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Abstract

For a matroid M having m rank-one flats, the density d(M) is m
r(M) unless m = 0,

in which case d(M) = 0. A matroid is density-critical if all of its proper minors of
non-zero rank have lower density. By a 1965 theorem of Edmonds, a matroid that
is minor-minimal among simple matroids that cannot be covered by k independent
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sets is density-critical. It is straightforward to show that U1,k+1 is the only minor-
minimal loopless matroid with no covering by k independent sets. We prove that
there are exactly ten minor-minimal simple obstructions to a matroid being able to
be covered by two independent sets. These ten matroids are precisely the density-
critical matroids M such that d(M) > 2 but d(N) 6 2 for all proper minors N of
M . All density-critical matroids of density less than 2 are series-parallel networks.
For k > 2, although finding all density-critical matroids of density at most k does
not seem straightforward, we do solve this problem for k = 9

4 .

Mathematics Subject Classifications: 05B35

1 Introduction

Our notation and terminology follow Oxley [7]. For a positive integer k, let Mk be
the class of matroids M for which E(M) is the union of k independent sets. We say
such a matroid can be covered by k independent sets. Edmonds [3] gave the following
characterization of the members of Mk.

Theorem 1. A matroid M has k independent sets whose union is E(M) if and only if,
for every subset A of E(M),

k r(A) > |A|.

Clearly, Mk is closed under deletion. However, Mk is not closed under contraction.
For example, the 6-element rank-3 uniform matroid U3,6 can be covered by two indepen-
dent sets, yet contracting a point of this matroid gives U2,5, which cannot. For all k, the
loop is the unique minor-minimal matroid not in Mk. On that account, we limit the
types of obstructions we consider. We first examine the minor-minimal loopless matroids
that are not in Mk. We find the following result.

Proposition 2. The unique minor-minimal loopless matroid that cannot be covered by k
independent sets is U1,k+1.

Restricting attention to minor-minimal simple matroids not in Mk, we find much
more structure. We have the following collection of ten matroids for the case when k is
two. In this result, P (M1,M2) denotes the parallel connection of matroids M1 and M2,
this matroid being unique when both M1 and M2 have transitive automorphism groups.
Geometric representations of the nine of these ten matroids of rank at most four are shown
in Figure 1. A diagram representing the tenth matroid, P (M(K4),M(K4)) is also given
where we note that this matroid has rank five.

Theorem 3. The minor-minimal simple matroids that cannot be covered by two indepen-
dent sets are U2,5, P (U2,4, U2,4), O7, P7, F

−
7 , F7, P (U2,4,M(K4)), M(K5 \ e), M∗(K3,3),

and P (M(K4),M(K4)).
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(a) U2,5

(b) P (U2,4, U2,4) (c) O7 (d) P7

(e) F−7 (f) F7

(g) P (U2,4,M(K4))
(h) M(K5\e) (i) M∗(K3,3)

(j) P (M(K4),M(K4))

Figure 1: The minor-minimal simple matroids not in M2.
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The following consequence of Theorem 1 will be helpful.

Lemma 4. Let M be a minor-minimal matroid that cannot be covered by k independent
sets. Then

k r(M) = |E(M)| − 1.

Moreover, M has no coloops.

For a matroid M , we write ε(M) for |E(si(M))|, the number of rank-one flats of M .

The density d(M) of M is ε(M)
r(M)

unless r(M) = 0. In the exceptional case, ε(M) = 0

and we define d(M) = 0. We say that M is density-critical when d(N) < d(M) for all
proper minors N of M . Note that all density-critical matroids are simple. By Lemma 4
and Theorem 1, M is a minor-minimal simple matroid that cannot be covered by k
independent sets if and only if d(M) > k but d(N) 6 k for all proper minors N of M .
Such matroids are strictly k-density-critical where, for t > 0, we say a matroid is strictly
t-density-critical when its density is strictly greater than t while all its proper minors have
density at most t. Thus Theorem 3 explicitly determines all ten strictly 2-density-critical
matroids.

We propose the following.

Conjecture 5. For all positive integers k, there are finitely many minor-minimal simple
matroids that cannot be covered by k independent sets.

More generally, we make the following conjectures. For t > 0, we say a matroid is
t-density-critical when its density is at least t while all of its proper minors have density
strictly less than t.

Conjecture 6. For all t > 0, there are finitely many strictly t-density-critical matroids.

Conjecture 7. For all t > 0, there are finitely many t-density-critical matroids.

We also propose the following weakening of the last conjecture.

Conjecture 8. For all t > 0, there are finitely many density-critical matroids with density
exactly t.

We note that these conjectures hold over any class of matroids that is well-quasi-
ordered with respect to minors. In particular, by a result announced by Geelen, Gerards,
and Whittle (see, for example, [4]), these conjectures hold within the class of matroids
representable over a fixed finite field.

Because the two excluded minors for series-parallel networks, U2,4 and M(K4), have
density exactly two, for k < 2, all density-critical matroids of density at most k are series-
parallel networks. For k > 2, finding all density-critical matroids of density at most k
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does not seem straightforward. However, we were able to solve this problem when k = 9
4
.

For all n > 2, we denote by Pn any matroid that can be constructed from n copies of
M(K3) via a sequence of n− 1 parallel connections. In particular, P2

∼= M(K4\e). There
are two choices for P3 depending on which element of M(K4\e) is used as the basepoint of
the parallel connection with the third copy of M(K3). We denote by M18 the 18-element
matroid that is obtained by attaching, via parallel connection, a copy of M(K4) at each
element of an M(K3).

