 5, 6} = ∅, and therefore orthogonality
implies that {a, b, c} is a triad of M . But {1, 2, a, b}△{3, 4, 5}△{1, 2, 4, 5} =
{3, a, b} is a triangle, so {c, a, b, 3} is a 4-fan. Similarly, if {2, 4, a, b} is a
circuit, then {c, a, b, 6} is a 4-fan of M . Therefore the “only if” direction
holds.

Assume that there is no such triad {a, b, c}. By taking symmetric dif-
ferences, we deduce that {1, 2, 3} and {1, 5, 6} are circuits of M . More-
over, by orthogonality, {1, 3, 5, 7} and {2, 3, 4, 8} are cocircuits of M . As
r(M) = r(N), it follows by Lemma 4.5 that M is 3-connected unless 3 or 6
is in a 2-circuit of M . If 3 is in a 2-circuit of M , then this circuit violates
orthogonality with {2, 3, 4, 8} or {1, 3, 5, 7}. If 6 is in a 2-circuit with a, then
{a, 2, 4, 8} is a 4-fan of N , a contradiction. Hence M is indeed 3-connected.

Let (X,Y ) be a (4, 3)-violator of M . Suppose first that {3, 6} ⊆ X.
As (X − {3, 6}, Y ) is not a (4, 3)-violator of N , we have that |X| ≤ 5. If
| fcl(X)| > 5, then there is a subset X ′ such that X ⊆ X ′ ⊆ fcl(X), where
|X ′| = 6, and (X ′, E(M) − X ′) is a (4, 3)-violator of M . As |E(N)| ≥ 8,
this means that (X ′ − {3, 6}, E(M) −X ′) is a (4, 3)-violator of N . As this
is impossible, it follows that | fcl(X)| = 4, 5. By replacing X with fcl(X)
as required, we can assume that X is fully closed. Thus X contains no
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element in {1, 2, 4, 5}, otherwise it contains all of them, and |X| ≥ 6, a
contradiction. Furthermore, neither 3 nor 6 is in a cocircuit that is contained
in X, as this would violate orthogonality with {1, 2, 3} or {2, 4, 6}. As
X is a 4- or 5-element 3-separating set in M and neither 3 nor 6 is in a
cocircuit contained in X, a simple analysis of possible separators shows that
X = {3, a, b, c, 6}, where {3, a, b} and {b, c, 6} are triangles and {a, b, c} is
a triad. Then {3, a, b} △ {1, 2, 3} is a circuit, {1, 2, a, b}, and {a, b, c} is a
triad, contradicting our assumption.

We may now assume that exactly one element in {3, 6} is in X. Let
Z = {3, 6}. As (X − Z, Y − Z) is not a (4, 3)-violator of N , we may as-
sume that |X| = 4 and 3 ∈ X or 6 ∈ X. Then X is a quad or a 4-fan of
M . As N is cosimple, neither 3 nor 6 is in a triad of M . Thus, if X is a
4-fan, then 3 or 6 in its triangle, T , but not its triad, T ∗. A striaghtfor-
ward orthogonality argument shows that T ∗ does not contain any element in
{1, 2, 3, 4, 5, 6}. Therefore the symmetric difference of T with either {1, 2, 3}
or {2, 4, 6}, gives a 4-element circuit, which, together with T ∗, contradicts
the assumptions of our lemma. We deduce that X is a quad. If X contains
3, then, by orthogonality, X meets {1, 2} and {4, 5}, thus fcl(X) contains
{1, 2, 3, 4, 5, 6}, and ({1, 2, 4, 5}, E(N)−{1, 2, 4, 5}) is a (4, 3)-violator in N .
If X contains 6, then, by orthogonality, X meets {2, 4} and {1, 5}, thus it
has two elements in each of {2, 3, 4, 8} and {1, 3, 5, 7}, so |X| exceeds four,
a contradiction. �

The next lemma deals with the case that (2) holds.

Lemma 4.8. Let N be an internally 4-connected binary matroid with at
least eight elements that has {3, 5, 7} and {2, 3, 6} as triads. Let M be the
binary matroid obtained from N by extending with the elements 1 and 4 so
that {1, 2, 3} and {3, 4, 5} are triangles. Then M is internally 4-connected
if and only if N has no triad {a, b, c} such that {3, 2, a, b} or {3, 5, a, b} is a
circuit.

