Relaxations of GF(4)-representable matroids

Ben Clark James Oxley Stefan H.M. van Zwam *
Department of Mathematics Louisiana State University Baton Rouge, LA, United States
clarkbenj@myvuw.ac.nz, oxley@math.lsu.edu, stefanvanzwam@gmail.com

Submitted: Apr 11, 2017; Accepted: Jun 7, 2018; Published: Jun 22, 2018
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We consider the GF(4)-representable matroids with a circuit-hyperplane such that the matroid obtained by relaxing the circuit-hyperplane is also GF(4)-representable. We characterize the structure of these matroids as an application of structure theorems for the classes of $U_{2,4}$-fragile and $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids. In addition, we characterize the forbidden submatrices in $\mathrm{GF}(4)$-representations of these matroids.

Mathematics Subject Classifications: 05B35

1 Introduction

Lucas [9] determined the binary matroids that have a circuit-hyperplane whose relaxation yields another binary matroid. Truemper [16], and independently, Oxley and Whittle [13], did the same for ternary matroids. In this paper, we solve the corresponding problem for quaternary matroids. We give both a structural characterization and a characterization in terms of forbidden submatrices.

Truemper [16] used the structure of circuit-hyperplane relaxations of binary and ternary matroids to give new proofs of the excluded-minor characterizations for the classes of binary, ternary, and regular matroids. It is natural to ask if Truemper's techniques can be extended to give excluded-minor characterizations for classes of quaternary matroids. The main results of this paper can be viewed as a first step towards answering this question.

Our structural characterization can be summarized as follows. A matroid has path width 3 if there is an ordering $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of its ground set such that $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ is a 3 -separating set for all $t \in\{1,2, \ldots, n\}$.

[^0]Theorem 1. Let M and M^{\prime} be GF(4)-representable matroids such that M^{\prime} is obtained from M by relaxing a circuit-hyperplane. Then M^{\prime} has path width 3.

In fact, our main result, Theorem 35, describes precisely how the matroids in Theorem 1 of path width 3 can be constructed using the generalized $\Delta-Y$ exchange of [12] and the notion of gluing a wheel onto a triangle from [2]. Our description uses the structure of $U_{2,4}$-fragile matroids from [10] and the structure of $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids from [3].

In future work, we hope to obtain a description of these matroids that is independent of the notion of fragility. Specifically, we would like to characterize the representations of these matroids. As a step in this direction, we describe minimal GF(4)-representations of matroids with a circuit-hyperplane whose relaxation is not GF(4)-representable. Note that the proof uses the excluded-minor characterization of the class of GF(4)-representable matroids. The setup for this result is as follows.

Let M be a GF(4)-representable matroid on E with a circuit-hyperplane X. Choose $e \in X$ and $f \in E-X$ such that $(X-e) \cup f$ is a basis of M. Then $M=M[I \mid C]$ for a quaternary matrix C of the following block form.

$$
C=\begin{gathered}
X-e \\
f
\end{gathered}\left[\begin{array}{cc}
(E-X)-f & e \\
A & \underline{1} \\
\underline{1}^{T} & 0
\end{array}\right] .
$$

In the above matrix, A is an $(X-e) \times((E-X)-f)$ matrix, and we have scaled so that every non-zero entry in the row labelled by f and the column labelled by e is 1 . Let M^{\prime} be the matroid obtained from M by relaxing the circuit-hyperplane X. We call the matrix C a reduced representation of M. If M^{\prime} is GF(4)-representable, then we can find a reduced representation C^{\prime} of M^{\prime} in the following block form.

$$
C^{\prime}=\begin{gathered}
\\
X-e \\
f
\end{gathered}\left[\begin{array}{cc}
(E-X)-f & e \\
A^{\prime} & \underline{1} \\
\underline{1}^{T} & \omega
\end{array}\right] .
$$

We have scaled the rows and columns of the matrix such that the entry $C_{f e}^{\prime}=\omega \in$ $\mathrm{GF}(4)-\{0,1\}$, and the remaining entries in row f and column e are all 1 . The following theorem is our characterization in terms of forbidden submatrices.

Theorem 2. Let M and C be constructed as described above. There is a reduced representation C^{\prime} of the above form for M^{\prime} if and only if, up to permuting rows and columns, A and A^{T} have no submatrix in the following list, where x, y, z denote distinct non-zero elements of $\mathrm{GF}(4)$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x & y & z
\end{array}\right],\left[\begin{array}{ll}
x & y \\
0 & x
\end{array}\right],\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right],\left[\begin{array}{ll}
x & x \\
y & z
\end{array}\right],\left[\begin{array}{ll}
x & y \\
z & x
\end{array}\right],\left[\begin{array}{lll}
x & x & 0 \\
x & 0 & x
\end{array}\right],\left[\begin{array}{lll}
x & x & 0 \\
x & 0 & y
\end{array}\right],} \\
& {\left[\begin{array}{lll}
x & x & 0 \\
y & 0 & y
\end{array}\right],\left[\begin{array}{lll}
x & y & 0 \\
x & 0 & y
\end{array}\right],\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & z
\end{array}\right],\left[\begin{array}{lll}
x & y & 0 \\
x & 0 & z
\end{array}\right],\left[\begin{array}{ccc}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right],\left[\begin{array}{ccc}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & y
\end{array}\right],}
\end{aligned}
$$

$$
\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right],\left[\begin{array}{lll}
x & y & x \\
y & y & 0 \\
x & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
x & y & x \\
y & y & 0 \\
x & 0 & z
\end{array}\right] .
$$

This paper is organized as follows. In the next section, we collect some results on connectivity and circuit-hyperplane relaxation. In Section 3, we prove a fragility theorem. In Section 4, we describe the structure of the $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids. In Section 5, we prove the structural characterization. In Section 6, we reduce the proof of Theorem 2 to a finite computer check. This check, carried out using SageMath, can be found in the Appendix [4].

2 Circuit-hyperplane relaxations and connectivity

We assume the reader is familiar with the fundamentals of matroid theory. Any undefined matroid terminology will follow Oxley [11]. Let M be a matroid on E, and let $\mathcal{B}(M)$ denote the collection of bases of M. If M has a circuit-hyperplane X, then $\mathcal{B}\left(M^{\prime}\right)=\mathcal{B}(M) \cup\{X\}$ is the collection of bases of a matroid M^{\prime} on E. We say that M^{\prime} is obtained from M by relaxing the circuit-hyperplane X. We list here a number of useful results on circuithyperplane relaxation.

Lemma 3. [11, Proposition 2.1.7] If M^{\prime} is obtained from M by relaxing the circuithyperplane X of M, then $\left(M^{\prime}\right)^{*}$ is obtained from M^{*} by relaxing the circuit-hyperplane $E(M)-X$ of M^{*}.

The following elementary results are originally from [8].
Lemma 4. [11, Proposition 3.3.5] Let X be a circuit-hyperplane of a matroid M, and let M^{\prime} be the matroid obtained from M by relaxing X. When $e \in E(M)-X$,
(i) $M / e=M^{\prime} / e$ and, unless M has e as a coloop, $M^{\prime} \backslash e$ is obtained from $M \backslash e$ by relaxing the circuit-hyperplane X of the latter.

Dually, when $f \in X$,
(ii) $M \backslash f=M^{\prime} \backslash f$ and, unless M has f as a loop, M^{\prime} / f is obtained from M / f by relaxing the circuit-hyperplane $X-f$ of the latter.

For a set \mathcal{N} of matroids, we say that a matroid M has an \mathcal{N}-minor if M has an N-minor for some $N \in \mathcal{N}$. We say M is \mathcal{N}-fragile if M has an \mathcal{N}-minor and, for each element e of M, at most one matroid in $\{M \backslash e, M / e\}$ has an \mathcal{N}-minor. We say an element e of an \mathcal{N}-fragile matroid M is nondeletable if $M \backslash e$ has no \mathcal{N}-minor; the element e is noncontractible if M / e has no \mathcal{N}-minor.

The following lemma is an immediate consequence of Lemma 4.

Lemma 5. Let X be a circuit-hyperplane of a matroid M, and let M^{\prime} be the matroid obtained from M by relaxing X. If \mathcal{N} is a set of matroids such that M^{\prime} has an \mathcal{N} minor but M has no \mathcal{N}-minor, then M^{\prime} is \mathcal{N}-fragile. Moreover, X is a basis of M^{\prime} whose elements are nondeletable such that the elements of the cobasis $E\left(M^{\prime}\right)-X$ are noncontractible.

We use the following connectivity result.
Lemma 6. [11, Proposition 8.4.2] Let M^{\prime} be a matroid that is obtained by relaxing a circuit-hyperplane of a matroid M. If M is n-connected, then M^{\prime} is n-connected.

Kahn [8] proved the following result on the representability of a circuit-hyperplane relaxation.