Theorem 9. The following is a list of all pairs (M,d) where M is a density-critical
matroid of density d and d 6 9

4
: (U1,1, 1), (U2,3,

3
2
), (M (Pn) , 2n+1

n+1
) for all n > 2, (U2,4, 2),

(M(K4), 2), (P (M(K4),M(K4)),
11
5

), (P (U2,4,M(K4)),
9
4
), (M(K5\e), 94), (M∗(K3,3),

9
4
),

(M18,
9
4
).

2 Preliminaries

This section proves some preliminary results beginning with two that were stated in the
introduction.

Proof of Proposition 2. Clearly, U1,k+1 is a minor-minimal loopless matroid that cannot be
covered by k independent sets. Conversely, suppose that M is a minor-minimal loopless
matroid that cannot be covered by k independent sets. Certainly, M contains some
element e. Let P ∪{e} be the parallel class of M that contains e where P = {e1, e2, . . . , e`}
and e 6∈ P . Now M/e \ P is loopless, so, by minimality, M/e \ P can be covered by k
independent sets {A1, A2, . . . , Ak}. Note that each Ai ∪ {e} is independent in M , so if
|P | = ` 6 k − 1, then {A1 ∪ {e1}, A2 ∪ {e2}, . . . , A` ∪ {e`}, A`+1 ∪ {e}, . . . , Ak ∪ {e}} is a
set of k independent sets that covers M . Thus |P | > k, and so M ∼= U1,k+1.

Since U1,k+1 is a (k + 1)-element cocircuit, the matroids having no U1,k+1-minor are
precisely the matroids for which every cocircuit has at most k elements.

Proof of Lemma 4. Take x in E(M). Then M \ x can be covered by k independent sets.
Thus, by Theorem 1,

|E(M)| > kr(M) > kr(M \ x) > |E(M \ x)| = |E(M)| − 1.

We deduce that kr(M) = |E(M)| − 1 and r(M) = r(M \ x) so M has no coloops.

Lemma 10. Let M be a density-critical matroid of rank at least two. For each subset S
of E(M),

|E(M)| − ε(M/S) > d(M)r(S).

In particular, every element of M is in a triangle and is in at least two triangles when
d(M) > 2.
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Proof. Since M is density-critical and therefore simple,

ε(M/S)

r(M/S)
<
ε(M)

r(M)
=
|E(M)|
r(M)

.

Hence r(M)ε(M/S) < |E(M)|(r(M)− r(S)), so

r(M)d(M)r(S) = |E(M)|r(S) < r(M) (|E(M)| − ε(M/S)) .

Thus d(M)r(S) < |E(M)| − ε(M/S). In particular, d(M) < |E(M)| − ε(M/e) for all e
in E(M). Hence every such element e is in at least one triangle, and e is in at least two
triangles when d(M) > 2.

The next result will be useful in the proof of Theorem 3.

Lemma 11. Let F be a 2k-element set {b1, a1, b2, a2, . . . , bk, ak} in a 3-connected matroid
M . Suppose {b1, b2, . . . , bk} is independent and {bi, ai, bi+1} is a circuit for all i, where
bk+1 = b1. Then M |F is a wheel of rank at least three or a whirl of rank at least two.

Proof. Since M is 3-connected with at least four elements, it is simple. Now M |F has
{ai, bi+1, ai+1} as a triad, where ak+1 = a1. By a result of Seymour [8] (see also [7,
Lemma 8.8.5(ii)]), M |F is a wheel or a whirl of rank k.

3 The matroids that cannot be covered by two independent sets

In this section, we prove Theorem 3, first restating it for convenience.

Theorem 12. The minor-minimal simple matroids that cannot be covered by two indepen-
dent sets are U2,5, P (U2,4, U2,4), O7, P7, F

−
7 , F7, P (U2,4,M(K4)), M(K5 \ e), M∗(K3,3),

and P (M(K4),M(K4)).

Proof. It is straightforward to check that each of the matroids listed is a minor-minimal
simple matroid that cannot be covered by two independent sets. Now let M be such
a matroid. The next two assertions are immediate consequences of Lemmas 4, 10, and
Theorem 1. However, we include proofs independent of Edmonds’s result for completeness.

12.1. Every element of M is contained in at least two triangles.

Let e be an element of M and let M ′ = si(M/e). By minimality, M ′ has a partition into
two independent sets A and B. Suppose e is not in a triangle. Then E(M ′) = E(M)−{e}
and we have rM(A ∪ {e}) = rM ′(A) + 1 = |A| + 1 and rM(B ∪ {e}) = |B| + 1, so M is
covered by the independent sets A ∪ {e} and B ∪ {e}, which is a contradiction.
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Now suppose e is in exactly one triangle {e, c, d} of M . We may assume that M ′ =
M/e\c and that d ∈ A. Then rM(A ∪ {c}) = rM(A ∪ {c, e}) = rM ′(A) + 1 = |A|+ 1 and
rM(B ∪ {e}) = rM ′(B) + 1 = |B| + 1, so M is covered by the independent sets A ∪ {c}
and B ∪ {e}. This contradiction implies that 12.1 holds.

12.2. |E(M)| 6 2r(M) + 1 and |A| 6 2r(A) for every proper subset A of E(M).

Suppose A is a proper subset of E(M). By the minimality of M , we can cover M |A
by two independent sets, and so |A| 6 2r(A). It follows easily that |E(M)| 6 2r(M) + 1.
Thus 12.2 holds.

We construct a simple auxiliary graph G from M , the vertices of which are the elements
of M ; two such vertices are adjacent exactly when they share a triangle in M . Next, we
show the following.

