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Abstract

We consider the GF(4)-representable matroids with a circuit-hyperplane such
that the matroid obtained by relaxing the circuit-hyperplane is also GF(4)-represen-
table. We characterize the structure of these matroids as an application of structure
theorems for the classes of U2,4-fragile and {U2,5, U3,5}-fragile matroids. In addi-
tion, we characterize the forbidden submatrices in GF(4)-representations of these
matroids.

Mathematics Subject Classifications: 05B35

1 Introduction

Lucas [9] determined the binary matroids that have a circuit-hyperplane whose relaxation
yields another binary matroid. Truemper [16], and independently, Oxley and Whittle [13],
did the same for ternary matroids. In this paper, we solve the corresponding problem for
quaternary matroids. We give both a structural characterization and a characterization
in terms of forbidden submatrices.

Truemper [16] used the structure of circuit-hyperplane relaxations of binary and
ternary matroids to give new proofs of the excluded-minor characterizations for the classes
of binary, ternary, and regular matroids. It is natural to ask if Truemper’s techniques can
be extended to give excluded-minor characterizations for classes of quaternary matroids.
The main results of this paper can be viewed as a first step towards answering this ques-
tion.

Our structural characterization can be summarized as follows. A matroid has path
width 3 if there is an ordering (e1, e2, . . . , en) of its ground set such that {e1, e2, . . . , et} is
a 3-separating set for all t ∈ {1, 2, . . . , n}.

∗Supported by the National Science Foundation, grant 1500343
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Theorem 1. Let M and M ′ be GF(4)-representable matroids such that M ′ is obtained
from M by relaxing a circuit-hyperplane. Then M ′ has path width 3.

In fact, our main result, Theorem 35, describes precisely how the matroids in Theorem
1 of path width 3 can be constructed using the generalized ∆-Y exchange of [12] and the
notion of gluing a wheel onto a triangle from [2]. Our description uses the structure of
U2,4-fragile matroids from [10] and the structure of {U2,5, U3,5}-fragile matroids from [3].

In future work, we hope to obtain a description of these matroids that is independent
of the notion of fragility. Specifically, we would like to characterize the representations of
these matroids. As a step in this direction, we describe minimal GF(4)-representations
of matroids with a circuit-hyperplane whose relaxation is not GF(4)-representable. Note
that the proof uses the excluded-minor characterization of the class of GF(4)-representable
matroids. The setup for this result is as follows.

Let M be a GF(4)-representable matroid on E with a circuit-hyperplane X. Choose
e ∈ X and f ∈ E −X such that (X − e) ∪ f is a basis of M . Then M = M [I|C] for a
quaternary matrix C of the following block form.

C =

[ (E−X)−f e

X−e A 1
f 1T 0

]
.

In the above matrix, A is an (X − e)× ((E −X)− f) matrix, and we have scaled so
that every non-zero entry in the row labelled by f and the column labelled by e is 1. Let
M ′ be the matroid obtained from M by relaxing the circuit-hyperplane X. We call the
matrix C a reduced representation of M . If M ′ is GF(4)-representable, then we can find
a reduced representation C ′ of M ′ in the following block form.

C ′ =

[ (E−X)−f e

X−e A′ 1
f 1T ω

]
.

We have scaled the rows and columns of the matrix such that the entry C ′fe = ω ∈
GF(4)−{0, 1}, and the remaining entries in row f and column e are all 1. The following
theorem is our characterization in terms of forbidden submatrices.

Theorem 2. Let M and C be constructed as described above. There is a reduced repre-
sentation C ′ of the above form for M ′ if and only if, up to permuting rows and columns,
A and AT have no submatrix in the following list, where x, y, z denote distinct non-zero
elements of GF(4).

[
x y z

]
,

[
x y
0 x

]
,

[
x y
y x

]
,

[
x x
y z

]
,

[
x y
z x

]
,

[
x x 0
x 0 x

]
,

[
x x 0
x 0 y

]
,

[
x x 0
y 0 y

]
,

[
x y 0
x 0 y

]
,

[
x 0 0
0 y z

]
,

[
x y 0
x 0 z

]
,

x 0 0
0 x 0
0 0 x

 ,
x 0 0

0 x 0
0 0 y

 ,
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x 0 0
0 y 0
0 0 z

 ,
x y x
y y 0
x 0 0

 ,
x y x
y y 0
x 0 z

 .
This paper is organized as follows. In the next section, we collect some results on

connectivity and circuit-hyperplane relaxation. In Section 3, we prove a fragility theorem.
In Section 4, we describe the structure of the {U2,5, U3,5}-fragile matroids. In Section 5,
we prove the structural characterization. In Section 6, we reduce the proof of Theorem 2
to a finite computer check. This check, carried out using SageMath, can be found in the
Appendix [4].

2 Circuit-hyperplane relaxations and connectivity

We assume the reader is familiar with the fundamentals of matroid theory. Any undefined
matroid terminology will follow Oxley [11]. LetM be a matroid on E, and let B(M) denote
the collection of bases of M . If M has a circuit-hyperplane X, then B(M ′) = B(M)∪{X}
is the collection of bases of a matroid M ′ on E. We say that M ′ is obtained from M by
relaxing the circuit-hyperplane X. We list here a number of useful results on circuit-
hyperplane relaxation.

Lemma 3. [11, Proposition 2.1.7] If M ′ is obtained from M by relaxing the circuit-
hyperplane X of M , then (M ′)∗ is obtained from M∗ by relaxing the circuit-hyperplane
E(M)−X of M∗.

The following elementary results are originally from [8].

Lemma 4. [11, Proposition 3.3.5] Let X be a circuit-hyperplane of a matroid M , and let
M ′ be the matroid obtained from M by relaxing X. When e ∈ E(M)−X,

(i) M/e = M ′/e and, unless M has e as a coloop, M ′\e is obtained from M\e by
relaxing the circuit-hyperplane X of the latter.

Dually, when f ∈ X,

(ii) M\f = M ′\f and, unless M has f as a loop, M ′/f is obtained from M/f by relaxing
the circuit-hyperplane X − f of the latter.

For a set N of matroids, we say that a matroid M has an N -minor if M has an
N -minor for some N ∈ N . We say M is N -fragile if M has an N -minor and, for each
element e of M , at most one matroid in {M\e,M/e} has an N -minor. We say an element
e of an N -fragile matroid M is nondeletable if M\e has no N -minor; the element e is
noncontractible if M/e has no N -minor.

The following lemma is an immediate consequence of Lemma 4.
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Lemma 5. Let X be a circuit-hyperplane of a matroid M , and let M ′ be the matroid
obtained from M by relaxing X. If N is a set of matroids such that M ′ has an N -
minor but M has no N -minor, then M ′ is N -fragile. Moreover, X is a basis of M ′

whose elements are nondeletable such that the elements of the cobasis E(M ′) − X are
noncontractible.

We use the following connectivity result.