Lemma 7. Let M^{\prime} be a matroid that is obtained by relaxing a circuit-hyperplane of a matroid M. If M is connected, then M^{\prime} is non-binary.

We use the following definition of the rank function of the 2-sum from [7]. Let M_{1} and M_{2} be matroids with at least two elements such that $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\{p\}$. Then $M=M_{1} \oplus_{2} M_{2}$ has rank function r_{M} defined for all $A_{1} \subseteq E\left(M_{1}\right)$ and $A_{2} \subseteq E\left(M_{2}\right)$ by

$$
r_{M}\left(A_{1} \cup A_{2}\right)=r_{M_{1}}\left(A_{1}\right)+r_{M_{2}}\left(A_{2}\right)-\theta\left(A_{1}, A_{2}\right)+\theta(\emptyset, \emptyset)
$$

where $\theta(X, Y)=1$ if $r_{M_{1}}(X \cup p)=r_{M_{1}}(X)$ and $r_{M_{2}}(Y \cup p)=r_{M_{2}}(Y)$, and $\theta(X, Y)=0$ otherwise.

The next three results on 2 -sums and minors of 2 -sums are well known.
Lemma 8. [11, Proposition 7.1.20] Let M and N be matroids with at least two elements. Let $E(M) \cap E(N)=\{p\}$ and suppose that neither M nor N has $\{p\}$ as a separator. The set of circuits of $M \oplus_{2} N$ is

$$
\mathcal{C}(M \backslash p) \cup \mathcal{C}(N \backslash p) \cup\{(C \cup D)-p: p \in C \in \mathcal{C}(M) \text { and } p \in D \in \mathcal{C}(N)\} .
$$

Lemma 9. [11, Theorem 8.3.1] A connected matroid M is not 3-connected if and only if $M=M_{1} \oplus_{2} M_{2}$ for some matroids M_{1} and M_{2}, each of which has at least three elements and is isomorphic to a proper minor of M.

Lemma 10. [11, Proposition 8.3.5] Let M, N, M_{1}, M_{2} be matroids such that $M=M_{1} \oplus_{2}$ M_{2} and N is 3 -connected. If M has an N-minor, then M_{1} or M_{2} has an N-minor.

We can now describe the structure of circuit-hyperplanes in matroids of low connectivity. We omit the straightforward proof of the next lemma.

Lemma 11. Let M be a $\mathrm{GF}(4)$-representable matroid with a circuit-hyperplane H. If M is not connected, then $M \cong U_{1, m} \oplus U_{n-1, n}$ for some positive integers m and n.

We now work towards a description of the 2-separations of a connected matroid in which the relaxation of some circuit-hyperplane is GF(4)-representable.

Lemma 12. Let M be a matroid with a circuit-hyperplane X. If A is a non-trivial parallel class of M, then either $A \subseteq E-X$, or $A=X$ and $|A|=2$.

Proof. If $A \cap X$ and $A \cap(E-X)$ are both non-empty, then there is a circuit $\{x, y\}$ contained in A such that $x \in X$ and $y \in E-X$. But $E-X$ is a cocircuit of M, so this is a contradiction to orthogonality. Thus either $A \cap X$ or $A \cap(E-X)$ is empty. In the case that $A \cap(E-X)$ is empty, there is a circuit $\{x, y\}$ contained in A that is also contained in the circuit X, so $X=A=\{x, y\}$.

For the next result, we say that M is 3-connected up to series and parallel classes if M is connected and, for any 2-separation (X, Y) of M, either X or Y is a series class or a parallel class.

Lemma 13. Let M be a GF(4)-representable matroid with a circuit-hyperplane X such that the matroid M^{\prime} obtained from M is also $\mathrm{GF}(4)$-representable. If M is connected but not 3-connected, then M is 3-connected up to series and parallel classes.

Proof. Assume that M has a 2-separation (S, T) where neither side is a series or parallel class. Then M has a 2-sum decomposition of the form $M=N \oplus_{2} N^{\prime}$ for some N and N^{\prime} with $E(N) \cap E\left(N^{\prime}\right)=\{p\}$, where neither N nor N^{\prime} is a circuit or cocircuit.

First suppose that the circuit X of M has the form $\left(C \cup C^{\prime}\right)-p$, where C is a circuit of N, and C^{\prime} is a circuit of N^{\prime} while $p \in C \cap C^{\prime}$. Then

$$
\begin{gather*}
r(X)=r(M)-1, \tag{1}\\
r(N)+r\left(N^{\prime}\right)-1=r(M), \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
r_{M}(X)=r_{N}(C)+r_{N^{\prime}}\left(C^{\prime}\right)-1 . \tag{3}
\end{equation*}
$$

Equation (1) follows from the fact that X is a hyperplane of M; Equations (2) and (3) follow from the definition of the rank function of the 2 -sum of N and N^{\prime}. Combining (1) and (2), we see that $r(X)=r(N)+r\left(N^{\prime}\right)-2$. Then combining this equation with (3), we see that

$$
r(C)+r\left(C^{\prime}\right)=r(N)+r\left(N^{\prime}\right)-1
$$

We may therefore assume that C is a spanning circuit of N, and hence that $E(N)=C$ because the hyperplane X is closed. Therefore N is a circuit, a contradiction.

By symmetry, it remains to consider the case when X is a circuit of $N^{\prime} \backslash p$. Then $r(X) \leqslant r\left(N^{\prime}\right)$. Since X is a hyperplane of M, and $r(M)=r(N)+r\left(N^{\prime}\right)-1$, it follows that $r(N) \leqslant 2$. Since N is not a cocircuit, we deduce that $r(N)=2$. Then $r(M)=r\left(N^{\prime}\right)+1$, so $r(X)=r\left(N^{\prime}\right)=r\left(N^{\prime} \backslash p\right)$. Since N is not a circuit we deduce that $\operatorname{si}(N) \cong U_{2, m}$ for some $m \geqslant 4$. Moreover, p is not in a non-trivial parallel class in N otherwise X is not a hyperplane of M.

Switching to M^{*}, we see that $r_{M^{*}}\left(N^{\prime}\right)=|X|+r(N)-r(M)=r(N)=2$. As above, it follows that $\operatorname{co}\left(N^{\prime}\right) \cong U_{n-1, n+1}$ for some $n \geqslant 3$. Moreover, p is not in a non-trivial series class in N^{\prime}. Let X_{1} consist of one representative of each series class of N^{\prime}, and let
Y_{1} consist of one representative of each parallel class of N. By contracting elements of $X-X_{1}$ and deleting elements of $(E(M)-X)-Y_{1}$, we obtain $U_{n-1, n+1} \oplus_{2} U_{2, m}$ as a minor of M for some $n \geqslant 3$ and $m \geqslant 4$. Moreover, by Lemma $4, X_{1}$ is a circuit-hyperplane of this minor whose relaxation is $\mathrm{GF}(4)$-representable. Thus $X_{1} \subseteq E\left(U_{n-1, n+1}\right)$. Contract $n-3$ elements from X_{1} and delete $m-4$ elements from Y_{1} to get $U_{2,4} \oplus_{2} U_{2,4}$. Relaxing a circuit-hyperplane of this minor gives P_{6} which is not GF(4)-representable (see [11, Proposition 6.5.8]), a contradiction.

3 A fragility theorem

We will use the following consequence of Geelen, Oxley, Vertigan, and Whittle [6, Theorem 8.4].

Theorem 14. Let M and M^{\prime} be $\mathrm{GF}(4)$-representable matroids with the properties that M is connected, M^{\prime} is 3 -connected, and M^{\prime} is obtained from M by relaxing a circuithyperplane.
(i) If M^{\prime} has a $U_{2,4}$-minor but no $\left\{U_{2,5}, U_{3,5}\right\}$-minor, then M is binary.
(ii) If M^{\prime} has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor but no $U_{3,6}$-minor, then M has no $\left\{U_{2,5}, U_{3,5}\right\}$-minor.

We can now prove the main result of this section.
Theorem 15. Let M and M^{\prime} be $\mathrm{GF}(4)$-representable matroids such that M is connected, M^{\prime} is 3 -connected, and M^{\prime} is obtained from M by relaxing a circuit-hyperplane X. Then M^{\prime} is either $U_{2,4}-$ fragile or $\left\{U_{2,5}, U_{3,5}\right\}$-fragile. Moreover, X is a basis of M^{\prime} whose elements are nondeletable such that the elements of the cobasis $E\left(M^{\prime}\right)-X$ are noncontractible.

Proof. First assume that M^{\prime} has no $\left\{U_{2,5}, U_{3,5}\right\}$-minor. By Lemma 7 and Theorem 14 (i), M^{\prime} has a $U_{2,4}$-minor and M has no $U_{2,4}$-minor. Then it follows from Lemma 5 that M^{\prime} is $U_{2,4}$-fragile, and M^{\prime} has a basis X whose elements are nondeletable such that the elements of the cobasis $E\left(M^{\prime}\right)-X$ are noncontractible.