12.3. Let Z be the vertex set of a component of G. Then M |Z has a wheel or a whirl as
a restriction.

We may assume that M |Z has no line with four or more points otherwise M has
a rank-2 whirl as a restriction. For b1 in Z, by 12.1, we can construct a maximal se-
quence b1, a1, b2, a2, . . . , bn of distinct elements such that {b1, b2, . . . , bn} is independent
and {bi, ai, bi+1} is a triangle for all i in {1, 2, . . . , n− 1}. Then n > 3.

Now M has triangles {bn, an, bn+1} and {b0, a0, b1} that differ from {bn−1, an−1, bn} and
{b1, a1, b2}, respectively. Let A′ = {b1, a1, b2, a2, . . . , bn−1, an−1, bn}. Assume that both
{an, bn+1} and {a0, b0} avoid A′. Then |A′∪{an, bn+1}| = 2n+1 = 2r(A′∪{an, bn+1})+1.
Thus, by 12.2, A′ ∪ {an, bn+1} = E(M). By symmetry, A′ ∪ {a0, b0} = E(M). Hence
{an, bn+1} = {b0, a0}, so {bn, an, bn+1, b1} is a 4-point line, a contradiction.

We may now assume that bn+1 is a member ci of {bi, ai} for some i with 1 6 i 6 n−1.
Then {ci, bi+1, bi+2, . . . , bn} is an independent set in M |Z such that every two consecutive
elements in the given cyclic order are in a triangle. Thus, by Lemma 11, M |Z has a wheel
or whirl of rank n− i+ 1 as a restriction. Hence 12.3 holds.

12.4. For some component of G having vertex set Z, the matroid M |Z is not a wheel or
a whirl.

Assume that this fails. Then, by 12.1, the only components of G are rank-2 whirls
or rank-3 wheels. Assume there are s of the former and t of the latter. Then |E(M)| =
4s + 6t = 2(2s + 3t). Clearly r(M) 6 2s + 3t. By 12.2, equality must hold here. Hence
each component of G corresponds to a wheel or whirl component of M . As each wheel
and each whirl can be covered by two independent sets, so too can M , a contradiction.
Thus 12.4 holds.

Now take a component of G having vertex set Z such that M |Z is not a wheel or a
whirl. By 12.3, consider a wheel or whirl restriction of M |Z with basis B = {b1, b2, . . . , bn}
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and ground set W = {b1, a1, b2, a2, . . . , bn, an}. Let {bi, ai, bi+1} be a triangle for all i where
bn+1 = b1. As W 6= Z, there is a point β1 in W that is contained in a triangle {β1, α1, β2}
that is not a triangle of M |W . If M |W is a rank-2 whirl or a rank-3 wheel, then, by
symmetry, we may assume that β1 = a1. If, instead, M |W is neither a rank-2 whirl
nor a rank-3 wheel, then 12.1 guarantees that such a triangle {β1, α1, β2} exists with
β1 = a1. By repeatedly using 12.1, we can construct a sequence β1, α1, . . . , βm+1 where
{βi, αi, βi+1} is a triangle for all i in {1, 2, . . . ,m} and B ∪ {β2, . . . , βm+1} is dependent
but B ∪{β2, . . . , βm} is independent. By potentially interchanging αm and βm+1, we may
assume that αm /∈ W . Let Q = {β1, α1, . . . , βm+1}. Then

r(W ∪Q) = r(W ∪ (Q− {βm+1})) = n+m− 1. (1)

As |W ∪ (Q− {βm+1})| = 2(n+m− 1) + 1 = 2r(W ∪ (Q− {βm+1})) + 1, we deduce, by
12.2, that

W ∪ (Q− {βm+1}) = E(M). (2)

Hence
βm+1 ∈ W ∪ (Q− {βm+1}). (3)

Assume that the theorem fails. We now show that

12.5. M |Z has no wheel-restriction of rank exceeding three and no whirl-restriction of rank
exceeding two.

Assume that this fails. Then we may assume that M |W is a wheel of rank at least
four or a whirl of rank at least three. Now r(W ) = n and r(Q) 6 m + 1. By (1) and
submodularity, r(cl(W ) ∩ cl(Q)) 6 2. Assume W does not span M . Then, by (1) and
(2), we see that m > 1 and the only possible elements of W that can lie in triangles with
elements of Q −W are β1 and βm+1. But a wheel of rank at least four and a whirl of
rank at least three have at least three elements that are in unique triangles. Hence one
of these elements will violate 12.1.

We now know that W spans M , so the unique element of Q − W is α1. Each of
a1, a2, . . . , an must be in a triangle with α1, the other element of which is in W . Assume
both {a1, α1, a3} and {a1, α1, an−1} are triangles. Then n = 4. Suppose {a2, α1, a4} is also
a triangle. Then, by Lemma 11, for each i in {2, 4}, deleting ai from M |(W ∪ Q) gives
a wheel or whirl of rank four. As {b1, b4, α1, a2} and {b2, b3, α1, a4} are circuits, both of
these deletions are wheels. It follows that M |(W ∪ Q) ∼= M∗(K3,3), so M ∼= M∗(K3,3),
a contradiction. Thus, we may assume that {a2, α1, a4} is not a triangle. Since α1 6∈
cl({b1, b2, b3}) ∪ cl({b2, b3, b4}), there is no triangle containing {a2, α1}, a contradiction.

We may now assume that {a1, α1, a3} is not a triangle. Then, by 12.1, W has distinct
elements x and y such that {a1, α1, x} and {a3, α1, y} are triangles. Thus {a1, a3, x, y}
contains a circuit. Now {a1, a3} is not in a triangle of M |W . Moreover, if {a1, x, y} is a
triangle, then {x, y} = {b1, b2}. Using the triangles, {a1, α1, x} and {a3, α1, y}, we deduce
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that a3 ∈ cl({b1, b2}), a contradiction. It follows that {a1, a3, x, y} is a circuit of M . Thus
M |W is either a rank-3 whirl or a rank-4 wheel.