Lemma 6. [11, Proposition 8.4.2] Let M ′ be a matroid that is obtained by relaxing a
circuit-hyperplane of a matroid M . If M is n-connected, then M ′ is n-connected.

Kahn [8] proved the following result on the representability of a circuit-hyperplane
relaxation.

Lemma 7. Let M ′ be a matroid that is obtained by relaxing a circuit-hyperplane of a
matroid M . If M is connected, then M ′ is non-binary.

We use the following definition of the rank function of the 2-sum from [7]. Let M1

and M2 be matroids with at least two elements such that E(M1) ∩ E(M2) = {p}. Then
M = M1 ⊕2 M2 has rank function rM defined for all A1 ⊆ E(M1) and A2 ⊆ E(M2) by

rM(A1 ∪ A2) = rM1(A1) + rM2(A2)− θ(A1, A2) + θ(∅, ∅)

where θ(X, Y ) = 1 if rM1(X ∪ p) = rM1(X) and rM2(Y ∪ p) = rM2(Y ), and θ(X, Y ) = 0
otherwise.

The next three results on 2-sums and minors of 2-sums are well known.

Lemma 8. [11, Proposition 7.1.20] Let M and N be matroids with at least two elements.
Let E(M)∩E(N) = {p} and suppose that neither M nor N has {p} as a separator. The
set of circuits of M ⊕2 N is

C(M\p) ∪ C(N\p) ∪ {(C ∪D)− p : p ∈ C ∈ C(M) and p ∈ D ∈ C(N)}.

Lemma 9. [11, Theorem 8.3.1] A connected matroid M is not 3-connected if and only if
M = M1 ⊕2 M2 for some matroids M1 and M2, each of which has at least three elements
and is isomorphic to a proper minor of M .

Lemma 10. [11, Proposition 8.3.5] Let M,N,M1,M2 be matroids such that M = M1⊕2

M2 and N is 3-connected. If M has an N-minor, then M1 or M2 has an N-minor.

We can now describe the structure of circuit-hyperplanes in matroids of low connec-
tivity. We omit the straightforward proof of the next lemma.

Lemma 11. Let M be a GF(4)-representable matroid with a circuit-hyperplane H. If M
is not connected, then M ∼= U1,m ⊕ Un−1,n for some positive integers m and n.

We now work towards a description of the 2-separations of a connected matroid in
which the relaxation of some circuit-hyperplane is GF(4)-representable.
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Lemma 12. Let M be a matroid with a circuit-hyperplane X. If A is a non-trivial parallel
class of M , then either A ⊆ E −X, or A = X and |A| = 2.

Proof. If A ∩ X and A ∩ (E − X) are both non-empty, then there is a circuit {x, y}
contained in A such that x ∈ X and y ∈ E−X. But E−X is a cocircuit of M , so this is
a contradiction to orthogonality. Thus either A∩X or A∩ (E−X) is empty. In the case
that A ∩ (E −X) is empty, there is a circuit {x, y} contained in A that is also contained
in the circuit X, so X = A = {x, y}.

For the next result, we say that M is 3-connected up to series and parallel classes if
M is connected and, for any 2-separation (X, Y ) of M , either X or Y is a series class or
a parallel class.

Lemma 13. Let M be a GF(4)-representable matroid with a circuit-hyperplane X such
that the matroid M ′ obtained from M is also GF(4)-representable. If M is connected but
not 3-connected, then M is 3-connected up to series and parallel classes.

Proof. Assume that M has a 2-separation (S, T ) where neither side is a series or parallel
class. Then M has a 2-sum decomposition of the form M = N ⊕2 N

′ for some N and N ′

with E(N) ∩ E(N ′) = {p}, where neither N nor N ′ is a circuit or cocircuit.
First suppose that the circuit X of M has the form (C ∪C ′)− p, where C is a circuit

of N , and C ′ is a circuit of N ′ while p ∈ C ∩ C ′. Then

r(X) = r(M)− 1, (1)

r(N) + r(N ′)− 1 = r(M), (2)

and
rM(X) = rN(C) + rN ′(C

′)− 1. (3)

Equation (1) follows from the fact that X is a hyperplane of M ; Equations (2) and
(3) follow from the definition of the rank function of the 2-sum of N and N ′. Combining
(1) and (2), we see that r(X) = r(N) + r(N ′) − 2. Then combining this equation with
(3), we see that

r(C) + r(C ′) = r(N) + r(N ′)− 1.

We may therefore assume that C is a spanning circuit of N , and hence that E(N) = C
because the hyperplane X is closed. Therefore N is a circuit, a contradiction.

By symmetry, it remains to consider the case when X is a circuit of N ′\p. Then
r(X) 6 r(N ′). Since X is a hyperplane of M , and r(M) = r(N)+r(N ′)−1, it follows that
r(N) 6 2. Since N is not a cocircuit, we deduce that r(N) = 2. Then r(M) = r(N ′) + 1,
so r(X) = r(N ′) = r(N ′\p). Since N is not a circuit we deduce that si(N) ∼= U2,m for
some m > 4. Moreover, p is not in a non-trivial parallel class in N otherwise X is not a
hyperplane of M .

Switching to M∗, we see that rM∗(N
′) = |X| + r(N) − r(M) = r(N) = 2. As above,

it follows that co(N ′) ∼= Un−1,n+1 for some n > 3. Moreover, p is not in a non-trivial
series class in N ′. Let X1 consist of one representative of each series class of N ′, and let
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Y1 consist of one representative of each parallel class of N . By contracting elements of
X−X1 and deleting elements of (E(M)−X)−Y1, we obtain Un−1,n+1⊕2U2,m as a minor
of M for some n > 3 and m > 4. Moreover, by Lemma 4, X1 is a circuit-hyperplane of
this minor whose relaxation is GF(4)-representable. Thus X1 ⊆ E(Un−1,n+1). Contract
n− 3 elements from X1 and delete m− 4 elements from Y1 to get U2,4 ⊕2 U2,4. Relaxing
a circuit-hyperplane of this minor gives P6 which is not GF(4)-representable (see [11,
Proposition 6.5.8]), a contradiction.

3 A fragility theorem

We will use the following consequence of Geelen, Oxley, Vertigan, and Whittle [6, Theorem
8.4].

Theorem 14. Let M and M ′ be GF(4)-representable matroids with the properties that
M is connected, M ′ is 3-connected, and M ′ is obtained from M by relaxing a circuit-
hyperplane.

(i) If M ′ has a U2,4-minor but no {U2,5, U3,5}-minor, then M is binary.

(ii) If M ′ has a {U2,5, U3,5}-minor but no U3,6-minor, then M has no {U2,5, U3,5}-minor.

We can now prove the main result of this section.

Theorem 15. Let M and M ′ be GF(4)-representable matroids such that M is connected,
M ′ is 3-connected, and M ′ is obtained from M by relaxing a circuit-hyperplane X. Then
M ′ is either U2,4-fragile or {U2,5, U3,5}-fragile. Moreover, X is a basis of M ′ whose el-
ements are nondeletable such that the elements of the cobasis E(M ′) − X are noncon-
tractible.

