CAPTURING TWO ELEMENTS IN UNAVOIDABLE MINORS OF 3-CONNECTED BINARY MATROIDS

DEBORAH CHUN AND JAMES OXLEY

Dedicated to Geoff Whittle, a mentor and a friend.

Abstract

Let M be a 3-connected binary matroid and let n be an integer exceeding two. Ding, Oporowski, Oxley, and Vertigan proved that there is an integer $f(n)$ so that if $|E(M)|>f(n)$, then M has a minor isomorphic to one of the rank- n wheel, the rank- n tipless binary spike, or the cycle or bond matroid of $K_{3, n}$. This result was recently extended by Chun, Oxley, and Whittle to show that there is an integer $g(n)$ so that if $|E(M)|>g(n)$ and $x \in E(M)$, then x is an element of a minor of M isomorphic to one of the rank- n wheel, the rank- n binary spike with a tip and a cotip, or the cycle or bond matroid of $K_{1,1,1, n}$. In this paper, we prove that, for each i in $\{2,3\}$, there is an integer $h_{i}(n)$ so that if $|E(M)|>h_{i}(n)$ and Z is an i-element rank- 2 subset of M, then M has a minor from the last list whose ground set contains Z.

1. Introduction

In 1993, Oporowski, Oxley, and Thomas [8] showed that every sufficiently large 3-connected graph has a large wheel or a large $K_{3, n}$ as a minor. Ding, Oporowski, Oxley, and Vertigan generalized this graph result to find unavoidable minors of large 3-connected matroids, first in the binary case [5] and later in the general case [6]. Chun, Oxley, and Whittle [4] extended the latter result by proving that if x is an element of a sufficiently large 3 -connected matroid M, then M has a large 3 -connected minor that uses x and is from one of a small number of families of highly structured matroids. In this paper, we consider the problem of trying to capture two elements in a large highly structured 3 -connected minor of M. Although we have been unable to solve this problem in the general case, we have solved it for binary matroids. Our solution is the main result of this paper. Because this result is a theorem for binary matroids, for the rest of the paper, we shall concentrate exclusively on such matroids.

The matroid terminology used here will follow Oxley [9]. In particular, we use $M\left(\mathcal{W}_{k}\right)$ to denote the cycle matroid of the k-spoked wheel, $[n]$ to mean the set $\{1,2, \ldots, n\}$, and J_{n} to denote the $n \times n$ matrix of all ones. The following is Ding, Oporowski, Oxley, and Vertigan's [5] unavoidable-minor result for large 3 -connected binary matroids.

Theorem 1.1. For every integer n exceeding 2, there is an integer $f(n)$ so that every 3 -connected binary matroid with more than $f(n)$ elements contains a minor isomorphic to one of $M\left(\mathcal{W}_{n}\right)$, the vector matroid of the binary matrix $\left[I_{n} \mid J_{n}-I_{n}\right]$, or the cycle or bond matroid of $K_{3, n}$.

The next theorem specializes Chun, Oxley, and Whittle's [4] main theorem to binary matroids. Let A_{n} be the binary matrix that is obtained from $J_{n}-I_{n}$ by replacing the 0 in the bottom right corner with a 1.

[^0]Theorem 1.2. For every integer n exceeding 2, there is an integer $g(n)$ so that if M is a 3connected binary matroid with $|E(M)| \geq g(n)$ and $x \in E(M)$, then x is an element of a minor of M that is isomorphic to one of $M\left(\mathcal{W}_{n}\right)$, the vector matroid of the binary matrix $\left[I_{n} \mid A_{n}\right]$, or the cycle or bond matroid of $K_{1,1,1, n}$.

If we want to find a large highly structured 3-connected minor of a matroid that captures not just a single element but some pair of elements, then, perhaps surprisingly, we do not need to alter the list of unavoidable minors. The following is the main result of the paper.

Theorem 1.3. For every integer n exceeding 2, there is an integer $h(n)$ so that if M is a 3connected binary matroid with $|E(M)| \geq h(n)$ and $\{x, y\} \subseteq E(M)$, then x and y are elements of a minor of M that is isomorphic to one of $M\left(\mathcal{W}_{n}\right)$, the vector matroid of the binary matrix $\left[I_{n} \mid A_{n}\right]$, or the cycle or bond matroid of $K_{1,1,1, n}$.

The next corollary follows immediately by specializing the last theorem to graphic matroids.
Corollary 1.4. For every integer n exceeding 2, there is an integer $j(n)$ so that if G is a simple 3-connected graph having at least $j(n)$ edges and $\{e, f\} \subseteq E(G)$, then e and f are edges of a minor of G that is isomorphic to \mathcal{W}_{n} or $K_{1,1,1, n}$.

This paper is structured as follows. The next section introduces some basic preliminaries. In Section 3, we modify a theorem of Bixby and Coullard stated in Section 2 into a form that we will use repeatedly in the proof of the main result. By Theorem 1.2 , if x and y are elements of a large 3-connected binary matroid M, then M has a minor that contains x and is from one of four families of highly structured matroids. Sections 4-6 examine each of these four cases individually and show that M has a minor from one of the four special families that uses x and y. Section 7 completes the proof of the main theorem. Finally, in Section 8, we apply Theorem 1.3 to show that we can capture a triangle of the initial matroid in one of our special minors.

Corollary 1.5. Let M be a 3-connected binary matroid, and let $\{x, y, z\}$ be a triangle of M. For every integer n exceeding 2, there is an integer $t(n)$ so that if $|E(M)|>t(n)$, then $\{x, y, z\}$ is a triangle of a minor N of M that is isomorphic to one of $M\left(\mathcal{W}_{n}\right)$, the vector matroid of the binary matrix $\left[I_{n} \mid A_{n}\right]$, or the cycle or bond matroid of $K_{1,1,1, n}$. Moreover, when $N \cong M\left(K_{1,1,1, n}\right)$, the triangle $\{x, y, z\}$ can be chosen to be the one whose deletion from $K_{1,1,1, n}$ gives $K_{3, n}$.

2. Preliminaries

In this section, we present some basic results that will be used throughout the paper. We begin by defining a fan. In a 3 -connected matroid M, consider a sequence $\left(s_{0}, s_{1}, \ldots, s_{n}\right)$ of distinct elements of M with $n \geq 2$ so that, for all $i \geq 0$, every set $\left\{s_{2 i}, s_{2 i+1}, s_{2 i+2}\right\}$ is a triangle of M and every set $\left\{s_{2 i+1}, s_{2 i+2}, s_{2 i+3}\right\}$ is a triad of M. Here we call such a sequence a fan, noting that this specializes the terminology used in [9], where another related structure is also called a fan. In this paper, we will rely heavily on a modification of the next theorem, which is a result of Bixby and Coullard [2] (see also [9, p. 479]).

Theorem 2.1. Let N be a 3-connected minor of a 3-connected matroid M. Suppose that $|E(N)| \geq$ 4, that $x \in E(M)-E(N)$, and that M has no 3-connected proper minor that both contains x and has N as a minor. Then, for some $\left(N_{1}, M_{1}\right)$ in $\left\{(N, M),\left(N^{*}, M^{*}\right)\right\}$, one of the following holds:
(i) $N_{1}=M_{1} \backslash x$.
(ii) $N_{1}=M_{1} \backslash x / e$, and N_{1} has an element t so that $\{e, x, t\}$ is a circuit of M_{1}.
(iii) $N_{1}=M_{1} \backslash x, e / f$, and N_{1} has an element t so that (x, f, t, e) is a fan of M_{1}. Moreover, $M_{1} \backslash x$ is 3-connected.
(iv) $N_{1}=M_{1} \backslash x, e, f$, and N_{1} has two elements s and t so that (t, e, x, f, s) is a fan of M_{1}.
(v) $N_{1}=M_{1} \backslash x, e / f, g$, and N_{1} has an element t so that (x, f, t, e, g) is a fan of M_{1}. Moreover, $M_{1} \backslash x$ and $M_{1} \backslash x / f$ are 3-connected.

The following basic connectivity result, which is known as Bixby's Lemma [1] (see also [9, p.333]), will be frequently used in the paper.

Figure 1. Cases (iii), (iv), and (v) of Theorem 2.1.

Lemma 2.2. Let M be a 3 -connected matroid and suppose $e \in E(M)$. Then either $M \backslash e$ or M / e has no non-minimal 2 -separations, so either $\mathrm{si}(M / e)$ or $\operatorname{si}\left(M^{*} / e\right)$ is 3-connected.

This paper will employ grafts, which are discussed in [9, Section 10.3]. A graft is a pair (G, γ) where G is a graph and γ is a subset of the vertex set of G. The incidence matrix, $A_{(G, \gamma)}$, of (G, γ) is the matrix that is obtained from the mod-2 vertex-edge incidence matrix of G by adjoining a new column e_{γ} corresponding to γ. Specifically, e_{γ} is the incidence vector of the set γ, that is, e_{γ} has a 1 in each row corresponding to a vertex of γ and a 0 in every other row. The matroid $M(G, \gamma)$ associated with the graft (G, γ) is the vector matroid $M\left[A_{(G, \gamma)}\right]$ where $A_{(G, \gamma)}$ is viewed as a matrix over $G F(2)$. Thus the graft matroid $M(G, \gamma)$ has ground set $E(G) \cup e_{\gamma}$. If the graft element e_{γ} is incident with an odd number of vertices, this element is a coloop in M. In this paper, we will require any graft element to be incident with an even number of vertices.

Let (G, γ) be a graft, and let $e \in E(G)$. To obtain the deletion $(G, \gamma) \backslash e$ and the contraction $(G, \gamma) / e$ of e from (G, γ), we delete or contract e from G leaving the set of vertices of γ unchanged except when e is contracted and has distinct ends u and v. In the exceptional case, $(G, \gamma) / e=$ $\left(G / e, \gamma^{\prime}\right)$ where the vertex w that results from identifying u and v is in γ^{\prime} if and only if exactly one of u and v is. Equivalently, $A_{\left(G / e, \gamma^{\prime}\right)}$ is obtained from $A_{(G, \gamma)}$ by deleting column e and replacing rows u and v with a single row equal to their sum modulo 2 . Notice that if $|\gamma|$ is even, then so is $\left|\gamma^{\prime}\right|$. The minors of (G, γ) are those grafts that can be produced by a sequence of single-edge deletions and contractions. For $e \in E(G)$, it is routine to check that $M((G, \gamma) \backslash e)=M(G, \gamma) \backslash e$ and $M((G, \gamma) / e)=M(G, \gamma) / e$.

The reader familiar with the matroid concept of roundedness may be reminded of it by the main theorem of this paper. Roundedness was introduced by Seymour [12] to encompass certain results that were concerned with relating particular minors of a matroid to specific elements of the matroid. The next lemma contains two examples of such results. The first part follows by combining results of Seymour [13] and Oxley and Reid [10] (see also [9, p.481]). The second part follows from the first.

Lemma 2.3. Let $t \in\{3,4\}$ and let M be a binary matroid with an $M\left(\mathcal{W}_{t}\right)$-minor.
(i) If M is 3 -connected and $e, f \in E(M)$, then M has an $M\left(\mathcal{W}_{t}\right)$-minor using $\{e, f\}$.
(ii) If M is 2-connected and $e \in E(M)$, then M has an $M\left(\mathcal{W}_{t}\right)$-minor using $\{e\}$.

3. A Modification of Bixby and Coullard's Theorem

By Theorem 2.1, if M is a 3 -connected matroid with a 3 -connected minor N and a fixed element x, then M has a 3 -connected minor M^{\prime} that uses x, has N as a minor, and has at most four more elements than N. As noted in [2], it is easy to see that $M^{\prime \prime}$, a smallest 3 -connected minor of M that uses x and has a minor isomorphic to N, has at most $|E(N)|+1$ elements. In this section, we consider the case where $M^{\prime \prime}$ must also use a specified element of N. We will prove that, in this case, $M^{\prime \prime}$ has at most $|E(N)|+2$ elements.

Theorem 3.1. Let N be a 3 -connected minor of a 3 -connected matroid M with $|E(N)| \geq 4$. Let $x \in E(M)-E(N)$ and $y \in E(N)$. Suppose M has no 3 -connected proper minor that uses $\{x, y\}$ and has N as a minor. Then either M has a minor that uses $\{x, y\}$ and is obtained from N by relabelling one element by x, or, for some $\left(N_{1}, M_{1}\right)$ in $\left\{(N, M),\left(N^{*}, M^{*}\right)\right\}$, one of the following holds:
(i) $N_{1}=M_{1} \backslash x$ and y is contained in N_{1}; or
(ii) $N_{1}=M_{1} \backslash x / z$ and $\{x, z, y\}$ is a circuit of M_{1}.

Proof. As M has no 3 -connected proper minor that uses x and has N as a minor, for some (N_{1}, M_{1}) in $\left\{(N, M),\left(N^{*}, M^{*}\right)\right\}$, one of the five cases identified in Theorem 2.1 holds.

In case (v), $N_{1}=M_{1} \backslash x, e / f, g$ where M_{1} has (x, f, t, e, g) as a fan (see the diagram on the right in Figure 1). Then $M_{1} / f, g$ has t, e, and x in parallel. Thus $M_{1} / f, g \backslash t, e$ uses $\{x, y\}$ and is obtained from N_{1} by relabelling t by x.