Suppose M |W is a rank-3 whirl. Then M is an extension of this matroid by α1 in
which every element is in at least two triangles. If {a1, a2, α1} or {a2, a3, α1} is a triangle,
then one easily checks that M ∼= O7 or M ∼= P7, a contradiction. Hence we may assume
that none of {a1, a2, α1}, {a2, a3, α1}, or {a3, a1, α1} is a triangle. Then, to avoid having
U2,5 as a minor of M , we must have {a1, b3, α1}, {a2, b1, α1}, and {a3, b2, α1} as triangles,
that is, M ∼= F−7 , a contradiction.

We are left with the possibility thatM |W is a rank-4 wheel. Since it has {a1, a3, x, y} as
a circuit, it follows that {x, y} = {a2, a4}. Then M has either {a1, a2, α1} and {a3, a4, α1}
as triangles or {a1, a4, α1} and {a2, a3, α1} as triangles. By symmetry, we may assume that
we are in the second case. Then, by submodularity using the sets {b1, b2, a1, a4, b4, α1} and
{b2, b3, a2, a3, b4, α1}, we deduce that r({b2, b4, α1}) = 2. It follows that M ∼= M(K5\e), a
contradiction. We conclude that 12.5 holds.

Now suppose that W spans Z. If M |W is a rank-2 whirl, then M |Z ∼= U2,5, a
contradiction. If M |W is a rank-3 wheel, then one easily checks that M |Z is isomorphic
to one of O7, F

−
7 , or F7, a contradiction.

We may now assume that W does not span Z. Then m > 1. By (3), βm+1 ∈
W ∪ (Q − {βm+1}). We will first suppose that βm+1 = βi for some i in {1, 2, . . . ,m}.
Then {βi, βi+1, . . . , βm} is an independent set and {βj, αj, βj+1} is a triangle for all j
in {i, i + 1, . . . ,m}. By 12.5 and Lemma 11, for R = {βi, αi, βi+1, αi+1, . . . , βm, αm}, the
matroid M |R is a rank-3 wheel or a rank-2 whirl. Then the matroid obtained from M |Z by
contracting {α2, α3, . . . , αi−1} and simplifying is the parallel connection of M |W and M |R,
that is, M |Z has as a minor one of P (U2,4, U2,4), P (U2,4,M(K4)), and P (M(K4),M(K4)),
a contradiction.

Finally, suppose that βm+1 6∈ {β1, β2, . . . , βm}. Then βm+1 is αi for some i > 1, or
βm+1 ∈ W . Consider the first case and take αm+1 = βi. Then, by 12.5 and Lemma 11,
with R = {βi+1, αi+1, . . . , βm+1, αm+1}, we have that M |R is a rank-3 wheel or a rank-
2 whirl. Contracting {α2, α3, . . . , αi−1} from M |Z and simplifying, we obtain one of
P (U2,4, U2,4), P (U2,4,M(K4)), and P (M(K4),M(K4)), a contradiction. In the second
case, when βm+1 ∈ W , we recall that β1 = a1. Suppose that {β1, βm+1} is not in a triangle
of M |W . Then M |W ∼= M(K4) and βm+1 = b3. By assumption, {b1, b2, b3}∪{β2, . . . , βm}
is independent. By Lemma 11, the triangles {b1, b2, a1}, {a1, α1, β2}, . . . , {βm, αm, b3},
{b3, a3, b1} imply that M |Z has a wheel or whirl of rank at least four as a restriction, a
contradiction. We deduce that {β1, βm+1} is in a triangle of M |W . Then, by symmetry, we
may assume that βm+1 = b1. We let αm+1 = b2. Then, for R = {β1, α1, . . . , βm+1, αm+1},
we have that M |R is a rank-3 wheel or a rank-2 whirl. But α1 6∈ cl(W ), so M |R is a
rank-3 wheel. If M |W is a rank-2 whirl, then O7 is a restriction of M |Z, a contradiction.
If M |W is a rank-3 wheel, then M |(W ∪ R) has rank four and consists of two copies of

the electronic journal of combinatorics 27 (2020), #P00 9



M(K4) sharing a triangle. This matroid is M(K5\e), a contradiction.

4 The density-critical matroids of small density

In this section, we prove Theorem 9. The following result [6] (see also [7, Lemma 4.3.10])
will be used repeatedly in this proof.

Lemma 13. In a connected matroid M with at least two elements, let {e1, e2, . . . , em}
be a cocircuit of M such that M/ei is disconnected for all i in {1, 2, . . . ,m − 1}. Then
{e1, e2, . . . , em−1} contains a 2-circuit of M .

We shall make repeated use of the following consequence of this lemma.

Corollary 14. Let M be a simple connected matroid and Z be a non-empty subset of
E(M). Then M has a simple connected minor N such that N |Z = M |Z and r(N) =
rM(Z).

Proof. We may assume that Z is non-spanning, otherwise we can take N to be M . Let C∗

be a cocircuit of M that is disjoint from cl(Z). As M is simple, it follows by Lemma 13
that there is an element e of C∗ such that M/e is connected. Since e 6∈ cl(Z), we see
that (M/e)|Z = M |Z. Clearly we can label si(M/e) so that its ground set contains Z.
If r(M) − r(Z) = 1, then we take N = si(M/e). Otherwise we repeat the above process
using si(M/e) in place of M . After r(M) − r(Z) applications of this process, we obtain
the desired minor N .