Proof. First assume that M ′ has no {U2,5, U3,5}-minor. By Lemma 7 and Theorem 14
(i), M ′ has a U2,4-minor and M has no U2,4-minor. Then it follows from Lemma 5 that
M ′ is U2,4-fragile, and M ′ has a basis X whose elements are nondeletable such that the
elements of the cobasis E(M ′)−X are noncontractible.

We may now assume that M ′ has a {U2,5, U3,5}-minor. Suppose that M also has a
{U2,5, U3,5}-minor, and assume that M is a minor-minimal matroid with respect to the
hypotheses; that is, we assume that M has no proper minor M0 such that M0 is connected,
M0 has a {U2,5, U3,5}-minor, and M0 has a circuit-hyperplane whose relaxation M ′

0 is 3-
connected, GF(4)-representable, and has a {U2,5, U3,5}-minor.

Claim 16. M is {U2,5, U3,5}-fragile.

Proof of 16. Suppose that M has an element e ∈ E(M) − X such that M\e has a
{U2,5, U3,5}-minor. If M\e is 3-connected, then we have a contradiction to the mini-
mality of M . Therefore, by Lemma 13, M\e is 3-connected up to series and parallel pairs.
Suppose that A is a non-trivial parallel class of M\e. Suppose A ⊆ X. Then A = X and
|A| = 2 by Lemma 12, so we deduce that M\e is a parallel extension of U2,5 and hence
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that M ′\e has a U2,6-minor, a contradiction to the fact that the matroid M ′ obtained
from M by relaxing X is GF(4)-representable. Thus A ⊆ E(M\e)−X by Lemma 12. By
duality, any non-trivial series class of M\e must be contained in X. Then, by Lemma 10,
the matroid M0 obtained from M\e by deleting all but one element of every non-trivial
parallel class and contracting all but one element of every non-trivial series class has a
{U2,5, U3,5}-minor. We deduce from Lemma 13 that M0 is 3-connected. Then M0 contra-
dicts the minimality of M . Therefore M\e has no {U2,5, U3,5}-minor for all e ∈ E(M)−X,
and, by duality, M/e has no {U2,5, U3,5}-minor for all e ∈ X, so M is {U2,5, U3,5}-fragile.
This completes the proof of 16.

Since M has a {U2,5, U3,5}-minor, it follows from Theorem 14 (ii) that M ′ has a U3,6-
minor, that is, M ′/C\D ∼= U3,6 for some subsets C and D. If C ⊆ X and D ⊆ E(M ′)−X,
then it follows from Lemma 4 that U3,6 can be obtained from M/C\D by relaxing the
circuit-hyperplane X − C. Hence M/C\D ∼= P6, a contradiction because M/C\D is
GF(4)-representable but P6 is not. Therefore C ∩ (E(M ′) − X) or D ∩ X is nonempty,
so M/C\D = M ′/C\D ∼= U3,6 by Lemma 4. This is a contradiction to 16 because any
minor of M must also be {U2,5, U3,5}-fragile, but for any e, both U3,6\e and U3,6/e have
a {U2,5, U3,5}-minor. We conclude that M has no {U2,5, U3,5}-minor. It now follows from
Lemma 5 that M ′ is {U2,5, U3,5}-fragile, and that M ′ has a basis X whose elements are
nondeletable such that the elements of the cobasis E(M ′)−X are noncontractible.

4 The structure of {U2,5, U3,5}-fragile matroids

4.1 Partial Fields and Constructions

We briefly state the necessary material on partial fields. For a more thorough treatment,
we refer the reader to [14].

A partial field is a pair P = (R,G), where R is a commutative ring with unity, and
G is a subgroup of the units of R with −1 ∈ G. A matrix with entries in G is a P-
matrix if det(D) ∈ G ∪ {0} for any square submatrix D of A. We use 〈X〉 to denote the
multiplicative subgroup of R generated by the subset X.

A rank-r matroid M on the ground set E is P-representable if there is an r × |E|
P-matrix A such that, for each r × r submatrix D, the determinant of D is nonzero if
and only if the corresponding subset of E is a basis of M . When this occurs, we write
M = M [A].

The 2-regular partial field is defined as follows.

U2 = (Q(α, β), 〈−1, α, β, 1− α, 1− β, α− β〉) ,

where α,β are indeterminates.
It is well-known that any U2-representable matroid is GF(4)-representable [12]. On

the other hand, there are GF(4)-representable matroids that are not U2-representable.
We now define three such matroids. The matroid P8 has a unique pair of disjoint circuit-
hyperplanes; we let P−8 denote the unique matroid obtained by relaxing one of these
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circuit-hyperplanes. We denote by F=
7 the matroid obtained from the non-Fano matroid

F−7 by relaxing a circuit-hyperplane. The GF(4)-representable matroids P−8 ,F=
7 , (F=

7 )∗

are not U2-representable. We note that this can be deduced from [1] since P−8 ,F=
7 , (F=

7 )∗

are {U2,5, U3,5}-fragile matroids. Since these matroids are not U2-representable, we have
the following lemma.

Lemma 17. The class of U2-representable matroids is contained in the class of GF(4)-
representable matroids with no {P−8 , F=

7 , (F
=
7 )∗}-minor.

To describe the structure of {U2,5, U3,5}-fragile matroids as in [3], we need two con-
structions: the generalized ∆-Y exchange, and gluing on wheels. For a more thorough
treatment of these constructions, we refer the reader to [12] and [2].

Loosely speaking, the operations of generalized ∆-Y exchange and gluing on wheels
both involve gluing matroids together along a common restriction. Let M1 and M2 be
matroids with a common restriction A, where A is a modular flat of M1. The generalized
parallel connection of M1 and M2 along A, denoted PA(M1,M2), is the matroid obtained
by gluing M1 and M2 along A. It has ground set E(M1)∪E(M2), and a set F is a flat of
PA(M1,M2) if and only if F ∩ E(Mi) is a flat of Mi for each i (see [11, Section 11.4]).

A subset S of E(M) is a segment of M if every three-element subset of S is a triangle
of M . Let M be a matroid with a k-element segment A. Intuitively, a generalized ∆-Y
exchange on A turns the segment A into a k-element cosegment. To define the generalized
∆-Y exchange formally, we first recall the following definition of a family of matroids Θk

from [12]. For k > 3, fix a basis B = {b1, b2, . . . , bk} of the rank-k projective geometry
PG(k − 1,R), and choose a line L of PG(k − 1,R) that is freely placed relative to B. If
follows from modularity that, for each i, the hyperplane spanned by B − {bi} meets L;
we let ai be the point of intersection. Let A = {a1, a2, . . . , ak}, and let Θk be the matroid
obtained by restricting PG(k−1,R) to the set A∪B. Note that the matroid Θk has A as
a modular k-point segment A, so the generalized parallel connection of Θk and M along
A is well-defined. If the k-element segment A is coindependent in M , then we define the
matroid ∆A(M) to be the matroid obtained from PA(Θk,M)\A by relabeling the elements
of E(Θk) − A by A in the natural way, and we say that ∆A(M) is obtained from M by
performing a generalized ∆-Y exchange on A. For a matroid M with an independent
cosegment A, a generalized Y -∆ exchange on A, denoted by ∇A(M), is defined to be the
matroid (∆A(M∗))∗.