In case (iv), $N_{1}=M_{1} \backslash x, e, f$ where M_{1} has (t, e, x, f, s) as a fan (see the diagram in the middle of Figure 1). By symmetry, we may assume $t \neq y$. Since M_{1} has $\{e, x, f\}$ as a triad, $N_{1}=M_{1} / e \backslash f, x$. As $M_{1} / e \backslash f$ has $\{t, x\}$ as a circuit, $M_{1} / e \backslash f, t$ uses $\{x, y\}$ and is obtained from N_{1} by relabelling t by x.

In case (iii), $N_{1}=M_{1} \backslash x, e / f$ and (x, f, t, e) is a fan of M_{1}. Now $M_{1} \backslash e / f$ has $\{x, t\}$ as a circuit. Thus $M_{1} \backslash e / f \backslash t$ uses $\{x, y\}$ and is obtained from N_{1} by relabelling t by x.

In case (ii), $N_{1}=M_{1} \backslash x / f$ and $\{f, x, t\}$ is a circuit of M_{1}. As M_{1} / f has $\{x, t\}$ as a circuit, either $M_{1} / f \backslash t$ is obtained from N_{1} by relabelling t by x; or $t=y$ and outcome (ii) of the theorem holds.

4. A Large Wheel-Minor

In this section, we consider the case where a 3 -connected matroid with two identified elements has a large wheel minor. We begin with two lemmas, the first of which relates to case (i) identified in Theorem 3.1.

Lemma 4.1. Let M be a 3-connected binary matroid with distinct elements x and y. Suppose M has a minor $N \cong M\left(\mathcal{W}_{k}\right)$ for some integer k greater than 2 and that $|E(M)-E(N)|=1$. Then there is an integer m with $m \geq \frac{k}{4}$ so that M has an $M\left(\mathcal{W}_{m}\right)$-minor that uses $\{x, y\}$.
Proof. By Lemma 2.3, the theorem holds for $k \leq 16$, so we may assume that $k \geq 17$. The lemma clearly holds if $\{x, y\} \subseteq E(N)$. Hence we may assume that $x \in E(M)-E(N)$ and, by duality, that $M \backslash x=N$. Clearly M is the matroid of a graft $\left(G, \gamma_{x}\right)$ with $G \cong \mathcal{W}_{k}$ where x corresponds to the graft element incident with the set $\gamma_{x} \subseteq V(G)$. Let the hub vertex of G be labelled by h.

This proof is divided into two main cases depending on whether or not h is in γ_{x}. We will operate on the matroid M by operating exclusively on the graft $\left(G, \gamma_{x}\right)$ as described in the Section 2.

First, assume that $h \in \gamma_{x}$ and that y is a spoke of G. One endpoint of y is h, label the other v. As noted in Section 2, $\left|\gamma_{x}\right|$ is even. Since x is not parallel to any element of M, the set γ_{x} contains h and at least three other vertices. We now construct a new graft $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ on which we shall operate. When $v \notin \gamma_{x}$, we let $\left(G^{\prime}, \gamma_{x}^{\prime}\right)=\left(G, \gamma_{x}\right)$. Now suppose $v \in \gamma_{x}$. Choose a vertex v^{\prime}
of γ_{x} that is the shortest distance along the rim from v. Contract the edges of the shortest path from v to v^{\prime} along the rim of G, noting that at most $\frac{k-1}{2}$ edges are removed this way. Label by v the composite vertex resulting from these contractions. Simplify the underlying graph without removing y to produce the graft $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ with $G^{\prime} \cong \mathcal{W}_{n}$ for some $n \geq \frac{k+1}{2}$ and $\gamma_{x}^{\prime}=\gamma_{x}-\left\{v, v^{\prime}\right\}$. If $\left|\gamma_{x}^{\prime}\right|=2$, then $\gamma_{x}^{\prime}=\{h, u\}$ for some $u \in V\left(G^{\prime}\right)-h$, and the graft element corresponds to an edge parallel to a spoke of G^{\prime}. Then M has a \mathcal{W}_{n}-minor containing x and y, and the lemma holds. Hence we may assume that $\left|\gamma_{x}^{\prime}\right| \geq 4$.

We have now constructed $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ both when v is and is not in γ_{x}. In each case, $G^{\prime} \cong \mathcal{W}_{n}$ for some $n \geq \frac{k+1}{2}$. Let P be the shortest path along the rim of G^{\prime} that contains v and has both endpoints in γ_{x}^{\prime}. Label the end points of this path u and w. The edges of $G^{\prime}-h$ not in $E(P)$ form a path from u to w. The vertices in $\gamma_{x}^{\prime}-h$ partition the edges of this path into $\left|\gamma_{x}^{\prime}-h\right|$ subpaths. Color each such subpath red or blue so that every vertex of $\gamma_{x}^{\prime}-\{u, w\}$ meets a red edge and a blue edge. We may assume that there are at least as many blue edges as red edges. Contract the red edges and simplify the underlying graph without deleting y. The resulting graft, $\left(G^{\prime \prime}, \gamma_{x}^{\prime \prime}\right)$, has $G^{\prime \prime} \cong \mathcal{W}_{m}$ with $m \geq \frac{n}{2} \geq \frac{1}{2}\left(\frac{k+1}{2}\right)=\frac{k+1}{4}$. Moreover, $\gamma_{x}^{\prime \prime}$ is $\{h, u\}$ or $\{h, w\}$. Thus the graft element is an edge parallel to a spoke f of $G^{\prime \prime}$. Recall that y is incident with h and v, and $v \notin\{u, w\}$. Therefore M has an $M\left(\mathcal{W}_{m}\right)$-minor that contains x and y, and the lemma holds.

Next, we assume that $h \in \gamma_{x}$ and that y is a rim element. Let P be the shortest path of $G-h$ that contains y and has both endpoints in γ_{x}. Label these endpoints u and w. As above, consider the path from u to w with edge set $E(G-h)-E(P)$. The vertices in $\gamma_{x}-h$ partition the edges of this path into $\left|\gamma_{x}-h\right|$ subpaths. Color each such subpath red or blue so that every vertex of $\gamma_{x}-\{u, w\}$ meets a red edge and a blue edge. Without loss of generality, there are no more than $\frac{k-|E(P)|}{2}$ red edges. Contract the red edges and simplify the underlying graph without deleting y. The resulting graft, $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$, has $G^{\prime} \cong \mathcal{W}_{m}$ with $m \geq k-\frac{k-|E(P)|}{2} \geq \frac{k+1}{2}$. Moreover, γ_{x}^{\prime} is $\{h, u\}$ or $\{h, w\}$, the edge y lies on the rim of G^{\prime}. Therefore, in $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$, the graft element is parallel to a spoke edge of G^{\prime}. It follows that M has an $M\left(\mathcal{W}_{m}\right)$-minor that contains x and y, and again the lemma holds.

We may now assume that $h \notin \gamma_{x}$. Partition the edges of $G-h$ into a red set and a blue set in the following way. Consider the $\left|\gamma_{x}\right|$ paths of $G-h$ with both endpoints in γ_{x} and with no two distinct paths having a common edge. As $\left|\gamma_{x}\right|$ is even, so is the number of such paths. Color each of these paths red or blue so that every vertex of γ_{x} meets a red edge and a blue edge. Without loss of generality, there are at most $\frac{k}{2}$ red edges.

Assume first that y is not a red edge, so either y is a spoke, or y is blue. Then contract all but one, say a, of the red edges. Simplify the underlying graph without deleting y to produce the graft $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ with $G^{\prime} \cong \mathcal{W}_{m}$ with $m \geq k-\left(\frac{k}{2}-1\right) \geq \frac{k}{2}+1$. Then $\gamma_{x}^{\prime}=\{u, w\}$, where u and w are endpoints of a. Thus $M\left(G^{\prime}, \gamma_{x}^{\prime}\right) \backslash a$ is an $M\left(\mathcal{W}_{m}\right)$-minor of M using x and y, and the lemma holds.

It remains to consider the case when y is red. As $\left|\gamma_{x}\right| \geq 4$, there are at least two red paths and we can choose an edge z from a red path that does not contain y. Contract all the red edges other than y and z from $\left(G, \gamma_{x}\right)$ and simplify the underlying graph to produce $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ where γ_{x}^{\prime} is a 4-element set consisting of the endpoints of y and z. Choose a path of blue edges of G^{\prime} that joins two distinct vertices of γ_{x}^{\prime} and has at most half of the blue edges. Contract these edges and simplify the underlying graph to produce $\left(G^{\prime \prime}, \gamma_{x}^{\prime \prime}\right)$ where $G^{\prime \prime}$ is a wheel in which y and z are adjacent rim edges and the graft element corresponds to a new edge x that completes a 3-cycle with y and z. Let H be the graph that is obtained from $G^{\prime \prime}$ by adding this new edge, and let e be the spoke of $G^{\prime \prime}$ that is adjacent to both y and z. We can simplify the graph H / e without deleting x or y to produce a graph isomorphic to \mathcal{W}_{m} for some m. As at least half of the original blue rim edges of G remain and the number of blue edges was at least half of the original number of rim edges, we deduce that $m \geq \frac{k}{4}$ and the lemma follows.

We have dealt with the case where the removal of one element from a 3 -connected binary matroid M results in a wheel. Lemma 4.3 considers the case where two elements need to be removed from M to produce a wheel. Before considering that, we require a technical lemma.

For an integer $k \geq 3$, let $\left[I_{k} \mid D_{k}\right]$ be the following binary matrix.

$$
\left[\begin{array}{ccccc|ccccc}
b_{1} & b_{2} & b_{3} & \ldots & b_{k} & a_{1} & a_{2} & a_{3} & \ldots & a_{k} \\
& & & & & 1 & 0 & 0 & \ldots & 1 \\
& & I_{k} & & & 1 & 1 & 0 & \ldots & 0 \\
& & & & & 1 & \ldots & 0 \\
& & & & & \vdots & \vdots & \vdots & \ddots & \vdots \\
& & & & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Then $M\left[I_{k} \mid D_{k}\right] \cong M\left(\mathcal{W}_{k}\right)$. The spoke and rim edges of \mathcal{W}_{k} correspond to the column vectors labelled b_{i} and a_{i}, respectively, for $i \in[k]$. Let $V(k, 2)$ be the k-dimensional vector space over $\mathrm{GF}(2)$ and view its elements as column vectors.

Lemma 4.2. The set of vectors of $V(k, 2)$ that are spanned by $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ consists of precisely those vectors having an even number of ones.

Proof. The set of vectors $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ so that $\sum_{i=1}^{k} x_{i} \equiv_{2} 0$ forms a hyperplane H of $V(k, 2)$. This hyperplane contains $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. As the last set is a circuit of $M\left[I_{k} \mid D_{k}\right]$, it has rank k, and so spans H.

Lemma 4.3. Let M be a 3 -connected binary matroid with $M \backslash x / f=N \cong M\left(\mathcal{W}_{k}\right)$ for some integer k greater than 2. Suppose N has an element y so that $\{x, f, y\}$ is a circuit of M. Then there is an integer m with $m \geq \frac{k}{4}$ so that M has an $M\left(\mathcal{W}_{m}\right)$-minor that uses $\{x, y\}$.
Proof. By Lemma 2.3, this theorem holds for $k \leq 16$. Hence we may assume that $k \geq 17$. We consider the following cases:
(I) y is a spoke element of N; and
(II) y is a rim element of N.

In M^{*}, the set $\{x, f, y\}$ is a cocircuit. Let H be the complementary hyperplane. As $M^{*} \backslash f / x=$ N^{*}, the matroid $M^{*} \mid H=N^{*} \backslash y$. In the wheel N^{*}, the element y will be a rim element in case I and a spoke element in case II. The matroid M^{*} is represented in Figure 2. There is a unique

Figure 2. Geometric illustration of M^{*} for cases I and II.
binary matroid M_{1} obtained by adding an element z to M^{*} to form a triangle with x and y. The matroid $M_{1} \backslash f / x$ has z parallel to y, and it is easy to see that $M_{1} \mid(H \cup z) \cong N^{*}$. Moreover, M_{1} / f
is an extension of $M_{1} \mid(H \cup z)$ by the elements x and y. Because we have added the element z, we will always be looking to delete it in our argument to ensure that we obtain a minor of M^{*}.

First we consider case II. The following matrix represents M_{1} / f.

$$
\left[\begin{array}{ccccccccccc}
z & e_{2} & e_{3} & \ldots & e_{k} & e_{k+1} & e_{k+2} & e_{k+3} & \ldots & e_{2 k} & x \\
\\
& & & & 1 & 0 & 0 & \ldots & 1 & a_{1} & a_{1}+1 \\
& & & & & & 1 & 0 & \ldots & 0 & a_{2} \\
a_{k} & & & a_{2} \\
& & & & & 1 & \ldots & 0 & a_{3} & a_{3} \\
& & & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
& & & & 0 & 0 & 0 & \ldots & 1 & a_{k} & a_{k}
\end{array}\right]
$$

By possibly interchanging x and y, we may assume that $\sum_{i=1}^{k} a_{i}$ is even. Then, by Lemma 4.2, x is spanned by the set $C=\left\{e_{k+1}, e_{k+2}, \ldots, e_{2 k}\right\}$ and $y \notin \operatorname{cl}_{M_{1} / f}(C)$. A smallest circuit C_{x} that contains x and is contained in $C \cup x$ has at most $\frac{k}{2}+1$ elements, otherwise a smaller such circuit can be found in the symmetric difference of C_{x} and C. We can certainly choose an element i of $[k]$ so that e_{k+i} is an element of $C_{x}-x$.