The next result, which was proved by Dirac [2], follows easily by induction after recall-
ing that a connected matroid with no minor isomorphic to U2,4 or M(K4) is isomorphic
to the cycle matroid of a series-parallel network.

Lemma 15. Let M be a simple matroid having no minor isomorphic to U2,4 or M(K4).
Then

|E(M)| 6 2r(M)− 1.

We omit the elementary proof of the next result a consequence of which is that every
density-critical matroid is connected.

Lemma 16. Let M1 and M2 be matroids of rank at least one. Then

d(M1 ⊕M2) 6 max{d(M1), d(M2)}.

Moreover, equality holds here if and only if d(M1) = d(M2).
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The next result will be useful in identifying the density-critical matroids of density at
most two.

Lemma 17. Let M be a density-critical matroid with d(M) 6 2. If (X1, X2) is a 2-
separation of M , then there is an element p in cl(X1) ∩ cl(X2), and M = P (M |(X1 ∪
{p}),M |(X2 ∪ {p})).

Proof. As (X1, X2) is a 2-separation of M , for some element q not in E(M), we can write
M as M1⊕2M2 where each Mi has ground set Xi∪{q}. Let |E(Mi)| = ni and r(Mi) = ri.

Assume that both M1 and M2 are simple. Then |E(M)|
r(M)

> |E(M1)|
r(M1)

, so

n1 + n2 − 2

r1 + r2 − 1
>
n1

r1
.

Hence
r1n2 − 2r1 > r2n1 − n1.

By symmetry,
r2n1 − 2r2 > r1n2 − n2.

Adding the last two inequalities gives n1 + n2 > 2(r1 + r2), so ni > 2ri for some i. Thus
d(Mi) > 2. Since M is density-critical with density at most two, this is a contradiction.
We conclude that M1 or M2, say M1, is non-simple. Thus it has an element p in parallel
with the basepoint q of the 2-sum. Hence M = P (M |(X1 ∪ {p}),M |(X2 ∪ {p})).

Lemma 18. Let N be a simple connected matroid in which all but at most one element
is in at least two triangles. Then N has no 2-cocircuits. Moreover, if N has {a, b, c} as a
triad, then either

(i) {a, b, c} is contained in a 4-point line and N = P (U2,4, N \ {a, b, c}); or

(ii) N has a triangle {x, y, z} such that N |{a, b, c, x, y, z} ∼= M(K4) and N is the gen-
eralized parallel connection of N |{a, b, c, x, y, z} and N \ {a, b, c} across the triangle
{x, y, z}.

Proof. As N has at most one element that is not in at least two triangles, N has no
2-cocircuits. Suppose {a, b, c} is a triad of N . If {a, b, c} is also a triangle, then {a, b, c}
is 2-separating in N . Moreover, {a, b, c} is contained in a 4-point line {a, b, c, d} and (i)
holds.

We may now assume that {a, b, c} is not a triangle of N . Then, because at least two
of a, b, and c are in at least two triangles, the hyperplane E(N)− {a, b, c} of N contains
distinct elements x, y, and z such that {a, b, z}, {a, y, c}, and {x, b, c} are triangles. Now

r({x, y, z}) 6 r(E(N)− {a, b, c}) + r(cl({a, b, c}))− r(N)

= r(N)− 1 + 3− r(N) = 2.
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Thus {x, y, z} is a triangle of N and N |{a, b, c, x, y, z} ∼= M(K4). It follows by a result of
Brylawski [1] (see also [7, Proposition 11.4.15]) that (ii) holds.

Corollary 19. Let N be a simple connected matroid in which all but at most one element
is in at least two triangles and d(N) 6 9

4
. If r(N) = 2, then N ∼= U2,4. If r(N) = 3, then

N ∼= M(K4). If r(N) = 4, then N ∼= P (U2,4,M(K4)),M(K5 \ e), or M∗(K3,3).

Proof. We omit the straightforward proof for the case when r(N) ∈ {2, 3}. Assume
r(N) = 4. By Lemma 18, N has no 2-cocircuits. Now suppose N has {a, b, c} as a triad.
If (i) of Lemma 18 holds, then N = P (U2,4, N \{a, b, c}). By the result in the rank-3 case,
N\{a, b, c} ∼= M(K4), so N ∼= P (U2,4,M(K4)). If, instead, (ii) of Lemma 18 holds, then N
is the generalized parallel connection across a triangle {x, y, z} of M(K4) and N \{a, b, c}.
In the latter, E(N \ {a, b, c, x, y, z}) must be a triad of N , so N \ {a, b, c} ∼= M(K4).
Hence N is the generalized parallel connection across a triangle of two copies of M(K4),
so N ∼= M(K5 \ e).

We may now assume that N has no triads. Then every cocircuit of N has at least four
elements. As N certainly has a plane that contains two intersecting triangles, {x, f1, g1}
and {x, f2, g2}, we deduce that |E(N)| > 9, so |E(N)| = 9. Let {a, b, c, d} be the cocircuit
E(N)−{x, f1, f2, g1, g2}. Because N has no plane with more than five points and has all
but at most one element in two triangles, we may assume that {a, b, g1} and {a, c, g2} are
triangles of N . Then N \ d has {x, f1, g1}, {g1, b, a}, {a, c, g2}, {g2, f2, x} as triangles. By
Lemma 11, N \d is a rank-4 wheel or whirl. In this matroid, f1, b, c, and f2 are in unique
triangles. It follows that N must have {d, f1, c} and {d, b, f2} as triangles. Thus N \ d is
a rank-4 wheel. Likewise, N \ f1 and N \ c are also rank-4 wheels, so N ∼= M∗(K3,3).