We use the following results on representability and the minor operations.

Lemma 18. [12, Lemma 3.7] Let P be a partial field. Then M is P-representable if and
only if ∆A(M) is P-representable.

Lemma 19. [12, Lemma 2.13] Suppose that ∆A(M) is defined. If x ∈ A and |A| > 3,
then ∆A−x(M\x) is also defined, and ∆A(M)/x = ∆A−x(M\x).

Lemma 20. [12, Lemma 2.16] Suppose that ∆A(M) is defined.

(i) If x ∈ E(M) − A and A is coindependent in M\x, then ∆A(M\x) is defined and
∆A(M)\x = ∆A(M\x).
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(ii) If x ∈ E(M)− cl(A), then ∆A(M/x) is defined and ∆A(M)/x = ∆A(M/x).

Lemma 21. [12, Lemma 2.15] Suppose that x ∈ cl(A) − A and let a be an arbitrary
element of the k-element segment A. Then ∆A(M)/x equals the 2-sum, with basepoint p,
of a copy of Uk−1,k+1 with groundset A ∪ p and the matroid obtained from M/x\(A − a)
by relabeling a as p.

The next result implies that every {U2,5, U3,5}-fragile matroid is 3-connected up to
series and parallel classes.

Lemma 22. [10, Proposition 4.3] Let M be a matroid with a 2-separation (A,B), and let
N be a 3-connected minor of M . Assume |E(N)∩A| > |E(N)∩B|. Then |E(N)∩B| 6 1.
Moreover, unless B is a parallel or series class, there is an element x ∈ B such that both
M\x and M/x have a minor isomorphic to N .

The following is an easy consequence of the property that {U2,5, U3,5}-fragile matroids
are 3-connected up to parallel and series classes.

Lemma 23. Let M be a {U2,5, U3,5}-fragile matroid with at least 8 elements. If S is a
triangle or 4-element segment of M such that E(M)− S is not a series or parallel class
of M , then S is coindependent in M . If C is a triad or 4-element cosegment of M such
that E(M)− C is not a series or parallel class of M , then C is independent.

Let M be a {U2,5, U3,5}-fragile matroid. A segment S of M is allowable if S is coinde-
pendent and some element of S is nondeletable. A cosegment C of M is allowable if the
segment C of M∗ is allowable. In [3], it was shown that we can obtain a new {U2,5, U3,5}-
fragile U2-representable matroid from an old {U2,5, U3,5}-fragile U2-representable ma-
troid by performing a generalized ∆-Y exchange on an allowable segment. We will
prove an analogous result for {U2,5, U3,5}-fragile GF(4)-representable matroids with no
{P−8 , F=

7 , (F
=
7 )∗}-minor.

Let U be the class of GF(4)-representable matroids with no {U2,5, U3,5}-minor. The
class of sixth-root-of-unity matroids is the class of matroids that are representable over
both GF(3) and GF(4). Semple and Whittle [15, Theorem 5.2] showed that U is the
class of matroids that can be obtained by taking direct sums and 2-sums of binary and
sixth-root-of-unity matroids.

Lemma 24. Let M be a matroid in the class U . If M ′ is obtained from M by performing
a generalized ∆-Y exchange or a generalized Y -∆ exchange, then M ′ ∈ U .

Proof. Suppose that there exists a matroid M ∈ U with a coindependent segment A
such that ∆A(M) 6∈ U . Among all counterexamples, suppose that M has been chosen so
that |E(M)| is as small as possible. Suppose M is 3-connected. Since any 3-connected
member of U is either a binary or sixth-root-of-unity matroid, this also holds for ∆A(M) by
Lemma 18. Hence ∆A(M) ∈ U , contradicting the assumption that M is a counterexample.
Therefore M is not 3-connected.

Now either M = M1 ⊕M2 or M = M1 ⊕2 M2 for some M1,M2 ∈ U with |E(Mi)| <
|E(M)| for each i ∈ {1, 2}. Moreover, we may assume that M1 and M2 have been chosen
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so that the segment A of M is contained in E(M1). Now either ∆A(M) = ∆A(M1)⊕M2

or ∆A(M) = ∆A(M1) ⊕2 M2. Since |E(M1)| < |E(M)|, it follows that ∆A(M1) ∈ U .
Hence ∆A(M) ∈ U . Since U is closed under duality, the result follows.

Lemma 25. Let M be a {U2,5, U3,5}-fragile GF(4)-representable matroid with no {P−8 , F=
7 ,

(F=
7 )∗}-minor. If A is an allowable segment of M with |A| ∈ {3, 4}, then ∆A(M) is a

{U2,5, U3,5}-fragile GF(4)-representable matroid with no {P−8 , F=
7 , (F

=
7 )∗}-minor. More-

over, A is an allowable cosegment of ∆A(M).

Proof. The proof that ∆A(M) is a {U2,5, U3,5}-fragile GF(4)-representable matroid where
A is an allowable cosegment of ∆A(M) closely follows the proof of [3, Lemma 2.21]. The
only difference is where the proof of [3, Lemma 2.21] uses the fact that a U2-representable
matroid with no {U2,5, U3,5}-minor is near-regular and the class of near-regular matroids
is closed under the generalized ∆-Y exchange, we instead use Lemma 24.

We must also show that ∆A(M) has no {P−8 , F=
7 , (F

=
7 )∗}-minor. This follows for

|E(M)| 6 9 from the generation of the 3-connected {U2,5, U3,5}-fragile GF(4)-represen-
table matroids with no {P−8 , F=

7 , (F
=
7 )∗}-minor on at most 9 elements (see the Appendix

[4]), since all such matroids are U2-representable. Suppose that M is a minimum-sized
counterexample, so ∆A(M) has a {P−8 , F=

7 , (F
=
7 )∗}-minor and ∆A(M) has at least ten

elements. Then ∆A(M) has a minor N , obtained by deleting or contracting an element
x say, that also has a {P−8 , F=

7 , (F
=
7 )∗}-minor. Since ∆A(M) is {U2,5, U3,5}-fragile it fol-

lows that the minor N is also {U2,5, U3,5}-fragile. Suppose that N = ∆A(M)/x. Suppose
that x ∈ A. Then ∆A(M)/x = ∆A−x(M\x) by Lemma 19, a contradiction since M is a
minimum-sized counterexample. Next suppose that x ∈ cl(A)−A. Since N is {U2,5, U3,5}-
fragile it follows from Lemma 21 and Proposition 22 that |A| = 4 and M/x\(A−a) ∼= U1,n

for some n > 2. Hence ∆A(M) has no {P−8 , F=
7 , (F

=
7 )∗}-minor, a contradiction. We may

now assume x ∈ E(M)− cl(A). Then ∆A(M)/x = ∆A(M/x) by Lemma 20, a contradic-
tion since M is a minimum-sized counterexample. We deduce that N = ∆A(M)\x, and
we may assume that any minor obtained from ∆A(M) by contracting an element has no
{P−8 , F=