The matroid $\left(M_{1} / f\right) /\left(C_{x}-\left\{x, e_{k+i}\right\}\right)$ has x parallel to e_{k+i}. Notice that y is not a loop of this matroid, as $y \notin \mathrm{cl}_{M_{1} / f}(C)$. Simplify $\left(M_{1} / f\right) /\left(C_{x}-\left\{x, e_{k+i}\right\}\right)$ without deleting x or y to produce M_{2} (see Figure 3). First suppose that $\{x, y, z\}$ is a triangle of a rank $-r\left(M_{2}\right)$ wheel restriction of

Figure 3. Geometric illustration of M_{2}.
M_{2}. In this case, contract one rim element other than x or y to make z parallel to another element and then delete z to produce a wheel minor of M^{*} that uses x and y and has rank at least $\frac{k}{2}$.

We may now suppose that $\{x, y, z\}$ is not a triangle of a rank- $r\left(M_{2}\right)$ wheel restriction of M_{2}. Then Figure 3 shows that $\{x, y, z\}$ is a triangle of two different wheel restrictions of M_{2} that both have rank at least four. These wheels share the elements $\{e, f, x, y, z\}$ and contain x as a spoke. Restrict M_{2} to one of these wheels of maximum rank. Contract one rim element other than y to make z parallel to an element of M^{*}. Then delete z to obtain a minor of M^{*} that uses x and y and is isomorphic to $M\left(\mathcal{W}_{m}\right)$ for some integer m with $m \geq \frac{r\left(M_{2}\right)+2}{2}-1 \geq \frac{1}{2}\left(k-\left(\left|C_{x}\right|-2\right)\right) \geq \frac{k+2}{4}$.

We may now assume that case I holds, that is, z is a rim element of the wheel $M_{1} / f \backslash x, y$. The following matrix represents M_{1} / f.

$$
\left[\begin{array}{ccccc|ccccccc}
e_{1} & e_{2} & e_{3} & \ldots & e_{k} & z & e_{k+2} & e_{k+3} & \ldots & e_{2 k} & x & y \\
& & & & & 0 & 0 & \ldots & 1 & a_{1} & a_{1}+1 \\
& & I_{k} & & & & 1 & 0 & \ldots & 0 & a_{2} & a_{2}+1 \\
& & & & & 1 & 1 & \ldots & 0 & a_{3} & a_{3} \\
& & & & & \vdots & \ddots & \vdots & \vdots & \vdots \\
& & & & 0 & 0 & 0 & \ldots & 1 & a_{k} & a_{k}
\end{array}\right]
$$

First, assume that $\sum_{i=1}^{k} a_{i}$ is even. Let $I=\left\{e_{k+2}, e_{k+3}, \ldots, e_{2 k}\right\}$. By Lemma 4.2, the vectors labelled by elements of I span the hyperplane of $V(k, 2)$ containing vectors with an even number of non-zero entries. Hence the independent set I spans x and y, and the sets $I \cup x$ and $I \cup y$ contain unique circuits, C_{x} and C_{y}, of M_{1} / f.

As M_{1} / f is binary, the symmetric difference $\{x, y, z\} \triangle(I \cup z)$, which equals $\{x, y\} \cup I$, is the union of disjoint circuits. The set I is independent, so these disjoint circuits are precisely C_{x} and C_{y}, and $C_{x} \dot{\cup} C_{y}=\{x, y\} \cup I$. Without loss of generality, $\left|C_{x}\right| \leq\left|C_{y}\right|$, so $\left|C_{x}\right| \leq \frac{|I \cup\{x, y\}|}{2}=\frac{(k-1)+2}{2}$.

Choose i in $[k]-\{1\}$ so that e_{k+i} is an element of $C_{x}-x$. Then $M_{1} / f /\left(C_{x}-\left\{x, e_{k+i}\right\}\right)$ has x parallel to e_{k+i}. Notice that y is not a loop of this matroid, as $y \notin \mathrm{cl}_{M_{1} / f}\left(C_{x}\right)$. Simplify $\left(M_{1} / f\right) /\left(C_{x}-\left\{x, e_{k+i}\right\}\right)$ without deleting x or y to produce M_{3}.

Suppose first that x is in a triangle with e_{1} or e_{2}, as shown in Figure 4. In this case, as indicated

Figure 4. Geometric illustration of one possible configuration of M_{3}.
in that figure, we contract a spoke element and delete z and another spoke element to produce a wheel minor of M^{*} that uses x and y and has rank at least $\frac{k-1}{2}$.

We may now suppose that x is not in a triangle with e_{1} or e_{2} (see Figure 5). Then $\{x, y, z\}$

Figure 5. Geometric illustration of M_{3}.
is a triangle of two different wheel restrictions of M_{3} that share the elements $\{e, f, g, h, x, y, z\}$ and together use all the elements of M_{3}. In each of these wheels, x and z are spokes and y is a rim element. Restrict to one of these wheels of maximum rank s. Then $s \geq \frac{r\left(M_{2}\right)}{2}+1 \geq$ $\frac{1}{2}\left(k-\left(\left|C_{x}\right|-2\right)\right)+1 \geq \frac{k+6}{4}$. Contract one rim element other than y to make z parallel to an element other than x or y. Then delete z to produce a minor of M^{*}. This minor has x and y and is isomorphic to $M\left(\mathcal{W}_{m}\right)$ for some integer m with $m \geq s-1 \geq \frac{k+2}{4}$.

We may now assume, in case I, that $\sum_{i=1}^{k} a_{i}$ is odd. Recall that this case came from case I depicted in Figure 2. Because M^{*} is binary, there is a unique binary matroid, M_{4}, obtained by

Figure 6. Geometric illustration of M^{*} with x^{\prime}, y^{\prime}, and z added to produce the matroid M_{4}. Here H^{\prime} is the complement of triad $\{x, f, y\}$.
adding elements z, x^{\prime} and y^{\prime} so that $\{x, y, z\},\left\{x, f, x^{\prime}\right\}$, and $\left\{y, f, y^{\prime}\right\}$ are triangles (see Figure 6). The following matrix represents M_{4}.

$$
\left[\begin{array}{cccccc|ccccccccc}
e_{1} & e_{2} & e_{3} & \ldots & e_{k} & f & z & e_{k+2} & e_{k+3} & \ldots & e_{2 k} & x & y & x^{\prime} & y^{\prime} \\
& & & & & & 0 & 0 & \ldots & 1 & a_{1} & a_{1}+1 & a_{1} & a_{1}+1 \\
& & & & & 1 & 0 & \ldots & 0 & a_{2} & a_{2}+1 & a_{2} & a_{2}+1 \\
& & I_{k+1} & & & & 1 & 1 & \ldots & 0 & a_{3} & a_{3} & a_{3} & a_{3} \\
& & & & & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
& & & & & 0 & 0 & 0 & \ldots & 1 & a_{k} & a_{k} & a_{k} & a_{k} \\
& & & & & 0 & 0 & \ldots & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Let H^{\prime} be the hyperplane $E\left(M_{4}\right)-\{x, f, y\}$ of M_{4}. Since $\sum_{i=1}^{k} a_{i}$ is odd, by Lemma 4.2, neither x^{\prime} nor y^{\prime} is spanned by $\left\{e_{k+2}, e_{k+3}, \ldots, e_{2 k}\right\}$. The independent sets $I_{x}=\left\{x^{\prime}, e_{k+2}, e_{k+3}, \ldots, e_{2 k}\right\}$ and $I_{y}=\left\{y^{\prime}, e_{k+2}, e_{k+3}, \ldots, e_{2 k}\right\}$ span H^{\prime}. Now $I_{x} \cup I_{y}$ is the symmetric difference of the circuits $\left\{z, e_{k+2}, e_{k+3}, \ldots, e_{2 k}\right\}$ and $\left\{x^{\prime}, y^{\prime}, z\right\}$ of M_{4}, so $I_{x} \cup I_{y}$ is a union of disjoint circuits. Now each such circuit must contain $\left\{x^{\prime}, y^{\prime}\right\}$ as both I_{x} and I_{y} are independent, so $I_{x} \cup I_{y}$ is a circuit.

Choose i in $[k]-\{1,2\}$ and let B_{i} be the independent set $\left\{e_{i}, e_{k+2}, e_{k+3}, \ldots, e_{2 k}\right\}$. Then H^{\prime} is spanned by B_{i}. Notice that $B_{i} \cup x^{\prime}=I_{x} \cup e_{i}$ and this set contains a unique circuit C_{x}, which must contain $\left\{x^{\prime}, e_{i}\right\}$. Similarly, there is a unique circuit $C_{y} \subseteq B_{i} \cup y^{\prime}=I_{y} \cup e_{i}$ and $\left\{y^{\prime}, e_{i}\right\} \subseteq C_{y}$. Now $C_{x} \triangle C_{y}$ is a disjoint union of circuits and is a non-empty subset of the circuit $I_{x} \cup I_{y}$. Hence $C_{x} \cap C_{y}=\left\{e_{i}\right\}$. Thus $C_{x} \triangle C_{y}=I_{x} \cup I_{y}$. Without loss of generality, $\left|C_{x}\right| \leq\left|C_{y}\right|$, so $\left|C_{x}\right| \leq$ $\frac{\left|I_{x} \cup I_{y}\right|}{2}+1=\frac{k+3}{2}$.

Contract $C_{x}^{2}-\left\{x^{\prime}, e_{i}\right\}$ from M_{4} to make x^{\prime} parallel to e_{i}. Since y^{\prime} is not contained in the closure of $C_{x}-\left\{x, e_{i}\right\}$, the element y^{\prime} has not become a loop in this process. Simplify the matroid without deleting any element of $\left\{x, y, f, x^{\prime}, y^{\prime}, z\right\}$ to produce the matroid M_{5} illustrated on the left in Figure 7. Clearly $M_{5} \backslash\{x, y, f\}$ has two wheel restrictions that have x^{\prime} and z as spokes and that together use all of the elements of $E\left(M_{5}\right) \backslash\{x, y, f\}$. Let R be the set of rim elements of one of these wheels of minimum rank. In M_{5}, contract $R-\left\{e_{1}, e_{2}, y^{\prime}\right\}$ to make y^{\prime} parallel to one of e_{1} or e_{2}, thereby making x^{\prime} parallel to the other (see Figure 7 right). Now delete the added elements, x^{\prime}, y^{\prime}, and z, and simplify to produce an $M\left(\mathcal{W}_{m}\right)$-minor of M^{*}, for some m with $m \geq \frac{r\left(M_{5}\right)}{2}+1 \geq \frac{1}{2}\left(k-\left(\left|C_{x}\right|-2\right)\right)+1 \geq \frac{1}{2}\left(k-\left(\frac{k-1}{2}\right)\right)+1=\frac{k+1}{4}+1$.

5. A Large Spike-Minor

In this section, we examine the case where a 3 -connected binary matroid with two identified elements has a large spike-minor. The rank- n binary spike with no tip or cotip has $\left[I_{n} \mid J_{n}-I_{n}\right]$ as a representation and will be denoted by S_{n}. The rank- n binary spike with a tip and no cotip

Figure 7. Geometric illustration of M_{5} (left) and one of its minors (right).
has $\left[I_{n}\left|J_{n}-I_{n}\right| \mathbf{1}\right]$ as a representation where $\mathbf{1}$ is the column of n ones. This column represents the tip of the spike and, for all $i \in[n]$, the elements represented by the i th column and the $(i+n)$ th column form a triangle with the tip. Delete any column of the last matrix other than $\mathbf{1}$ to produce a representation for T_{n}, the rank- n binary spike with a tip and a cotip. If the deleted element was in a triangle with c and the tip, then c is the cotip of this spike. Deleting the tip from T_{n} results in a rank- n binary spike with a cotip and no tip. Observe that $T_{3} \cong M\left(\mathcal{W}_{3}\right)$.

First, we prove a technical lemma.
Lemma 5.1. For some $n \geq 4$, let N be the rank-n binary spike with a tip t and no cotip. Let M be a 3 -connected binary matroid so that $M \backslash x=N$. If T is the set of elements of a minimal set of triangles of N spanning x, then both $M \mid(T \cup x)$ and $M \backslash(T-t)$ are spikes with tip t and cotip x.

Proof. There is a unique binary matroid M^{\prime} that is obtained from M by adding an element z so that $\{t, x, z\}$ is a triangle. It is straightforward to show using a binary matrix representation for M^{\prime} that both $M^{\prime} \mid(T \cup x \cup z)$ and $M^{\prime} \backslash(T-t)$ are binary spikes with tip t. The lemma follows immediately from this.

We use this lemma when considering a 3 -connected binary matroid M that is a single-element extension of T_{n}.
Lemma 5.2. Let $N \cong T_{n}$ for some integer n greater than 2 . Let M be a 3 -connected binary matroid with elements x and y so that $M \backslash x=N$. Then there is an integer m with $m \geq \frac{n}{2}$ so that M has a T_{m}-minor that uses $\{x, y\}$.

