BOUNDING THE NUMBER OF BASES OF A MATROID

JAMES DYLAN DOUTHITT AND JAMES OXLEY

Abstract

Thomassen proved in 2010 that the number of spanning trees of a graph with vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$ is at most $d_{1} d_{2} \ldots d_{n-1}$. This note generalizes this result to show that if A is a matrix representing a rank- r matroid M over a field and $S_{1}, S_{2}, \ldots, S_{r}$ are the supports of the rows of A, then the number of bases of M is at most $\left|S_{1}\right|\left|S_{2}\right| \ldots\left|S_{r}\right|$. More generally, it is shown that if $C_{1}^{*}, C_{2}^{*}, \ldots, C_{r}^{*}$ are cocircuits of a rank- r matroid N such that the deletion of any k of these cocircuits from N drops the rank by at least k, then the number of bases of N is at most $\left|C_{1}^{*}\right|\left|C_{2}^{*}\right| \ldots\left|C_{r}^{*}\right|$.

1. Introduction

A number of authors including Alon [1] have given bounds on the number $\tau(G)$ of spanning trees in a graph G in terms of the degree sequence of the graph. In particular, Kostochka [4] proved that, when G is simple having n vertices of degrees $d_{1}, d_{2}, \ldots, d_{n}$, we have

$$
\tau(G) \leq \frac{1}{n-1} d_{1} d_{2} \ldots d_{n}
$$

Thomassen [7] proved a similar result for an arbitrary graph G showing that

$$
\tau(G) \leq d_{1} d_{2} \ldots d_{n-1}
$$

Recently, Klee, Naranyan, and Sauermann [3] have proved that, when G is simple,

$$
\tau(G) \leq \frac{1}{n^{2}}\left(d_{1}+1\right)\left(d_{2}+1\right) \ldots\left(d_{n}+1\right)
$$

The purpose of this note is to prove a bound on the number $b(M)$ of bases of a matroid M that generalizes Thomassen's bound. The terminology used here for graphs and matroids will follow [6]. When G is a loopless 2-connected graph, the set of edges meeting a fixed vertex of G forms a cocircuit of its cycle matroid $M(G)$. Since $r(M(G))=|V(G)|-1$, the following consequence of a result of Bondy and Welsh [2, Lemma 3.2] is a matroid analogue of Thomassen's result.

Theorem 1.1. Let M be a rank-r matroid. Let $C_{1}^{*}, C_{2}^{*}, \ldots, C_{r}^{*}$ be a collection of cocircuits of M such that no C_{j}^{*} is contained in $\cup_{i \neq j} C_{i}^{*}$. Then

$$
b(M) \leq\left|C_{1}^{*}\right|\left|C_{2}^{*}\right| \ldots\left|C_{r}^{*}\right| .
$$

Bondy and Welsh [2, Lemma 3.1] proved that the condition on cocircuits in the last theorem is equivalent to the assertion that $\left\{C_{1}^{*}, C_{2}^{*}, \ldots, C_{r}^{*}\right\}$ is the set of fundamental cocircuits with respect to some cobasis of M. Thus, such a collection of cocircuits has the property that the deletion of any k of them drops the rank by at least k. With this condition alone, we can get the same conclusion as in the last theorem. This is our main result.

[^0]Theorem 1.2. Let M be a rank-r matroid. Let $C_{1}^{*}, C_{2}^{*}, \ldots, C_{r}^{*}$ be a collection of cocircuits of M such that, for all k in $\{1,2, \ldots, r\}$, the deletion of the union of k of these cocircuits from M has rank at most $r-k$. Then $b(M) \leq\left|C_{1}^{*}\right|\left|C_{2}^{*}\right| \ldots\left|C_{r}^{*}\right|$. Moreover, equality holds if and only if M is the direct sum of rank-one uniform matroids with ground sets $C_{1}^{*}, C_{2}^{*}, \ldots, C_{r}^{*}$ and a rank-zero matroid.

2. The proof and some consequences

Let $\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ be a collection of subsets of the ground set of a rank- r matroid M such that $r\left(M \backslash\left(T_{i_{1}} \cup T_{i_{2}} \cup \cdots \cup T_{i_{k}}\right)\right) \leq r-k$ for all subsets $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, r\}$. Then each T_{i} must contain a cocircuit of M. We call $\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ a full codependent family of M. For instance, if $\left(S_{1}, S_{2}, \ldots, S_{r}\right)$ is a presentation of a rank- r transversal matroid N, then $\left(S_{1}, S_{2}, \ldots, S_{r}\right)$ is a full codependent family of N. Theorem 1.2 follows immediately from the next result, which also implies the subsequent corollary.

Proposition 2.1. Let M be a rank-r matroid. Let $\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ be a full codependent family of M. Then $b(M) \leq\left|T_{1}\right|\left|T_{2}\right| \ldots\left|T_{r}\right|$. Moreover, equality holds if and only if M is the direct sum of r rank-one uniform matroids with ground sets $T_{1}, T_{2}, \ldots, T_{r}$ and a rank-zero matroid.