Lemma 20. Let N be a simple matroid of rank at least three in which every element is
in at least two triangles. Suppose e ∈ E(N). Then

(i) e is in a plane of N having at least seven points; or

(ii) every element of si(N/e) is in at least two triangles; or

(iii) N has a U2,4- or M(K4)-restriction using e.

Proof. Assume that neither (i) nor (iii) holds. We show that every element of si(N/e) is in
at least two triangles. First consider a triangle {e, c1, c2} of N containing e. Let {c1, d1, f1}
and {c2, d2, f2} be triangles of N where neither contains e. If r({e, c1, d1, f1, c2, d2, f2}) =
4, then, in si(N/e), the element c corresponding to c1 and c2 is in at least two triangles.
Now suppose r({e, c1, d1, f1, c2, d2, f2}) = 3. Since N has no plane with more than six
points, we may assume that f1 = f2. Rename this element f . If {e, d1, d2} is not a
triangle, then si(N/e) has a 4-point line containing c, so c is in at least two triangles of
this matroid. If {e, d1, d2} is a triangle of N , then N |{e, c1, c2, d1, d2, f}) ∼= M(K4), a
contradiction.
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Now let f be an element of N that is not in a triangle with e. Let {f, g1, h1} and
{f, g2, h2} be triangles of N . Then si(N/e) has at least two triangles containing f other-
wise N |{e, f, g1, g2, h1, h2}) ∼= M(K4), a contradiction.

Recall that M18 is the 18-element matroid that is obtained by attaching, via parallel
connection, a copy of M(K4) at each element of an M(K3).

Lemma 21. Let N be a simple connected non-empty matroid in which every element is
in a U2,4- or M(K4)-restriction. Assume that d(N) 6 9

4
but d(N ′) < 9

4
for all proper mi-

nors N ′ of N . Then N is isomorphic to U2,4,M(K4), P (U2,4,M(K4)), P (M(K4),M(K4)),
M(K5 \ e), or M18.

Proof. Since d(N ′) 6 9
4

for all minors N ′ of N , we see that, in any such N ′, no line has
more than four points and no plane has more than six points. Next we show the following.

21.1. If N has a 4-point line, then N is isomorphic to U2,4 or P (U2,4,M(K4)).

This is immediate if r(N) = 2. Because N has no plane with more than six points,
r(N) 6= 3. Let L be a 4-point line of N and let Z be a subset of E(N) not containing L
such that N |Z is isomorphic to U2,4 or M(K4). If L ∩ Z 6= ∅, then again, since N has
no plane with more than six points, we deduce that N ∼= P (U2,4,M(K4)). We may now
assume that L∩Z = ∅. If r(L∪Z) 6 r(Z) + 1, then N has a rank-3 or rank-4 restriction
of density exceeding 9

4
, a contradiction. We deduce that r(L ∪ Z) = r(Z) + 2.

By Corollary 14, N has a simple connected minor N ′ such that N ′|(L∪Z) = N |(L∪Z)
and r(N ′) = r(Z) + 2. As N ′ is connected, it has an element x′ that is not in the closure
of L or of Z. Then N ′/x′ has N |L and N |Z as restrictions and has rank r(Z) + 1.
Thus si(N ′/x′) has either a plane with more than six points or has P (U2,4,M(K4)) as a
restriction. Each possibility yields a contradiction, so 21.1 holds.

We may now assume that every element of N is in an M(K4)-restriction. We may
also assume that N is not isomorphic to M(K4) or P (M(K4),M(K4)). Next we show the
following.

21.2. Let X and Y be distinct subsets of E(N) such that both N |X and N |Y are isomorphic
to M(K4). If |X ∩ Y | > 2, then N ∼= M(K5 \ e).

Since N has no plane with more than six points, r(X ∪ Y ) > 3. As |X ∩ Y | > 2, it
follows by submodularity that r(X ∪Y ) = 4 and r(X ∩Y ) = 2. As d(N |(X ∪Y )) 6 9

4
, we

deduce that |X ∪ Y | = 9, so |X ∩ Y | = 3 and N = N |(X ∪ Y ). Moreover, N |X and N |Y
meet in a triangle ∆. By Lemma 18, N is the generalized parallel connection of N |X and
N |Y across ∆. Thus N ∼= M(K5 \ e) as each of N |X and N |Y is isomorphic to M(K4),
so 21.2 holds.
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We may now assume that E(N) has at least three distinct subsets X with N |X ∼=
M(K4) and that no two such subsets meet in more than one element.

21.3. N does not have P (M(K4),M(K4)) as a restriction.

Assume that N |X ∼= P (M(K4),M(K4)) and N |Y ∼= M(K4) where Y 6⊆ X. Suppose
|X ∩ Y | = k where k ∈ {1, 2}. Then r(X ∪ Y ) 6 8− k and |X ∪ Y | = 17− k, so

9

4
> d(N |(X ∪ Y )) >

17− k
8− k

.

Simplifying we obtain the contradiction that 4 > 5k > 5. We deduce using 21.2 that
|X ∩ Y | = 0. Then r(X ∪ Y ) = 8 otherwise d(N |(X ∪ Y )) > 9

4
.

By Corollary 14, N has a simple connected minor N ′ such that N ′|(X∪Y ) = N |(X∪Y )
and r(N ′) = 8. As N |(X ∪ Y ) is disconnected, N ′ must contain an element that is not in
X ∪ Y . Hence |E(N ′)| > 18, so d(N ′) > 9

4
. Thus N ′ = N and |E(N)| = 18, so N has

a single element z that is not in X ∪ Y . The M(K4)-restriction of N that contains z is
forced to have more than one element in common with Y or one of the M(K4)-restrictions
of N |X. This contradiction to 21.2 completes the proof of 21.3.