Proof. By Lemma 2.3, as T_{3} is isomorphic to $M\left(\mathcal{W}_{3}\right)$, the theorem holds for $n \leq 6$. Thus we may assume $n \geq 7$. The matroid N has n copunctual lines, $L_{1}, L_{2}, \ldots, L_{n-1}, L_{n}^{\prime}$ where $L_{i}=\left\{t, e_{i}, f_{i}\right\}$ for each i in $[n-1]$ and $L_{n}^{\prime}=\left\{t, e_{n}\right\}$. Let M_{1} be the unique binary matroid obtained by adding z to M so that $\left\{t, e_{n}, z\right\}$ is a triangle. Let $L_{n}=\left\{t, e_{n}, z\right\}$. The following is a representation of M_{1}.

$$
\begin{gathered}
\\
\begin{array}{c}
1 \\
2 \\
3 \\
\vdots \\
n-1 \\
n
\end{array} \\
n
\end{gathered}\left[\begin{array}{llllll|cccccccc}
e_{1} & e_{2} & e_{3} & \ldots & e_{n-1} & e_{n} & f_{1} & f_{2} & f_{3} & \ldots & f_{n-1} & z & t & x \\
& & & & & & 0 & 1 & 1 & \ldots & 1 & 1 & 1 & x_{1} \\
& & & & & & 0 & 1 & \ldots & 1 & 1 & 1 & x_{2} \\
& & & I_{n} & & & 1 & 0 & \ldots & 1 & 1 & 1 & x_{3} \\
& & & & & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
& & & & & & 1 & 1 & \ldots & 0 & 1 & 1 & x_{n-1} \\
1 & 1 & 1 & 1 & \ldots & 1 & 0 & 1 & x_{n}
\end{array}\right]
$$

If x is spanned by some L_{i} in M_{1}, then, as M is simple, x is parallel to z in M_{1}. Thus, deleting z and any element other than x, y, or t from M_{1} gives a T_{n}-minor of M containing x and y.

We may now assume that x is not spanned by any L_{i}. Then M_{1} is 3 -connected. Let A be the set of elements of a minimal subset of $\left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$ whose closure contains x. Let k be the number of lines L_{i} that are subsets of A. Let $B=E\left(M_{1}\right)-(A-t)$. By Lemma 5.1, $x \in \mathrm{cl}_{M_{1}}(B)$, and $M_{1} \mid(A \cup x)$ and $M_{1} \mid(B \cup x)$ are spikes with tip t and $\operatorname{cotip} x$. Note that $k \leq n-k$. We may assume that $A=\left\{t, e_{1}, f_{1}, e_{2}, f_{2}, \ldots, e_{k}, f_{k}\right\}$ or $A=\left\{t, e_{1}, f_{1}, e_{2}, f_{2}, \ldots, e_{k-1}, f_{k-1}, e_{n}, z\right\}$. Thus, for some c in $\{0,1\}$, either

$$
x_{i}=\left\{\begin{array}{ll}
c & \text { if } 1 \leq i \leq k, \\
c-1 & \text { otherwise } ;
\end{array} \quad \text { or } \quad x_{i}= \begin{cases}c-1 & \text { if } k \leq i \leq n-1, \\
c & \text { otherwise } .\end{cases}\right.
$$

The element y may be contained in A. By the symmetry of the matroid M_{1}, we may assume that, if it is, $y \in\left\{t, e_{1}, f_{1}, e_{n}\right\}$. Let $M_{2}=M_{1} /\left\{e_{2}, e_{3}, \ldots, e_{k-1}\right\} \backslash\left\{f_{2}, f_{3}, \ldots, f_{k-1}\right\}$. The matroid M_{2} has the following representation.

Since $c \in\{0,1\}$ and $x_{k} \in\{0,1\}$, one of four cases holds. First, if $c=x_{k}=0$, then both $\left\{e_{1}, f_{k}, x\right\}$ and $\left\{e_{k}, f_{1}, x\right\}$ are triangles of M_{2}. Secondly, if $c=x_{k}=1$, then $\left\{e_{1}, e_{k}, x\right\}$ and $\left\{f_{1}, f_{k}, x\right\}$ are triangles of M_{2}. In either of these cases, contract e_{1} provided $e_{1} \neq y$, otherwise contract f_{1}. In the resulting matroid, x is parallel to an element in $\left\{e_{k}, f_{k}\right\}$, and either $\left\{t, f_{1}\right\}$ or $\left\{t, e_{1}\right\}$ is a circuit. Now delete z and simplify without deleting x or y. The result is a T_{m}-minor of M using x and y where $m=n-(k-2)-1 \geq \frac{n}{2}+1$.

In the third case, $c=1$ and $x_{k}=0$, so $\left\{e_{1}, e_{n}, x\right\}$ and $\left\{f_{1}, z, x\right\}$ are triangles of M_{2}. Finally, if $c=0$ and $x_{k}=1$, then $\left\{e_{1}, z, x\right\}$ and $\left\{e_{n}, f_{1}, x\right\}$ are triangles of M_{2}. In these last two cases, if the triangle containing $\left\{x, e_{1}\right\}$ avoids y, contract e_{1}, otherwise contract f_{1}. In both cases, x is parallel to an element of M_{2} other than y. Delete z and simplify without deleting x or y to produce a spike-minor of M that uses $\{x, y\}$ and has a tip but possibly no cotip. If this minor has no cotip, delete an element other than t, x, or y to produce a T_{m}-minor for some m with $m \geq \frac{n}{2}+1$.

We now consider the case where two elements must be removed from M to form a T_{n}-minor.
Lemma 5.3. Let M be a 3 -connected binary matroid with $M \backslash x / f=N \cong T_{n}$ for some integer n with $n \geq 4$. Suppose N has an element y so that $\{x, f, y\}$ is a circuit of M. Then there is an integer m with $m \geq \frac{n-1}{2}$ so that M has a T_{m}-minor that uses $\{x, y\}$.

Proof. By Lemma 2.3, since $T_{3} \cong M\left(\mathcal{W}_{3}\right)$, the theorem holds for $n \leq 7$. Thus we may assume $n \geq 8$. In M^{*}, the set $\{x, f, y\}$ is a cocircuit. Let M_{0} be the unique binary matroid obtained by adding z to M^{*} so that $\{x, y, z\}$ is a triangle of M_{0}. In $M_{0} \backslash\{x, f, y\}$, which is isomorphic to T_{n}, the element z is either (1) the tip, (2) the cotip, or (3) neither the tip nor the cotip. In the first case, M_{0} / f has the following representation.

$$
\left[\begin{array}{cccccc|cccccccc}
e_{1} & e_{2} & e_{3} & \ldots & e_{n-1} & e_{n} & f_{1} & f_{2} & f_{3} & \ldots & f_{n-1} & z & x & y \\
& & & & & 0 & 1 & 1 & \ldots & 1 & 1 & x_{1} & x_{1}+1 \\
& & & & & 0 & 1 & \ldots & 1 & 1 & x_{2} & x_{2}+1 \\
& & I_{n} & & & 1 & 1 & 0 & \ldots & 1 & 1 & x_{3} & x_{3}+1 \\
& & & & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
& & & & & 1 & 1 & \ldots & 0 & 1 & x_{n-1} & x_{n-1}+1 \\
& & & & & 1 & 1 & \ldots & 1 & 1 & x_{n} & x_{n}+1
\end{array}\right]
$$

Let k be the number of non-zero members of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. By switching x and y if necessary, we may assume that $k \leq \frac{n}{2}$, so that $n-k \geq \frac{n}{2}$. Suppose first that $k=1$. If $x_{n}=1$, then delete f_{n-1} and e_{n} from M_{0} / f to produce a T_{n}-minor using x and y. If $x_{j}=1$ for some $j \neq n$, then delete e_{j} and f_{j} to produce a T_{n}-minor using x and y. In either case, we produce a T_{n-1}-minor of M^{*} by contracting some remaining f_{i} and then deleting z.

We may now assume that $k>1$. Without loss of generality, $x_{1}=x_{2}=\cdots=x_{k-1}=1$ and either (i) $x_{k}=1$ or (ii) $x_{n}=1$. In case (i), contract $\left\{e_{2}, e_{3}, \ldots, e_{k}\right\}$ and delete $\left\{f_{3}, f_{4}, \ldots, f_{k}\right\}$. Then deleting $\left\{e_{1}, f_{1}, z\right\}$ gives a T_{n-k+1}-minor of M^{*} using x and y and having tip f_{2} and cotip e_{n}. In case (ii), first contract $\left\{e_{2}, e_{3}, e_{4}, \ldots, e_{k-1}, e_{n}\right\}$ and delete $\left\{f_{3}, f_{4}, \ldots, f_{k-1}\right\}$. Then deleting $\left\{e_{1}, f_{1}, z, f_{n-1}\right\}$ gives a T_{n-k+1}-minor of $M^{*} u \operatorname{sing} x$ and y and having tip f_{2} and cotip e_{n-1}.

In case (2), M_{0} / f has the following representation.

$$
\left[\begin{array}{cccccc|cccccccc}
e_{1} & e_{2} & e_{3} & \ldots & e_{n-1} & z & f_{1} & f_{2} & f_{3} & \ldots & f_{n-1} & t & x & y \\
& & & & & & 0 & 1 & 1 & \ldots & 1 & 1 & x_{1} & x_{1} \\
& & & & & & 1 & \ldots & 1 & 1 & x_{2} & x_{2} \\
& & I_{n} & & & 1 & 1 & 0 & \ldots & 1 & 1 & x_{3} & x_{3} \\
& & & & & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
& & & & & 1 & 1 & \ldots & 0 & 1 & x_{n-1} & x_{n-1} \\
& & & & & 1 & 1 & \ldots & 1 & 1 & x_{n} & x_{n}+1
\end{array}\right]
$$

By switching x and y if necessary, we may assume that $x_{n}=0$. Let k be the number of non-zero members of $\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$.

Assume first that $k \geq \frac{n-1}{2}$. Without loss of generality, we may suppose that $x_{1}=x_{2}=\cdots=$ $x_{n-k-1}=0$. Contract $\left\{e_{1}, e_{2}, \ldots, e_{n-k-1}\right\}$ and delete $\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{n-k-1}\right\}$ to produce a matroid in which t and y are parallel. Deleting z and t from this matroid gives a $T_{k+1}-$ minor with tip y and $\operatorname{cotip} x$. As $k+1 \geq \frac{n+1}{2}$, the result holds.

We may now assume that $k \leq \frac{n-2}{2}$. As x is not a loop, $x_{j}=1$ for some $j \neq n$. Without loss of generality, we may assume that $x_{1}=x_{2}=\cdots=x_{k}=1$. Contract $\left\{e_{2}, e_{3}, \ldots, e_{k}\right\}$ and delete $\left\{f_{2}, f_{3}, \ldots, f_{k}\right\}$ to produce a matroid in which x is parallel to e_{1} and $\left\{t, x, f_{1}\right\}$ and $\{x, y, z\}$ are circuits. Thus $\left\{t, y, z, f_{1}\right\}$ is also a circuit. Now contracting f_{1} and deleting e_{1}, z, and t gives a minor of M^{*} isomorphic to T_{m} with tip x and cotip y and with $m=n-k \geq n-\frac{n-2}{2} \geq \frac{n}{2}+1$.

It remains to consider case (3), that is, z forms a triangle with t and some element e. Without loss of generality, M_{0} / f has the following matrix representation.

$$
\left[\begin{array}{cccccc|cccccccc}
e & e_{2} & e_{3} & \ldots & e_{n-1} & e_{n} & z & f_{2} & f_{3} & \ldots & f_{n-1} & t & x & y \\
& & & & & & & 1 & 1 & \ldots & 1 & 1 & x_{1} & x_{1} \\
& & & & & 1 & \ldots & 1 & 1 & x_{2} & x_{2}+1 \\
& & I_{n} & & & 1 & 1 & 0 & \ldots & 1 & 1 & x_{3} & x_{3}+1 \\
& & & & & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
& & & & & 1 & 1 & \ldots & 0 & 1 & x_{n-1} & x_{n-1}+1 \\
& & & & & 1 & 1 & \ldots & 1 & 1 & x_{n} & x_{n}+1
\end{array}\right]
$$

As long as e is not parallel to x or y in M_{0} / f, we can contract e, delete z, and relabel t as z to give this matrix the same form as the matrix representing M_{0} / f in case (1). In this case, we reduce case (3) to case (1) and find a T_{m}-minor of M^{*} using x and y for some integer $m \geq n-1-\frac{n-1}{2}=\frac{n-1}{2}$. Now suppose e is parallel to x or y in M_{0} / f. Then M_{0} has $\{f, e, x\}$ or $\{f, e, y\}$ as a triangle. Thus $M_{0} \mid\{z, t, e, x, f, y\}$ is isomorphic to $M\left(\mathcal{W}_{3}\right)$. It is straightforward to check that $M_{0} / f \backslash t, e$ has $\{x, y, z\}$ as a triangle and is isomorphic to T_{n}, where x or y is the tip. Contracting the cotip from this copy of T_{n} and then deleting z gives a T_{n-1}-minor of M^{*} that uses x and y. Hence the required result holds.