7 , (F
=
7 )∗}-minor. Now if x ∈ A, then A−x is a series class of ∆A(M)\x, so there is

some y ∈ A such that ∆A(M)/y has a {P−8 , F=
7 , (F

=
7 )∗}-minor, a contradiction. Therefore

x /∈ A. If A is not coindependent in M\x, then it follows from Lemma 23 that ∆A(M)
has no {P−8 , F=

7 , (F
=
7 )∗}-minor, a contradiction. Therefore A is coindependent in M\x,

so ∆A(M)\x = ∆A(M\x) by Lemma 20, a contradiction since M is a minimum-sized
counterexample.

Let M be a matroid, and (a, b, c) an ordered subset of E(M) such that T = {a, b, c}
is a triangle. Let r > 3 be a positive integer, and, when r = 3, we fix a vertex of W3 to
be the center, so we can refer to rim and spoke elements of M(W3). Let N be obtained
from M(Wr) by relabeling some triangle as {a, b, c}, where a, c are spoke elements, and
let X ⊆ {a, b, c} such that b ∈ X. We say the matroid M ′ := PT (M,N)\X is obtained
from M by gluing an r-wheel onto (a, b, c). We also say that M∗ is obtained from N∗ by
gluing a wheel onto the triad T . Suppose that T1, T2, . . . , Tn are ordered triples whose
underlying sets are triangles of M . We say M ′ can be obtained from M by gluing wheels
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onto T1, T2, . . . , Tn if, for some subset J of {1, 2, . . . , n}, M ′ can be obtained from M by
a sequence of moves, where each move consists of gluing an rj-wheel onto Tj for j ∈ J .
Note that the spoke elements of a triangle in this sequence may only be deleted as part of
the gluing operation when they do not appear in any subsequent triangle in the sequence.

Lemma 26. Let M be a {U2,5, U3,5}-fragile GF(4)-representable matroid with no {P−8 , F=
7 ,

(F=
7 )∗}-minor. Let A = {a, b, c} be an allowable triangle of M , where b is nondeletable.

If M ′ is obtained from M by gluing an r-wheel onto (a, b, c), where X ⊆ {a, b, c} is
such that b ∈ X, then M ′ is a {U2,5, U3,5}-fragile GF(4)-representable matroid with no
{P−8 , F=

7 , (F
=
7 )∗}-minor. Moreover, F = E(Wr) −X is the set of elements of a fan, the

spoke elements of F are noncontractible in M ′, and the rim elements of F are nondeletable
in M ′.

Proof. The proof is the same as [3, Lemma 2.22] except that we use Lemma 25 instead
of [3, Lemma 2.21].

4.2 Path sequences

We can now describe a family of {U2,5, U3,5}-fragile GF(4)-representable matroids with no
{P−8 , F=

7 , (F
=
7 )∗}-minor obtained by performing generalized ∆-Y exchanges and gluing on

wheels. In fact, the matroids in this family are U2-representable and were first described
in [3]. Each matroid in this family has a {X8, Y8, Y

∗
8 }-minor, and an associated path of

3-separations that we need to describe in order to define the family.
We call the set X ⊆ E(M) fully closed if X is closed in both M∗ and M . The full

closure of X, denoted fclM(X), is the intersection of all fully closed sets containing X.
The full closure of X can be obtained from X by repeatedly taking closure and coclosure
until no new elements are added. We call X a path-generating set if X is a 3-separating
set of M such that fclM(X) = E(M). A path-generating set X thus gives rise to a natural
path of 3-separating sets (P1, . . . , Pm), where P1 = X and each step Pi is either the closure
or coclosure of the 3-separating set P1 ∪ · · · ∪ Pi−1.

Let X be an allowable cosegment of the {U2,5, U3,5}-fragile matroid M . A matroid Q
is an allowable series extension of M along X if M = Q/Z and, for every element z of
Z, there is some element x of X such that x is {U2,5, U3,5}-contractible in M and z is in
series with x in Q. We also say that Q∗ is an allowable parallel extension of M∗ along X.

Let N be a matroid with a path-generating allowable segment or cosegment A. We
say that M is obtained from N by a ∆-∇-step along A if, up to duality, M is obtained
from N by performing a non-empty allowable parallel extension along A, followed by a
generalized ∆-Y exchange on A.

Let X8 be the matroid obtained from U2,5 by choosing a 4-element segment C, adding
a point in parallel with each of three distinct points of C, then performing a generalized ∆-
Y -exchange on C (see Figure 1). In what follows, S will be the elements of the 4-element
segment of X8, and C the elements of the 4-element cosegment of X8, so E(X8) = S ∪C.
We will build matroids from X8 by performing a sequence of ∆-∇-steps along A ∈ {S,C}.
Note that, in such matroids, each of S and C can be either a segment or a cosegment.
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Y8 X8

Figure 1: The matroids Y8 and X8.

A sequence of matroids M1, . . . ,Mn is called a path sequence if the following conditions
hold:

(P1) M1 = X8; and

(P2) For each i ∈ {1, . . . , n − 1}, there is some 4-element path-generating segment or
cosegment A ∈ {S,C} of Mi such that either:

(a) Mi+1 is obtained from Mi by a ∆-∇-step along A; or

(b) Mi+1 is obtained from Mi by gluing a wheel onto an allowable subset A′ of A.

Note in (P2) that each ∆-∇-step described in (a) increases the number of elements by
at least one, and that the wheels in (b) are only glued onto allowable subsets of 4-element
segments or cosegments.

We say that a path sequence M1, . . . ,Mn describes a matroid M if Mn
∼= M . We

also say that M is a matroid described by a path sequence if there is some path sequence
that describes M . Let P denote the class of matroids such that M ∈ P if and only if
there is some path sequence M1, . . . ,Mn that describes a matroid M ′ such that M can
be obtained from M ′ by some, possibly empty, sequence of allowable parallel and series
extensions. Since X8 is self-dual, it is easy to see that the sequence of dual matroids
M∗

1 , . . . ,M
∗
n of a path sequence M1, . . . ,Mn is also a path sequence. Thus the class P is

closed under duality.
We denote by Y8 the unique matroid obtained from X8 by performing a Y -∆-exchange

on an allowable triad (see Figure 1). We will prove the following result.

Theorem 27. If M is a 3-connected {U2,5, U3,5}-fragile GF(4)-representable matroid that
has an {X8, Y8, Y

∗
8 }-minor but no {P−8 , F=

7 , (F
=
7 )∗}-minor, then there is some path se-

quence that describes M .

