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Introduction

SectioN 1 of this paper considers a matroid conjecture of Welsh [16]
which is based on Gallai’s theorem on the stability and covering numbers
of graphs [6]. '

The chromatic number x(M) of a loopless matroid M is the least
positive integer at which the characteristic polynomial of M is positive
[15]. In Section 2 we show that for all matroids without loops, x(M)—1
does not exceed the maximum size of a cocircuit of M. For regular
matroids sharper bounds on y are proved which resemble the bounds of
Brooks [2] and Szekeres/Wilf [13] for graphs. One such bound improves
on a result of Lindstrdm [10]. A key lemma of this section is used in
Section 3 to generalize another result of Lindstrém [10] by giving an upper
bound on the critical exponent of a matroid representable over GF(q).

Brylawski [3] and Heron [8] showed independently that a binary
matroid is affine if and only if it is a disjoint union of cocircuits. We show
that if M is representable over GF(q) and M is a disjoint union of
cocircuits, then M is affine. The converse is only true when q=2.

The terminology used here for matroids and graphs will in general
follow Welsh [15]. In any unexplained context M will denote an arbitrary
matroid having rank function p and ground set S. We shall sometimes
denote the restriction of M to S\ T by M\ T or, if T={x,, X, ..., X,.},
by M\ xy, X,, ..., x,. Likewise the contraction of M to S\ T will some-
times be written M/T or M/x,, X,, ..., X,.. The simple matroid associated
with a matroid M will be denoted by M and 4*(M) will denote the set of
cocircuits of M.

If r is a non-negative real number, then [r] and {r} will denote
respectively the greatest integer not exceeding r and the least integer not
less than r. The set of integers, the set of positive integers and the set of
positive real numbers will be denoted by Z, Z* and R* respectively.

1. Cocircuit coverings and packings
Throughout this section all graphs and matroids considered have no
loops.

If G is a graph, denote by 8,(G) the maximum size of a set of mutually
non-adjacent vertices of G and let a,(G) be the minimum size of a set U
of vertices such that every edge of G has at least one endpoint in U.
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A well-known result of Gallai [6] states:

(L.1) If G has n vertices, then a,(G)+B,(G) = n.

In a 2-connected graph G the set of edges incident with a particular
vertex is a cocircuit in the cycle matroid of G. For an arbitrary matroid M
on a set § we define B(M) to be the maximum size of a set of pairwise
disjoint cocircuits of M and a(M) to be the minimum size of a set of
cocircuits of M whose union is S. Clearly if M is the cycle matroid of a
2-connected graph G, then a(M)<a,(G) while B(M)=B,(G).
Moreover, one can easily find examples in which strict inequality holds in
both of these statements.

Welsh [16] has made the following conjecture based on (1.12).

(1.2) If M is an arbitrary connected matroid, then a(M)+B(M)<
p(M)+1; or equivalently:

(1.3) If M has k components, then a(M)+B(M)<p(M)+k.

It is routine to check that (1.3) holds for uniform matroids, projective
and affine geometries and complete graphs and their duals as well as for
all matroids of rank less than six.

The following assertion is well-known (see, for example, [15, p. 37]).

(1.4) A circuit and a cocircuit of a matroid cannot have exactly one
common element.

A consequence of this is that if M is the simple matroid associated with an
arbitrary matroid M, then a(M)=a(M) and B(M) = B(M).
It follows immediately from the definition of « that for all matroids M
(1.5) a(M)=min{keZ": M has hyperplanes H;, H,, . .., H, such that
k

(N H, =}
i=1

Therefore

1.6) a(M)=<p(M).
Furthermore, from [8, p. 42], we have:

A7) It M is a simple connected matroid, then a(M)=p(M) if and
only if M has rank less than three or M is a projective geometry.
The next two statements are easily checked.

(1.8) For all matroids M, B(M) < p(M).

(1.9) If M is simple and connected, then

(i) B(M)=p(M) if and only if M is a coloop; and

(i) if B(M)=p(M)—1, then a(M)=2.

Combining (1.6) and (1.8) we get trivially:

(1.10) For all matroids M, a(M)+ B(M)<2p(M).