6. A Large Minor Isomorphic to the Cycle or Bond Matroid of $K_{1,1,1, n}$

In this section, we examine the case when M has a minor isomorphic to the cycle or bond matroid of $K_{1,1,1, n}$. We will refer to Figure 8, which shows the graph of $K_{1,1,1, n}$ and illustrates the geometry of this rank- $(n+2)$ matroid. First, we consider the case where the deletion of one element of M results in an $M\left(K_{1,1,1, n}\right)$-minor.
Lemma 6.1. Let M be a 3 -connected binary matroid so that $M \backslash x=N \cong M\left(K_{1,1,1, n}\right)$ for some positive integer n. Suppose $y \in E(N)$. Then there is an integer m with $m \geq \frac{n-1}{2}$ so that x and y are elements of a minor of M isomorphic to T_{m} or $M\left(K_{1,1,1, m}\right)$.
Proof. By Lemma 2.3, as $T_{3} \cong M\left(\mathcal{W}_{3}\right)$, we may assume that $n \geq 8$. Clearly $M=M\left(G, \gamma_{x}\right)$ where $G \cong K_{1,1,1, n}$. Label G as in Figure 8. By symmetry, we may assume that y is $a_{1} a_{2}$ or $a_{1} b_{1}$. If $\left|\gamma_{x}\right|=2$, then, as M is simple, we may assume that $\gamma_{x}=\left\{b_{2}, b_{i}\right\}$ for some i in $\{1,3\}$. Then $M / a_{3} b_{2} \backslash\left\{a_{1} b_{2}, a_{2} b_{2}, a_{3} b_{i}\right\}$ is an $M\left(K_{1,1,1, n-1}\right)$-minor of M that uses x and y.

We may now assume that $\left|\gamma_{x}\right| \geq 4$. Let A_{x} and B_{x} be the sets $\left\{a_{1}, a_{2}, a_{3}\right\} \cap \gamma_{x}$ and $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \cap$ γ_{x}, respectively.

First, let $\left|B_{x}\right| \leq \frac{n}{2}+1$. Assume a_{1} or a_{2} is not in γ_{x}. Then $\left|B_{x}\right| \geq 2$ so, without loss of generality, $b_{2} \in B_{x}$. Contract the edges from vertices of $B_{x}-b_{2}$ to a_{3} and label the resulting composite vertex a_{3}. Simplify the underlying graph without deleting y. The resulting graft $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ has $G^{\prime} \cong K_{1,1,1, m}$ for some m with $m=n-\left|B_{x}-b_{2}\right| \geq \frac{n}{2}$. In G^{\prime}, the edge y has a_{1} as one endpoint, and the other endpoint is in $\left\{a_{2}, a_{3}, b_{1}\right\}$. Moreover, γ_{x}^{\prime} consists of b_{2} and some subset of $\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $\left|\gamma_{x}^{\prime}\right|$ is even, and either a_{1} or a_{2} is not in γ_{x}^{\prime}, the set $\gamma_{x}^{\prime}=\left\{a_{i}, b_{2}\right\}$ for some $i \in[3]$. In $M\left(G^{\prime}, \gamma_{x}^{\prime}\right)$, then, x is parallel to the element $a_{i} b_{2}$ and, since y is not incident with b_{2} in G^{\prime}, the matroid $M\left(G^{\prime} \backslash a_{i} b_{2}, \gamma_{x}^{\prime}\right)$ is an $M\left(K_{1,1,1, m}\right)$-minor of M using x and y.

Now assume that both a_{1} and a_{2} are in γ_{x}. Since $\left|\gamma_{x}\right| \geq 4$, there is a vertex b_{k} in B_{x}. If $b_{1} \in B_{x}$, let $k=1$, otherwise, let b_{k} be any vertex of B_{x}. Contract $a_{2} b_{k}$ from the graft, labelling the resulting vertex a_{2}. Simplify the underlying graph without deleting y to produce the graft ($G^{\prime}, \gamma_{x}^{\prime}$), with $G^{\prime} \cong K_{1,1,1, n-1}$ and $\gamma_{x}^{\prime}=\gamma_{x}-\left\{a_{2}, b_{k}\right\}$. If $\left|\gamma_{x}^{\prime}\right|=2$, then $\gamma_{x}^{\prime}=\left\{a_{1}, a_{3}\right\}$ or $\gamma_{x}^{\prime}=\left\{a_{1}, b_{i}\right\}$ for some

Figure 8. (a) $K_{1,1,1, n}$ and (b) a geometric illustration of $M\left(K_{1,1,1, n}\right)$
$i \neq 1$. In either case, $M\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ has x parallel to some element other than y, so we may simplify to produce an $M\left(K_{1,1,1, n-1}\right)$-minor containing x and y. Thus we may assume that $\left|\gamma_{x}-\left\{a_{2}, b_{k}\right\}\right| \geq 4$. Since $a_{2} \notin \gamma_{x}^{\prime}$, this case is reduced to the case considered in the previous paragraph, and M has an $M\left(K_{1,1,1, m}\right)$-minor using x and y with $m \geq \frac{n-1}{2}$.

Finally, we may assume $\left|B_{x}\right| \geq \frac{n+1}{2}+1$. Then $\left|B_{x}\right| \geq 5$, so $\left|B_{x}-b_{1}\right| \geq 4$. Without loss of generality, $\left\{b_{2}, b_{3}, b_{4}\right\} \subseteq B_{x}$. For every $a_{i} \in A_{x}$, contract the edge $a_{i} b_{i+1}$ and label the resulting vertex a_{i}. Also contract the set of edges from $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}-B_{x}$ to a_{3} and label the composite vertex a_{3}. The resulting graft has graft element $\gamma_{x}^{\prime}=B_{x}-\left\{b_{i+1}: a_{i} \in A_{x}\right\}$ and has the vertex set $\left\{a_{1}, a_{2}, a_{3}\right\} \cup \gamma_{x}^{\prime}$. Simplify the underlying graph without deleting y to produce the graft $\left(G^{\prime}, \gamma_{x}^{\prime}\right)$ with $G^{\prime} \cong K_{1,1,1, m}$ for some integer m with $m=\left|B_{x}\right|-\left|A_{x}\right| \geq \frac{n-1}{2}-1$.

At this point, $y \in\left\{a_{1} a_{2}, a_{1} b_{1}, a_{1} a_{3}\right\}$. Without loss of generality, $y \neq a_{1} a_{3}$. Delete the vertex a_{3} from G^{\prime} to produce a graft $\left(G^{\prime \prime}, \gamma_{x}^{\prime}\right)$ where $\gamma_{x}^{\prime}=V\left(G^{\prime \prime}\right)-\left\{a_{1}, a_{2}\right\}$. Clearly $M\left(G^{\prime \prime}\right)$ can be obtained from T_{m+1} by deleting the cotip. As $\gamma_{x}^{\prime}=V\left(G^{\prime \prime}\right)-\left\{a_{1}, a_{2}\right\}$, it follows easily that $M\left(G^{\prime \prime}, \gamma_{x}^{\prime}\right)$ is isomorphic to T_{m+1} and uses $\{x, y\}$. Since $m+1 \geq \frac{n-1}{2}$, the lemma follows.

We now consider the matroid $M^{*}\left(K_{1,1,1, n}\right)$. While $M\left(K_{1,1,1, n}\right)$ is depicted in Figure 8, it will still be useful to develop a geometric illustration for $M^{*}\left(K_{1,1,1, n}\right)$ itself. In $K_{3, n+1}$, let the vertex classes be labelled $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$. Perform a $Y-\Delta$ exchange on the triad $\left\{b_{0} a_{1}, b_{0} a_{2}, b_{0} a_{3}\right\}$. The resulting triangle is $\left\{a_{1} a_{2}, a_{2} a_{3}, a_{1} a_{3}\right\}$ and the resulting graph is $K_{1,1,1, n}$. Thus, in $M^{*}\left(K_{1,1,1, n}\right)$, if we perform a $Y-\Delta$ exchange on the triad $\left\{a_{1} a_{2}, a_{2} a_{3}, a_{1} a_{3}\right\}$, we get $M^{*}\left(K_{3, n+1}\right)$. Geometrically, $M^{*}\left(K_{3, n+1}\right)$ can be formed as follows. Take the direct sum of n triangles $Z_{i}=\left\{a_{1} b_{i}, a_{2} b_{i}, a_{3} b_{i}\right\}$ for all $i \in[n]$. There is a unique binary matroid M_{0} that can be obtained by adding elements z_{1}, z_{2}, and z_{3} so that $\left\{a_{j} b_{1}, a_{j} b_{2}, \ldots, a_{j} b_{n}, z_{j}\right\}$ is a circuit of M_{0} for each $j \in[3]$. By taking the symmetric difference of these three $(n+1)$-element circuits and the n triangles Z_{i}, we find that $\left\{z_{1}, z_{2}, z_{3}\right\}$ is a triangle of M_{0}. From above, we see that performing a \triangle-Y exchange on the triangle $\left\{z_{1}, z_{2}, z_{3}\right\}$ gives the triad $\left\{a_{1} a_{2}, a_{2} a_{3}, a_{1} a_{3}\right\}$ in the matroid $M^{*}\left(K_{1,1,1, n}\right)$ where $A_{1}=\left\{a_{1} a_{2}, a_{1} a_{3}, a_{1} b_{1}, a_{1} b_{2}, \ldots, a_{1} b_{n}\right\}, A_{2}=\left\{a_{1} a_{2}, a_{2} a_{3}, a_{2} b_{1}, a_{2} b_{2}, \ldots, a_{2} b_{n}\right\}$, and $A_{3}=\left\{a_{1} a_{3}, a_{2} a_{3}, a_{3} b_{1}, a_{3} b_{2}, \ldots, a_{3} b_{n}\right\}$ are circuits. While $M^{*}\left(K_{1,1,1, n}\right)$ has rank $2 n+1$, an illustration is useful. Figure 9 shows triad $\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$ complementing a hyperplane labelled H. The white squares indicate the position of triangle $\left\{z_{1}, z_{2}, z_{3}\right\}$ which was removed. The other triangles are shown as vertical, 3-point lines and each circuit A_{i} is indicated by a horizontal line that bends at a white square so that each such line includes $n+2$ points.

We now extend the remarks above to make some observations that will be helpful in the proofs of the next result and Corollary 1.5. Let $Z_{n+1}=\left\{z_{1}, z_{2}, z_{3}\right\}$ and fix k in $\{2,3, \ldots, n-1\}$. Then $\left(Z_{1} \cup Z_{2} \cup \cdots \cup Z_{k}, Z_{k+1} \cup Z_{k+2} \cup \cdots \cup Z_{n+1}\right)$ is an exact 3 -separation of $M^{*}\left(K_{3, n+1}\right)$. There is a unique binary matroid M_{0}^{\prime} that is obtained from M_{0} by adding elements $z_{1}^{\prime}, z_{2}^{\prime}$, and z_{3}^{\prime} so that $\left\{a_{j} b_{1}, a_{j} b_{2}, \ldots, a_{j} b_{k}, z_{j}^{\prime}\right\}$ is a circuit of M_{0}^{\prime} for each $j \in[3]$. Let $Z^{\prime}=\left\{z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right\}$. Then Z^{\prime} is a circuit of M_{0}^{\prime} as is $\left\{a_{j} b_{k+1}, a_{j} b_{k+2}, \ldots, a_{j} b_{n}, z_{j}, z_{j}^{\prime}\right\}$ for each $j \in[3]$. Moreover, M_{0} is the 3 -sum of $M_{0}^{\prime} \mid\left(Z_{1} \cup Z_{2} \cup \cdots \cup Z_{k} \cup Z^{\prime}\right)$ and $M_{0}^{\prime} \mid\left(Z_{k+1} \cup Z_{k+2} \cup \cdots \cup Z_{n+1} \cup Z^{\prime}\right)$ across Z^{\prime}. We observe that the last two matroids are isomorphic to $M^{*}\left(K_{3, k+1}\right)$ and $M^{*}\left(K_{3, n-k+2}\right)$. By performing a $\triangle-Y$ exchange on $\left\{z_{1}, z_{2}, z_{3}\right\}$, we see that $M^{*}\left(K_{1,1,1, n}\right)$ is the 3 -sum of $M^{*}\left(K_{3, k+1}\right)$ and $M^{*}\left(K_{1,1,1, n-k+1}\right)$.

Now we consider the case where the deletion of one element of M produces an $M^{*}\left(K_{1,1,1, n}\right)$-minor.
Lemma 6.2. Let M be a 3-connected binary matroid so that $M \backslash x=N \cong M^{*}\left(K_{1,1,1, n}\right)$ for a positive integer n. Suppose $y \in E(N)$. Then there is an integer m with $m \geq \frac{n}{4}-2$ so that M has an $M^{*}\left(K_{1,1,1, m}\right)$-minor that uses $\{x, y\}$.

Proof. As $M^{*}\left(K_{1,1,1,1}\right) \cong M\left(\mathcal{W}_{3}\right)$, by Lemma 2.3, the theorem holds for $n \leq 12$. Thus we may assume that $n \geq 13$. We will also assume N is labelled as in Figure 9, with triangles $Z_{i}=$ $\left\{a_{1} b_{i}, a_{2} b_{i}, a_{3} b_{i}\right\}$ for all $i \in[n]$ and a triad $Z_{0}^{*}=\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$.

Figure 9. A geometric illustration of $M^{*}\left(K_{1,1,1, n}\right)$.