The proof of Theorem 27 closely follows the proof of [3, Corollary 4.3]. The strategy
is to show that a minor-minimal counterexample has at most 12 elements. Let M be
a GF(4)-representable {U2,5, U3,5}-fragile matroid M with an {X8, Y8, Y

∗
8 }-minor but no

{P−8 , F=
7 , (F

=
7 )∗}-minor. Suppose that M is a minimum-sized matroid that is not in the

class P . Then M is 3-connected because P is closed under series and parallel extensions.
Moreover, the dual M∗ is also not in P because P is closed under duality. Thus, by the
Splitter Theorem and duality, we may assume there is some element x of M such that M\x
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is also a 3-connected GF(4)-representable {U2,5, U3,5}-fragile matroid with an {X8, Y8, Y
∗
8 }-

minor but no {P−8 , F=
7 , (F

=
7 )∗}-minor. By the assumption that M is minimum-sized with

respect to being outside the class P , it follows that M\x ∈ P . Thus M\x is described
by a path sequence M1, . . . ,Mn. The next lemma [3, Lemma 6.3] identifies the three
possibilities for the position of x in M relative to the path of 3-separations associated
with M1, . . . ,Mn.

Lemma 28. Let M and M\x be 3-connected {U2,5, U3,5}-fragile matroids. If M\x is
described by a path sequence with associated path of 3-separations P, then either:

(i) there is some 3-separation (X, Y ) displayed by P such that x ∈ cl(X) and x ∈ cl(Y );
or

(ii) there is some 3-separation (X, Y ) displayed by P such that x /∈ cl(X) and x /∈ cl(Y );
or

(iii) for each 3-separation (R,G) of M displayed by P, there is some X ∈ {R,G} such
that x ∈ clM(X) and x ∈ cl∗M(X).

The proofs of the next three lemmas follow the proofs of [3, Lemma 7.4], [3, Lemma
8.7], and [3, Lemma 9.7] but use Lemma 25 above instead of [3, Lemma 2.21].

Lemma 29. Lemma 28 (i) does not hold.

Lemma 30. If Lemma 28 (ii) holds, then |E(M\x)| 6 10.

Lemma 31. If Lemma 28 (iii) holds, then |E(M\x)| 6 11.

Proof of Theorem 27. In view of the last three lemmas, it suffices to verify that P contains
each 3-connected {U2,5, U3,5}-fragile GF(4)-representable matroid with an {X8, Y8, Y

∗
8 }-

minor and no {P−8 , F=
7 , (F

=
7 )∗}-minor having at most 12 elements. This is done in the

Appendix [4].

4.3 Fan extensions

The following theorem describes the structure of the matroids with no {X8, Y8, Y
∗
8 }-minor.

Note that M9,9 is the rank-4 matroid on 9 elements in Figure 2. The matroid M7,1 is the
7-element matroid that is obtained from Y8 by deleting the unique point that is contained
in the two 4-element segments of Y8. We label the points of a triangle of M7,1 by {1, 2, 3}
as in Figure 2.

Theorem 32. Let M ′ be a 3-connected {U2,5, U3,5}-fragile GF(4)-representable matroid
with no {P−8 , F=

7 , (F
=
7 )∗}-minor. Then M ′ is isomorphic to a matroid M for which at

least one of the following holds:

(i) M has an {X8, Y8, Y
∗
8 }-minor;

(ii) M ∈ {M9,9,M
∗
9,9};
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Figure 2: The matroids M7,1 and M9,9.

(iii) M or M∗ can be obtained from U2,5 (with ground set {a, b, c, d, e}) by gluing wheels
to (a, c, b),(a, d, b), (a, e, b);

(iv) M or M∗ can be obtained from U2,5 (with ground set {a, b, c, d, e}) by gluing wheels
to (a, b, c), (c, d, e);

(v) M or M∗ can be obtained from M7,1 by gluing a wheel to (1, 3, 2).

Proof. Assume M has no {X8, Y8, Y
∗
8 }-minor. For (ii), we show in Lemma 1 of the Ap-

pendix [4] that the matroids M9,9 and M∗
9,9 are splitters for the class of 3-connected

{U2,5, U3,5}-fragile GF(4)-representable matroids with no {P−8 , F=
7 , (F

=
7 )∗}-minor.

We may therefore assume M has no {M9,9,M
∗
9,9, X8, Y8, Y

∗
8 }-minor. To show that (iii),

(iv), or (v) holds, we use the main result of [2] called the “Fan Lemma”, which reduces
the proof to showing that extensions and coextensions of the 9-element matroids with
this structure also have this structure. These verifications are completed in Lemmas 2
through 7 of the Appendix [4].

5 From fragility to relaxations

We use the following result of Mayhew, Whittle, and Van Zwam [10, Lemma 8.2].

Lemma 33. Let M be a 3-connected U2,4-fragile matroid that has no {U2,6, U4,6}-minor.
Then exactly one of the following holds.

(i) M has rank or corank two;

(ii) M has an {F−7 , (F−7 )∗}-minor;

(iii) M has rank and corank at least 3 and is a whirl.

We show next that P−8 , F
=
7 , (F

=
7 )∗ do not arise from circuit-hyperplane relaxation of

a GF(4)-representable matroid.

Lemma 34. Let M and M ′ be GF(4)-representable matroids such that M is connected,
M ′ is 3-connected, and M ′ is obtained from M by relaxing a circuit-hyperplane X. Then
M ′ has no {P−8 , F=

7 , (F
=
7 )∗}-minor.
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Proof. Assume that M ′ has a {P−8 , F=
7 , (F

=
7 )∗}-minor. Since M ′ is obtained from M by

relaxing X, it follows from Theorem 15 and Lemma 33 that M ′ is {U2,5, U3,5}-fragile. Each
of the matroids in {P−8 , F=

7 , (F
=
7 )∗} has a {U2,5, U3,5}-minor, so if C and D are such that

M ′/C\D ∼= N ′ for some N ′ ∈ {P−8 , F=
7 , (F

=
7 )∗}, then C ⊆ X and D ⊆ E(M ′)−X since

the elements of X are nondeletable and the elements of E(M ′) −X are noncontractible
by Theorem 15. But then it follows from Lemma 4 that N ′ can be obtained from M/C\D
by relaxing the circuit-hyperplane X − C. It follows that M/C\D ∼= N for some N ∈
{P8, F

−
7 , (F

−
7 )∗}, a contradiction because M is GF(4)-representable.

We can now describe the structure of the GF(4)-representable matroids that are
circuit-hyperplane relaxations of GF(4)-representable matroids.

Theorem 35. Let M and M ′ be GF(4)-representable matroids such that M is connected,
M ′ is 3-connected, and M ′ is obtained from M by relaxing a circuit-hyperplane. Then at
least one of the following holds.