A corollary of the next result sharpens this bound.

(1.11) ProPOSITION. If M is a simple matroid having nb coloops, then
a(M)
(=01 b <pou)

o
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Proof. Let {C¥, C%, ... , C}} be a maximal set of pairwise disjoint cocir-
cuits of M. Then since M has no coloops, for all i in {1, 2,..., B}, we may
choose distinct elements x, and yi from CF. Let X ={x,,%y,... , X3} and
Y={y,y,..., ¥} Then by (1.4), X and Y are independent flats of M.
Thus M has p—g hyperplanes whose intersection is X and p — 3 hyper-
planes whose intersection is Y. But X and Y are disjoint and so 2(p — B)=a.

(1.12) CoroLLaRy. If M is simple and connected and p(M)>2, then

a(M)+ B(M) < [éﬁ’—(—;?:—l}.’

For binary matroids we argue in terms of the cocircuit space to prove
the following:

(1.13) PROPOSITIQN. Let M be a binary connected matroid, then
a(M)+ [ELZA—Q] < p(M).

Proof. Let {CT,C%,..., C% be a maximal set of pairwise disjoint
cocircuits of M. This set may be extended to a basis
{C, C%,..., C¥, D¥, D%, ..., D¥} of the cocircuit space of M where
{DY, D%,..., D¥} < €*(M). Now B +m = p(M) and we may suppose that
m =1 since otherwise, by (1.9)(i), B(M)=1 and the proposition holds by
(1.6). :

B m m .
Clearly §= (U C:“) ] (U D;") It UDf=S, then the proposition
i=1 j=1 j=1
holds. Thus assume that S \( U Dj*‘) is non-empty, intersecting each of
i=1

B
CY, C%,..., C* but not intersecting |J C¥. For each i in {1, 2, ... , n},

i=n+1
choose x; from C*N (S\(UD}")). If n=1, then C¥, D}, D¥,..., D¥
i=1

cover S and the proposition holds. Otherwise, since M is connected, there
is a cocircuit E¥, of M containing x; and x,. Now {ET,,
C3,..., Ck D¥, D3,...,D¥} is a basis of the cocircuit space of M

and therefore E¥,U ( U Dj") 2CY. Likewise, {C¥, Ef,,C%, ...,

i=1
C§, D¥,D¥%,..., D*} is a basis of the cocircuit space of M and hence

Ef,u < Dj") 2 C3. A similar argument shows that for all k such that
=1

I
m

Isk=[n/2], there is a cocircuit E%._1 5 such that E¥ 15U < U Df‘) o
i=1

C%-1U C%,. We conclude that m +{n/2}= a(M) and hence that a(M)+

[B(é\éf)Jsp(M).
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(1.14) CoroLLARY. Let M be a binary connected matroid of rank greater
than one. Then -

4p<7\§) +1 J

—

a(M)+B(M>s[

Proof. Combine Propositions 1.11 and 1.13.

The next two results give bounds on « and B in terms of rank,
maximum circuit size and maximum cocircuit size. For an arbitrary
loopless matroid M, let A(M) = max {|C*: C*e€*(M)}, and let

0, if M is free;
A(M*), otherwise.

Y

}sB(M)Sp(M)+1——{-Ai(§~@}.

a) - f

p(M)
A(M)

(1.15) ProposITION. {

Proof. Let {CT,C%,...,C% be a maximal set of pairwise disjoint
8 B

cocircuits of M. Then p(U Cf‘) =p(M) and so ), |C¥|=p(M). But IC¥|<
i=1 i=1

A(M) for all 1<i<p. Thus B(M)A(M)= p(M). This gives the lower
bound on B.

The upper bound is certainly satisfied if A*M)=0. If A*(M)>0,
then let C be a circuit of M of maximum size. Add p(M)—A*(M)+1
elements to C to get a subset B’ of S which contains a base of M. Clearly B’
intersects each of C¥, C¥, . . ., C}. Moreover, if B'N C¥ intersects C, then
by (1.4), it contains at least two elements of C Therefore A*(M)=|C|=

B
2 IC¥NCl=2)(i: 1<i<p and CENC#* BY. Thus A*(M)=2(B(M)—
i=]1 .