Proof. It is easy to verify that if N has a triad {a, b, c}, as in the statement
of the lemma, then {c, a, b, 1} or {c, a, b, 4} is a 4-fan. To prove the “if”
direction, we assume that N has no such fan.

By orthogonality, {1, 3, 5, 7} and {2, 3, 4, 6} are cocircuits of M . Suppose
1 is in a 2-circuit of M . Then this circuit is {1, 3}, {1, 5}, or {1, 7}. The first
possibility does not occur by orthogonality with {2, 3, 4, 6}. The second and
third do not occur, or else N has {6, 2, 3, 5} or {6, 2, 3, 7} as a 4-fan. We
conclude that M has no 2-circuit containing 1. A similar argument shows
that 4 is not in any parallel pair. Therefore Lemma 4.5 implies that M is
3-connected.

Let (X,Y ) be a (4, 3)-violator of M and let Z be {1, 4}. We first assume
that {1, 4} ⊆ X. As (X − Z, Y ) is not a (4, 3)-violator of N , it follows that
|X| = 4, 5. If | fcl(X)| > 5, then there is a set X ′ such that X ⊆ X ′ ⊆
fcl(X), where |X ′| = 6 and (X ′, E(M) − X ′) is a 3-separation of M . As
|E(N)| ≥ 8, it follows that (X ′ − Z,E(M) − X ′) is a (4, 3)-violator of N ,
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which is impossible. Therefore | fcl(X)| = 4, 5, and by replacing X with
fcl(X) as necessary, we assume that X is fully closed. If 2, 3, or 5 is in
X, then X contains {1, 2, 3, 4, 5, 6, 7}; a contradiction. Thus {2, 3, 5} ⊆ Y ,
and therefore Z ⊆ clM (Y ). If r(X − Z) < r(X), then r(X − Z) + r(Y ∪
Z)− r(M) < r(X) + r(Y )− r(M) = 2, so (X − Z, Y ∪ Z) is a 2-separation
of M . Therefore r(X − Z) = r(X). This implies that |X − Z| > 2, since
X cannot not have rank 2 in M , as M is simple. Therefore |X − Z| = 3,
and as (X − Z, Y ∪ Z) is a 3-separation of M , we see that X − Z is a triad
of M . As X − Z spans 1 and 4 in M , orthogonality tells us that there
are triangles contained in (X − Z) ∪ 1 and (X − Z) ∪ 4 that contain 1 and
4 respectively. Orthogonality with the cocircuits {1, 3, 5, 7} and {2, 3, 4, 6}
implies that X − Z contains 6 and 7. But neither {1, 6, 7} nor {4, 6, 7} is a
triangle in M , by orthogonality with the same cocircuits. Therefore, if x is
the element in X − (Z ∪ {6, 7}), then {1, 6, x} or {1, 7, x} is a triangle. In
the first case, we have a contradiction to orthogonality with {2, 3, 4, 6}. In
the second, {1, 7, x}△ {1, 2, 3} = {2, 3, 7, x} is a circuit of N . As {6, 7, x} is
a triad, we have contradicted the hypotheses of the lemma.

Now we can assume that if (X,Y ) is a (4, 3)-violator of M , then neither
side of the separation contains {1, 4}. Let (X,Y ) be a (4, 3)-violator of
M , and assume that 1 ∈ X and 4 ∈ Y . As (X − Z, Y − Z) is not a
(4, 3)-violator of N , either |X| = 4 or |Y | = 4. By symmetry, we can
assume the former. Assume that X ̸= fcl(X). Let X ′ ⊆ fcl(X) be such
that |X ′| = 5, and (X ′, E(M) −X ′) is a 3-separation in M . As |E(M)| ≥
10, it is certainly a (4, 3)-violator of M . Therefore 4 /∈ X ′, by our earlier
conclusion. Then (X ′−1, E(M)− (X ′∪4)) is a (4, 3)-violator of N . As this
is impossible, it follows that X is fully closed. If 1 is in a cocircuit in X,
then this cocircuit contains 2 or 3. As X is closed, X contains the triangle
{1, 2, 3}. Thus X is a 4-fan in M with {1, 2, 3} as its triangle and {2, 3, c}
as its triad. The triangle {3, 4, 5} implies that c ∈ {4, 5}. But 4 ∈ Y , so
c = 5. Hence N has {2, 3, 5} and {2, 3, 6} as cocircuits, and hence has a
series pair. This contradiction shows 1 is not in a cocircuit in X, thus X is
4-fan {1, x1, x2, x3}, where {1, x1, x2} is a triangle. By orthogonality with
the cocircuit {1, 3, 5, 7}, without loss of generality, x1 is in {3, 5, 7}. If x1 is
3 or 5, then, by orthogonality of {x1, x2, x3} with triangle {3, 4, 5} and the
fact that X is closed, {3, 4, 5} ⊆ X, so {3, 4, 5} is a triad and a triangle, a
contradiction. Evidently, {1, 7, x2, x3} is a 4-fan, so {1, 7, x2} △ {1, 2, 3} is
4-circuit {2, 3, 7, x2} and {7, x2, x3} is a triad, contradicting the assumption
of the lemma. �

Next we consider the case that (4)(i) holds in Theorem 1.2.

Lemma 4.9. Let N be an internally 4-connected binary matroid with at least
eight elements and with {1, 2, 3} and {4, 5, 6} as triangles and {1, 2, a, 4, 5}
as a 5-cocircuit. Let M be the binary matroid obtained from N by adding
the element b in parallel to a, and then coextending by the element c so that
{1, 2, b, c} is a cocircuit. Then M is internally 4-connected.
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Proof. By construction and orthogonality, M is connected, and
{1, 2, 3}, {4, 5, 6}, and {a, b, c} are triangles. Moreover, orthogonality tells
us that {1, 2, 4, 5, a, b} is a cocircuit of M , so {4, 5, a, c} = {1, 2, 4, 5, a, b} △
{1, 2, b, c} is a disjoint union of cocircuits in M . The only 2-cocircuits in M
must contain c, and M has no coloops, so {4, 5, a, c} is a cocircuit of M . As
neither {a, c} nor {b, c} is a cocircuit of M , it follows, by Lemma 4.6, that
M is 3-connected. We show first that

4.9.1. no element in {a, b, c} is in a triad of M .

Suppose there is a triad T ∗ that meets {a, b, c}. Then |T ∗ ∩ {a, b, c}| =
2. As N = M/c\b is cosimple, c ∈ T ∗. Then, for some C∗ ∈
{{1, 2, b, c}, {a, c, 4, 5}}, we see that T ∗ △ C∗ is a triad of N containing
1, 2, 4, or 5, so N contains a 4-fan, a contradiction. Thus (4.9.1) holds.

Let (X,Y ) be a (4, 3)-violator of M . Suppose that {b, c} ⊆ X. As fcl(X)
contains no set X ′ such that (X ′, E(N) − X ′) is a (4, 3)-violator of N , we
may assume that X = fcl(X) and that |X| = 4 or |X| = 5. Thus a ∈ X. By
(4.9.1), none of a, b, or c is in a triad. Hence X is not a fan so X consists of
a quad Q and an element w in its closure where {a, b, c} ⊆ Q ∪ w and w ∈
{a, b, c}. As Q ∪ w is fully closed and does not contain {1, 2, 3} or {4, 5, 6},
by orthogonality, it must avoid both these triangles. Since {a, b, c} and
(Q−{a, b, c})∪w are both triangles, it follows that w ̸= c, by orthogonality
with the cocircuits {1, 2, b, c} and {4, 5, a, c}. But Q must meet each of the
cocircuits {1, 2, b, c} and {4, 5, a, c} in at least two elements, so Q contains
{a, b, c}; a contradiction.

We may now assume that no (4, 3)-violator of M has b and c on the same
side. Let (X,Y ) be a (4, 3)-violator of M where b ∈ X and c ∈ Y . If a ∈ X,
then (X ∪ c, Y − c) is a 3-separation of M , but not a (4, 3)-violator, while
if a ∈ Y , then (X − b, Y ∪ b) is a 3-separation but not a (4, 3)-violator. We
deduce that M has a 4-fan F meeting {a, b, c} such that F ∩{a, b, c} contains
a single element z, and z is either b or c. By z ̸= c, for otherwise N = M/c\b
contains a parallel pair. Thus z = b and the triangle in F must contain 1 or
2 by orthogonality with {1, 2, b, c}. Now the triangle {a, b, c} means that b
is not in cl∗M (F − b). Therefore F − b is a triad of N that meets the triangle
{1, 2, 3}. Hence N has a 4-fan; a contradiction. �

The next lemma corresponds to case (5)(i).