(a) M ′ is a whirl;

(b) M ′ ∈ {M9,9,M
∗
9,9};

(c) M ′ or (M ′)∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by gluing wheels
to (a, c, b),(a, d, b);

(d) M ′ or (M ′)∗ can be obtained from U2,5 (with groundset {a, b, c, d, e}) by gluing wheels
to (a, b, c),(c, d, e);

(e) M ′ or (M ′)∗ can be obtained from M7,1 by gluing a wheel to (1, 3, 2);

(f) there is some path sequence that describes M ′.

Proof. It follows from Theorem 15 thatM ′ is either U2,4-fragile or {U2,5, U3,5}-fragile. IfM ′

is U2,4-fragile, then it follows from Lemma 33 that M ′ is a whirl. We may therefore assume
that M ′ is {U2,5, U3,5}-fragile. It follows from Lemma 34 that M ′ has no {P−8 , F=

7 , (F
=
7 )∗}-

minor. Then, by Theorem 32 and Theorem 15, one of (b) through (e) holds or else M ′ has
an {X8, Y8, Y

∗
8 }-minor. Note that outcome (iii) of Theorem 32 corresponds to outcome (c)

here, since a matroid or its dual that is obtained from U2,5 (with groundset {a, b, c, d, e})
by gluing wheels onto all three of the triangles (a, c, b),(a, d, b),(a, e, b) does not have a
basis of nondeletable elements and a cobasis of noncontractible elements, and therefore
cannot be obtained by relaxing a circuit-hyperplane. We can see this by the following
counting argument. Observe that the rank of a matroid obtained from U2,5 (with ground-
set {a, b, c, d, e}) by gluing wheels A, B and C onto the triangles (a, c, b),(a, d, b),(a, e, b)
is r(A) + r(B) + r(C) − 4. But the nondeletable elements of this matroid are precisely
the rim elements of the wheels of which there are r(A) + r(B) + r(C) − 3. Hence any
cobasis must contain a nondeletable element e. Since this matroid has M9,18 as a minor
(see Appendix [4, Lemma 2]), M has no essential elements, which implies that e must be
contractible.

Finally, if M ′ has an {X8, Y8, Y
∗
8 }-minor, then it follows from Theorem 27 that (f)

holds.
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We can now show that if M and M ′ are GF(4)-representable matroids such that M ′

is obtained from M by relaxing a circuit-hyperplane, then M ′ has path width 3.

Proof of Theorem 1. If M is not connected, then it follows from Lemma 11 that M ′ has
path width 3. We may therefore assume that M is connected. Then, by Lemma 13, M ′

can be obtained from a matroid in Theorem 35 (a) - (f) by performing some, possibly
empty, sequence of series or parallel extensions. The result now follows from the fact that
all the matroids in Theorem 35 (a) - (f) have path width 3.

6 Forbidden submatrices

In this section, we will prove our second characterization, Theorem 2. Let M be a GF(4)-
representable matroid with a circuit-hyperplane X. Choose e ∈ X and f ∈ E −X such
that B = (X − e) ∪ f is a basis of M . Then we can find a reduced GF(4)-representation
of M in block form,

C =

[ (E−X)−f e

X−e A 1
f 1T 0

]
.

Here A is an (X − e) × ((E − X) − f) matrix over GF(4), and we have scaled so
that every non-zero entry in the row labelled by f and the column labelled by e is 1. We
denote by Aij the entry in row i and column j of A.

Let M ′ be the matroid obtained from M by relaxing the circuit-hyperplane X. If M ′

is GF(4)-representable, then we can find a reduced representation of M ′ in block form,

C ′ =

[ (E−X)−f e

X−e A′ 1
f 1T ω

]
.

We have scaled the rows and columns of the matrix such that the entry in the row
labelled by f and column labelled by e is ω ∈ GF(4)− {0, 1}, and every remaining entry
in row e and column f is a 1.

We omit the straightforward proof of the following lemma.

Lemma 36. Aij = 0 if and only if A′ij = 0.

Next we show that the only non-zero entries of A′ are 1 and ω.

Lemma 37. A′ij 6= ω + 1.

Proof. Suppose A′ij = ω + 1. Then C ′ has a submatrix

C ′[{i, f}, {e, j}] =

[ j e

i ω + 1 1
f 1 ω

]
,
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which has determinant zero. Therefore B4{e, f, i, j} is not a basis of the matroidM [I|C ′].
But the corresponding submatrix of C is

C[{i, f}, {e, j}] =

[ j e

i x 1
f 1 0

]
,

for some non-zero x. Since C[{i, f}, {e, j}] has non-zero determinant, B4{e, f, i, j} is a
basis of M , and hence of M ′. Therefore M ′ 6= M [I|C ′].

Lemma 38. Aij = Aik if and only if A′ij = A′ik. Similarly, Aij = Akj if and only if
A′ij = A′kj

Proof. We show that Aij = Aik implies that A′ij = A′ik. The proof of the converse, and the
proof of the second statement proceed by similar easy arguments. Suppose that Aij = Aik.
Then C has a submatrix

C[{i, f}, {j, k}] =

[ j k

i x x
f 1 1

]
,

for some non-zero x. Since C[{i, f}, {j, k}] has zero determinant, B4{f, i, j, k} is not a
basis of M , and hence not a basis of M ′ = M [I|C ′]. Therefore det(C ′[{i, f}, {j, k}]) = 0,
so it follows that A′ij = A′ik.

The following lemma on diagonal submatrices will be used frequently.

Lemma 39. Let [
x 0
0 y

]
and

[
a 0
0 b

]
be corresponding submatrices of A and A′ respectively, where x, y, a, b are non-zero entries.
Then x = y if and only if a 6= b.

Proof. Adjoining e and f to the specified 2× 2 submatrices, we get the 3× 3 submatricesx 0 1
0 y 1
1 1 0

 and

a 0 1
0 b 1
1 1 ω

 .
These matrices have determinants x + y and abω + a + b. Thus if x = y, then a 6= b.
Conversely, if a 6= b, then {a, b} = {1, ω} by Lemma 37 so abω + a+ b = ω2 + ω + 1 = 0.
Hence x = y.

We can now identify all of the forbidden submatrices. We use Lemma 38 to identify
the first such matrix in the following lemma.
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Lemma 40. Neither A nor AT has a submatrix of the form[
x y z

]
,

where x, y, z are distinct non-zero entries.

Proof. By Lemma 38, the corresponding submatrix of A′ must have the form[
a b c

]
,

where a, b, c are distinct non-zero entries, which is a contradiction to Lemma 37.

We now use Lemma 38 and Lemma 39 to find several more forbidden submatrices.

Lemma 41. A has no submatrices of the following forms, where x, y, and z are distinct
non-zero entries.