We may now assume that M^{\prime} has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor. Suppose that M also has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor, and assume that M is a minor-minimal matroid with respect to the hypotheses; that is, we assume that M has no proper minor M_{0} such that M_{0} is connected, M_{0} has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor, and M_{0} has a circuit-hyperplane whose relaxation M_{0}^{\prime} is 3connected, $\mathrm{GF}(4)$-representable, and has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor.
Claim 16. M is $\left\{U_{2,5}, U_{3,5}\right\}$-fragile.
Proof of 16. Suppose that M has an element $e \in E(M)-X$ such that $M \backslash e$ has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor. If $M \backslash e$ is 3 -connected, then we have a contradiction to the minimality of M. Therefore, by Lemma $13, M \backslash e$ is 3 -connected up to series and parallel pairs. Suppose that A is a non-trivial parallel class of $M \backslash e$. Suppose $A \subseteq X$. Then $A=X$ and $|A|=2$ by Lemma 12, so we deduce that $M \backslash e$ is a parallel extension of $U_{2,5}$ and hence
that $M^{\prime} \backslash e$ has a $U_{2,6}$-minor, a contradiction to the fact that the matroid M^{\prime} obtained from M by relaxing X is $\mathrm{GF}(4)$-representable. Thus $A \subseteq E(M \backslash e)-X$ by Lemma 12. By duality, any non-trivial series class of $M \backslash e$ must be contained in X. Then, by Lemma 10, the matroid M_{0} obtained from $M \backslash e$ by deleting all but one element of every non-trivial parallel class and contracting all but one element of every non-trivial series class has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor. We deduce from Lemma 13 that M_{0} is 3 -connected. Then M_{0} contradicts the minimality of M. Therefore $M \backslash e$ has no $\left\{U_{2,5}, U_{3,5}\right\}$-minor for all $e \in E(M)-X$, and, by duality, M / e has no $\left\{U_{2,5}, U_{3,5}\right\}$-minor for all $e \in X$, so M is $\left\{U_{2,5}, U_{3,5}\right\}$-fragile. This completes the proof of 16 .

Since M has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor, it follows from Theorem 14 (ii) that M^{\prime} has a $U_{3,6^{-}}$ minor, that is, $M^{\prime} / C \backslash D \cong U_{3,6}$ for some subsets C and D. If $C \subseteq X$ and $D \subseteq E\left(M^{\prime}\right)-X$, then it follows from Lemma 4 that $U_{3,6}$ can be obtained from $M / C \backslash D$ by relaxing the circuit-hyperplane $X-C$. Hence $M / C \backslash D \cong P_{6}$, a contradiction because $M / C \backslash D$ is GF(4)-representable but P_{6} is not. Therefore $C \cap\left(E\left(M^{\prime}\right)-X\right)$ or $D \cap X$ is nonempty, so $M / C \backslash D=M^{\prime} / C \backslash D \cong U_{3,6}$ by Lemma 4. This is a contradiction to 16 because any minor of M must also be $\left\{U_{2,5}, U_{3,5}\right\}$-fragile, but for any e, both $U_{3,6} \backslash e$ and $U_{3,6} / e$ have a $\left\{U_{2,5}, U_{3,5}\right\}$-minor. We conclude that M has no $\left\{U_{2,5}, U_{3,5}\right\}$-minor. It now follows from Lemma 5 that M^{\prime} is $\left\{U_{2,5}, U_{3,5}\right\}$-fragile, and that M^{\prime} has a basis X whose elements are nondeletable such that the elements of the cobasis $E\left(M^{\prime}\right)-X$ are noncontractible.

4 The structure of $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids

4.1 Partial Fields and Constructions

We briefly state the necessary material on partial fields. For a more thorough treatment, we refer the reader to [14].

A partial field is a pair $\mathbb{P}=(R, G)$, where R is a commutative ring with unity, and G is a subgroup of the units of R with $-1 \in G$. A matrix with entries in G is a \mathbb{P} matrix if $\operatorname{det}(D) \in G \cup\{0\}$ for any square submatrix D of A. We use $\langle X\rangle$ to denote the multiplicative subgroup of R generated by the subset X.

A rank- r matroid M on the ground set E is \mathbb{P}-representable if there is an $r \times|E|$ \mathbb{P}-matrix A such that, for each $r \times r$ submatrix D, the determinant of D is nonzero if and only if the corresponding subset of E is a basis of M. When this occurs, we write $M=M[A]$.

The 2 -regular partial field is defined as follows.

$$
\mathbb{U}_{2}=(\mathbb{Q}(\alpha, \beta),\langle-1, \alpha, \beta, 1-\alpha, 1-\beta, \alpha-\beta\rangle),
$$

where α, β are indeterminates.
It is well-known that any \mathbb{U}_{2}-representable matroid is $\mathrm{GF}(4)$-representable [12]. On the other hand, there are $\mathrm{GF}(4)$-representable matroids that are not \mathbb{U}_{2}-representable. We now define three such matroids. The matroid P_{8} has a unique pair of disjoint circuithyperplanes; we let P_{8}^{-}denote the unique matroid obtained by relaxing one of these
circuit-hyperplanes. We denote by $F_{7}=$ the matroid obtained from the non-Fano matroid F_{7}^{-}by relaxing a circuit-hyperplane. The $\mathrm{GF}(4)$-representable matroids $P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}$ are not \mathbb{U}_{2}-representable. We note that this can be deduced from [1] since $P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}$ are $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids. Since these matroids are not \mathbb{U}_{2}-representable, we have the following lemma.

Lemma 17. The class of \mathbb{U}_{2}-representable matroids is contained in the class of $\mathrm{GF}(4)$ representable matroids with no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor.

To describe the structure of $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids as in [3], we need two constructions: the generalized $\Delta-Y$ exchange, and gluing on wheels. For a more thorough treatment of these constructions, we refer the reader to [12] and [2].

Loosely speaking, the operations of generalized $\Delta-Y$ exchange and gluing on wheels both involve gluing matroids together along a common restriction. Let M_{1} and M_{2} be matroids with a common restriction A, where A is a modular flat of M_{1}. The generalized parallel connection of M_{1} and M_{2} along A, denoted $P_{A}\left(M_{1}, M_{2}\right)$, is the matroid obtained by gluing M_{1} and M_{2} along A. It has ground set $E\left(M_{1}\right) \cup E\left(M_{2}\right)$, and a set F is a flat of $P_{A}\left(M_{1}, M_{2}\right)$ if and only if $F \cap E\left(M_{i}\right)$ is a flat of M_{i} for each i (see [11, Section 11.4]).

A subset S of $E(M)$ is a segment of M if every three-element subset of S is a triangle of M. Let M be a matroid with a k-element segment A. Intuitively, a generalized $\Delta-Y$ exchange on A turns the segment A into a k-element cosegment. To define the generalized $\Delta-Y$ exchange formally, we first recall the following definition of a family of matroids Θ_{k} from [12]. For $k \geqslant 3$, fix a basis $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ of the rank- k projective geometry $P G(k-1, \mathbb{R})$, and choose a line L of $P G(k-1, \mathbb{R})$ that is freely placed relative to B. If follows from modularity that, for each i, the hyperplane spanned by $B-\left\{b_{i}\right\}$ meets L; we let a_{i} be the point of intersection. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, and let Θ_{k} be the matroid obtained by restricting $P G(k-1, \mathbb{R})$ to the set $A \cup B$. Note that the matroid Θ_{k} has A as a modular k-point segment A, so the generalized parallel connection of Θ_{k} and M along A is well-defined. If the k-element segment A is coindependent in M, then we define the matroid $\Delta_{A}(M)$ to be the matroid obtained from $P_{A}\left(\Theta_{k}, M\right) \backslash A$ by relabeling the elements of $E\left(\Theta_{k}\right)-A$ by A in the natural way, and we say that $\Delta_{A}(M)$ is obtained from M by performing a generalized $\Delta-Y$ exchange on A. For a matroid M with an independent cosegment A, a generalized $Y-\Delta$ exchange on A, denoted by $\nabla_{A}(M)$, is defined to be the matroid $\left(\Delta_{A}\left(M^{*}\right)\right)^{*}$.

We use the following results on representability and the minor operations.
Lemma 18. [12, Lemma 3.7] Let \mathbb{P} be a partial field. Then M is \mathbb{P}-representable if and only if $\Delta_{A}(M)$ is \mathbb{P}-representable.

Lemma 19. [12, Lemma 2.13] Suppose that $\Delta_{A}(M)$ is defined. If $x \in A$ and $|A| \geqslant 3$, then $\Delta_{A-x}(M \backslash x)$ is also defined, and $\Delta_{A}(M) / x=\Delta_{A-x}(M \backslash x)$.