(p(M)—A*(M)+1)) and the upper bound on B follows.

One lower bound on « comes from the obvious relation a(M)AM) =
|S|. Another bound which is sometimes better and sometimes worse than
this is:

|A] }
1.16) P . = ~
(1.16) ProrosITION. a(M) zr:elfés {p*(A)‘i'l

Proof. Consider the hypergraph H having § as its set of vertices and
6*(M) as its set of edges. The covering number [1, p. 448] of this
hypergraph is precisely o (M) and the result follows from [1, Theorem 1,
p. 449].

Another upper bound on B(M) may also be obtained from [1, p. 449]
by noting that B(M) is precisely the strong stability number [1, p. 448] of
the dual hypergraph of H.
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2. Colouring

By analogy with graphs, Welsh [15, p. 262] has defined the chromatic
 number x(M) of a loopless matroid M by x(M)=min{jeZ*:
P(M; j)>0}. For graphic matroids -y (M). clearly equals (M) where
m(M)=min{jeZ*: P(M;j+k)>0 for all k=0,1,2,...}. However, in
general, m may exceed y (see [15, p. 264]). Indeed given any positive
integer n, the binary projective geometry PG(n+2,2)=M satisfies
T(M) = x(M)>n (see (8, p. 99)). ¢
The next result gives an upper bound on (M) which is always at least
as good as a bound of Heron [7, Lemma 3.15]. For an arbitrary loopless
matroid M, let uw(M)=max {reR™: P(M;r)= 9}.

(2.1) THEOREM. If M is 4 loopless matroid, then u(M)< max_ |C¥|

and so Cregra)
7(M)<1+ max |C*<1+ max |C*|.
‘ C*e@*(M) C*e@*(M)

The main part of the proof of this theorem is contained in Lemmas 2.6
and 2.7 which use the following four basic properties of the characteristic
polynomial of a matroid M (see [15, p. 263]). Let ¢ be an element of M,

(2.2) If M has a loop, then P(M; A)=0.

2.3) If e is a coloop of M, then P(M; A)=(A-1)P(M\e; r).

(2.4) If e is neither a loop nor a coloop of M, then P(M; \) =
P(M\e; \)—P(Mje; \).

Note that if e is a loop of M, then M\e= Mje. Hence combining (2.2)
and (2.4) we get:

(285 If ¢ is not a coloop of M, then P(M;A)=P(M\e;A)
—P(Mje; )).

(2.6) LeMMA. Let {x1, %2, ..., x,.} be q coindependeﬁt set in a matroid
M. Then

P(M; A)=P(M\xy, %y, .. ., X3 \)

m j—1
+ Z Z P(M\xl’- cos Xim1s Xigq,y ~',xj—1/xi7 xj;)\)
1

j=2i=

- ZP(M\xh cees Xings Xings s X/ X5 A).
i=1
Proof. By induction on m. The result is immediate for m =0. Now
assume that the proposition is true for m — 1. Then as X 1s not a coloop
of M\xy, .., %y, P(M\xy,..., Xm-13A)=P(M\ Xy, ..., Xp_q, X0} )f)
= P(M\ Xy, ..., X y/%,51) by (2.5). Moreover if 1<i<m—1, then X,, 18
not a coloop of M\ Xy, ..., X1, Xiuq, . o) X e/
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and therefore
P(M\xl)"'axi——17xi+17'"7xm—-1/xi;/\) -
— P(M\xb ceey xi——17 xi+1: R xm-—17 xreri;A)
_P(M\xb ey X1y Xisgs e e ey xm—l/xb X 5 /\)

L4
/

It follows by induction that the proposition is true for all non-negative
integers m.

