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Abstract

In 1971, Rota introduced the concept of derived matroids to investigate “dependen-
cies among dependencies” in matroids. In this paper, we study the derived matroid δM
of an F-representation of a matroid M . The matroid δM has a naturally associated
F-representation, so we can define a sequence δM , δ2M , . . . . The main result classifies
such derived sequences of matroids into three types: finite, cyclic, and divergent. For
the first two types, we obtain complete characterizations and thereby resolve some of
the questions that Longyear posed in 1980 for binary matroids. For the last type, the
divergence is estimated by the coranks of the matroids in the derived sequence.
Keywords: derived matroids, derived sequence, dependencies among dependencies,
representable matroids.

1 Introduction

In algebraic topology, homology groups examine the independent holes of topological spaces.
It is natural to ask about the dependence relations among these holes. For a 1-dimensional
simplicial complex (a graph), this amounts to determining the dependencies among all of the
cycles in the graph.

As Judith Q. Longyear wrote in [5] that, at the Bowdoin College Summer 1971 NSF
Conference on Combinatorics, Gian-Carlo Rota posed the following question: “The minimal
dependent sets of vectors in a space V may be regarded as vectors in the derived space δV
over the same field by using the vectors of V as a basis for δV . Can this same sort of process
be applied to the dependent sets of a matroid M to investigate the ‘dependencies among
dependencies’? If so, what properties does δM , the derived matroid, possess?”

Longyear [5] answered the first question when M is a binary matroid. She defined its
derived matroid δM to have as its ground set, the set C (M) of circuits of M where a set
X of such circuits is independent in δM exactly when, for each nonempty subset Y of X,
the symmetric difference of the circuits in Y is nonempty. Longyear noted that her derived
matroid is a binary matroid and she asked the following four questions about this matroid
where we have differentiated the parts of these questions that contain more than one part.

∗This work was supported by the National Natural Science Foundation of China (11871204)
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• Question 1. (a) What effect does δ have on the flats of a matroid? (b) On the dual?

• Question 2. How many different (nonisomorphic) binary matroids M are there for which
δM has rank r?

• Question 3. (a) When does δM = M? (b) When is there a matroid N for which
δN = M? (c) If δk+1M = δ(δkM), when can δkM = δjM?

• Question 4. If M is U1,3, then δM is U2,3, δ
2M is U1,1 and δ3M is U0,0. Characterize

those M for which δkM can eventually be U0,0.

In this paper, we answer Questions 3(a), 3(c), and 4 by proving the following results.

Theorem 1.1. Let M be a binary matroid. If δkM ∼= M for some k ≥ 1, then M ∼= U0,0.

Theorem 1.2. Let M be a binary matroid such that δkM ∼= U0,0 for some k ≥ 0. Then
δ3M ∼= U0,0, and either M ∼= U0,0, or M is nonempty and each if its components is isomorphic
to U1,1, a circuit, or the cycle matroid of a theta graph.

In addition, we extend Longyear’s work by defining the derived sequence M, δM, δ2M, . . .
of matroids beginning with any F-represented matroid M where F is an arbitrary field. We
show that, when M has no coloops, δM is connected if and only if M is connected. Our main
theorems show that derived sequences are either finite, cyclic, or divergent, and they answer
Questions 3(a), 3(c), and 4 for arbitrary F-represented matroids. In particular, we prove that
U2,4 is the unique nonempty connected matroid M for which δM ∼= M . These results appear
in Section 4 of the paper. In Sections 2 and 3, we define derived sequences of represented
matroids and prove a number of basic properties of derived matroids.

2 The derived sequence of a represented matroid

Our matroid terminology and notation will follow Oxley [6]. For a field F, let M be an
F-representable matroid with ground set E = {e1, e2, . . . , em}, and let ϕ : E → Fn be a
representation of M . The matrix A whose columns are the vectors ϕ(e1), ϕ(e2), . . . , ϕ(em) is
the matrix corresponding to ϕ. Moreover, M is M [A], the vector matroid of the matrix A.
The matrix A is also referred to as an F-representation of M .