Lemma 4.10. Let N be an internally 4-connected binary matroid with
at least eight elements, such that {1, 2, 3} and {2, 5, 7} are triangles and
{1, 2, 7, 8} is a cocircuit. Let M be the binary matroid obtained from N by
adding the element 6 in parallel with 5, and then coextending by the element
4 so that {2, 3, 4, 5} is a cocircuit. Then M is internally 4-connected if and
only if N has no 4-cocircuit containing {2, 3, 5}.
Proof. Assume that N contains a 4-cocircuit {2, 3, 5, x}. By orthogonality
with the circuit {5, 6}, we see that {2, 3, 5, 6, x} is a cocircuit in M/4, and
hence in M . Symmetric difference with {2, 3, 4, 5} shows that {4, 6, x} is a
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disjoint union of cocircuits in M . If M contains a cocircuit with fewer than
three elements, it is certainly not internally 4-connected, so assume that
{4, 6, x} is a triad. Orthogonality with {2, 3, 4, 5} tells us that {4, 5, 6} is
a triangle, so {x, 4, 5, 6} is a 4-fan of M , and therefore M is not internally
4-connected.

To prove the “if” direction, we assume that N has no such 4-cocircuit.
By construction and orthogonality, M is connected having {1, 2, 3}, {2, 5, 7},
and {4, 5, 6} as triangles. As N = M/4\6 and {2, 3, 4, 5} is a cocircuit of
M , it follows by Lemma 4.6 that M is 3-connected provided {4, 6} is not a
cocircuit. In the exceptional case, {2, 3, 5, 6} is a cocircuit of M so {2, 3, 5}
is a cocircuit of N . Thus N has a 4-fan; a contradiction. Hence M is indeed
3-connected.

We show next that

4.10.1. no element in {4, 5, 6} is in a triad of M .

Suppose there is a triad T ∗ that meets {4, 5, 6}. As N is cosimple, 4 ∈ T ∗,
so T ∗ ∩ {4, 5, 6} is {4, 5} or {4, 6}. In the first case, T ∗ △ {2, 3, 4, 5} is a
disjoint union of cocircuits in N that meets the triangle {1, 2, 3}. Therefore
N is not internally 4-connected. Thus T ∗ ∩ {4, 5, 6} = {4, 6}, and T ∗ △
{2, 3, 4, 5} is a cocircuit {2, 3, 5, 6, a} of M . Hence {2, 3, 5, a} is a cocircuit
of N , contradicting our assumption. This completes the proof of (4.10.1).

Let (X,Y ) be a (4, 3)-violator of M . Suppose {4, 6} ⊆ X. As fcl(X)
contains no set X ′ such that (X ′, E(N) − X ′) is a (4, 3)-violator of N , we
can assume that X = fcl(X) and that |X| = 4 or |X| = 5. Thus 5 ∈ X. As
X contains a triangle, but none of 4, 5, or 6 is in a triad of M , the set X
is not a fan. Thus X = Q ∪ w where Q is a quad of M and w ∈ {4, 5, 6}.
As w is contained in two triangles, namely {4, 5, 6} and (Q− {4, 5, 6}) ∪ w,
we see that w ̸= 4, or else N = M/4\6 contains a parallel pair. Therefore
4 ∈ Q. The cocircuit {2, 3, 4, 5} implies that 2, 3, or 5 is in Q. By using
orthogonality with the circuits {1, 2, 3} and {2, 5, 7} and the fact that Q∪w
is fully closed, we get that Q∪w contains {1, 2, 3, 4, 5, 6, 7}; a contradiction.

We may now assume that 4 ∈ X and 6 ∈ Y . If 5 ∈ X, then (X ∪6, Y −6)
is a 3-separation of M , while if 5 ∈ Y , then (X−4, X∪4) is a 3-separation of
M . The previous paragraph implies that no (4, 3)-violator of M contains 4
and 6 in the same side, so we deduce that M has a 4-fan F meeting {4, 5, 6}
in some element z of {4, 6} where z is in the triangle T of F but not its triad
T ∗. If z = 4, then M/4\6 is not simple; a contradiction. Hence z = 6 so we
may suppose that T = {6, a, b} and T ∗ = {a, b, c}. Then {6, a, b}△ {4, 5, 6}
is a circuit {4, 5, a, b} of M . Thus N has {5, a, b} as a triangle and {a, b, c}
as a triad; a contradiction. �

In the next lemma, we deal with cases (5)(ii) and (5)(iii) simultaneously.