Lemma 20. [12, Lemma 2.16] Suppose that $\Delta_{A}(M)$ is defined.
(i) If $x \in E(M)-A$ and A is coindependent in $M \backslash x$, then $\Delta_{A}(M \backslash x)$ is defined and $\Delta_{A}(M) \backslash x=\Delta_{A}(M \backslash x)$.
(ii) If $x \in E(M)-\operatorname{cl}(A)$, then $\Delta_{A}(M / x)$ is defined and $\Delta_{A}(M) / x=\Delta_{A}(M / x)$.

Lemma 21. [12, Lemma 2.15] Suppose that $x \in \operatorname{cl}(A)-A$ and let a be an arbitrary element of the k-element segment A. Then $\Delta_{A}(M) / x$ equals the 2 -sum, with basepoint p, of a copy of $U_{k-1, k+1}$ with groundset $A \cup p$ and the matroid obtained from $M / x \backslash(A-a)$ by relabeling a as p.

The next result implies that every $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroid is 3-connected up to series and parallel classes.

Lemma 22. [10, Proposition 4.3] Let M be a matroid with a 2 -separation (A, B), and let N be a 3 -connected minor of M. Assume $|E(N) \cap A| \geqslant|E(N) \cap B|$. Then $|E(N) \cap B| \leqslant 1$. Moreover, unless B is a parallel or series class, there is an element $x \in B$ such that both $M \backslash x$ and M / x have a minor isomorphic to N.

The following is an easy consequence of the property that $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids are 3 -connected up to parallel and series classes.

Lemma 23. Let M be $a\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroid with at least 8 elements. If S is a triangle or 4 -element segment of M such that $E(M)-S$ is not a series or parallel class of M, then S is coindependent in M. If C is a triad or 4-element cosegment of M such that $E(M)-C$ is not a series or parallel class of M, then C is independent.

Let M be a $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroid. A segment S of M is allowable if S is coindependent and some element of S is nondeletable. A cosegment C of M is allowable if the segment C of M^{*} is allowable. In [3], it was shown that we can obtain a new $\left\{U_{2,5}, U_{3,5}\right\}$ fragile \mathbb{U}_{2}-representable matroid from an old $\left\{U_{2,5}, U_{3,5}\right\}$-fragile \mathbb{U}_{2}-representable matroid by performing a generalized $\Delta-Y$ exchange on an allowable segment. We will prove an analogous result for $\left\{U_{2,5}, U_{3,5}\right\}$-fragile GF(4)-representable matroids with no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor.

Let \mathcal{U} be the class of $\mathrm{GF}(4)$-representable matroids with no $\left\{U_{2,5}, U_{3,5}\right\}$-minor. The class of sixth-root-of-unity matroids is the class of matroids that are representable over both $\operatorname{GF}(3)$ and $\mathrm{GF}(4)$. Semple and Whittle [15, Theorem 5.2] showed that \mathcal{U} is the class of matroids that can be obtained by taking direct sums and 2 -sums of binary and sixth-root-of-unity matroids.

Lemma 24. Let M be a matroid in the class \mathcal{U}. If M^{\prime} is obtained from M by performing a generalized $\Delta-Y$ exchange or a generalized $Y-\Delta$ exchange, then $M^{\prime} \in \mathcal{U}$.

Proof. Suppose that there exists a matroid $M \in \mathcal{U}$ with a coindependent segment A such that $\Delta_{A}(M) \notin \mathcal{U}$. Among all counterexamples, suppose that M has been chosen so that $|E(M)|$ is as small as possible. Suppose M is 3-connected. Since any 3-connected member of \mathcal{U} is either a binary or sixth-root-of-unity matroid, this also holds for $\Delta_{A}(M)$ by Lemma 18. Hence $\Delta_{A}(M) \in \mathcal{U}$, contradicting the assumption that M is a counterexample. Therefore M is not 3 -connected.

Now either $M=M_{1} \oplus M_{2}$ or $M=M_{1} \oplus_{2} M_{2}$ for some $M_{1}, M_{2} \in \mathcal{U}$ with $\left|E\left(M_{i}\right)\right|<$ $|E(M)|$ for each $i \in\{1,2\}$. Moreover, we may assume that M_{1} and M_{2} have been chosen
so that the segment A of M is contained in $E\left(M_{1}\right)$. Now either $\Delta_{A}(M)=\Delta_{A}\left(M_{1}\right) \oplus M_{2}$ or $\Delta_{A}(M)=\Delta_{A}\left(M_{1}\right) \oplus_{2} M_{2}$. Since $\left|E\left(M_{1}\right)\right|<|E(M)|$, it follows that $\Delta_{A}\left(M_{1}\right) \in \mathcal{U}$. Hence $\Delta_{A}(M) \in \mathcal{U}$. Since \mathcal{U} is closed under duality, the result follows.

Lemma 25. Let M be a $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroid with no $\left\{P_{8}^{-}, F_{7}^{=}\right.$, $\left.\left(F_{7}^{=}\right)^{*}\right\}$-minor. If A is an allowable segment of M with $|A| \in\{3,4\}$, then $\Delta_{A}(M)$ is a $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroid with no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. Moreover, A is an allowable cosegment of $\Delta_{A}(M)$.

Proof. The proof that $\Delta_{A}(M)$ is a $\left\{U_{2,5}, U_{3,5}\right\}$-fragile GF(4)-representable matroid where A is an allowable cosegment of $\Delta_{A}(M)$ closely follows the proof of [3, Lemma 2.21]. The only difference is where the proof of [3, Lemma 2.21] uses the fact that a \mathbb{U}_{2}-representable matroid with no $\left\{U_{2,5}, U_{3,5}\right\}$-minor is near-regular and the class of near-regular matroids is closed under the generalized $\Delta-Y$ exchange, we instead use Lemma 24.

We must also show that $\Delta_{A}(M)$ has no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. This follows for $|E(M)| \leqslant 9$ from the generation of the 3 -connected $\left\{U_{2,5}, U_{3,5}\right\}$-fragile GF(4)-representable matroids with no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor on at most 9 elements (see the Appendix [4]), since all such matroids are \mathbb{U}_{2}-representable. Suppose that M is a minimum-sized counterexample, so $\Delta_{A}(M)$ has a $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor and $\Delta_{A}(M)$ has at least ten elements. Then $\Delta_{A}(M)$ has a minor N, obtained by deleting or contracting an element x say, that also has a $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. Since $\Delta_{A}(M)$ is $\left\{U_{2,5}, U_{3,5}\right\}$-fragile it follows that the minor N is also $\left\{U_{2,5}, U_{3,5}\right\}$-fragile. Suppose that $N=\Delta_{A}(M) / x$. Suppose that $x \in A$. Then $\Delta_{A}(M) / x=\Delta_{A-x}(M \backslash x)$ by Lemma 19 , a contradiction since M is a minimum-sized counterexample. Next suppose that $x \in \operatorname{cl}(A)-A$. Since N is $\left\{U_{2,5}, U_{3,5}\right\}$ fragile it follows from Lemma 21 and Proposition 22 that $|A|=4$ and $M / x \backslash(A-a) \cong U_{1, n}$ for some $n \geqslant 2$. Hence $\Delta_{A}(M)$ has no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{-}\right)^{*}\right\}$-minor, a contradiction. We may now assume $x \in E(M)-\operatorname{cl}(A)$. Then $\Delta_{A}(M) / x=\Delta_{A}(M / x)$ by Lemma 20, a contradiction since M is a minimum-sized counterexample. We deduce that $N=\Delta_{A}(M) \backslash x$, and we may assume that any minor obtained from $\Delta_{A}(M)$ by contracting an element has no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. Now if $x \in A$, then $A-x$ is a series class of $\Delta_{A}(M) \backslash x$, so there is some $y \in A$ such that $\Delta_{A}(M) / y$ has a $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{-}\right)^{*}\right\}$-minor, a contradiction. Therefore $x \notin A$. If A is not coindependent in $M \backslash x$, then it follows from Lemma 23 that $\Delta_{A}(M)$ has no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor, a contradiction. Therefore A is coindependent in $M \backslash x$, so $\Delta_{A}(M) \backslash x=\Delta_{A}(M \backslash x)$ by Lemma 20, a contradiction since M is a minimum-sized counterexample.