The pair (M,ϕ), or equivalently the pair (M,A), denotes an F-represented matroid. For
such a pair, associated with each circuit C of M , there is a vector cC = (c1, c2, . . . , cm) in Fm

such that
∑m

i=1 ciϕ(ei) = 0 where ci 6= 0 if and only if i ∈ C. Moreover, as one easily checks,
cC is unique to within a non-zero constant scalar multiple. It follows that, associated with
the F-represented matroid (M,ϕ), there is an F-represented matroid (δM, δϕ) with ground
set C (M), the set of circuits of M , such that (δϕ)(C) = cC for all C in C (M). We call the
F-represented matroid (δM, δϕ) the derived matroid of (M,ϕ); the vector cC is the circuit
vector of C. We shall frequently write δM for (δM, δϕ).

Let (δ0M, δ0ϕ) = (M,ϕ). Inductively, for any positive integer k, the kth derived matroid
(δkM, δkϕ) of M is the derived matroid of (δk−1M, δk−1ϕ). The derived sequence of (M,ϕ) is
the sequence (δ0M, δ0ϕ), (δ1M, δ1ϕ), (δ2M, δ2ϕ), . . . . Since over GF (2), taking linear combi-
nations of vectors coincides with taking symmetric differences of their supports, this definition
is easily seen to extend Longyear’s definition of derived matroids of binary matroids. For such
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matroids, Recski [7] denotes δM by θ(M) and refers to the operation M → θ(M) as the
theta-operation on M .

For a field F, let (M,ϕ) be an F-represented matroid and A be the matrix corresponding
to ϕ. Elementary row operations on A clearly do not alter the circuit vectors of (M,ϕ).
This means that, when r(M) > 0, for any ordered basis (e1, e2, . . . , er) of M , we can assume,
after potentially permuting columns, that A is a standard representative matrix [Ir|D] for M ,
where Ir is the r × r identity matrix and its columns are labelled, in order, e1, e2, . . . , er.

For a basis B in a matroid M and an element e of E(M)−B, the unique circuit C(e, B)
contained in B ∪ e is called the fundamental circuit of e with respect to B.

Lemma 2.1. For a field F, let (M,ϕ) be an F-represented matroid. Then δM is a simple
matroid of rank r∗(M). In particular, if B is a basis of M , then {C(e, B) : e ∈ E(M) − B}
is a basis of δM .

Proof. It is clear that δM is simple since no circuit vector is the zero vector while no two
distinct circuits have circuit vectors that are scalar multiples of each other. If r(M) = 0, then
M ∼= U0,m, so δM ∼= Um,m and the result holds. Now suppose r(M) > 0. As noted above, we
can transform the matrix A corresponding to the representation ϕ into the form [Ir|D]. Let
the columns of this matrix be labelled, in order, by e1, e2, . . . , em where {e1, e2, . . . , er} is a
basis B of M . For each i in {1, 2, . . . ,m− r}, consider C(er+i, B). Clearly the m− r circuit
vectors of C(er+1, B), C(er+2, B), . . . , C(em, B) are linearly independent. As all of the circuit
vectors of M are in the solution space of the equation [Ir|D]X = 0, we deduce that δM has
{C(ei, B) : r + 1 ≤ i ≤ m} as a basis. Thus r(δM) = m− r = |E(M)| − r(M) = r∗(M).

For a basis B of an F-represented matroid (M,ϕ), we shall call {C(e, B) : e ∈ E(M)−B}
the circuit basis of δM associated with B. Because the fundamental circuits do not depend
on the representation ϕ, this circuit basis also does not depend on the representation.

Corollary 2.2. For a field F, let (M,ϕ) be an F-represented matroid. Then

|C (M)| = r∗(M) + r∗(δM).