(2.7) Lemma. Let {x, x5, ..., x;} be a cocircuit of a matroid M. Then
P(M;A)=(A—k)P(M\xy,...,%;\)

-

k j—1
+ Z ZP(M\xn crea Xty Xig1s 00 0y xj——l/xi, X5 A).
j=2i=1
Proof. Taking m=k—1 in Lemma 2.6 we note that X, 1S a co-
loop of M\xy,...,x._, and so P(M\}l, e Xy A)=(A=1)P(M\
X5+ -5 X1, X3 A). Furthermore x, is not a coloop of M\ xy, ..., x4,
Xit1s - -5 Xe—1/X; and so

P(M\xla crey xi-15 xi+17 veey xk~1/xi; /\)

=P(M\x,,... s X1y Xi1s o oo X X3 A)
=P(M\ X1, .o, Xigy Xiny e v o Xie—1/ %, X5 A).

To complete the proof, notice that x; is a coloop of N=
M\xy,...,%_q,Xi1,...,%. Therefore N/x,=N\x; and so the charac-
teristic polynomials of these two matroids are equal.

Proof of Theorem 2.1. As u(M)=u(M), to prove this theorem it

suffices to show that for all loopless matroids M, u(M)< max |C*. We
C*e6*(M)

prove this proposition by induction on |S|. If |S|=1, then the result is
immediate. Assume now that the proposition holds for all matroids on
sets of fewer than n elements and let M be a loopless matroid on a set of
size n. Let {x;,x,,..., %} be a cocircuit of M. Then we can suppose
k <n. By (2.2) and Lemma 2.7,

(2.8) p(M)<smax{k, w(M\ x4, %5, ..., %),
W MN\Xy, o Xigy Xy e s Xi—1/%;, xj)
2=sjskl<isj-1)}

where

w(N), if N has no loops;
0, otherwise.

P«'(N)={

Now k< max |C*, and, by the induction assumption, all the other
C*e@*(M)
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terms on the right-hand side of (2.8) are bounded above by max |C¥.
C*e€*(M)
Therefore this number is an upper bound on w(M). The required result
follows by induction.
For regular matroids Lemma 2.7 may be used again to sharpen the
bound given in Theorem 2.1. The set of simple restrictions of a matroid N
will be denoted by R(N).

(2.9) THEOREM. If M is a regular loopless matroid, then 4

XM)=7(M)<1+ max < min ]C*[)
. Nedmy \cree*(N)

Proof. For all positive integers n, let Z, denote the ring of integers
modulo n. By [4, Theorem III] (see also [3, Theorem 12.4]), if N is a
regular matroid, then

(2.10) P(N; n) equals the number of nowhere-zero Z,-coboundaries
on N, :

Therefore P(N; n)=0. The upper bound for w(M) now follows easily
by induction using Lemma 2.7.

To verify that x(M)= w(M) we show that, since M is regular, if k is a
positive integer and P(M; k)>0, then P(M; k+1)>0.

An easy consequence of a result of Tutte [14, 5.44] is that the following
statements are equivalent for a regular matroid N (see [9, Proposition 1]):

(a) There is a nowhere-zero Z,-coboundary on N.

(b) There is a nowhere-zero Z-coboundary on N with all values in
[1-n,n-1]. :
Using this equivalence and (2.10) the rest of the proof is straightforward.

This theorem generalizes Matula’s upper bound [11, Theorem 14] on
the chromatic number of a graph—a bound which sharpens that given by
Szekeres and Wilf [13]. Another consequence of Theorem 2.9 is the
following result of Lindstrém [10, Theorem 17].

(2.11) CoroLLarY. If M is a loopless regular matroid, then

x(M)<1+max ( min |C*I)

peS \peC*e€*(M)
Proof. Let max< min IC*]>= min |C¥=|C¥| where Cte
Ne®R(M) \C*e €*(N) C*e€¢*(M|T)

€*(M|T). Choose x in C%. It Ci € 6*(M) and xe C¥, then C¥oC*

where C¥e €*(M|T). Thus |ICE|=|C¥|=|c¥|. 1t follows that ICHl<
min IC*[smax( min  |C*|).

xeC*e€*(M) PES \peC*e€*(M)

Theorem 2.9 is used again to prove the following analogue of Brooks’
Theorem [2].