Lemma 4.11. Let N be an internally 4-connected binary matroid with
at least eight elements, such that {2, 5, 7} and {4, 5, 6} are triangles and
{2, 3, 4, 5} is a cocircuit. Furthermore, assume that either
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(i) N has {5, 6, 7, 9} as a cocircuit; or
(ii) N has {4, 6, 10, 11} as a cocircuit and {3, 4, 11} as a triangle.

Let M be the binary matroid obtained from N by extending with the element
1 so that {1, 2, 3} is a triangle and then coextending by the element 8 so
that {1, 2, 7, 8} is a cocircuit. Then M is internally 4-connected if and only
if N has no 4-cocircuit {2, 7, a, b} such that either {a, b, c} or {2, 3, a} is a
triangle.

Proof. Assume that {2, 7, a, b} is a 4-cocircuit of N . By orthogonality with
the triangle {1, 2, 3}, we see that {1, 2, 7, a, b} is a cocircuit in M . Symmetric
difference between {1, 2, 7, a, b} and {1, 2, 7, 8} shows that {8, a, b} is a triad
in M . Now if {a, b, c} is a triangle, then {8, a, b, c} is a 4-fan. If {2, 3, a} is
a triangle, then the triad {8, a, b} contains 2 or 3, and again we see that M
has a 4-fan. This proves the “only if” direction. Therefore we assume that
N has no such 4-cocircuit.

By construction and orthogonality, M is connected having
{1, 2, 3}, {2, 5, 7}, and {4, 5, 6} as triangles and {2, 3, 4, 5} as a cocir-
cuit. Furthermore, M has {5, 6, 7, 9} as a cocircuit or M has {3, 4, 11} as
a triangle and {4, 6, 10, 11} as a cocircuit. Since N = M\1/8, it follows by
Lemma 4.5 that M is 3-connected provided M has no 2-circuit containing
1 and no 2-cocircuit containing 8. Suppose M has a 2-cocircuit {8, z}.
By orthogonality, z ̸∈ {1, 2, . . . , 7}. By taking symmetric differences, we
deduce that M has {1, 2, 7, z} as a cocircuit, so N has {2, 7, z} as a triad.
Hence N has a 4-fan; a contradiction. If M has a 2-circuit {1, a}, then,
by orthogonality, a is in {2, 7, 8}. But {1, 2} is not a 2-circuit, as it is
contained in the triangle {1, 2, 3}. If {1, 8} is a parallel pair in M , then 1
is a loop of M/8 that is contained in the triangle {1, 2, 3}. Finally, if {1, 7}
is a circuit in M , then {1, 7} △ {1, 2, 3} △ {2, 5, 7} = {3, 5} is a union of
circuits in N . Therefore 1 is in no parallel pair in M , so M is 3-connected.

Let (X,Y ) be a (4, 3)-violator of M . Assume that {1, 8} ⊆ X. As fcl(X)
contains no set X ′ such that (X ′, E(N) − X ′) is a (4, 3)-violator of N , we
may assume that X = fcl(X) and that |X| is four or five. Then 2, 3, and 7
are all contained in Y , or else {1, 2, 3, 4, 5, 6, 7} ⊆ X, a contradiction.

Assume that |X| = 4. Note that 1 ∈ clM (Y ), because of the circuit
{1, 2, 3}. This means that X is not a quad of M . Therefore X is a 4-
fan, where 1 is in the triangle of X, but not the triad. Since 1 is in the
triangle {1, 2, 3} of M/8, it follows that {1, 8} is not contained in a triangle.
Therefore 8 is in the triad of X, but not the triangle. Now the symmetric
difference of X − 1 and {1, 2, 7, 8} is a disjoint union of cocircuits in M that
contains the triangle in X. This is impossible, so |X| = 5.

Since 1 ∈ clM (Y ), it follows that either X is a 5-fan, or a quad with a
single element in its closure. The second case cannot happen, since 8 ∈
cl∗M (Y ∪ 1) because of the cocircuit {1, 2, 7, 8}. Therefore X is a 5-fan, and
X − 1 contains a single triangle. But 8 cannot be in this triangle because
of orthogonality with {1, 2, 7, 8}. This means that 1 and 8 are contained in
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a triangle of X, which means that 1 is a loop of M/8 that is contained in a
triangle.