The following matrix A represents M(K4) over both GF (2) and GF (3) where, of course,
−1 = 1 in the former: 

1 2 3 4 5 6

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 −1

.
We will write A2 and A3 for the interpretations of A over GF (2) and GF (3), respectively.
Hence we can view M [A2] and M [A3] as GF (2)- and GF (3)-represented matroids.

Now M(K4) has exactly seven circuits. These label the columns of the matrix in Figure 1,
where, for example, 124 is an abbreviation for {1, 2, 4}. Row i of this matrix is labelled by
the column vector ϕ(i) corresponding to column i in A. The columns of this matrix are the
circuit vectors of the corresponding circuits. Thus δM [A2] and δM [A3] are represented by this
matrix interpreted over GF (2) and GF (3), respectively. By Lemma 2.1, δM [A2] and δM [A3]
both have rank three. Clearly each is simple having seven elements. Thus δM [A2] ∼= F7, the
Fano matroid. Since δM [A3] is ternary, we deduce that δM [A3] 6∼= δM [A2]. It is not difficult
to check that δM [A3] ∼= F−

7 , the non-Fano matroid.
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124 135 236 456 1346 1256 2345

ϕ(1) 1 1 0 0 1 1 0
ϕ(2) 1 0 1 0 −1 0 1
ϕ(3) 0 1 −1 0 0 −1 −1
ϕ(4) −1 0 0 1 0 −1 −1
ϕ(5) 0 −1 0 −1 −1 0 1
ϕ(6) 0 0 −1 −1 1 1 0


Figure 1: A matrix representation of δM(K4).

In contrast to the above, where we considered representations of a binary matroid over
two different fields, if we fix the field F, then the derived matroid of a binary matroid does
not depend on the representation.

Lemma 2.3. Let M be a binary matroid and let ϕ and ψ be F-representations of M for some
field F. Then (δM, δϕ) = (δM, δψ).

Proof. By a theorem of Brylawski and Lucas [1] (see [6, Proposition 6.6.5]), as M is binary,
all F-representations of M are projectively equivalent. Thus if A1 and A2 are the matrices
corresponding to δϕ and δψ, then there are non-singular matrices X and Y , where Y is
diagonal, such that A2 = XA1Y . It follows, by using determinants to compare the sets of
bases, that M [A2] = M [A1]; that is, (δM, δϕ) = (δM, δψ).

The derived matroid of the smallest non-binary matroid, U2,4, depends neither on the
representation nor the field. More generally, we have the following result.

Lemma 2.4. For a field F and n ≥ 3, let ϕ be an F-representation of Un−2,n. Then δUn−2,n
∼=

U2,n. In particular, δU2,4
∼= U2,4.

Proof. Clearly δUn−2,n has n elements. By Lemma 2.1, this matroid is simple of rank two and
so it is isomorphic to U2,n.

The derived matroids of rank-one matroids are the cycle matroids of complete graphs.

Lemma 2.5. For a field F and n ≥ 1, let ϕ be an F-representation of U1,n. Then δU1,n
∼=

M(Kn).

Proof. As U1,n is binary, by Lemma 2.3, we may assume that F = GF (2). Then δU1,n is
represented over that field by the n ×

(
n
2

)
matrix whose columns are all distinct vectors of

length n having exactly two non-zero entries. This matrix also represents M(Kn).

For a fixed field F, we know that δM does not depend on the F-representation of M when
M is binary. We now show that this does not hold in general.

Theorem 2.6. Let F be a field. Then, for all F-represented matroids (M,ϕ) the derived
matroid δM does not depend on the F-representation ϕ if and only if F is GF (2) or GF (3).