Let C_{x} be a circuit of M containing x meeting a minimum-sized subset \mathcal{Z} of $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$. Subject to this, choose C_{x} so that $\left|C_{x}-\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}\right|$ is minimized. Then $\left|C_{x} \cap Z_{i}\right| \leq 1$ for all $i \in[n]$; otherwise, for some i, a circuit contained in $C_{x} \triangle Z_{i}$ containing x contradicts the choice of C_{x}. Let $k=|\mathcal{Z}|$. Without loss of generality, $\mathcal{Z}=\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ and $y \in\left\{a_{1} a_{2}, a_{1} b_{1}, a_{1} b_{k+1}\right\}$.

First, we assume $k>\frac{3}{4} n$. By the pigeonhole principle, for some $j \in[3]$, say $j=1$, the set C_{x} meets $\left\{a_{j} b_{1}, a_{j} b_{2}, \ldots, a_{j} b_{n}\right\}$ in at least $\frac{1}{3}|\mathcal{Z}|$ elements. Thus $C_{x} \triangle\left\{a_{1} b_{1}, a_{1} b_{2}, \ldots, a_{1} b_{n}, a_{1} a_{2}, a_{1} a_{3}\right\}$ contains a circuit C_{x}^{\prime} containing x and avoiding at least $\frac{|\mathcal{Z}|}{3}$ triangles of N. Then C_{x}^{\prime} meets at most $n-\frac{|\mathcal{Z}|}{3}$ triangles of N. But $n-\frac{|\mathcal{Z}|}{3}<\frac{3}{4} n$ so we have contradicted the choice of C_{x}. Thus $k \leq \frac{3}{4} n$.

Next suppose $k=0$. Then $x \in \operatorname{cl}\left(Z_{0}^{*}\right)$. As M is binary, $M \backslash x$ is illustrated in Figure 10 with the four possible locations for x in M represented by squares. If x is not in $\operatorname{cl}(H)$, then delete

Figure 10. $M \backslash x$ with boxes representing the four possible locations for x.
$a_{1} a_{3}$ to produce an $M^{*}\left(K_{1,1,1, n}\right)$-minor using x and y. Thus we may assume $x \in \operatorname{cl}(H)$. If x is not in a triangle with $a_{1} a_{3}$ and $a_{2} a_{3}$, then we can contract one of these elements to produce an $M^{*}\left(K_{3, n+1}\right)$-minor using x and y. In this case, we can easily find an $M^{*}\left(K_{1,1,1, n-1}\right)$-minor using x and y. Thus we may assume $\left\{x, a_{1} a_{3}, a_{2} a_{3}\right\}$ is a triangle (see Figure 10). If $y \neq a_{1} a_{2}$, then $M / a_{1} a_{2} \cong M^{*}\left(K_{3, n+1}\right)$ and we can easily find an $M^{*}\left(K_{1,1,1, n-1}\right)$-minor using x and y. Therefore we may assume $y=a_{1} a_{2}$ and M is the vector matroid of the following binary matrix.

$$
\left[\begin{array}{ccccccc|cccc|ccc}
a_{1} b_{1} & \ldots & a_{1} b_{n} & a_{2} b_{1} & \ldots & a_{2} b_{n} & a_{1} a_{2} & a_{3} b_{1} & a_{3} b_{2} & \ldots & a_{3} b_{n} & a_{1} a_{3} & a_{2} a_{3} & x \\
& & & & & & 0 & \ldots & 0 & 1 & 0 & 1 \\
& & & & & & & 0 & 1 & \ldots & 0 & 1 & 0 & 1 \\
& & & & & & & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
& & & I_{2 n+1} & & & & 0 & 0 & \ldots & 1 & 1 & 0 & 1 \\
& & & & & & 1 & 0 & \ldots & 0 & 0 & 1 & 1 \\
& & & & & & & 0 & 1 & \ldots & 0 & 0 & 1 & 1 \\
& & & & & & & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
& & & & & & & 0 & 0 & \ldots & 1 & 0 & 1 & 1 \\
& & & & & & 0 & 0 & \ldots & 0 & 1 & 1 & 0
\end{array}\right]
$$

We now construct a representation for M^{*}. From the matrix $\left[I_{2 n+1} \mid D\right]$ representing M, first construct $\left[D^{T} \mid I_{n+3}\right]$. In the resulting matrix, we add rows $n+1$ and $n+2$ to row $n+3$. Finally, we adjoin a new row that is the sum of all the current rows to get the following matrix.

$$
\left[\begin{array}{ccc|ccc|c|ccc|ccc}
a_{1} b_{1} & \ldots & a_{1} b_{n} & a_{2} b_{1} & \ldots & a_{2} b_{n} & a_{1} a_{2} & a_{3} b_{1} & \ldots & a_{3} b_{n} & a_{1} a_{3} & a_{2} a_{3} & x \\
& I_{n} & & & I_{n} & & 0 & & & & 0 & & \\
& & & & & & & 0 & 0 \\
& & & & & & 0 & & & & \vdots & \vdots \\
1 & \ldots & 1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 1 & 0 & 0 \\
0 & \ldots & 0 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 & 0 & 1 & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 & 1 & 1 \\
0 & \ldots & 0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 1 & 0 & 0 & 1
\end{array}\right]
$$

Therefore M is cographic with its dual represented by the graph G shown in Figure 11. It is

Figure 11. A graph G representing M^{*}.
easy to see that $G / a_{3} b_{n} \cong K_{1,1,1, n}$, and this graph contains x and y. Therefore $M \backslash a_{3} b_{n}$ is an $M^{*}\left(K_{1,1,1, n}\right)$-minor of M that uses $\{x, y\}$.

We may now assume that $k \geq 1$. Just as we may delete a triad from $K_{1,1,1, n}$ to produce $K_{1,1,1, n-1}$, we may contract a triangle of $M^{*}\left(K_{1,1,1, n}\right)$ to produce $M^{*}\left(K_{1,1,1, n-1}\right)$. Contract the triangles $Z_{k}, Z_{k-1}, \ldots, Z_{2}$ one-by-one in order until one of the following holds:
(1) x is in $\operatorname{cl}\left(Z_{j}\right)$ for some $j \in[n]$, or
(2) x is in $\operatorname{cl}\left(Z_{j} \cup Z_{0}^{*}\right)$ for some $j \in[n]$.

The resulting matroid, M_{1}, is a single-element extension of $M^{*}\left(K_{1,1,1, m}\right)$ for some $m \geq n-k \geq \frac{n}{4}$.
In case (1), M_{1} has $x \in \operatorname{cl}\left(Z_{j}\right)$ for some $j \in[n]$. By the minimality of $|\mathcal{Z}|$, it follows that $j=1$ and $k \geq 2$. If x is not parallel to y, we may simplify M_{1} to obtain an $M^{*}\left(K_{1,1,1, m}\right)$-minor of M using $\{x, y\}$, so assume x and y are parallel in M_{1}. Recall that $y \in\left\{a_{1} b_{1}, a_{1} a_{2}, a_{1} b_{k+1}\right\}$. In this case, $y=a_{1} b_{1}$. Let M_{0} be the matroid obtained from M by contracting the triangles of \mathcal{Z} other
than Z_{1} and Z_{2}. By the minimality of $|\mathcal{Z}|$, contracting Z_{2} from M_{0} creates the parallel class $\{x, y\}$. Hence $\left\{x, a_{1} b_{1}, a_{i} b_{2}\right\}$ is a circuit for some $i \in[3]$. Since $M_{0} \backslash x$ has $Z_{1} \cup Z_{2}$ as a 3-separating set, and $x \in \operatorname{cl}\left(Z_{1} \cup Z_{2}\right)$, the matroid M_{0} can be represented as a 3 -sum of the type shown in Figure 12 (see [9, Proposition 9.3.4]).

If $i \neq 1$, then, without loss of generality, $i=2$. Then contracting $\left\{a_{1} b_{2}, a_{2} b_{1}\right\}$ and deleting $\left\{a_{3} b_{1}, a_{3} b_{2}\right\}$ gives an $M^{*}\left(K_{1,1,1, n-k+1}\right)$-minor using $\{x, y\}$. If $i=1$, then x is parallel to a gray element in Figure 12, and x and y are elements of $M_{0} /\left\{a_{2} b_{2}, a_{3} b_{1}\right\} \backslash\left\{a_{2} b_{1}, a_{3} b_{2}\right\}$, which is isomorphic to $M^{*}\left(K_{1,1,1, n-k+1}\right)$. As $k \geq \frac{3}{4} n$, we have that $n-k+1 \geq \frac{n}{4}+1$, so the result holds in case (1).

Now consider case (2). In M_{1}, the element x is in $\operatorname{cl}\left(Z_{0}^{*} \cup Z_{j}\right)$. By the minimality of $|\mathcal{Z}|$, it follows that $j=1$. Since $Z_{1} \cup Z_{0}^{*}$ is a 3 -separating set in $M_{1} \backslash x$ and $x \in \operatorname{cl}_{M_{1}}\left(Z_{1} \cup Z_{0}^{*}\right)$, we can view M_{1} as the 3 -sum shown in Figure 13. Recall that $y \in\left\{a_{1} a_{2}, a_{1} b_{1}, a_{1} b_{k+1}\right\}$.

The set $\left\{x, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}, a_{1} b_{1}, a_{2} b_{1}, a_{3} b_{1}\right\}$ contains a minimum-sized subset C_{x}^{\prime} that is a circuit of M_{1} containing x. As M_{1} is binary, $\left|C_{x}^{\prime} \cap\left\{x, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}\right|$ in even. As $k \geq 1$, the circuit C_{x}^{\prime} meets Z_{1}. We may assume $C_{x}^{\prime} \cap Z_{1}=\left\{a_{i} b_{1}\right\}$, otherwise $C_{x}^{\prime} \triangle Z_{1}$ contains a circuit containing x that contradicts the minimality of C_{x}^{\prime}. Therefore either $\left\{x, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}, a_{i} b_{1}\right\}$ or $\left\{x, a_{j} a_{k}, a_{i} b_{1}\right\}$ is a circuit for some $i \in[3]$ and some $a_{j} a_{k} \in\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$. By choosing the basis $\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}, a_{1} b_{1}, a_{2} b_{1}\right\}$, we obtain the following binary representation for the left side, M_{2}, of the 3 -sum displayed in Figure 13.

$$
\left[\begin{array}{ccccc|ccccc}
a_{1} a_{2} & a_{1} a_{3} & a_{2} a_{3} & a_{1} b_{1} & a_{2} b_{1} & a_{3} b_{1} & e & f & g & x \\
& & & & & 0 & 1 & 1 & 0 & x_{1} \\
& & I_{5} & & & 0 & 1 & 0 & 1 & x_{2} \\
& & & & & 0 & 1 & 1 & x_{3} \\
& & & 1 & 0 & 1 & x_{4} \\
& & & & & 0 & 1 & 1 & x_{5}
\end{array}\right]
$$

Assume $a_{1} a_{2} \in C_{x}^{\prime}$. Then C_{x}^{\prime} is either $\left\{x, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}, a_{i} b_{1}\right\}$ or $\left\{x, a_{1} a_{2}, a_{i} b_{1}\right\}$ for some $i \in[3]$, so $M_{2} /\left\{a_{1} a_{3}, a_{2} a_{3}\right\}$ has the following representation for some $\left(x_{4}, x_{5}\right)$ in $\{(1,0),(0,1),(1,1)\}$.

$$
\left[\begin{array}{ccc|ccccc}
a_{1} a_{2} & a_{1} b_{1} & a_{2} b_{1} & a_{3} b_{1} & e & f & g & x \\
& & & 0 & 1 & 1 & 0 & 1 \\
& I_{3} & & 1 & 1 & 0 & 1 & x_{4} \\
& & & 1 & 0 & 1 & 1 & x_{5}
\end{array}\right]
$$

If $\left(x_{4}, x_{5}\right)$ is $(1,0)$ or $(1,1)$, then contracting $a_{2} b_{1}$ from this matroid produces a rank- 2 matroid with every gray element parallel to another element and with x not parallel to y. Thus we may simplify $M_{1} /\left\{a_{1} a_{3}, a_{2} a_{3}, a_{2} b_{1}\right\}$ to find an $M^{*}\left(K_{3, n-k+1}\right)$-minor using x and y. If, instead, $\left(x_{4}, x_{5}\right)=(0,1)$, then contract one element of $\left\{a_{1} a_{2}, a_{1} b_{1}\right\}-y$ from $M_{1} /\left\{a_{1} a_{3}, a_{2} a_{3}\right\}$ to find an $M^{*}\left(K_{3, n-k+1}\right)$-minor using x and y. In either case, we can easily find an $M^{*}\left(K_{1,1,1, n-k-1}\right)$-minor of M using $\{x, y\}$. As $n-k-1 \geq \frac{n}{4}-1$, the lemma follows.

Figure 12. M_{0} shown as a 3 -sum across the gray triangle when $i=2$.