Proof. Let N be the transversal matroid having $\left(T_{1}, T_{2}, \ldots, T_{r}\right)$ as a presentation and having ground set $E(M)$. Clearly, $b(N) \leq\left|T_{1}\right|\left|T_{2}\right| \ldots\left|T_{r}\right|$. Let B be a basis of M. We shall show that B is a basis of N. Consider the family $\left(B \cap T_{1}, B \cap\right.$ $\left.T_{2}, \ldots, B \cap T_{r}\right)$. Suppose that $\left|\left(T_{i_{1}} \cup T_{i_{2}} \cup \cdots \cup T_{i_{k}}\right) \cap B\right|<k$ for some collection of k of the sets T_{i}. By assumption, $r\left(M \backslash\left(T_{i_{1}} \cup T_{i_{2}} \cup \cdots \cup T_{i_{k}}\right)\right) \leq r-k$, so B is not a basis of M, a contradiction. Thus $\left|\left(T_{i_{1}} \cup T_{i_{2}} \cup \cdots \cup T_{i_{j}}\right) \cap B\right| \geq k$. Hence, by Hall's Marriage Theorem, the family ($B \cap T_{1}, B \cap T_{2}, \ldots, B \cap T_{r}$) has a transversal, so B is a basis of N, as desired. Therefore $\mathscr{B}(M) \subseteq \mathscr{B}(N)$, so $b(M) \leq b(N) \leq\left|T_{1}\right|\left|T_{2}\right| \ldots\left|T_{r}\right|$.

Clearly $b(M)=\left|T_{1}\right|\left|T_{2}\right| \ldots\left|T_{r}\right|$ when M is the direct sum of r rank-one uniform matroids with ground sets $T_{1}, T_{2}, \ldots, T_{r}$ and a rank-zero matroid. Now suppose that $b(M)=\left|T_{1}\right|\left|T_{2}\right| \ldots\left|T_{r}\right|$. Then $\mathscr{B}(M)=\mathscr{B}(N)$, and $b(N)=\left|T_{1}\right|\left|T_{2}\right| \ldots\left|T_{r}\right|$, so the sets $T_{1}, T_{2}, \ldots, T_{r}$ in the presentation of the transversal matroid N are pairwise disjoint. Thus N is the direct sum of r rank-one uniform matroids with ground sets $T_{1}, T_{2}, \ldots, T_{r}$ and a rank-zero matroid with ground set $E(M)-\left(T_{1} \cup T_{2} \cup \cdots \cup T_{r}\right)$. As $\mathscr{B}(M)=\mathscr{B}(N)$, we deduce that $M=N$, so M is the specified direct sum.

Corollary 2.2. Let $S_{1}, S_{2}, \ldots, S_{r}$ be the supports of the rows of a matrix A that represents a rank-r matroid M. Then $b(M) \leq\left|S_{1}\right|\left|S_{2}\right| \ldots\left|S_{r}\right|$.

We remark that Theorem 1.2 has Thomassen's result as a consequence while Theorem 1.1 does not. For example, the set consisting of all but the largest vertex bond in a 2-connected bipartite graph G does not have the property that no cocircuit in the collection is contained in the union of the others.

For matroids of rank two, we can obtain tight bounds on $b(M)$ that can be leveraged to improve on the bound on $b(M)$ for representable matroids.

Proposition 2.3. Let M be a rank-2 matroid and let C_{1}^{*} and C_{2}^{*} be distinct cocircuits of M. Then

$$
b(M) \leq\left|C_{1}^{*}\right|\left|C_{2}^{*}\right|-\binom{\left|C_{1}^{*} \cap C_{2}^{*}\right|+1}{2}
$$

and equality holds if and only if no element of $C_{1}^{*} \cap C_{2}^{*}$ is in a 2-circuit. Furthermore, if M is binary, then $b(M)=\left|C_{1}^{*}\right|\left|C_{2}^{*}\right|-\left|C_{1}^{*} \cap C_{2}^{*}\right|^{2}$.
Proof. Let $\left(A_{1}, A_{2}, A_{3}\right)=\left(C_{1}^{*}-C_{2}^{*}, C_{2}^{*}-C_{1}^{*}, C_{1}^{*} \cap C_{2}^{*}\right)$. Then any basis of M is a member of exactly one of the following sets:

$$
\begin{aligned}
& \mathscr{B}_{1}=\left\{\left\{x_{1}, x_{2}\right\}: x_{1} \in A_{1}, x_{2} \in A_{2}\right\} ; \mathscr{B}_{2}=\left\{\left\{x_{1}, x_{2}\right\}: x_{1} \in A_{1}, x_{2} \in A_{3}\right\} \\
& \mathscr{B}_{3}=\left\{\left\{x_{1}, x_{2}\right\}: x_{1} \in A_{3}, x_{2} \in A_{2}\right\} ; \mathscr{B}_{4}=\left\{\left\{x_{1}, x_{2}\right\}: x_{1}, x_{2} \in A_{3}, x_{1} \neq x_{2}\right\} .
\end{aligned}
$$