Let M be a matroid, and (a, b, c) an ordered subset of $E(M)$ such that $T=\{a, b, c\}$ is a triangle. Let $r \geqslant 3$ be a positive integer, and, when $r=3$, we fix a vertex of \mathcal{W}_{3} to be the center, so we can refer to rim and spoke elements of $M\left(\mathcal{W}_{3}\right)$. Let N be obtained from $M\left(\mathcal{W}_{r}\right)$ by relabeling some triangle as $\{a, b, c\}$, where a, c are spoke elements, and let $X \subseteq\{a, b, c\}$ such that $b \in X$. We say the matroid $M^{\prime}:=P_{T}(M, N) \backslash X$ is obtained from M by gluing an r-wheel onto (a, b, c). We also say that M^{*} is obtained from N^{*} by gluing a wheel onto the triad T. Suppose that $T_{1}, T_{2}, \ldots, T_{n}$ are ordered triples whose underlying sets are triangles of M. We say M^{\prime} can be obtained from M by gluing wheels
onto $T_{1}, T_{2}, \ldots, T_{n}$ if, for some subset J of $\{1,2, \ldots, n\}, M^{\prime}$ can be obtained from M by a sequence of moves, where each move consists of gluing an r_{j}-wheel onto T_{j} for $j \in J$. Note that the spoke elements of a triangle in this sequence may only be deleted as part of the gluing operation when they do not appear in any subsequent triangle in the sequence.

Lemma 26. Let M be a $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroid with no $\left\{P_{8}^{-}, F_{7}^{=}\right.$, $\left.\left(F_{7}^{=}\right)^{*}\right\}$-minor. Let $A=\{a, b, c\}$ be an allowable triangle of M, where b is nondeletable. If M^{\prime} is obtained from M by gluing an r-wheel onto (a, b, c), where $X \subseteq\{a, b, c\}$ is such that $b \in X$, then M^{\prime} is a $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroid with no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. Moreover, $F=E\left(\mathcal{W}_{r}\right)-X$ is the set of elements of a fan, the spoke elements of F are noncontractible in M^{\prime}, and the rim elements of F are nondeletable in M^{\prime}.

Proof. The proof is the same as [3, Lemma 2.22] except that we use Lemma 25 instead of [3, Lemma 2.21].

4.2 Path sequences

We can now describe a family of $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroids with no $\left\{P_{8}^{-}, F_{7}^{\overline{ }},\left(F_{7}^{\overline{ }}\right)^{*}\right\}$-minor obtained by performing generalized $\Delta-Y$ exchanges and gluing on wheels. In fact, the matroids in this family are \mathbb{U}_{2}-representable and were first described in [3]. Each matroid in this family has a $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor, and an associated path of 3 -separations that we need to describe in order to define the family.

We call the set $X \subseteq E(M)$ fully closed if X is closed in both M^{*} and M. The full closure of X, denoted $\mathrm{fcl}_{M}(X)$, is the intersection of all fully closed sets containing X. The full closure of X can be obtained from X by repeatedly taking closure and coclosure until no new elements are added. We call X a path-generating set if X is a 3 -separating set of M such that $\mathrm{fcl}_{M}(X)=E(M)$. A path-generating set X thus gives rise to a natural path of 3 -separating sets $\left(P_{1}, \ldots, P_{m}\right)$, where $P_{1}=X$ and each step P_{i} is either the closure or coclosure of the 3 -separating set $P_{1} \cup \cdots \cup P_{i-1}$.

Let X be an allowable cosegment of the $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroid M. A matroid Q is an allowable series extension of M along X if $M=Q / Z$ and, for every element z of Z, there is some element x of X such that x is $\left\{U_{2,5}, U_{3,5}\right\}$-contractible in M and z is in series with x in Q. We also say that Q^{*} is an allowable parallel extension of M^{*} along X.

Let N be a matroid with a path-generating allowable segment or cosegment A. We say that M is obtained from N by a $\Delta-\nabla$-step along A if, up to duality, M is obtained from N by performing a non-empty allowable parallel extension along A, followed by a generalized $\Delta-Y$ exchange on A.

Let X_{8} be the matroid obtained from $U_{2,5}$ by choosing a 4-element segment C, adding a point in parallel with each of three distinct points of C, then performing a generalized Δ -Y-exchange on C (see Figure 1). In what follows, S will be the elements of the 4 -element segment of X_{8}, and C the elements of the 4 -element cosegment of X_{8}, so $E\left(X_{8}\right)=S \cup C$. We will build matroids from X_{8} by performing a sequence of Δ - ∇-steps along $A \in\{S, C\}$. Note that, in such matroids, each of S and C can be either a segment or a cosegment.

Figure 1: The matroids Y_{8} and X_{8}.

A sequence of matroids M_{1}, \ldots, M_{n} is called a path sequence if the following conditions hold:
(P1) $M_{1}=X_{8}$; and
(P2) For each $i \in\{1, \ldots, n-1\}$, there is some 4 -element path-generating segment or cosegment $A \in\{S, C\}$ of M_{i} such that either:
(a) M_{i+1} is obtained from M_{i} by a $\Delta-\nabla$-step along A; or
(b) M_{i+1} is obtained from M_{i} by gluing a wheel onto an allowable subset A^{\prime} of A.

Note in (P2) that each Δ - ∇-step described in (a) increases the number of elements by at least one, and that the wheels in (b) are only glued onto allowable subsets of 4 -element segments or cosegments.

We say that a path sequence M_{1}, \ldots, M_{n} describes a matroid M if $M_{n} \cong M$. We also say that M is a matroid described by a path sequence if there is some path sequence that describes M. Let \mathcal{P} denote the class of matroids such that $M \in \mathcal{P}$ if and only if there is some path sequence M_{1}, \ldots, M_{n} that describes a matroid M^{\prime} such that M can be obtained from M^{\prime} by some, possibly empty, sequence of allowable parallel and series extensions. Since X_{8} is self-dual, it is easy to see that the sequence of dual matroids $M_{1}^{*}, \ldots, M_{n}^{*}$ of a path sequence M_{1}, \ldots, M_{n} is also a path sequence. Thus the class \mathcal{P} is closed under duality.

We denote by Y_{8} the unique matroid obtained from X_{8} by performing a Y - Δ-exchange on an allowable triad (see Figure 1). We will prove the following result.

Theorem 27. If M is a 3-connected $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroid that has an $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor but no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor, then there is some path sequence that describes M.

The proof of Theorem 27 closely follows the proof of [3, Corollary 4.3]. The strategy is to show that a minor-minimal counterexample has at most 12 elements. Let M be a GF(4)-representable $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroid M with an $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor but no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. Suppose that M is a minimum-sized matroid that is not in the class \mathcal{P}. Then M is 3 -connected because \mathcal{P} is closed under series and parallel extensions. Moreover, the dual M^{*} is also not in \mathcal{P} because \mathcal{P} is closed under duality. Thus, by the Splitter Theorem and duality, we may assume there is some element x of M such that $M \backslash x$
is also a 3 -connected $\operatorname{GF}(4)$-representable $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroid with an $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$ minor but no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. By the assumption that M is minimum-sized with respect to being outside the class \mathcal{P}, it follows that $M \backslash x \in \mathcal{P}$. Thus $M \backslash x$ is described by a path sequence M_{1}, \ldots, M_{n}. The next lemma [3, Lemma 6.3] identifies the three possibilities for the position of x in M relative to the path of 3 -separations associated with M_{1}, \ldots, M_{n}.

Lemma 28. Let M and $M \backslash x$ be 3-connected $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids. If $M \backslash x$ is described by a path sequence with associated path of 3 -separations \mathbf{P}, then either:
(i) there is some 3-separation (X, Y) displayed by \mathbf{P} such that $x \in \operatorname{cl}(X)$ and $x \in \operatorname{cl}(Y)$; or
(ii) there is some 3-separation (X, Y) displayed by \mathbf{P} such that $x \notin \operatorname{cl}(X)$ and $x \notin \operatorname{cl}(Y)$; or
(iii) for each 3-separation (R, G) of M displayed by \mathbf{P}, there is some $X \in\{R, G\}$ such that $x \in \mathrm{cl}_{M}(X)$ and $x \in \mathrm{cl}_{M}^{*}(X)$.

The proofs of the next three lemmas follow the proofs of [3, Lemma 7.4], [3, Lemma 8.7], and [3, Lemma 9.7] but use Lemma 25 above instead of [3, Lemma 2.21].

Lemma 29. Lemma 28 (i) does not hold.
Lemma 30. If Lemma 28 (ii) holds, then $|E(M \backslash x)| \leqslant 10$.
Lemma 31. If Lemma 28 (iii) holds, then $|E(M \backslash x)| \leqslant 11$.
Proof of Theorem 27. In view of the last three lemmas, it suffices to verify that \mathcal{P} contains each 3-connected $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroid with an $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$ minor and no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{-}\right)^{*}\right\}$-minor having at most 12 elements. This is done in the Appendix [4].

4.3 Fan extensions

The following theorem describes the structure of the matroids with no $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor. Note that $M_{9,9}$ is the rank-4 matroid on 9 elements in Figure 2. The matroid $M_{7,1}$ is the 7-element matroid that is obtained from Y_{8} by deleting the unique point that is contained in the two 4 -element segments of Y_{8}. We label the points of a triangle of $M_{7,1}$ by $\{1,2,3\}$ as in Figure 2.