Proof. If F = GF (2), then, as noted above, δM does not depend on the GF (2)-representation
of M . Now let F = GF (3). Then, by a theorem of Brylawski and Lucas [1] (see [6, Corol-
lary 14.6.1]), all GF (3)-representations of a ternary matroid M are projectively equivalent.
Hence δM does not depend on the representation. For the converse, we use two examples.
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We view the field GF (4) as GF (2)(ω) where ω2+ω+1 = 0. Kahn [3] noted that U2,4⊕2U2,4

is represented over GF (4) by the matrix Ax for each x in {ω, ω + 1} where

Ax =


1 2 3 4 5 6

0 1 1 0 1 1
1 1 ω 0 0 0
0 0 0 1 1 x

.
Then the matrix representing δM [Ax] has the following submatrix:



1246 1345 2356

1 ω 0
1 0 (ω + 1)(x+ 1)
0 1 ω(x+ 1)
x 1 0
0 1 x
1 0 1

.

These three columns are linearly dependent when x = ω + 1 but are linearly independent
when x = ω. Thus δM may depend on the F-representation of M when F = GF (4).

For a field F with at least four elements, the matroid U3,6 is represented by the matrix

A =


1 2 3 4 5 6

1 0 0 1 1 1
0 1 0 1 x1 x2
0 0 1 1 x3 x4


where x1, x2, x3, and x4 are elements of F− {0, 1} such that

{x1, x4} ∩ {x2, x3} 6= ∅, x1x4 6= x2x3, and (x1 − 1)(x4 − 1) 6= (x2 − 1)(x3 − 1).

We know that δM [A] has fifteen elements and rank three and is spanned by the fundamental
circuits of the elements 4, 5, and 6 with respect to the basis {1, 2, 3} of M [A]. If we consider
the matrix δA whose columns are labelled by the circuits of δM [A] and whose rows are labelled
by the columns of A, we see that the submatrix of this matrix whose columns are labelled by
these fundamental circuits, {1, 2, 3, 4}, {1, 2, 3, 5}, and {1, 2, 3, 6}, and whose rows are labelled
by 4, 5, and 6 is I3. It follows that δM [A] is represented by the submatrix of δA obtained by
removing its first three rows. This submatrix has the following submatrix:


1246 1356 2345

−x4 0 −1
0 −x2 1
1 x1 0

.
As the determinant of this matrix is x1x4 − x2, it follows that δM [A] does depend on the
representation provided the field is large enough to allow us to choose two different 4-tuples
(x1, x2, x3, x4) such that x1x4 − x2 = 0 for one of these 4-tuples but x1x4 − x2 6= 0 for the
other. As the reader can easily check, this is possible provided F has at least five elements.
Thus, for all such fields, δM may depend on the F-representation of M .
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The last result is not surprising since it is well known that all F-representations of an
F-representable matroid are projectively equivalent if and only if F is GF (2) or GF (3).

Next we observe that adding an element in series to an existing element of M does not
alter δM .

Lemma 2.7. For a field F, let (M,ϕ) be an F-represented matroid. If {e, f} is a cocircuit of
M , then δ(M/e) = δ(M) where the representation of M/e is that induced by ϕ.

Proof. As M has {e, f} as a cocircuit, it has a basis B that contains e but not f . We can
transform the matrix A corresponding to ϕ into a matrix of the form [Ir|D] where the columns
of the identity matrix are labelled by the elements of B, and the first columns of Ir and D
are labelled by e and f , respectively. Then M/e is represented by the matrix that is obtained
from [Ir|D] by deleting the first row and the first column. As e ∪ (E(M) − B) contains a
unique cocircuit of M and {e, f} is a cocircuit contained in this set, the only non-zero entries
in the first row of [Ir|D] are in the columns labelled by e and f . Hence a circuit of M contains
e if and only if it contains f . Thus, in the representation of δM in which the columns are
the circuit vectors and the rows are labelled by the elements of M , the row labelled by f is a
non-zero scalar multiple of the first row, the row labelled by e. Thus deleting the row labelled
by f gives a representation for the same matroid. As (c1, c2, . . . , cn) is a circuit vector of M
if and only if (c2, c3, . . . , cn) is a circuit vector of M/e, we deduce that δ(M/e) = δM .