Figure 13. The matroid M_{1} with cocircuit $\left\{x, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$ illustrated as a 3 -sum.
We may now assume that $a_{1} a_{2} \notin C_{x}^{\prime}$. Thus $C_{x}^{\prime}=\left\{x, a_{j} a_{k}, a_{i} b_{1}\right\}$ for some $i \in[3]$ and some $a_{j} a_{k} \in\left\{a_{1} a_{3}, a_{2} a_{3}\right\}$. Thus, in the 5×10 matrix above representing M_{2}, we have $x_{1}=0$ and $\left(x_{2}, x_{3}\right) \in\{(1,0),(0,1)\}$, while $\left(x_{4}, x_{5}\right) \in\{(1,0),(0,1),(1,1)\}$. By symmetry, we may assume $\left(x_{2}, x_{3}\right)=(1,0)$. If $y \neq a_{1} b_{1}$, then $M_{2} /\left\{a_{1} b_{1}, a_{2} b_{1}\right\} \backslash a_{3} b_{1}$ has x parallel to $a_{1} a_{3}$. In this case, $M_{1} /\left\{a_{1} b_{1}, a_{2} b_{1}\right\} \backslash\left\{a_{3} b_{1}, a_{1} a_{3}\right\} \cong M^{*}\left(K_{1,1,1, n-k}\right)$, and this matroid contains x and y. Thus we may assume that $y=a_{1} b_{1}$.

If $\left(x_{4}, x_{5}\right) \neq(1,0)$, then $M_{2} /\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$ has $y, a_{2} b_{1}$, and $a_{3} b_{1}$ parallel to e, f, and g, respectively. Moreover, x is parallel to f or g. Therefore we may simplify $M_{1} /\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$ to find an $M^{*}\left(K_{3, n-k+1}\right)$-matroid containing x and y. From this matroid, we can easily find an $M^{*}\left(K_{1,1,1, n-k-1}\right)$-minor using x and y. Instead, we assume that $\left(x_{4}, x_{5}\right)=(1,0)$, so ($\left.x_{2}, x_{3}, x_{4}, x_{5}\right)$ is $(1,0,1,0)$. Then $M^{*}\left(K_{3, n-k+1}\right) \cong M_{1} /\left\{a_{1} a_{2}, a_{2} a_{3}, a_{3} b_{1}\right\} \backslash a_{2} b_{1}$. This minor contains $\{x, y\}$, so M_{1} has an $M^{*}\left(K_{1,1,1, n-k-1}\right)$-minor using $\{x, y\}$. As $n-k-1 \geq \frac{n}{4}-1$, the lemma follows.

Next we consider the case where removing two elements of M produces an $M\left(K_{1,1,1, n}\right)$-minor.
Lemma 6.3. Let M be a 3-connected binary matroid so that $M \backslash x / f=N \cong M\left(K_{1,1,1, n}\right)$ with $n \geq 1$. Let N have an element y so that $\{x, f, y\}$ is a circuit of M. Then there is an integer m with $m \geq \frac{n}{16}-5$ so that M has an $M\left(K_{1,1,1, m}\right)$-minor that uses $\{x, y\}$.
Proof. As $M\left(K_{1,1,1,1}\right) \cong M\left(\mathcal{W}_{3}\right)$, by Lemma 2.3 , the theorem holds for $n \geq 96$, so we may assume $n \geq 97$. In M^{*}, the set $\{x, f, y\}$ is a triad, and $M^{*} / x \backslash f \cong M^{*}\left(K_{1,1,1, n}\right)$. There is a unique binary matroid, M_{0}, obtained from M^{*} by adding an element z so that $\{x, y, z\}$ is a circuit of M_{0}. Moreover, M_{0} is 3-connected. Let H be the hyperplane of M^{*} that is the complement of $\{x, f, y\}$.

Now $z \in \operatorname{cl}_{M_{0}}(H)$ and M_{0} / x has the parallel pair $\{y, z\}$. Thus $M_{0} \mid(H \cup z)=M_{0} / x \backslash\{f, y\}$ $\cong M_{0} / x \backslash\{f, z\}=M^{*} / x \backslash f \cong M^{*}\left(K_{1,1,1, n}\right)$. Hence M_{0} contains z in an $M^{*}\left(K_{1,1,1, n}\right)$-restriction. We will assume this restriction is labelled as in Figure 9. Without loss of generality, $z \in\left\{a_{1} b_{1}, a_{1} a_{2}\right\}$.

Consider M_{0} / f. Since $M_{0} / f \backslash\{x, y\} \cong M^{*}\left(K_{1,1,1, n}\right)$, the matroids $M_{0} / f \backslash y$ and $M_{0} / f \backslash x$ are single-element extensions of $M^{*}\left(K_{1,1,1, n}\right)$. If one of these is 3 -connected, then without loss of generality, $M_{0} / f \backslash y$ is 3 -connected. By Lemma 6.2 , for some $k \geq \frac{n}{4}-2$, the matroid $M_{0} / f \backslash y$ has an $M^{*}\left(K_{1,1,1, k}\right)$-minor $\left(M_{0} / f \backslash y\right) / C \backslash D$ using $\{x, z\}$. Now $M_{0} /(C \cup f) \backslash D$ is the single-element extension of $M^{*}\left(K_{1,1,1, k}\right)$ by an element y added so that $\{x, y, z\}$ is a circuit.

Suppose $M_{0} /(C \cup f) \backslash D$ is not 3 -connected. Then y is parallel to an element c. In this case, $M_{0} /(C \cup f) \backslash(D \cup c) \cong M^{*}\left(K_{1,1,1, k}\right)$, and $M_{0} /(C \cup f) \backslash(D \cup c)$ has $\{x, y, z\}$ as a triangle. Then, without loss of generality, $x=a_{1} b_{1}, y=a_{2} b_{1}$, and $z=a_{3} b_{1}$ (see Figure 9 taking n equal to k in that figure). Contract the cocircuit $\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$ from this matroid to produce an $M^{*}\left(K_{3, k}\right)$-minor. Delete $\left\{z, a_{2} b_{2}\right\}$ and contract $a_{3} b_{2}$ to produce an $M^{*}\left(K_{1,1,1, k-2}\right)$-minor using x and y. As we have deleted z, this minor is also a minor of M^{*}.

We may now assume that $M_{0} /(C \cup f) \backslash D$ is a 3-connected single-element extension of $M^{*}\left(K_{1,1,1, k}\right)$ that uses $\{x, y\}$. By Lemma 6.2, this matroid has x and y in a minor, N_{1}, which is isomorphic
to $M^{*}\left(K_{1,1,1, j}\right)$ for some $j \geq \frac{k}{4}-2 \geq \frac{n}{16}-3$. Since x and y are not parallel in N_{1}, the element z has not been contracted to produce N_{1}. Therefore either z has been deleted to produce N_{1} so N_{1} is a minor of M^{*}, or z is an element of the triangle $\{x, y, z\}$ in N_{1}. In the latter case, using the argument above, we can delete z and identify an $M^{*}\left(K_{1,1,1, j-2}\right)$-minor of M^{*} that contains x and y. Since $j-2 \geq \frac{n}{16}-5$, the lemma holds in this case.

It remains to consider the case when neither $M_{0} / f \backslash y$ nor $M_{0} / f \backslash x$ is 3 -connected. As both M_{0} and $M_{0} / f \backslash\{x, y\}$ are 3-connected, x and y are parallel to some elements, say e and d, in M_{0} / f. Thus $M_{0} / f \backslash\{e, d\} \cong M^{*}\left(K_{1,1,1, n}\right)$, and $\{x, y, z\}$ is a triangle of this matroid. Again, by the argument above, we may delete z to get an $M^{*}\left(K_{1,1,1, n-2}\right)$ minor of M^{*} using $\{x, y\}$.

Finally, we consider the case where the removal of two elements from M produces an $M^{*}\left(K_{1,1,1, n}\right)$ minor. One outcome in this case involves getting a spike-minor but does not mention x or y.
Lemma 6.4. Let M be a 3 -connected binary matroid so that $M \backslash x / f=N \cong M^{*}\left(K_{1,1,1, n}\right)$ for some positive integer n. Let N have an element y so that $\{x, f, y\}$ is a circuit of M. Then there is an integer m with $m \geq \frac{n}{4}-3$ so that either M has a minor isomorphic to T_{m}, or M has a minor that uses $\{x, y\}$ and is isomorphic to $M^{*}\left(K_{1,1,1, m}\right)$.
Proof. As $M^{*}\left(K_{1,1,1,1}\right) \cong M\left(\mathcal{W}_{3}\right)$, by Lemma 2.3 , the theorem holds for $n \leq 16$, so we may assume $n \geq 17$. In addition, we may assume that M has no T_{m}-minor for any $m \geq \frac{n}{4}-3$. In M^{*}, the set $\{x, f, y\}$ is a triad complementing a hyperplane H. The matroid $M^{*} / x \backslash f \cong M\left(K_{1,1,1, n}\right)$. Let M_{0} be the unique binary matroid obtained from M^{*} by adding an element z so that $\{x, y, z\}$ is a triangle. Then M_{0} is 3 -connected.

Now $M_{0} \mid(H \cup z)=M_{0} / x \backslash\{f, y\} \cong M_{0} / x \backslash\{f, z\}=M^{*} / x \backslash f \cong M\left(K_{1,1,1, n}\right)$. Hence M_{0} contains z in an $M\left(K_{1,1,1, n}\right)$-restriction. We will assume this restriction is labelled as in Figure 8. Without loss of generality, $z \in\left\{a_{1} b_{1}, a_{1} a_{2}\right\}$. Since $M_{0} / f \backslash\{x, y\} \cong M\left(K_{1,1,1, n}\right)$, both $M_{0} / f \backslash y$ and $M_{0} / f \backslash x$ are single-element extensions of $M\left(K_{1,1,1, n}\right)$. If one of these matroids is 3-connected, then, without loss of generality, $M_{0} / f \backslash y$ is 3 -connected. By Lemma 6.1, $M_{0} / f \backslash y$ has x and z in a minor, $\left(M_{0} / f \backslash y\right) / C \backslash D$, that is isomorphic to T_{k} or $M\left(K_{1,1,1, k}\right)$ for some $k \geq \frac{n-1}{2}$. If $\left(M_{0} / f \backslash y\right) / C \backslash D \cong T_{k}$, then $\left(M_{0} / f\right) / C \backslash D$ is a spike T_{k} with an extra element, y, added in the closure of two elements. It is routine to check that $\left(\left(M_{0} / f\right) / C \backslash D\right) / y \backslash z$ or $\left(\left(M_{0} / f\right) / C \backslash D\right) / x \backslash z$ contains a T_{k-1}-minor. Since z has been deleted, T_{k-1} is also a minor of M^{*}, a contradiction. Therefore $\left(M_{0} / f \backslash y\right) / C \backslash D \cong M\left(K_{1,1,1, k}\right)$. Now $M_{0} /(C \cup f) \backslash D$ is obtained from $M\left(K_{1,1,1, k}\right)$ by adding y added so that $\{x, y, z\}$ is a circuit.

Assume $M_{0} /(C \cup f) \backslash D$ is not 3-connected. Then y is parallel to some element c. In this case, let $M_{1}=M_{0} /(C \cup f) \backslash(D \cup c)$. Then $M_{1} \cong M\left(K_{1,1,1, k}\right)$, and M_{1} has $\{x, y, z\}$ as a triangle. If $\{x, y, z\}$ is $\left\{a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}\right\}$, then $M_{1} \backslash z$ has an $M\left(K_{1,1,1, k-1}\right)$-minor using x and y. Otherwise, without loss of generality, $\{x, y, z\}=\left\{a_{1} a_{2}, a_{1} b_{1}, a_{2} b_{1}\right\}$ (see Figure $8(\mathrm{~b})$ taking n equal to k in that figure). In $M_{1} / a_{3} b_{1}$, each of $a_{1} a_{3}$ and $a_{2} a_{3}$ is parallel to an element of $\{x, y, z\}$. Delete z and any elements parallel to x and y to produce a minor isomorphic to $M\left(K_{1,1,1, k-1}\right)$ or $M\left(K_{1,2, k-1}\right)$. In the latter case, we can easily find a minor isomorphic to $M\left(K_{1,1,1, k-2}\right)$ that contains x and y. In either case, since we have deleted z, this minor is also a minor of M^{*}.

We may now assume that $M_{0} /(C \cup f) \backslash D$ is a 3-connected, single-element extension of $M\left(K_{1,1,1, k}\right)$ that uses $\{x, y\}$. By Lemma 6.1, this matroid has x and y in a minor, N_{1}, that is isomorphic to $M\left(K_{1,1,1, j}\right)$ or T_{j} for some $j \geq \frac{k-1}{2} \geq \frac{n-3}{4}$. Since x and y are not parallel in N_{1}, the element z has not been contracted to produce N_{1}. Therefore either z has been deleted to produce N_{1} so N_{1} is a minor of M^{*} and the lemma holds; or z is an element of the triangle $\{x, y, z\}$ in N_{1}. In the latter case, suppose first that $N_{1} \cong T_{j}$. The spike T_{j} is not a minor of M^{*} by assumption. Therefore $z \in E\left(N_{1}\right)$ and this T_{j}-minor has triangle $\{x, y, z\}$. As the only triangles of T_{j} are those including the tip and, without loss of generality, x is not the tip of N_{1}, it is routine to check that $N_{1} / x \backslash z \cong T_{j-1}$. Since z has been deleted, the last matroid is a minor of M^{*}, a contradiction.

We may now assume that $N_{1} \cong M\left(K_{1,1,1, j}\right)$ and $\{x, y, z\}$ is a triangle of N_{1}. Then, using the argument in the second-last paragraph, we can find an $M\left(K_{1,1,1, j-2}\right)$-minor of M_{0} that uses $\{x, y\}$ and avoids z. Thus this matroid is also a minor of M^{*}. As $j-2 \geq \frac{n-3}{4}-2$, the lemma follows.