2
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(2.12) TueoreM. If M is a simple connected regular matroid, then

w(M)< max IC*I unless M is an odd circuit or a coloop.
C*e@*(M)

Proof. By Theorem 2.1, m(M)<1+ max |C*=1+m, say. Now sup-

C*e@*(M)
pose that M is simple, connected and regular and that #(M)=1+m.

; ~
Then by Theorem 2.9, max ( min IC*I) = m. Thus for some T'c §, all

NeR(M) \C*e@*(N)

the cocircuits of M | T have cardinality equal to max |C*|. Therefore,
C*e@*(v)

no cocircuit of M intersects both T and S\ T. Thus, as M is connected,
S =T and so the cocircuits of M are equicardinal.

Murty [12] has shown that a simple comnected binary matroid having
equicardinal cocircuits is either a coloop, a circuit or a binary projective
or affine space. From this it is easy to showrthat M is either an odd
circuit or a coloop as required.

3. The critical problem

If A is a subset of V(n, q), the n-dimensional vector space over GF(q),
then a k-tuple (fy, fo,. .., fi) of linear functionals on V(n, q) is said to
distinguish A if for all e in A, f,(e) # 0 for some i in 11,2,...,k}. Let M
be a rank n matroid on a set S and suppose that M is representable over
GF(q).

(3.1) Tueorem. (Crapo and Rota [5, p. 16.4]). If keZ' and ¢ is a
representation of M in V(n, q), then the number of k-tuples of linear
functionals on V(n, q) which distinguish ¢(S) equals P(M; q").

Thus for a matroid M representable over GF(q)

3.2) P(M; q*)=0forall k in Z*.
The critical exponent c¢(M, q) of M is defined by

o, if M has a loop;
min{jeZ": P(M; q')> 0}, otherwise.

Thus if M has no loops,
3.4) P(M; q*)>0 for k=c(M, q), c(M, q)+1,. .. .

The critical exponent has the following alternative interpretation. If M
is a rank n, loopless matroid representable over GF(q) and ¢ is a
representation of M in V(n, q), then c(M, q) is the least number k of

k
hyperplanes H,, H,, ..., H, of V(n, q) such that <ﬂ Hi)ﬂqo(S)= .
i=1

33 oM q)={
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(3.5) Tueorem. If M is representable over GF(q) and M has no loops,
then

c(M, q)<{logq (1—!— max ( min ]C’*]))}
Ne®R (M) \C*e€*(N)

Proof. By induction on [S|. The result is true for |§|= 1. Assume it true
for all matroids on sets of fewer than n elements and let M be a matroid
on a set of size n. If M is not simple, then, since ¢(M, q)=c(M, q) and
R(M)=R(M), the result follows by the induction assumption. Thus
suppose that M is simple and let {x;, x,, ..., x.} be a cocircuit of M of
minimal size. Then by Lemma 2.7, (3.3) and (3.4), c(M; Q=

max {{log, (k +1)}, c(M\ xy, X5, . . ., X, q)}. But k= mtin |C*, thus k<

C*e€*(M)

max < min |C*[) Moreover, by the induction assumption,
NeR (M) \C*e¢@*(N)

c(M\xq,...,%,q)< {logq (1 + max ( min |C*|>)}
Xi)

NeR(M\ x1,..., C*e€*(N)

S{logq (1+ max ( min |C*|)>}
Ne®(M) \C*e%*(N)

The required result now follows by induction.

(3.6) CoroLLARY. Suppose that M is a matroid representable over

GF(q). If there is a covering of S with cocircuits each of size less than q*,
then ¢(M, q)<k.

Proof. Since there is a covering of S with cocircuits each of size less

than ¢*, M has no loops and {Iogq<1+max( min lC*[))}s

peS \peC*e¥*(M)
{log, (1+(g*—1))}=k. The rest of the proof resembles the proof of
Corollary 2.11.

Lindstrom [10, Theorem 18] proved the preceding result for the case
q=2.

Now suppose that M is a rank n matroid representable over GF(q). If
M has no loops, then c¢(M, q)=c(M, q). As c¢(M, q) does not depend on
the representation chosen for M in V(n, q), it will be convenient in the
next two proofs to identify M with a restriction of V(n, q) to which it is
isomorphic. The closure operator of V(n, q) will be denoted by o.

