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Abstract. Thomassen proved in 2010 that the number of spanning trees of

a graph with vertex degrees d1, d2, . . . , dn is at most d1d2 . . . dn−1. This note

generalizes this result to show that if A is a matrix representing a rank-r
matroid M over a field and S1, S2, . . . , Sr are the supports of the rows of A,

then the number of bases of M is at most |S1||S2| . . . |Sr|. More generally, it

is shown that if C∗
1 , C

∗
2 , . . . , C

∗
r are cocircuits of a rank-r matroid N such that

the deletion of any k of these cocircuits from N drops the rank by at least k,

then the number of bases of N is at most |C∗
1 ||C∗

2 | . . . |C∗
r |.

1. Introduction

A number of authors including Alon [1] have given bounds on the number τ(G)
of spanning trees in a graph G in terms of the degree sequence of the graph. In
particular, Kostochka [4] proved that, when G is simple having n vertices of degrees
d1, d2, . . . , dn, we have

τ(G) ≤ 1
n−1d1d2 . . . dn.

Thomassen [7] proved a similar result for an arbitrary graph G showing that

τ(G) ≤ d1d2 . . . dn−1.
Recently, Klee, Naranyan, and Sauermann [3] have proved that, when G is simple,

τ(G) ≤ 1
n2 (d1 + 1)(d2 + 1) . . . (dn + 1).

The purpose of this note is to prove a bound on the number b(M) of bases of
a matroid M that generalizes Thomassen’s bound. The terminology used here for
graphs and matroids will follow [6]. When G is a loopless 2-connected graph, the
set of edges meeting a fixed vertex of G forms a cocircuit of its cycle matroid M(G).
Since r(M(G)) = |V (G)| − 1, the following consequence of a result of Bondy and
Welsh [2, Lemma 3.2] is a matroid analogue of Thomassen’s result.

Theorem 1.1. Let M be a rank-r matroid. Let C∗1 , C
∗
2 , . . . , C

∗
r be a collection of

cocircuits of M such that no C∗j is contained in ∪i 6=jC
∗
i . Then

b(M) ≤ |C∗1 ||C∗2 | . . . |C∗r |.

Bondy and Welsh [2, Lemma 3.1] proved that the condition on cocircuits in
the last theorem is equivalent to the assertion that {C∗1 , C∗2 , . . . , C∗r } is the set of
fundamental cocircuits with respect to some cobasis of M . Thus, such a collection
of cocircuits has the property that the deletion of any k of them drops the rank by
at least k. With this condition alone, we can get the same conclusion as in the last
theorem. This is our main result.
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Theorem 1.2. Let M be a rank-r matroid. Let C∗1 , C
∗
2 , . . . , C

∗
r be a collection of

cocircuits of M such that, for all k in {1, 2, . . . , r}, the deletion of the union of k
of these cocircuits from M has rank at most r − k. Then b(M) ≤ |C∗1 ||C∗2 | . . . |C∗r |.
Moreover, equality holds if and only if M is the direct sum of r rank-one uniform
matroids with ground sets C∗1 , C

∗
2 , . . . , C

∗
r and a rank-zero matroid.

2. The proof and some consequences

Let (T1, T2, . . . , Tr) be a collection of subsets of the ground set of a rank-r matroid
M such that r(M\(Ti1 ∪ Ti2 ∪ · · · ∪ Tik)) ≤ r − k for all subsets {i1, i2, . . . , ik} of
{1, 2, . . . , r}. Then each Ti must contain a cocircuit of M . We call (T1, T2, . . . , Tr)
a full codependent family of M . For instance, if (S1, S2, . . . , Sr) is a presentation of
a rank-r transversal matroid N , then (S1, S2, . . . , Sr) is a full codependent family
of N . Theorem 1.2 follows immediately from the next result, which also implies
the subsequent corollary.

Proposition 2.1. Let M be a rank-r matroid. Let (T1, T2, . . . , Tr) be a full code-
pendent family of M . Then b(M) ≤ |T1||T2| . . . |Tr|. Moreover, equality holds if
and only if M is the direct sum of r rank-one uniform matroids with ground sets
T1, T2, . . . , Tr and a rank-zero matroid.

Proof. Let N be the transversal matroid having (T1, T2, . . . , Tr) as a presentation
and having ground set E(M). Clearly, b(N) ≤ |T1||T2| . . . |Tr|. Let B be a basis
of M . We shall show that B is a basis of N . Consider the family (B ∩ T1, B ∩
T2, . . . , B∩Tr). Suppose that |(Ti1∪Ti2∪· · ·∪Tik)∩B| < k for some collection of k of
the sets Ti. By assumption, r(M\(Ti1∪Ti2∪· · ·∪Tik)) ≤ r−k, so B is not a basis of
M , a contradiction. Thus |(Ti1 ∪Ti2 ∪· · ·∪Tij )∩B| ≥ k. Hence, by Hall’s Marriage
Theorem, the family (B ∩ T1, B ∩ T2, . . . , B ∩ Tr) has a transversal, so B is a basis
of N , as desired. Therefore B(M) ⊆ B(N), so b(M) ≤ b(N) ≤ |T1||T2| . . . |Tr|.