(i)

[
x x 0
x 0 x

]
; (ii)

[
x x 0
x 0 y

]
; (iii)

[
x x 0
y 0 y

]
; (iv)

[
x y 0
x 0 y

]
;

(v)

[
x 0 0
0 y z

]
; (vi)

x 0 0
0 x 0
0 0 x

 ; (vii)

x 0 0
0 x 0
0 0 y

 ; (viii)

x 0 0
0 y 0
0 0 z

 .
Proof. Suppose A has the submatrix (i). By applying Lemma 38 to the rows and the first
column, we deduce that the corresponding submatrix of A′ has the form[

a a 0
a 0 a

]
,

where a is a non-zero entry, a contradiction of Lemma 39.
Suppose A has the submatrix (ii). By applying Lemma 38 to the rows and the first

column, and since A′ has at most two distinct non-zero entries by Lemma 37, we deduce
that the corresponding submatrix of A′ has the form[

a a 0
a 0 b

]
,

where a and b are the two non-zero entries of A′, a contradiction to Lemma 39.
The proofs for (iii) and (iv) are similar to that for (ii). We omit the details.
Suppose A has the submatrix (v). Then, by two applications of Lemma 39, the

corresponding submatrix of A′ must have the form[
a 0 0
0 a a

]
,

for some non-zero entry a. This is a contradiction to Lemma 38.
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Suppose A has the submatrix (vi). By Lemma 39, the corresponding submatrix of A′

must be a diagonal matrix with distinct non-zero entries, a contradiction to Lemma 37.
Suppose A has the submatrix (vii). Applying Lemma 39 to the two submatrices the

form [
x 0
0 y

]
,

it follows that the corresponding submatrix of A′ isa 0 0
0 a 0
0 0 a

 ,
for some a, which is a contradiction to Lemma 39.

Suppose A has the submatrix (viii). Then the corresponding submatrix of A′ isa 0 0
0 a 0
0 0 a

 ,
for some a. Adjoining e and f , we have a submatrix of C,

x 0 0 1
0 y 0 1
0 0 z 1
1 1 1 0

 ,
which has zero determinant, while the corresponding submatrix of C ′,

a 0 0 1
0 a 0 1
0 0 a 1
1 1 1 ω

 ,
has non-zero determinant, a contradiction.

Lemma 42. A has no submatrices of the following forms, where x, y, and z are distinct
non-zero entries:

(i)

[
x y
0 x

]
; (ii)

[
x y
y x

]
; (iii)

[
x x
y z

]
; (iv)

[
x y
z x

]
; (v)

[
x y 0
x 0 z

]
.

Proof. Suppose A has the submatrix (i). Then, adjoining e and f , we see that C has the
following submatrix with non-zero determinant.x y 1

0 x 1
1 1 0

 .
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But then, by Lemma 38, the corresponding submatrix of C ′ must have the following form.a b 1
0 a 1
1 1 ω

 ,
where {a, b} = {1, ω} by Lemma 37. This gives a contradiction because this submatrix
of C ′ has zero determinant. A similar proof handles (ii).

Suppose A has the submatrix (iii). Then, by Lemma 38, in the corresponding subma-
trix of A′, the entries in the first row are the same and the entries in the second row are
different. But, by Lemma 37, there are only two distinct non-zero entries in A′, so the
entries are the same in one of the columns of A′, which is a contradiction to Lemma 38.

Suppose A has the submatrix (iv). Note that this submatrix has zero determinant.
By Lemma 38, the corresponding submatrix of A′ must have the following form.[

a b
b a

]
,

where {a, b} = {1, ω} by Lemma 37. But this submatrix of A′ has non-zero determinant,
a contradiction.

Suppose A has the submatrix (v). Then C contains the following submatrix, which
does not use its last column: x y 0

x 0 z
1 1 1

 .
This matrix has determinant 0. By Lemmas 37, 38, and 39, the corresponding submatrix
of C ′ is a b 0

a 0 b
1 1 1

 ,
where {a, b} = {1, ω}. This matrix has non-zero determinant, a contradiction.

Finally, we find two more 3× 3 forbidden submatrices of A.

Lemma 43. A has no submatrices of the following forms, where x, y, and z are distinct
non-zero entries:

(i)

x y x
y y 0
x 0 0

 ; (ii)

x y x
y y 0
x 0 z

 .
Proof. Suppose that A has the submatrix (i). Then, adjoining e and f , we see that C has
the submatrix 

x y x 1
y y 0 1
x 0 0 1
1 1 1 0

 ,
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which has zero determinant. The corresponding submatrix of C ′ is
a b a 1
b b 0 1
a 0 0 1
1 1 1 ω

 ,
for distinct a, b ∈ {1, ω}. This submatrix of C has non-zero determinant, a contradiction.

Suppose that A has the submatrix (ii). Note that the determinant of this submatrix
is not zero. By Lemma 37 and Lemma 38, the corresponding submatrix of A′ isa b a

b b 0
a 0 b

 ,
for distinct a, b ∈ {1, ω}. This submatrix of A′ has zero determinant, which is a contra-
diction.

To prove the main theorem of this section, we need the following theorem [5, Theorem
5.1].

Theorem 44. Minor-minimal non-GF(4)-representable matroids have rank and corank
at most 4.

We can now prove the main theorem, which we repeat for convenience.

Theorem 45. There is some matrix C ′ representing M ′ if and only if, up to permuting
rows and columns, A and AT have no submatrix in the following set, where x, y, z are
distinct non-zero elements of GF(4):

[
x y z

]
,

[
x y
0 x

]
,

[
x y
y x

]
,

[
x x
y z

]
,

[
x y
z x

]
,

[
x x 0
x 0 x

]
,

[
x x 0
x 0 y

]
,

[
x x 0
y 0 y

]
,

[
x y 0
x 0 y

]
,

[
x 0 0
0 y z

]
,

[
x y 0
x 0 z

]
,

x 0 0
0 x 0
0 0 x

 ,
x 0 0

0 x 0
0 0 y

 ,
x 0 0

0 y 0
0 0 z

 ,
x y x
y y 0
x 0 0

 ,
x y x
y y 0
x 0 z

 .
Proof. It follows from Lemmas 40, 41, 42, and 43 that both A and AT have no submatrix
on the above list.

Conversely, suppose that the GF(4)-representable matroid M is chosen to be minimal
subject to the property that the relaxation M ′ is not GF(4)-representable. Then M ′ has
a minor N isomorphic to one of the excluded minors for the class of GF(4)-representable
matroids. Assume that N = M ′/C\D for some subsets C and D. If there is an element
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g in both D and the circuit-hyperplane X of M , then M\g = M ′\g by Lemma 4, so M
also has an N -minor, contradicting the fact that M is GF(4)-representable. We deduce
that D ⊆ E(M) − X, and dually, C ⊆ X. Now if |D| > 2, then there is some element
g in both D and E(M ′) − (X ∪ f), so relaxing the circuit-hyperplane X of M\g gives
M ′\g that is not GF(4)-representable, which contradicts the minimality of M . Therefore
|D| 6 1, and by a dual argument, there is no element g in both C and X − e, so |C| 6 1.
Since we know, by Theorem 44, that |E(N)| 6 8, it now follows that |E(M ′)| 6 10. The
computations in the Appendix [4] show that M ′ must have a submatrix from the above
list.
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