The next lemma specifies what effect the presence of a loop or a coloop has on δM .

Lemma 2.8. Let (M,ϕ) be an F-represented matroid.

(i) If e is a coloop of M , then δM = δ(M\e).

(ii) If e is a loop of M , then δM = U1,1 ⊕ δ(M\e).

Proof. The first part is immediate from the fact that a coloop is in no circuits. Now suppose e
is a loop of M . The only circuit vector with a non-zero entry in the coordinate corresponding
to e is the circuit vector of the circuit {e}. Hence {e} is a coloop of δM .

Recall that, for a matroid M , its cosimplification co(M) is the matroid that is obtained
from M by deleting all coloops and then contracting all but one element from each series
class. The following result is an immediate consequence of the last two lemmas.

Corollary 2.9. For a field F, let (M,ϕ) be an F-represented matroid. Then δM = δ(co(M)).

By combining the last corollary with Lemma 2.4, we obtain the following result.

Corollary 2.10. For a field F, let (M,ϕ) be a connected F-represented matroid with r∗(M) =
2. Then co(M) ∼= Un−2,n for some n ≥ 3 and δM ∼= U2,n.

We observe that the connected matroids M for which co(M) ∼= U1,3 coincide with the
cycle matroids of theta graphs.
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3 Connected matroids

In this section, we prove some results that will be used in the proofs of the main theorems.

Lemma 3.1. Let e be an element of a connected matroid M . Then M has at least r∗(M)
circuits containing e.

Proof. The result is true if M is a circuit or a coloop and so holds if |E(M)| ∈ {1, 2}. Assume
the result is true for |E(M)| < k and let |E(M)| = k ≥ 3. Suppose f ∈ E(M) − e. Assume
M/f is connected. Then, by the induction assumption, as r∗(M/f) = r∗(M), we see that
M/f , and hence M , has at least r∗(M) circuits containing e. We may now assume that M/f
is disconnected. Then M\f is connected and so has at least r∗(M\f) circuits containing e. As
the connected matroid M certainly has a circuit containing {e, f}, we deduce that M has at
least r∗(M\f) + 1 , that is, r∗(M), circuits containing e. The result follows by induction.

Lemma 3.2. Let M be a nonempty connected matroid. Then

|C (M)| ≥
(
r∗(M) + 1

2

)
and r∗(δM) ≥

(
r∗(M)

2

)
.

Proof. We prove the first inequality by induction on |E(M)|. The result clearly holds for
r∗(M) = 1 and so holds for |E(M)| ∈ {1, 2}. Assume it holds for |E(M)| < k and let
|E(M)| = k ≥ 3. Take e in E(M). Suppose M\e is connected. Then, by the induction
assumption,

|C (M\e)| ≥
(
r∗(M\e) + 1

2

)
=

(
r∗(M)

2

)
.

By Lemma 3.1, M has at least r∗(M) circuits containing e. Thus

|C (M)| ≥
(
r∗(M)

2

)
+

(
r∗(M)

1

)
=

(
r∗(M) + 1

2

)
.

We may now assume that M\e is disconnected. Then M/e is connected, so

|C (M)| ≥ |C (M/e)| ≥
(
r∗(M/e) + 1

2

)
=

(
r∗(M) + 1

2

)
.

The first inequality follows by induction. The second inequality is a straightforward conse-
quence of the first since, by Corollary 2.2, |C (M)| = r∗(δM) + r∗(M).

We omit the proof of the following straightforward consequence of the last lemma.

Corollary 3.3. Let M be a connected matroid. Then

|C (M)| ≥ 3(r∗(M)− 1).

For a matroid M and a basis B of M , the graph GB(M) is the simple bipartite graph
having B and E(M) − B as its vertex classes where a vertex x of E(M) − B is adjacent to
a vertex y of B if and only if y ∈ C(x,B). Cunningham [2] and Krogdahl [4] proved the
following result (see also [6, Proposition 4.3.2]).