Therefore, $\mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \mathscr{B}_{3} \subseteq \mathscr{B}(M) \subseteq \mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \mathscr{B}_{3} \cup \mathscr{B}_{4}$. It follows that $|\mathscr{B}(M)| \leq$ $\left|A_{1}\right|\left|A_{2}\right|+\left|A_{1}\right|\left|A_{3}\right|+\left|A_{2}\right|\left|A_{3}\right|+\binom{A_{3}}{2}=\left|C_{1}^{*}\right|\left|C_{2}^{*}\right|-\binom{\left|C_{1}^{*} \cap C_{2}^{*}\right|+1}{2}$. Moreover, equality holds in the last bound if and only if no two elements of A_{3} are in parallel.

When M is binary, the set \mathscr{B}_{4} contains no bases of M, so $|\mathscr{B}(M)|=\left|A_{1}\right|\left|A_{2}\right|+$ $\left|A_{1}\right|\left|A_{3}\right|+\left|A_{2}\right|\left|A_{3}\right|=\left|C_{1}^{*}\right|\left|C_{2}^{*}\right|-\left|C_{1}^{*} \cap C_{2}^{*}\right|^{2}$.

Lemma 2.4. Let A be a matrix over a field such that A has r rows and rank r. For some k with $1 \leq k \leq r-1$, let C and D be the submatrices of A consisting of the first k and the last $r-k$ rows, respectively. Then $b(M[A]) \leq b(M[C]) b(M[D])$.
Proof. Let B be a basis of $M[A]$. Then the submatrix A^{\prime} of A whose columns are labelled by the elements of B has non-zero determinant. Using a Laplace expansion of $\operatorname{det} A^{\prime}$ (see, for example, [5, p. 180]), we see that this determinant is a sum of terms each of which is plus or minus the product of the determinants of a $k \times k$ submatrix C^{\prime} of C and an $(r-k) \times(r-k)$ submatrix D^{\prime} of D such that every column label of A^{\prime} is a column label of exactly one of C^{\prime} and D^{\prime}. Because $\operatorname{det} A^{\prime}$ is non-zero, there must be such a pair $\left(C^{\prime}, D^{\prime}\right)$ for which both $\operatorname{det} C^{\prime}$ and $\operatorname{det} D^{\prime}$ are non-zero. Hence B can be written as the disjoint union of a basis of $M[C]$ and a basis of $M[D]$. Thus $b(M[A]) \leq b(M[C]) b(M[D])$.

As an example of how we can combine the last two results, we have the following result, whose straightforward proof we omit.

Proposition 2.5. Let A be an $r \times n$ binary matrix representing a rank-r binary matroid M where r is even. Let $S_{1}, S_{2}, \ldots, S_{r}$ be the supports of the rows of A. Then $b(M)$ is at most

$$
\left(\left|S_{1}\right|\left|S_{2}\right|-\left|S_{1} \cap S_{2}\right|^{2}\right)\left(\left|S_{3}\right|\left|S_{4}\right|-\left|S_{3} \cap S_{4}\right|^{2}\right) \ldots\left(\left|S_{(r / 2)-1}\right|\left|S_{r / 2}\right|-\left|S_{(r / 2)-1} \cap S_{r / 2}\right|^{2}\right)
$$

Acknowledgments

The authors thank Dominic Welsh for drawing their attention to [2].

References

[1] N. Alon, The number of spanning trees in regular graphs, Random Structures Algorithms $\mathbf{1}$ (1990), 175-181.
[2] J.A. Bondy and D.J.A. Welsh, Some results on transversal matroids and constructions for identically self-dual matroids,, Quart. J. Math. Ser. 222 (1971), 435-451.
[3] S. Klee, B. Naranyan, L. Sauermann, Sharp estimates for spanning trees, arxiv.org/abs/2102.01669.
[4] A.V. Kostochka, The number of spanning trees in graphs with a given degree sequence, Random Structures Algorithms 6 (1995), 269-274.
[5] K. Hoffman, R. Kunze, Linear Algebra, Second edition, Prentice-Hall, Englewood Cliffs, 1971.
[6] J. Oxley, Matroid Theory, Second edition, Oxford University Press, New York, 2011.
[7] C. Thomassen, Spanning trees and orientations of graphs, J. Comb. 1 (2010), 101-111.

Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
E-mail address: jdouth5@1su.edu
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
E-mail address: oxley@math.lsu.edu

[^0]: Date: August 8, 2021.
 2010 Mathematics Subject Classification. 05B35, 05C30.
 Key words and phrases. matroid basis, spanning tree, matroid cocircuit.