Because of this contradiction, we can now assume that whenever (X,Y )
is a (4, 3)-violator of M , neither X nor Y contains {1, 8}. Let (X,Y ) be a
(4, 3)-violator, and assume that 1 ∈ X and 8 ∈ Y . As (X − 1, Y − 8) is a
3-separation of N , either |X| = 4 or |Y | = 4.

First assume that |X| = 4. If X ̸= fcl(X), then there is a subset X ′ such
thatX ⊆ X ′ ⊆ fcl(X), where |X ′| = 5 and (X ′, E(M)−X ′) is a 3-separation
inM . Since |E(N)| ≥ 8 implies |E(M)| ≥ 10, it follows that (X ′, E(M)−X ′)
is a (4, 3)-violator of M , so 8 /∈ X ′. Therefore (X ′ − 1, E(M)− (X ′ ∪ 8)) is
a (4, 3)-violator of N , and we have a contradiction. Thus X is fully closed.

If 2 or 3 is in X, then both are in X, so X is a 4-fan, and two elements of
{1, 2, 3} are in a triad of M . As N is cosimple, 1 is not in this triad. Thus
{2, 3} is contained in a triad of N . But 2 is in a triangle of N , so N has a 4-
fan; a contradiction. We may assume then that {2, 3} ⊆ Y . By orthogonality
with {1, 2, 3}, the element 1 is not in a cocircuit in X. Thus X is a 4-fan
with {1, a, b} as its triangle and {a, b, c} as its triad. Orthogonality with
{1, 2, 7, 8} implies 7 ∈ {a, b}. We assume, without loss of generality, that
7 = a. Then the triad {7, b, c} contains 5, by orthogonality with {2, 5, 7}.
Then {1, 5, 7} ⊆ X, so, as X is fully-closed, X contains 2, a contradiction.

Therefore we now assume that |Y | = 4. As in the previous paragraph,
we can argue that Y is fully closed. If Y is a quad, then, by orthogonality
with {1, 2, 7, 8}, we know that Y contains 2 or 7. Then, by orthogonality
with {2, 5, 7} and the fact that Y is closed, we deduce that Y contains the
triangle {2, 5, 7}; a contradiction. Hence Y is a 4-fan. Assume 8 is in the
triangle of X. By orthogonality with the cocircuit {1, 2, 7, 8}, we see that
this triangle contains either 2 or 7. But then N = M/8\1 contains a parallel
pair. Therefore 8 is in the triad of X, but not the triangle. Label X so that
X = {8, a, b, c}, where {8, a, b} is a triad, and {a, b, c} is a triangle. Note
that {2, 7} ∩ {a, b} = ∅, since otherwise, by orthogonality, and the fact that
Y is fully closed, we deduce that {2, 5, 7} ⊆ Y . In this case {2, 7, 8} must
be a triad, which contradicts the fact that {1, 2, 7, 8} is a 4-cocircuit. Thus
{1, 2, 7, a, b} = {1, 2, 7, 8} △ {8, a, b} is a 5-cocircuit of M , and {2, 7, a, b}
is a 4-cocircuit in N . As {a, b, c} is a triangle of N , this contradicts our
assumption. �

5. Proof of the main theorem

Proof of Theorem 1.4. Let M be a minor-closed class of binary matroids
that contains at least one internally 4-connected matroid with at least six el-
ements. Define M(6) to be {M(K4)}, and assume that M(6),M(7),M(8), . . .
are constructed as in the statement of the theorem. An obvious inductive
argument shows that the members of M(i) all have i elements, for every
i ≥ 6.
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First let us assume that the matroid M is contained in some set M(i),
where i ≥ 6. Then M is contained in M, by construction and the fact that
every internally 4-connected binary matroid with at least six elements has an
M(K4)-minor. Therefore we must show that M is internally 4-connected. If
i = 6, then M = M(K4), so M is certainly internally 4-connected. Hence we
assume that i > 6. Up to duality, there is a matroid N such that one of the
statements (i)–(iv) in Theorem 1.4 holds. If M is, up to duality, the cycle
matroid ofK5, a quartic ladder, the cube, or a terrahawk, thenM is certainly
internally 4-connected. Therefore we will assume that (iii) or (iv) holds. If
(iii) holds and i > 7, then M is internally 4-connected by Lemma 2.7. If
(iii) holds, and i is equal to 7, then M is a simple and cosimple single-
element extension of M(K4) and is therefore 3-connected. Any 3-connected
matroid with seven elements is also internally 4-connected, so in this case
we are done. Therefore we assume that (iv) holds. If M = M(K3,3) or
M∗ = M(K3,3), then M is certainly internally 4-connected, so we assume
this is not the case. Then M and N are as described in, respectively, (I),
(II), (III), (IV)(i), (IV)(ii), (V)(i), (V)(ii), (VI), or (VII). In these cases M
is internally 4-connected by, respectively, Lemmas 4.7, 4.8, 4.1, 4.9, the dual
of 4.2, 4.10, 4.11, 4.3, or 4.4. This shows that M(i) is contained in the set
of i-element internally 4-connected matroids that belong to M.