Finally, suppose that neither $M_{0} / f \backslash y$ nor $M_{0} / f \backslash x$ is 3 -connected. As M_{0} and $M_{0} / f \backslash\{x, y\}$ are both 3-connected, x and y are parallel to some elements, say e and d, in M_{0} / f. Thus $M_{0} / f \backslash\{e, d\} \cong$ $M\left(K_{1,1,1, n}\right)$, and $\{x, y, z\}$ is a triangle of this matroid. Again, by the argument above, we can delete z and produce an $M\left(K_{1,1,1, n-2}\right)$ minor of M_{0} using x and y that is also a minor of M^{*}.

7. The Proof of the Main Result

The following theorem is a consequence of Theorem 4.2 of Chun, Oxley, and Whittle [4].
Theorem 7.1. Let M be a connected matroid with an element x so that $M \backslash x$ is isomorphic to T_{n} for some $n \geq 6$. Then x is an element of a minor of M that is isomorphic to T_{m} for some $m \geq \frac{n}{2}$.

We are now ready to prove the main theorem of the paper.
Proof of Theorem 1.3. By Theorem 1.2, there is a function g so that if $|E(M)| \geq g(100 n)$, then M has a minor N that uses y and is isomorphic to $M\left(\mathcal{W}_{100 n}\right), T_{100 n}, M\left(K_{1,1,1,100 n}\right)$, or $M^{*}\left(K_{1,1,1,100 n}\right)$. If $x \in E(N)$, then the theorem holds, so we assume $x \in E(M)-E(N)$. Let M^{\prime} be a minimum-sized 3-connected minor of M so that $\{x, y\} \subseteq E\left(M^{\prime}\right)$ and M^{\prime} has an N-minor. By Theorem 3.1, for some $\left(N_{1}, M_{1}\right)$ such that either $N_{1} \cong N$ and $M_{1} \cong M^{\prime}$, or $N_{1} \cong N^{*}$ and $M_{1} \cong\left(M^{\prime}\right)^{*}$, one of the following holds:
(i) $N_{1}=M_{1} \backslash x$ and y is contained in this minor; or
(ii) $N_{1}=M_{1} \backslash x / z$ and $\{x, z, y\}$ is a circuit of M_{1}.

As $\left\{M\left(\mathcal{W}_{100 n}\right), T_{100 n}, M\left(K_{1,1,1,100 n}\right), M^{*}\left(K_{1,1,1,100 n}\right)\right\}$ is closed under duality, we may assume that $N_{1} \in\left\{M\left(\mathcal{W}_{100 n}\right), T_{100 n}, M\left(K_{1,1,1,100 n}\right), M^{*}\left(K_{1,1,1,100 n}\right)\right\}$.

First, assume that $N_{1} \cong M\left(\mathcal{W}_{100 n}\right)$. In cases (i) and (ii), by Lemmas 4.1 and $4.3, M_{1}$ has an $M\left(\mathcal{W}_{m}\right)$-minor that uses $\{x, y\}$ for some $m \geq 25 n$. Next assume that N_{1} is isomorphic to $M\left(K_{1,1,1,100 n}\right)$ or $M^{*}\left(K_{1,1,1,100 n}\right)$. In case (i), by Lemmas 6.1 and 6.2 , either M_{1} has a T_{k}-minor, or x and y are elements of a minor of M_{1} isomorphic to $M\left(K_{1,1,1, k}\right)$ or $M^{*}\left(K_{1,1,1, k}\right)$ for some $k \geq 25 n-2$. In case (ii), by Lemmas 6.3 and 6.4, either M_{1} has a T_{k}-minor for some $k \geq 25 n-3$, or x and y are elements of a minor of M_{1} isomorphic to $M\left(K_{1,1,1, m}\right)$ or $M^{*}\left(K_{1,1,1, m}\right)$ for some $m \geq \frac{25 n}{4}-5 \geq 4 n$.

We may now assume M_{1} has a T_{k}-minor for some $k \geq 25 n-3$. By Theorem 7.1, x is an element of a T_{j}-minor of M_{1} for some $j \geq \frac{25 n-3}{2}$. Let $M^{\prime \prime}$ be a minimum-sized 3 -connected minor of M_{1} that uses $\{x, y\}$ and has a T_{j}-minor. By Theorem 3.1, for some M_{2} in $\left\{M^{\prime \prime},\left(M^{\prime \prime}\right)^{*}\right\}$, one of the following holds:
(i) $T_{j} \cong M_{2}$ and $\{x, y\}$ is contained in this minor; or
(ii) $T_{j} \cong M_{2} \backslash x$, and y is contained in this minor; or
(iii) $T_{j} \cong M_{2} \backslash x / z$ and M_{2} has $\{x, z, y\}$ as a triangle.

In cases (ii) and (iii), by Lemmas 5.2 and 5.3 respectively, x and y are elements of a minor of M_{2} that is isomorphic to T_{i} for some $i \geq \frac{j-1}{2} \geq 6 n-2$. We conclude that the theorem holds.

8. Capturing a triangle

In this section, we prove Corollary 1.5, showing that we can capture, in a large, highly structured minor, a triangle of the original 3 -connected matroid. The proof will use the following result, which is a straightforward consequence of an extension of Tutte's Linking Theorem by Geelen, Gerards, and Whittle [7], see also [9, p. 323]. We omit the proof. A doubled triangle is the matroid that is obtained from a triangle by adding a new element in parallel to each existing element.

Lemma 8.1. Let M be a connected matroid so that $\operatorname{si}(M)$ is 3-connected. Let T_{1} and T_{2} be disjoint triangles in M. Then M has as a minor a doubled triangle that has ground set $T_{1} \cup T_{2}$ and has T_{1} and T_{2} as triangles.

Proof of Corollary 1.5. Let $t(n)=h(2 n)$ where h is the function whose existence is established in Theorem 1.3. By that theorem, M has a minor N_{1} that uses x and y and is isomorphic to one of $M\left(\mathcal{W}_{2 n}\right), M\left[I_{2 n} \mid A_{2 n}\right], M\left(K_{1,1,1,2 n}\right)$, or $M^{*}\left(K_{1,1,1,2 n}\right)$. Thus there are subsets C and D of $E(M)$ so that $M / C \backslash D=N_{1}$. If $z \notin C \cup D$, then the result follows easily. If $z \in C$, then x and y are parallel in N_{1}, a contradiction. Thus we may assume that $z \in D$. Let $N_{2}=M / C \backslash(D-z)$, so N_{2} is a single-element extension of N_{1}. We may assume that N_{2} is simple otherwise z is parallel to some element w, and interchanging w and z gives the result. Thus N_{2} is 3 -connected.

For each of the possibilities for N_{1}, we will identify an exactly 3 -separating set A in N_{1} such that A contains $\{x, y\}$ while each of A and $E\left(N_{1}\right)-A$ has at least four elements. Then $A \cup z$ is exactly 3 -separating in N_{2}. Thus, by [9 , Proposition 9.3.4], there is a unique binary extension N_{3} of N_{2} by a triangle T that is disjoint from $E\left(N_{2}\right)$ such that N_{2} is the 3 -sum of N_{A} and N_{B} across T, where $N_{A}=N_{3} \mid(A \cup z \cup T)$ and $N_{B}=N_{3} \mid\left(\left(E\left(N_{1}\right)-A\right) \cup T\right)$. We show next that
8.1.1. N_{2} has a minor isomorphic to $\operatorname{si}\left(N_{B}\right)$ that can be labelled so that it uses $\{x, y, z\}$.

Clearly $\operatorname{si}\left(N_{3}\right)$ is 3-connected and is obtained from N_{3} by deleting those elements of T that are parallel to elements of N_{2}. Moreover, it is straightforward to check that each of $\operatorname{si}\left(N_{A}\right)$ and $\operatorname{si}\left(N_{B}\right)$ is 3 -connected and can be obtained by deleting those elements of T that are parallel to elements of N_{A} and N_{B}, respectively. Now N_{A} is connected and has T and $\{x, y, z\}$ as disjoint triangles. Thus, by Lemma 8.1, N_{A} has a doubled triangle as a minor in which both T and $\{x, y, z\}$ are triangles. From this, 8.1.1 follows immediately.

When $N_{1} \cong M\left(\mathcal{W}_{2 n}\right)$, let the spokes of the wheel, in cyclic order, be $\left(s_{1}, s_{2}, \ldots, s_{2 n}\right)$. Clearly, we may assume that $\{x, y\} \subseteq \operatorname{cl}_{N_{1}}\left(\left\{s_{1}, s_{2}, \ldots, s_{n+1}\right\}\right)$. In this case, we let $A=\operatorname{cl}_{N_{1}}\left(\left\{s_{1}, s_{2}, \ldots, s_{n+1}\right\}\right)$. Then one easily checks that $N_{B} \cong M\left(\mathcal{W}_{n}\right)$, and the result follows.

Next suppose $N_{1} \cong M\left[I_{2 n} \mid A_{2 n}\right]$. Then N_{1} is a spike with tip t and cotip c, so it consists of $2 n$ lines, $L_{1}, L_{2}, \ldots, L_{2 n}$, all passing through the tip t, where $L_{1}=\{t, c\}$ and all other L_{i} have three points. In this case, we may assume that $\{x, y\} \subseteq L_{1} \cup L_{2} \cup L_{3}$. Letting A be $L_{1} \cup L_{2} \cup L_{3}$, we see that A is exactly 3 -separating in N_{1}. Now, as is easily checked, N_{B} is a rank- $(2 n-2)$ spike with a tip but no cotip, so N_{2} has a minor isomorphic to such a spike that uses $\{x, y, z\}$. Deleting some element from this matroid not in $\{x, y, z\}$ gives a rank- $(2 n-2)$ spike with a tip and cotip that uses $\{x, y, z\}$, and the result follows easily.

Finally, suppose N_{1} is isomorphic to $M\left(K_{1,1,1,2 n}\right)$ or its dual. Then $E\left(N_{1}\right)$ is the union of $2 n+1$ disjoint 3 -element sets, $T_{0}, T_{1}, \ldots, T_{2 n}$, where, when $N_{1} \cong M\left(K_{1,1,1,2 n}\right)$, the set T_{0} is a triangle and every other T_{i} is a triad that spans T_{0}. We may assume that $\{x, y\}$ is contained in the 3separating set $T_{0} \cup T_{1} \cup T_{2}$, letting this last set be A. When $N_{1} \cong M\left(K_{1,1,1,2 n}\right)$, it is clear that $\operatorname{si}\left(N_{B}\right) \cong M\left(K_{1,1,1,2 n-2}\right)$ where the base triangle T of the 3 -sum is spanned by each triad in N_{B}, and the required result follows. When $N_{1} \cong M^{*}\left(K_{1,1,1,2 n}\right)$, we get, using the remarks preceding Lemma 6.2, that $N_{B} \cong M^{*}\left(K_{3,2 n-1}\right)$. From this minor, it is easy to find an $M^{*}\left(K_{1,1,1,2 n-3}\right)$-minor preserving the triangle $\{x, y, z\}$. Since $2 n-3 \geq n$, the required result follows.

References

[1] R. E. Bixby, A simple theorem on 3-connectivity, Linear Algebra Appl. 45 (1982) 123-126.
[2] R. E. Bixby, C. R. Coullard, Finding a smallest 3 -connected minor maintaining a fixed minor and a fixed element, Discrete Appl. Math. 15 (1987) 155-166.
[3] T. H. Brylawski, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171 (1972) 235-282.
[4] D. Chun, J. Oxley, G. Whittle, Capturing matroid elements in unavoidable 3-connected minors, European J. Combin. 33 (2012) 1100-1112.
[5] G. Ding, B. Oporowski, J. Oxley, D. Vertigan, Unavoidable minors of large 3-connected binary matroids, J. Combin. Theory Ser. B 66 (1996) 334-360.
[6] G. Ding, B. Oporowski, J. Oxley, D. Vertigan, Unavoidable minors of large 3-connected matroids, J. Combin. Theory Ser. B 71 (1997) 244-293.
[7] J. Geelen, B. Gerards, G. Whittle, Excluding a planar graph from GF(q)-representable matroids, J. Combin. Theory Ser. B 97 (2007) 971-998.
[8] B. Oporowski, J. Oxley, R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Combin. Theory Ser. B 57 (1993) 239-257.
[9] J. Oxley, Matroid Theory, Second edition, Oxford University Press, New York, 2011.
[10] J. Oxley, T. J. Reid, The smallest rounded sets of binary matroids, European J. Combin. 11 (1990) 47-56.
[11] P. D. Seymour, A note on the production of matroid minors, J. Combin. Theory Ser. B 22 (1977) 289-295.
[12] P. D. Seymour, On minors of non-binary matroids, Combinatorica 1 (1981) 387-394.
[13] P. D. Seymour, Minors of 3-connected matroids, European J. Combin. 6 (1985) 375-382.
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
Current address: Mathematics Department, West Virginia University Institute of Technology, Montgomery, West Virginia

E-mail address: deborah.chun@mail.wvu.edu
Louisiana State University, Baton Rouge, Louisiana
E-mail address: oxley@math.1su.edu

[^0]: Date: September 8, 2012.
 1991 Mathematics Subject Classification. 05B35.
 Key words and phrases. binary matroid, 3-connected matroid, unavoidable minor.
 The second author was supported by a grant from the National Security Agency.