Lemma 3.4. The vertex sets of the components of the graph GB(M) coincide with the com-
ponents of the matroid M .
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Lemma 3.5. Let (M,ϕ) be an F-represented matroid such that M has no coloops. If M =
M1 ⊕M2, then δM = δM1 ⊕ δM2.

Proof. For a basis B of M , we know that δM is spanned by the set {C(f,B) : f ∈ E − B}
of fundamental circuits of B. By Lemma 3.4, the components of GB(M) coincide with the
components ofM . In particular, ifBi = E(Mi)∩B for each i, then {C(f,Bi) : f ∈ E(Mi)−Bi}
spans δMi. Since M has no circuit that meets both E(M1) and E(M2), it follows that no
circuit of δM meets both E(δM1) and E(δM2). We deduce that δM = δM1 ⊕ δM2.

Theorem 3.6. Let (M,ϕ) be an F-represented matroid with no coloops. If δM = N1 ⊕ N2,
then there are matroids M1 and M2 such that M = M1 ⊕M2 and Ni = δMi for each i.

Proof. Let E(M) = {e1, e2, . . . , em} where {e1, e2, . . . , er} is a basis B of M . Then δM is
spanned by {C(er+1, B), C(er+2, B), . . . , C(em, B)}. We may assume that N1 and N2 are
spanned by {C(ei, B) : r + 1 ≤ i ≤ s} and {C(ei, B) : s + 1 ≤ i ≤ m}, respectively. Let
E1 = ∪si=r+1C(ei, B) and E2 = ∪mi=s+1C(ei, B).

Suppose E1 ∩ E2 6= ∅. Then we may assume that C(er+1, B) ∩ C(em, B) 6= ∅. Then M
has a circuit C containing {er+1, em}. Writing the circuit vector cC as a linear combination of
the circuit vectors cr+1, cr+2, . . . , cm where cj is the circuit vector of C(ej, B), we see that the
coefficients of cr+1 and cm must both be non-zero. We deduce that, in δM , there is a circuit
containing the elements C(er+1, B) and C(em, B). This is a contradiction as these elements
are in different components of δM . We conclude that E1 ∩ E2 = ∅.

Because M has no coloops, every element of M is in E1 or E2. Letting Mi = M |Ei, we
see that δMi = Ni.

Corollary 3.7. For a connected representable matroid M and all k ≥ 0, the matroid δkM is
connected and

r∗(δkM) ≥ 2k(r∗(M)− 3) + 3.

Proof. We argue by induction on k. The result is immediate if k = 0. Now assume the result
holds for k − 1, which is non-negative. By Corollaries 2.2 and 3.3,

r∗(δkM) + r∗(δk−1M) = |C (δk−1M)| ≥ 3(r∗(δk−1M)− 1).

Thus r∗(δkM) ≥ 2r∗(δk−1M)−3. Hence, by the induction assumption, as δk−1M is connected,
it is either a coloop or has no coloops. Using Theorem 3.6, we see that, in each case, δkM is
connected. Moreover, by the induction assumption again,

r∗(δkM) ≥ 2(2k−1(r∗(M)− 3) + 3)− 3 = 2k(r∗(M)− 3) + 3.

Thus the result holds by induction.

4 The classification of derived sequences

In this section, we classify derived sequences into finite, cyclic, and divergent types, and
characterize each of them. By Theorem 3.6, we may focus on connected matroids.

Lemma 4.1. Let (M,ϕ) be a connected F-represented matroid. Then

(i) δM ∼= U0,0 if and only if M ∼= U1,1;
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(ii) δM ∼= U1,1 if and only if M ∼= Un,n+1 for some n ≥ 0; and

(iii) δM ∼= Un,n+1 for some n ≥ 0 if and only if n = 2 and M ∼= M(G) where G is a theta
graph.