For the converse, assume that M ∈ M is internally 4-connected and
|E(M)| = i ≥ 6, but that M is not contained in M(i). Assume that M has
been chosen so that i is as small as possible subject to these conditions. If
|E(M)| = 6, then M is isomorphic to M(K4), and M is contained in M(6).
Therefore |E(M)| ≥ 7. Assume that M\e is internally 4-connected for some
e ∈ E(M). Then our assumption on i means that M\e is contained in

M(i−1). But M is a simple single-element extension of M\e, and r(M) =
r(M\e). Moreover, if i > 7, then Lemma 2.7 implies that there is no triad
of M\e that contains e in its closure in M . Therefore statement (iii) in

Theorem 1.4 applies, and M is in M(i). This contradiction means that no
single-element deletion of M is internally 4-connected. The dual argument
shows that no single-element contraction of M is internally 4-connected.
Therefore we can apply Theorem 1.2.

By Theorem 1.2, M has a proper minor N such that N is internally 4-
connected. Our assumption on the minimality of i means that N ∈ M(i−k),
where k = |E(M)| − |E(N)|. If, up to duality, M = M(K3,3) and N =

M(K4), then M is in M(9), by statement (iv) of Theorem 1.4. Similarly, if
M is M(K5) or the cycle matroid of the cube, and N = M(K4), then M is in

M(10) or M(12). If, up to duality, M is the cycle matroid of (respectively)
a planar quartic ladder, a Möbius quartic ladder, or a terrahawk, and N
is the cycle matroid of (respectively) a planar quartic ladder, a Möbius
quartic ladder, or the cube, then statement (ii) in Theorem 1.4 holds, and

M is contained in M(i). Therefore neither (8) nor (9) holds in Theorem 1.2.
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If |E(M)| ≤ 11, then Theorem 1.2 states that, up to duality, M is isomor-
phic to M(K5) or M(K3,3), and that (8) applies. Therefore we must assume
that |E(M)| ≥ 12, and therefore |E(N)| ≥ 9. Assume that (1) holds in The-
orem 1.2. Then M has an M(K4)-restriction on the set {1, 2, 3, 4, 5, 6},
where {1, 2, 3}, {1, 5, 6}, {2, 4, 6}, and {3, 4, 5} are triangles, and {1, 3, 5, 7}
and {2, 3, 4, 8} are cocircuits. Since N = M\3, 6, we see that {1, 2, 4, 5} is

a circuit of N , and {1, 5, 7} and {2, 4, 8} are triads. Moreover, N ∈ M(i−2).
Now M is obtained from N by extending with 3 and 6 so that {3, 4, 5} and
{2, 4, 6} are triangles. Lemma 4.7 implies that there is no triad {a, b, c} in
N such that {1, 2, a, b} or {2, 4, a, b} is a cocircuit, or else M would not be

internally 4-connected. Now M is in M(i), as M and N are as described in
(I).

Arguing in exactly the same way, we see that if M and N are as described
in, respectively, (2), (3), (4)(i), (4)(ii), (5)(i), (5)(ii), (5)(iii), (6), or (7), then
the hypotheses of, respectively, Lemmas 4.8, 4.1, 4.9, the dual of 4.2, 4.10,
4.11, 4.11, 4.3, or 4.4 hold. Therefore M and N must be as described in,
respectively, (II), (III), (IV)(i), (IV)(ii), (V)(i), (V)(ii), (V)(ii), (VI), or

(VII). In any case, M is contained in M(i). This contradiction completes
the proof of Theorem 1.4. �
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