Theorem 32. Let M^{\prime} be a 3-connected $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroid with no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$-minor. Then M^{\prime} is isomorphic to a matroid M for which at least one of the following holds:
(i) M has an $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor;
(ii) $M \in\left\{M_{9,9}, M_{9,9}^{*}\right\}$;

Figure 2: The matroids $M_{7,1}$ and $M_{9,9}$.
(iii) M or M^{*} can be obtained from $U_{2,5}$ (with ground set $\{a, b, c, d, e\}$) by gluing wheels to $(a, c, b),(a, d, b),(a, e, b)$;
(iv) M or M^{*} can be obtained from $U_{2,5}$ (with ground set $\{a, b, c, d, e\}$) by gluing wheels to $(a, b, c),(c, d, e)$;
(v) M or M^{*} can be obtained from $M_{7,1}$ by gluing a wheel to (1,3,2).

Proof. Assume M has no $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor. For (ii), we show in Lemma 1 of the Appendix [4] that the matroids $M_{9,9}$ and $M_{9,9}^{*}$ are splitters for the class of 3-connected $\left\{U_{2,5}, U_{3,5}\right\}$-fragile $\mathrm{GF}(4)$-representable matroids with no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{-}\right)^{*}\right\}$-minor.

We may therefore assume M has no $\left\{M_{9,9}, M_{9,9}^{*}, X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor. To show that (iii), (iv), or (v) holds, we use the main result of [2] called the "Fan Lemma", which reduces the proof to showing that extensions and coextensions of the 9 -element matroids with this structure also have this structure. These verifications are completed in Lemmas 2 through 7 of the Appendix [4].

5 From fragility to relaxations

We use the following result of Mayhew, Whittle, and Van Zwam [10, Lemma 8.2].
Lemma 33. Let M be a 3-connected $U_{2,4}$-fragile matroid that has no $\left\{U_{2,6}, U_{4,6}\right\}$-minor. Then exactly one of the following holds.
(i) M has rank or corank two;
(ii) M has an $\left\{F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right\}$-minor;
(iii) M has rank and corank at least 3 and is a whirl.

We show next that $P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}$ do not arise from circuit-hyperplane relaxation of a GF(4)-representable matroid.

Lemma 34. Let M and M^{\prime} be GF(4)-representable matroids such that M is connected, M^{\prime} is 3 -connected, and M^{\prime} is obtained from M by relaxing a circuit-hyperplane X. Then M^{\prime} has no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{-}\right)^{*}\right\}$-minor.

Proof. Assume that M^{\prime} has a $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}\right)^{*}\right\}$-minor. Since M^{\prime} is obtained from M by relaxing X, it follows from Theorem 15 and Lemma 33 that M^{\prime} is $\left\{U_{2,5}, U_{3,5}\right\}$-fragile. Each of the matroids in $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$ has a $\left\{U_{2,5}, U_{3,5}\right\}$-minor, so if C and D are such that $M^{\prime} / C \backslash D \cong N^{\prime}$ for some $N^{\prime} \in\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$, then $C \subseteq X$ and $D \subseteq E\left(M^{\prime}\right)-X$ since the elements of X are nondeletable and the elements of $E\left(M^{\prime}\right)-X$ are noncontractible by Theorem 15. But then it follows from Lemma 4 that N^{\prime} can be obtained from $M / C \backslash D$ by relaxing the circuit-hyperplane $X-C$. It follows that $M / C \backslash D \cong N$ for some $N \in$ $\left\{P_{8}, F_{7}^{-},\left(F_{7}^{-}\right)^{*}\right\}$, a contradiction because M is GF(4)-representable.

We can now describe the structure of the GF(4)-representable matroids that are circuit-hyperplane relaxations of GF(4)-representable matroids.
Theorem 35. Let M and M^{\prime} be $\mathrm{GF}(4)$-representable matroids such that M is connected, M^{\prime} is 3 -connected, and M^{\prime} is obtained from M by relaxing a circuit-hyperplane. Then at least one of the following holds.
(a) M^{\prime} is a whirl;
(b) $M^{\prime} \in\left\{M_{9,9}, M_{9,9}^{*}\right\}$;
(c) M^{\prime} or $\left(M^{\prime}\right)^{*}$ can be obtained from $U_{2,5}$ (with groundset $\{a, b, c, d, e\}$) by gluing wheels to $(a, c, b),(a, d, b)$;
(d) M^{\prime} or $\left(M^{\prime}\right)^{*}$ can be obtained from $U_{2,5}$ (with groundset $\{a, b, c, d, e\}$) by gluing wheels to $(a, b, c),(c, d, e)$;
(e) M^{\prime} or $\left(M^{\prime}\right)^{*}$ can be obtained from $M_{7,1}$ by gluing a wheel to (1,3,2);
(f) there is some path sequence that describes M^{\prime}.

Proof. It follows from Theorem 15 that M^{\prime} is either $U_{2,4}$-fragile or $\left\{U_{2,5}, U_{3,5}\right\}$-fragile. If M^{\prime} is $U_{2,4}$-fragile, then it follows from Lemma 33 that M^{\prime} is a whirl. We may therefore assume that M^{\prime} is $\left\{U_{2,5}, U_{3,5}\right\}$-fragile. It follows from Lemma 34 that M^{\prime} has no $\left\{P_{8}^{-}, F_{7}^{=},\left(F_{7}^{=}\right)^{*}\right\}$ minor. Then, by Theorem 32 and Theorem 15, one of (b) through (e) holds or else M^{\prime} has an $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor. Note that outcome (iii) of Theorem 32 corresponds to outcome (c) here, since a matroid or its dual that is obtained from $U_{2,5}$ (with groundset $\{a, b, c, d, e\}$) by gluing wheels onto all three of the triangles $(a, c, b),(a, d, b),(a, e, b)$ does not have a basis of nondeletable elements and a cobasis of noncontractible elements, and therefore cannot be obtained by relaxing a circuit-hyperplane. We can see this by the following counting argument. Observe that the rank of a matroid obtained from $U_{2,5}$ (with groundset $\{a, b, c, d, e\}$) by gluing wheels A, B and C onto the triangles $(a, c, b),(a, d, b),(a, e, b)$ is $r(A)+r(B)+r(C)-4$. But the nondeletable elements of this matroid are precisely the rim elements of the wheels of which there are $r(A)+r(B)+r(C)-3$. Hence any cobasis must contain a nondeletable element e. Since this matroid has $M_{9,18}$ as a minor (see Appendix [4, Lemma 2]), M has no essential elements, which implies that e must be contractible.

Finally, if M^{\prime} has an $\left\{X_{8}, Y_{8}, Y_{8}^{*}\right\}$-minor, then it follows from Theorem 27 that (f) holds.

We can now show that if M and M^{\prime} are GF(4)-representable matroids such that M^{\prime} is obtained from M by relaxing a circuit-hyperplane, then M^{\prime} has path width 3.

Proof of Theorem 1. If M is not connected, then it follows from Lemma 11 that M^{\prime} has path width 3 . We may therefore assume that M is connected. Then, by Lemma 13, M^{\prime} can be obtained from a matroid in Theorem 35 (a) - (f) by performing some, possibly empty, sequence of series or parallel extensions. The result now follows from the fact that all the matroids in Theorem 35 (a) - (f) have path width 3.

6 Forbidden submatrices

In this section, we will prove our second characterization, Theorem 2. Let M be a GF(4)representable matroid with a circuit-hyperplane X. Choose $e \in X$ and $f \in E-X$ such that $B=(X-e) \cup f$ is a basis of M. Then we can find a reduced GF(4)-representation of M in block form,

$$
C=\begin{gathered}
X-e \\
f
\end{gathered}\left[\begin{array}{cc}
(E-X)-f & e \\
A & \underline{1} \\
\underline{1}^{T} & 0
\end{array}\right] .
$$

Here A is an $(X-e) \times((E-X)-f)$ matrix over $\mathrm{GF}(4)$, and we have scaled so that every non-zero entry in the row labelled by f and the column labelled by e is 1 . We denote by $A_{i j}$ the entry in row i and column j of A.

Let M^{\prime} be the matroid obtained from M by relaxing the circuit-hyperplane X. If M^{\prime} is GF(4)-representable, then we can find a reduced representation of M^{\prime} in block form,

$$
C^{\prime}=\begin{gathered}
X-e \\
f
\end{gathered}\left[\begin{array}{cc}
(E-X)-f & e \\
A^{\prime} & \underline{1} \\
\underline{1}^{T} & \omega
\end{array}\right] .
$$

We have scaled the rows and columns of the matrix such that the entry in the row labelled by f and column labelled by e is $\omega \in \mathrm{GF}(4)-\{0,1\}$, and every remaining entry in row e and column f is a 1 .