We now know that any two M(K4)-restrictions of N have disjoint ground sets. Let X,
Y , and Z be distinct subsets of E(N) such that each of N |X, N |Y , and N |Z is isomorphic
to M(K4). Next we show the following.

21.4. r(X ∪ Y ) = 6. Moreover, r(X ∪ Y ∪ Z) = 9 unless N ∼= M18.

As |X ∪ Y | = 12 and d(N |(X ∪ Y )) < 9
4
, we deduce that r(X ∪ Y ) = 6. The density

constraint also means that r(X ∪ Y ∪ Z) > 8. Suppose r(X ∪ Y ∪ Z) = 8. Then
d(N |(X ∪ Y ∪ Z)) = 9

4
, so N = N |(X ∪ Y ∪ Z). Now r(N/Z) = 5. As 12

5
> 9

4
, we must

have some parallel elements in N/Z. As Z is skew to each of X and Y , we know that
(N/Z)|X = N |X and (N/Z)|Y = N |Y . Thus there must be elements x of X and y of
Y that are parallel in N/Z. If there is a second such parallel pair, then r(N/Z) 6 4, a
contradiction. In N , we see that r(Z ∪ {x, y}) = 4. Hence, in N/x, we obtain a 7-point
plane Z ∪ y unless {x, y, z} is a triangle of N for some z in Z. Observe that each of
N/x, N/y, and N/z is disconnected, so N is obtained from M(K3) by attaching a copy
of M(K4) via parallel connection at each element. Thus N ∼= M18 and 21.4 holds.

By Corollary 14, N has a simple connected minor N ′ of rank 9 such that N ′|(X ∪Y ∪
Z) = N |(X ∪ Y ∪Z). As N ′ is connected, there is an element g of E(N ′)− (X ∪ Y ∪Z).
Since N ′ has no plane with more than six points, g is not in the closure of any of X,
Y , or Z in N ′. As N ′/g has rank 8 but has density less than 9

4
, the eighteen elements

of X ∪ Y ∪ Z cannot all be in distinct parallel classes of N ′/g. Thus N ′ has a triangle
{x, y, g} where we may assume that x ∈ X and y ∈ Y . Since N ′|(X ∪Y ∪Z ∪ g) has Z as
a component, there is an element h of E(N ′) that is in neither clN ′(X ∪ Y ) nor clN ′(Z).
As above, N ′ has a triangle {h, z, t} where t ∈ X ∪ Y and z ∈ Z. Contracting g and h
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from N ′|(X ∪ Y ∪Z ∪ {g, h}) and simplifying, we get a rank-7 matroid with 16 elements.
As 16

7
> 9

4
, we have a contradiction that completes the proof of Lemma 21.

Lemma 22. Let N be a simple connected matroid having an element z such that each of
N and si(N/z) has every element in at least two triangles. If d(N) 6 9

4
and d(N ′) < 9

4

for all proper minors N ′ of N , then N is isomorphic to P (U2,4,M(K4)), M(K5 \ e), or
M∗(K3,3).

Proof. We argue by induction on r(N), which must be at least three. Suppose it is exactly
three. Since si(N/z) has density less than 9

4
, it is isomorphic to U2,4. As d(N) 6 9

4
, we

see that |E(N)| 6 6. By Lemma 18, N has no 2-cocircuits. Thus N has a triangle whose
complement is a triad. By Lemma 18 again, N ∼= M(K4) and we get a contradiction.
Hence r(N) > 4. If r(N) = 4, then, by Corollary 19, N is isomorphic to P (U2,4,M(K4)),
M(K5 \ e), or M∗(K3,3).

Now assume the result holds for r(N) < k and let r(N) = k > 5. Let N1 = si(N/z).
Every element of N1 is in at least two triangles. Let N2 be a component of N1. By
Lemma 20, either every element of N2 is in a U2,4- or M(K4)-restriction, or N2 has an
element z2 such that every element of si(N2/z2) is in at least two triangles. If the latter
occurs, then, by the induction assumption, N2 is isomorphic to P (U2,4,M(K4)),M(K5\e),
or M∗(K3,3). Each of these matroids has density 9

4
, a contradiction. Thus every element

of N2 is in a U2,4- or M(K4)-restriction. As d(N2) <
9
4
, Lemma 21 implies that N2, and

hence each component of N1, is isomorphic to one of U2,4, M(K4), or P (M(K4),M(K4)).

Suppose that N2 = N1. Then, as r(N) > 5, we deduce that N1
∼= P (M(K4),M(K4)).

As N1 = si(N/z), we see that r(N) = 6. Because d(N) 6 9
4
, it follows that |E(N)| 6 13.

Since z is in at least two triangles of N , we deduce that |E(N)| > |E(N1)| + 3 = 14, a
contradiction.

We may now assume that N1 has more than one component. Hence, for some k > 2,
there is a collection N1, N2, . . . , Nk of connected matroids such that E(N i)∩E(N j) = {z}
for all i 6= j, the matroid N i/z is connected for all i, and N is the parallel connection
of N1, N2, . . . , Nk across the common basepoint z. As noted above, each si(N i/z) is
isomorphic to one of U2,4, M(K4), or P (M(K4),M(K4)). As every element of N is in
at least two triangles, every element of each N i except possibly z is in at least two
triangles of N i. Thus, by Corollary 19, N i ∼= M(K4); or r(N i) = 4 and |E(N i)| = 9; or
r(N i) > 4. In the first case, si(N i/z) 6∼= U2,4; in the second case, d(N i) = 9

4
. Both of

these possibilities give contradictions, so si(N i/z) ∼= P (M(K4),M(K4)) for each i. As z
is in at least two triangles of N , we may assume the elements of two such triangles lie in
E(N1)∪E(N2). As |E(si(N i/z))| = 11 and r(N i/z) = 5, we see that |E(N1)∪E(N2)| >
25 and r(E(N1) ∪ E(N2)) = 11. But 25

11
> 9

4
, a contradiction.