Clearly b(M) = |T1||T2| . . . |Tr| when M is the direct sum of r rank-one uniform
matroids with ground sets T1, T2, . . . , Tr and a rank-zero matroid. Now suppose
that b(M) = |T1||T2| . . . |Tr|. Then B(M) = B(N), and b(N) = |T1||T2| . . . |Tr|, so
the sets T1, T2, . . . , Tr in the presentation of the transversal matroid N are pairwise
disjoint. Thus N is the direct sum of r rank-one uniform matroids with ground sets
T1, T2, . . . , Tr and a rank-zero matroid with ground set E(M)− (T1 ∪T2 ∪ · · · ∪Tr).
As B(M) = B(N), we deduce that M = N , so M is the specified direct sum. �

Corollary 2.2. Let S1, S2, . . . , Sr be the supports of the rows of a matrix A that
represents a rank-r matroid M . Then b(M) ≤ |S1||S2| . . . |Sr|.

We remark that Theorem 1.2 has Thomassen’s result as a consequence while
Theorem 1.1 does not. For example, the set consisting of all but the largest ver-
tex bond in a 2-connected bipartite graph G does not have the property that no
cocircuit in the collection is contained in the union of the others.

For matroids of rank two, we can obtain tight bounds on b(M) that can be
leveraged to improve on the bound on b(M) for representable matroids.

Proposition 2.3. Let M be a rank-2 matroid and let C∗1 and C∗2 be distinct cocir-
cuits of M . Then

b(M) ≤ |C∗1 ||C∗2 | −
(
|C∗1 ∩ C∗2 |+ 1

2

)
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and equality holds if and only if no element of C∗1∩C∗2 is in a 2-circuit. Furthermore,
if M is binary, then b(M) = |C∗1 ||C∗2 | − |C∗1 ∩ C∗2 |2.

Proof. Let (A1, A2, A3) = (C∗1 − C∗2 , C∗2 − C∗1 , C∗1 ∩ C∗2 ). Then any basis of M is a
member of exactly one of the following sets:

B1 = {{x1, x2} : x1 ∈ A1, x2 ∈ A2}; B2 = {{x1, x2} : x1 ∈ A1, x2 ∈ A3},
B3 = {{x1, x2} : x1 ∈ A3, x2 ∈ A2}; B4 = {{x1, x2} : x1, x2 ∈ A3, x1 6= x2}.

Therefore, B1∪B2∪B3 ⊆ B(M) ⊆ B1∪B2∪B3∪B4. It follows that |B(M)| ≤
|A1||A2|+ |A1||A3|+ |A2||A3|+

(
A3

2

)
= |C∗1 ||C∗2 | −

(|C∗
1∩C

∗
2 |+1

2

)
. Moreover, equality

holds in the last bound if and only if no two elements of A3 are in parallel.
When M is binary, the set B4 contains no bases of M , so |B(M)| = |A1||A2|+

|A1||A3|+ |A2||A3| = |C∗1 ||C∗2 | − |C∗1 ∩ C∗2 |2. �

Lemma 2.4. Let A be a matrix over a field such that A has r rows and rank r.
For some k with 1 ≤ k ≤ r − 1, let C and D be the submatrices of A consisting of
the first k and the last r− k rows, respectively. Then b(M [A]) ≤ b(M [C])b(M [D]).

Proof. Let B be a basis of M [A]. Then the submatrix A′ of A whose columns are
labelled by the elements of B has non-zero determinant. Using a Laplace expansion
of detA′ (see, for example, [5, p. 180]), we see that this determinant is a sum of
terms each of which is plus or minus the product of the determinants of a k × k
submatrix C ′ of C and an (r − k) × (r − k) submatrix D′ of D such that every
column label of A′ is a column label of exactly one of C ′ and D′. Because detA′ is
non-zero, there must be such a pair (C ′, D′) for which both detC ′ and detD′ are
non-zero. Hence B can be written as the disjoint union of a basis of M [C] and a
basis of M [D]. Thus b(M [A]) ≤ b(M [C])b(M [D]). �

As an example of how we can combine the last two results, we have the following
result, whose straightforward proof we omit.

Proposition 2.5. Let A be an r × n binary matrix representing a rank-r binary
matroid M where r is even. Let S1, S2, . . . , Sr be the supports of the rows of A.
Then b(M) is at most

(|S1||S2| − |S1 ∩S2|2)(|S3||S4| − |S3 ∩S4|2) . . . (|S(r/2)−1||Sr/2| − |S(r/2)−1 ∩Sr/2|2).
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