We omit the straightforward proof of the following lemma.
Lemma 36. $A_{i j}=0$ if and only if $A_{i j}^{\prime}=0$.
Next we show that the only non-zero entries of A^{\prime} are 1 and ω.
Lemma 37. $A_{i j}^{\prime} \neq \omega+1$.
Proof. Suppose $A_{i j}^{\prime}=\omega+1$. Then C^{\prime} has a submatrix

$$
C^{\prime}[\{i, f\},\{e, j\}]=\begin{gathered}
i \\
f
\end{gathered}\left[\begin{array}{cc}
j & e \\
\omega+1 & 1 \\
1 & \omega
\end{array}\right],
$$

which has determinant zero. Therefore $B \triangle\{e, f, i, j\}$ is not a basis of the matroid $M\left[I \mid C^{\prime}\right]$. But the corresponding submatrix of C is

$$
C[\{i, f\},\{e, j\}]=\begin{gathered}
i \\
f
\end{gathered}\left[\begin{array}{ll}
x & e \\
x & 1 \\
1 & 0
\end{array}\right],
$$

for some non-zero x. Since $C[\{i, f\},\{e, j\}]$ has non-zero determinant, $B \triangle\{e, f, i, j\}$ is a basis of M, and hence of M^{\prime}. Therefore $M^{\prime} \neq M\left[I \mid C^{\prime}\right]$.

Lemma 38. $A_{i j}=A_{i k}$ if and only if $A_{i j}^{\prime}=A_{i k}^{\prime}$. Similarly, $A_{i j}=A_{k j}$ if and only if $A_{i j}^{\prime}=A_{k j}^{\prime}$

Proof. We show that $A_{i j}=A_{i k}$ implies that $A_{i j}^{\prime}=A_{i k}^{\prime}$. The proof of the converse, and the proof of the second statement proceed by similar easy arguments. Suppose that $A_{i j}=A_{i k}$. Then C has a submatrix

$$
\left.C[\{i, f\},\{j, k\}]=\begin{array}{c}
i \\
f
\end{array} \begin{array}{cc}
j & k \\
x & x \\
1 & 1
\end{array}\right],
$$

for some non-zero x. Since $C[\{i, f\},\{j, k\}]$ has zero determinant, $B \triangle\{f, i, j, k\}$ is not a basis of M, and hence not a basis of $M^{\prime}=M\left[I \mid C^{\prime}\right]$. Therefore $\operatorname{det}\left(C^{\prime}[\{i, f\},\{j, k\}]\right)=0$, so it follows that $A_{i j}^{\prime}=A_{i k}^{\prime}$.

The following lemma on diagonal submatrices will be used frequently.
Lemma 39. Let

$$
\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right] \text { and }\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

be corresponding submatrices of A and A^{\prime} respectively, where x, y, a, b are non-zero entries. Then $x=y$ if and only if $a \neq b$.

Proof. Adjoining e and f to the specified 2×2 submatrices, we get the 3×3 submatrices

$$
\left[\begin{array}{lll}
x & 0 & 1 \\
0 & y & 1 \\
1 & 1 & 0
\end{array}\right] \text { and }\left[\begin{array}{ccc}
a & 0 & 1 \\
0 & b & 1 \\
1 & 1 & \omega
\end{array}\right] .
$$

These matrices have determinants $x+y$ and $a b \omega+a+b$. Thus if $x=y$, then $a \neq b$. Conversely, if $a \neq b$, then $\{a, b\}=\{1, \omega\}$ by Lemma 37 so $a b \omega+a+b=\omega^{2}+\omega+1=0$. Hence $x=y$.

We can now identify all of the forbidden submatrices. We use Lemma 38 to identify the first such matrix in the following lemma.

Lemma 40. Neither A nor A^{T} has a submatrix of the form

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]
$$

where x, y, z are distinct non-zero entries.
Proof. By Lemma 38, the corresponding submatrix of A^{\prime} must have the form

$$
\left[\begin{array}{lll}
a & b & c
\end{array}\right],
$$

where a, b, c are distinct non-zero entries, which is a contradiction to Lemma 37.
We now use Lemma 38 and Lemma 39 to find several more forbidden submatrices.
Lemma 41. A has no submatrices of the following forms, where x, y, and z are distinct non-zero entries.

$$
\begin{aligned}
& \text { (i) }\left[\begin{array}{lll}
x & x & 0 \\
x & 0 & x
\end{array}\right] ; \text { (ii) }\left[\begin{array}{lll}
x & x & 0 \\
x & 0 & y
\end{array}\right] ; \text { (iii) }\left[\begin{array}{lll}
x & x & 0 \\
y & 0 & y
\end{array}\right] ; \text { (iv) }\left[\begin{array}{lll}
x & y & 0 \\
x & 0 & y
\end{array}\right] ; \\
& \text { (v) }\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & z
\end{array}\right] ; \text { (vi) }\left[\begin{array}{lll}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right] ; \text { (vii) }\left[\begin{array}{lll}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & y
\end{array}\right] ; \text { (viii) }\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right] .
\end{aligned}
$$

Proof. Suppose A has the submatrix (i). By applying Lemma 38 to the rows and the first column, we deduce that the corresponding submatrix of A^{\prime} has the form

$$
\left[\begin{array}{ccc}
a & a & 0 \\
a & 0 & a
\end{array}\right],
$$

where a is a non-zero entry, a contradiction of Lemma 39.
Suppose A has the submatrix (ii). By applying Lemma 38 to the rows and the first column, and since A^{\prime} has at most two distinct non-zero entries by Lemma 37, we deduce that the corresponding submatrix of A^{\prime} has the form

$$
\left[\begin{array}{ccc}
a & a & 0 \\
a & 0 & b
\end{array}\right],
$$

where a and b are the two non-zero entries of A^{\prime}, a contradiction to Lemma 39.
The proofs for (iii) and (iv) are similar to that for (ii). We omit the details.
Suppose A has the submatrix (v). Then, by two applications of Lemma 39, the corresponding submatrix of A^{\prime} must have the form

$$
\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & a & a
\end{array}\right],
$$

for some non-zero entry a. This is a contradiction to Lemma 38.

Suppose A has the submatrix (vi). By Lemma 39, the corresponding submatrix of A^{\prime} must be a diagonal matrix with distinct non-zero entries, a contradiction to Lemma 37.

Suppose A has the submatrix (vii). Applying Lemma 39 to the two submatrices the form

$$
\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right],
$$

it follows that the corresponding submatrix of A^{\prime} is

$$
\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right],
$$

for some a, which is a contradiction to Lemma 39.
Suppose A has the submatrix (viii). Then the corresponding submatrix of A^{\prime} is

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right],
$$

for some a. Adjoining e and f, we have a submatrix of C,

$$
\left[\begin{array}{llll}
x & 0 & 0 & 1 \\
0 & y & 0 & 1 \\
0 & 0 & z & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

which has zero determinant, while the corresponding submatrix of C^{\prime},

$$
\left[\begin{array}{cccc}
a & 0 & 0 & 1 \\
0 & a & 0 & 1 \\
0 & 0 & a & 1 \\
1 & 1 & 1 & \omega
\end{array}\right]
$$

has non-zero determinant, a contradiction.
Lemma 42. A has no submatrices of the following forms, where x, y, and z are distinct non-zero entries:

$$
\text { (i) }\left[\begin{array}{cc}
x & y \\
0 & x
\end{array}\right] ; \text { (ii) }\left[\begin{array}{cc}
x & y \\
y & x
\end{array}\right] ; \text { (iii) }\left[\begin{array}{ll}
x & x \\
y & z
\end{array}\right] ; \text { (iv) }\left[\begin{array}{ll}
x & y \\
z & x
\end{array}\right] ;(v)\left[\begin{array}{lll}
x & y & 0 \\
x & 0 & z
\end{array}\right] \text {. }
$$

Proof. Suppose A has the submatrix (i). Then, adjoining e and f, we see that C has the following submatrix with non-zero determinant.

$$
\left[\begin{array}{lll}
x & y & 1 \\
0 & x & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

But then, by Lemma 38, the corresponding submatrix of C^{\prime} must have the following form.

$$
\left[\begin{array}{ccc}
a & b & 1 \\
0 & a & 1 \\
1 & 1 & \omega
\end{array}\right],
$$

where $\{a, b\}=\{1, \omega\}$ by Lemma 37. This gives a contradiction because this submatrix of C^{\prime} has zero determinant. A similar proof handles (ii).

Suppose A has the submatrix (iii). Then, by Lemma 38, in the corresponding submatrix of A^{\prime}, the entries in the first row are the same and the entries in the second row are different. But, by Lemma 37, there are only two distinct non-zero entries in A^{\prime}, so the entries are the same in one of the columns of A^{\prime}, which is a contradiction to Lemma 38.