We conclude the paper by proving Theorem 9. In this proof, we will make extensive
use of the Cunningham-Edmonds canonical tree decomposition of a connected matroid.
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The definition and properties of this decomposition may be found in [7, Section 8.3]. In
brief, associated with each connected matroid M , there is a tree T that is unique up
to the labelling of its edges. Each vertex of T is labelled by a circuit, a cocircuit, or a
3-connected matroid with at least four elements. Moreover, no two adjacent vertices of
T are labelled by circuits and no two adjacent vertices are labelled by cocircuits. For an
edge e of T whose endpoints are labelled by matroids M1 and M2, the ground sets of these
two matroids meet in {e}. When we contract e from T , the composite vertex that results
by identifying the endpoints of e is labelled by the 2-sum of M1 and M2. By repeating
this process, contracting all of the remaining edges of T one by one, we eventually obtain
a single-vertex tree. Its vertex is labelled by M .

Each edge f of T induces a partition of E(M). This partition is a 2-separation of M
displayed by f . The remaining 2-separations of M coincide with those that are displayed
by those vertices of T that are labelled by circuits or cocircuits. For such a vertex v
having label N , there is a partition {X1, X2, . . . , Xk} of E(M) − E(N) induced by the
components of T − v. A partition (X, Y ) of E(M) is displayed by the vertex v if each Xi

is contained in X or Y . Every such partition of E(M) with both X and Y having at least
two elements is a 2-separation of M and these 2-separations along with those displayed
by the edges of T are all of the 2-separations of M . Recall that, for all n > 2, we denote
by Pn any matroid that can be constructed from n copies of M(K3) via a sequence of
parallel connections.

Proof of Theorem 9. Let M be a density-critical matroid with d(M) 6 9
4
. Suppose

d(M) > 2. By Lemma 10, every element of M is in at least two triangles. By Corol-
lary 19, if r(M) ∈ {2, 3}, then M is U2,4 or M(K4). We may now assume that r(M) > 4.
By Lemma 20, either every element of M is in a U2,4- or M(K4)-restriction, or, for some
element z of M , every element of si(M/z) is in at least two triangles. In the first case, by
Lemma 21, M is isomorphic to P (U2,4,M(K4)), P (M(K4),M(K4)),M(K5 \ e), or M18.
In the second case, by Lemma 22, M is isomorphic to P (U2,4,M(K4)),M(K5 \ e), or
M∗(K3,3). Thus the theorem identifies all possible density-critical matroids with density
in [2, 9

4
] and one easily checks that each of the matroids identified is indeed density-critical.

Now suppose that d(M) < 2. By Lemma 16, M is connected. Clearly, if r(M) is
1 or 2, then M is isomorphic to U1,1 or U2,3. As U2,4 and M(K4) both have density 2,
M is a series-parallel network (see, for example, [7, Corollary 12.2.14]). Thus, in the
Cunningham-Edmonds canonical tree decomposition T of M , every vertex is labelled by
a circuit or a cocircuit. Since M is simple, for every vertex of T that is labelled by a
cocircuit C∗, at most one element of C∗ is in E(M). Let e be an edge of T that meets
the vertex labelled by C∗. Then, for the 2-separation (X, Y ) of M that is displayed by e,
Lemma 17 implies that M has an element p in cl(X)∩cl(Y ). Thus p ∈ C∗, so C∗ contains
exactly one element of M .

Now take a vertex of T that is labelled by a circuit C where C = {e1, e2, . . . , ek} and
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suppose that k > 4. Suppose e1 ∈ E(M). Then M/e1 is simple having rank r(M) − 1.

As |E(M)|−1
r(M)−1 < |E(M)|

r(M)
, we obtain the contradiction that |E(M)| < r(M). We deduce that

C∩E(M) = ∅. Now T \e1, e2 has exactly three components. Let T ′ be the one containing
e3 and let X be the subset of E(M) corresponding to T ′. Then (X,E(M) − X) is a 2-
separation of M . By Lemma 17, there is an element p of M that is in cl(X)∩cl(E(M)−X).
But the tree decomposition implies that there is no such element. We deduce that C has
exactly three elements. Thus every vertex of T that is labelled by a circuit is labelled by a
triangle. Since every vertex of T that is labelled by a cocircuit has exactly one element of
E(M) in that cocircuit, a straightforward induction argument establishes that, for some
n > 2, the matroid M is obtained from n copies of M(K3) by a sequence of n− 1 parallel
connections. Thus M ∼= Pn.

Finally, we show by induction that Pn is density-critical. This is true for n = 1.
Assume it true for n < m and let n = m > 2. Take x in E(Pn). Assume first that x is
in exactly one triangle {x, y, z}. Then si(Pn/x) ∼= Pn/x \ z. As the last matroid is easily
seen to be isomorphic to the density-critical matroid Pn−1 and d(Pn−1) < d(Pn), every
minor of Pn/x has density less that d(Pn). Now assume x is in at least two triangles of
Pn. Then si(Pn/x) is easily seen to be the direct sum of a collection of matroids each of
which is isomorphic to some Pk with k < n or to U1,1. By Lemma 16 and the induction
assumption, every minor of Pn/x has density less that d(Pn). We conclude that Pn is
density-critical, so the theorem is proved.
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