(3.7) Provosition. If T is a non-empty subset of S, then
c(M|T,q)<c(MT, q).

Proof. If M.T has a loop, then the result is immediate. Thus suppose
that M.T has no loops. We may also assume that M is simple. Let
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M'=V(n, q)/o(S\T). As M.T is loopless, o(S\T)NT=(J and, using
(14, 3.334], we get that M’ | T= M.T. Suppose that {H,, H,, .. Hk} is a

minimal set of hyperplanes of M’ such that (ﬂ H; )ﬂ T=(J. Then, as

M'=V(n', q), where M.T has tank n’, it follows that k = c¢(M.T, q). But,
forall 1sisk, HUo(S\T)is a hyperplane of V(n, q). Therefore, since
o(S\T)NT =, we have c(MI T,q)< k=c(M.T, q), as required.

, 12
(3.8) TueorEM. If S is a disjoint union of cocircuits, then c(M, q)=1.

Proof. By (1.4) we may \assume that M is simple. Let S be a disjoint
union of the cocircuits C¥, C¥,..., CFof M. If k=1, then M= U, and
the result is immediate. Assume therefore that k>1 For all 1=<i<k,
S\C¥ is a hyperplane of M hence S\C¥=SNH, where H, is a

hyperplane of V(n, q). Let ﬂ H;=F. Then F is a flat of V(n, q) of rank
i=1

k k
n—k and FNS = . Moreover U(ﬂH)DS hence (U( H))\FQ
~1\j#

i=1\jFi
j=1

S.

Now let M'= V(n, q)/F. Then M’ has rank k and {( N H)\F}
Isisk

jFi
j=1

is a subset of the set of rank one flats of M'. It is a routine exercise in
linear algebra to show that there is a hyperplane of V(k, q) avordmg k:
linearly independent vectors. Therefore, as M'=V(k, q), there is a

hyperplane H' of M’ such that H'N (( U (ﬂ H))\F) = (. Therefore

J%l
=1

(H'UF)N ((lU1<JQlH))\F) — @ and so (H'UF)NS= . But H'UF is

a hyperplane of V(n, q) and so c(M, q) =1, as required.

Brylawski [3, Theorem 10.3] and Heron [8, p. 102] proved the preced-
ing result and its converse for the case q=2. To see that the converse
does not hold for q>2, consider the affine planes AG(2, q).

The following result is a straightforward corollary of a result of
Lindstrém [10, Theorem 15].

(3.9) ProrosiTiON. Let M be a loopless binary matroid on a set S and

J
suppose that k is the least positive integer j such that S = |J S, and M.S; is a
i=1

disjoint union of cocircuits for all 1<si<j. Then k=c(M,?2).
We use this to get a result linking a, 8, x and « for binary matroids.
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(3.10) ProrosiTiON. Let M be a loopless binary matroid on a set S. Then
(i) {log, x(IM|)}< a(M) < B(M)log, w(M)}; and

.. S . -

W Z@Dllog, =y~ P

Proof. The left-hand inequality in (i) follows from the obvious in-
equalities {log, x(M)}<c(M,2)<a(M). Now suppose that k=

. k

{log, w(M)}. Then m(M)<2* and so, by Proposition 3.9, $ = | B, where
i=1

M.B; is a disjoint union of cocircuits for all 1<j<k. If B, is a union of

k
disjoint cocircuits, then <p(M) and furthermore, Y = a(M) and
j=1

k
AM) ¥ =S| Thus kB(M)=a(M) and kB(M)A(M)=|S|. The right-
ji=1

hand inequality in (i) and inequality (i) follow immediately.
Since B(M(K,))=1 and X(M(K,))=n(M(K,))=n, a consequence of
(i) above is that a(M(K,))={log, n}.
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Note added in proof. The author has proved conjecture (1.3) for binary matroids. The proof
will appear in a paper entitled ‘Cocircuit coverings and packings for binary matroids’.
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