Suppose A has the submatrix (iv). Note that this submatrix has zero determinant. By Lemma 38, the corresponding submatrix of A^{\prime} must have the following form.

$$
\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

where $\{a, b\}=\{1, \omega\}$ by Lemma 37 . But this submatrix of A^{\prime} has non-zero determinant, a contradiction.

Suppose A has the submatrix (v). Then C contains the following submatrix, which does not use its last column:

$$
\left[\begin{array}{lll}
x & y & 0 \\
x & 0 & z \\
1 & 1 & 1
\end{array}\right] .
$$

This matrix has determinant 0 . By Lemmas 37,38 , and 39, the corresponding submatrix of C^{\prime} is

$$
\left[\begin{array}{lll}
a & b & 0 \\
a & 0 & b \\
1 & 1 & 1
\end{array}\right]
$$

where $\{a, b\}=\{1, \omega\}$. This matrix has non-zero determinant, a contradiction.
Finally, we find two more 3×3 forbidden submatrices of A.
Lemma 43. A has no submatrices of the following forms, where x, y, and z are distinct non-zero entries:

$$
\text { (i) }\left[\begin{array}{lll}
x & y & x \\
y & y & 0 \\
x & 0 & 0
\end{array}\right] ;(i i)\left[\begin{array}{lll}
x & y & x \\
y & y & 0 \\
x & 0 & z
\end{array}\right] \text {. }
$$

Proof. Suppose that A has the submatrix (i). Then, adjoining e and f, we see that C has the submatrix

$$
\left[\begin{array}{llll}
x & y & x & 1 \\
y & y & 0 & 1 \\
x & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

which has zero determinant. The corresponding submatrix of C^{\prime} is

$$
\left[\begin{array}{llll}
a & b & a & 1 \\
b & b & 0 & 1 \\
a & 0 & 0 & 1 \\
1 & 1 & 1 & \omega
\end{array}\right],
$$

for distinct $a, b \in\{1, \omega\}$. This submatrix of C has non-zero determinant, a contradiction.
Suppose that A has the submatrix (ii). Note that the determinant of this submatrix is not zero. By Lemma 37 and Lemma 38, the corresponding submatrix of A^{\prime} is

$$
\left[\begin{array}{lll}
a & b & a \\
b & b & 0 \\
a & 0 & b
\end{array}\right],
$$

for distinct $a, b \in\{1, \omega\}$. This submatrix of A^{\prime} has zero determinant, which is a contradiction.

To prove the main theorem of this section, we need the following theorem [5, Theorem 5.1].

Theorem 44. Minor-minimal non-GF(4)-representable matroids have rank and corank at most 4 .

We can now prove the main theorem, which we repeat for convenience.
Theorem 45. There is some matrix C^{\prime} representing M^{\prime} if and only if, up to permuting rows and columns, A and A^{T} have no submatrix in the following set, where x, y, z are distinct non-zero elements of $\mathrm{GF}(4)$:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
x & y & z
\end{array}\right],\left[\begin{array}{ll}
x & y \\
0 & x
\end{array}\right],\left[\begin{array}{ll}
x & y \\
y & x
\end{array}\right],\left[\begin{array}{ll}
x & x \\
y & z
\end{array}\right],\left[\begin{array}{cc}
x & y \\
z & x
\end{array}\right],\left[\begin{array}{lll}
x & x & 0 \\
x & 0 & x
\end{array}\right],\left[\begin{array}{lll}
x & x & 0 \\
x & 0 & y
\end{array}\right],} \\
& {\left[\begin{array}{lll}
x & x & 0 \\
y & 0 & y
\end{array}\right],\left[\begin{array}{lll}
x & y & 0 \\
x & 0 & y
\end{array}\right],\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & z
\end{array}\right],\left[\begin{array}{lll}
x & y & 0 \\
x & 0 & z
\end{array}\right],\left[\begin{array}{ccc}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right],\left[\begin{array}{ccc}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & y
\end{array}\right],} \\
& {\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right],\left[\begin{array}{lll}
x & y & x \\
y & y & 0 \\
x & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
x & y & x \\
y & y & 0 \\
x & 0 & z
\end{array}\right] .}
\end{aligned}
$$

Proof. It follows from Lemmas 40, 41, 42, and 43 that both A and A^{T} have no submatrix on the above list.

Conversely, suppose that the GF(4)-representable matroid M is chosen to be minimal subject to the property that the relaxation M^{\prime} is not GF(4)-representable. Then M^{\prime} has a minor N isomorphic to one of the excluded minors for the class of GF(4)-representable matroids. Assume that $N=M^{\prime} / C \backslash D$ for some subsets C and D. If there is an element
g in both D and the circuit-hyperplane X of M, then $M \backslash g=M^{\prime} \backslash g$ by Lemma 4 , so M also has an N-minor, contradicting the fact that M is $\mathrm{GF}(4)$-representable. We deduce that $D \subseteq E(M)-X$, and dually, $C \subseteq X$. Now if $|D| \geqslant 2$, then there is some element g in both D and $E\left(M^{\prime}\right)-(X \cup f)$, so relaxing the circuit-hyperplane X of $M \backslash g$ gives $M^{\prime} \backslash g$ that is not GF(4)-representable, which contradicts the minimality of M. Therefore $|D| \leqslant 1$, and by a dual argument, there is no element g in both C and $X-e$, so $|C| \leqslant 1$. Since we know, by Theorem 44, that $|E(N)| \leqslant 8$, it now follows that $\left|E\left(M^{\prime}\right)\right| \leqslant 10$. The computations in the Appendix [4] show that M^{\prime} must have a submatrix from the above list.

Acknowledgements

The authors thank the anonymous referee for some helpful suggestions that improved the exposition.

References

[1] C. Chun, D. Chun, B. Clark, D. Mayhew, G. Whittle, and S. H. M. van Zwam, Computer-verification of the structure of some classes of fragile matroids, arXiv:1312.5175.
[2] C. Chun, D. Chun, D. Mayhew, and S. H. M. van Zwam, Fan-extensions in fragile matroids, Electron. J. Combin., 22(2) \#P2.30 (2015).
[3] B. Clark, D. Mayhew, G. Whittle, and S. van Zwam, The structure of $\left\{U_{2,5}, U_{3,5}\right\}$-fragile matroids, SIAM Journal on Discrete Mathmatics, 30 (2016), pp. 1480-1508.
[4] B. Clark, J. Oxley, and S.H.M. van Zwam, Relaxations of GF(4)-representable Matroids, Appendix, arXiv:1704.07306 (2018).
[5] J. Geelen, A. Gerards, and A. Kapoor, The excluded minors for GF(4)representable matroids, Journal of Combinatorial Theory, Series B, 79 (2000), pp. 247 - 299.
[6] J. Geelen, J. Oxley, D. Vertigan, and G. Whittle, Weak maps and stabilizers of classes of matroids, Adv. Appl. Math., 21 (1998), pp. 305-341.
[7] F. Jaeger, D. L. Vertigan, and D. J. Welsh, On the computational complexity of the Jones and Tutte polynomials, Math. Proc. Cambridge Philos. Soc, 108 (1990), pp. 35-53.
[8] J. Kahn, A problem of P. Seymour on nonbinary matroids, Combinatorica, 5 (1985), pp. 319-323.
[9] D. Lucas, Weak maps of combinatorial geometries, Trans. Amer. Math. Soc., 206 (1975), pp. 247-279.
[10] D. Mayhew, S. H. M. van Zwam, and G. Whittle, Stability, fragility, and Rota's Conjecture, J. Combin. Theory Ser. B, 102 (2012), pp. 760-783.
[11] J. Oxley, Matroid theory, Second Edition, Oxford University Press, New York, 2011.
[12] J. Oxley, C. Semple, and D. Vertigan, Generalized $\Delta-Y$ exchange and k regular matroids, J. Combin. Theory Ser. B, 79 (2000), pp. 1-65.
[13] J. Oxley and G. Whittle, On weak maps of ternary matroids, European J. Combin., 19 (1998), pp. 377-389.
[14] R. Pendavingh and S. H. M. van Zwam, Confinement of matroid representations to subsets of partial fields, J. Combin. Theory Ser. B, 100 (2010), pp. 510-545.
[15] C. Semple and G. Whittle, On representable matroids having neither $U_{2,5^{-}}$nor $U_{3,5}$-minors, in Matroid Theory: AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory, July 2-6, 1995, University of Washington, Seattle, vol. 197, American Mathematical Soc., 1996, p. 377.
[16] K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of matroids, J. Combin. Theory Ser. B, 32 (1982), pp. 112-139.

[^0]: *Supported by the National Science Foundation, grant 1500343