Proof. Parts (i) and (ii) are straightforward to check. Now assume that δM ∼= Un,n+1 for
some n ≥ 0. Then, by Corollary 2.2, n+1 = r∗(M)+ r∗(δM) = r∗(M)+1, so r∗(M) = n. As
δM is simple, n ≥ 2. By Corollary 3.3, |C (M)| ≥ 3(r∗(M)−1), so r∗(M)+1 ≥ 3(r∗(M)−1).
Hence r∗(M) ≤ 2. Thus r∗(M) = 2, so, by Corollary 2.10, for some t ≥ 3, we have that
co(M) ∼= Ut−2,t and δM ∼= U2,t. We deduce that n = 2 and t = 3. Thus M ∼= M(G) where G
is a theta graph. The converse is established in Corollary 2.10.

Lemma 4.2. Let (M,ϕ) be a connected F-represented matroid. Then δM is not the cycle
matroid of a theta graph.

Proof. Suppose δM is the cycle matroid of a theta graph. Then r∗(δM) = 2. Thus, by
Corollary 2.2, |C (M)| = r∗(M) + 2. But, by Corollary 3.3, |C (M)| ≥ 3(r∗(M) − 1). Hence
r∗(M) ≤ 2. By Lemma 4.1, r∗(M) 6∈ {0, 1}. Thus r∗(M) = 2, so, by Corollary 2.10,
δM ∼= U2,n for some n ≥ 3, a contradiction.

Lemma 4.3. Let M be a 6-element rank-3 simple matroid. Then |C (M)| ≥ 7 with equality
if and only if M ∼= M(K4).

Proof. If M is not 3-connected, then it is either the 2-sum of U2,3 and U2,5 or the parallel
connection of U2,3 and U2,4. One easily checks that, in these cases, |C (M)| = 10 and |C (M)| =
8, respectively. If M is 3-connected, then M is isomorphic to M(K4), W3, Q6, P6, or U3,6

(see, for example, [6, Corollary 12.2.19]) where each of the last four matroids is obtained from
its predecessor by relaxing a circuit-hyperplane. Since each such relaxation eliminates one
circuit but adds r∗ new circuits, we deduce that |C (M)| ≥ |C (M(K4)| with equality if and
only if M ∼= M(K4). As M(K4) has exactly seven circuits, the lemma follows

The next theorem answers Longyear’s Questions 3(a) and 3(c) for represented matroids
over arbitrary fields. In particular, Theorem 1.1 is an immediate consequence of this result.

Theorem 4.4. Let (M,ϕ) be a nonempty F-represented matroid. If δkM ∼= M for some
k ≥ 1, then M is a direct sum of matroids each of which is isomorphic to U2,4.

Proof. It suffices to show that if δkM ∼= M for some k ≥ 1 and M is connected, then M ∼= U2,4.
Thus we assume that M is connected. We have r∗(M) = r∗(δkM), so, by Corollary 3.7,

r∗(M) = r∗(δkM) ≥ 2k(r∗(M)− 3) + 3.

Hence 0 ≥ (2k − 1)(r∗(M)− 3), so r∗(M) ≤ 3. By Lemma 4.1, r∗(M) 6∈ {0, 1}.
Suppose r∗(M) = 3. Then r∗(δkM) = 3. As r∗(δiM) ≥ 2r∗(δi−1M)− 3 for all i in [k], it

follows by induction that r∗(δiM) = 3 for all such i. Since r(δkM) = r∗(δk−1M), we deduce
that r(M) = 3. Hence M is a 6-element rank-3 matroid having exactly six circuits. As δkM
is simple, so is M and we have a contradiction to Lemma 4.3. Thus r∗(M) 6= 3, so r∗(M) = 2.

Now r(δM) = r∗(M) = 2. Since δM is simple, it follows that δM ∼= U2,n for some n ≥ 3.
If n = 3, then δM , δ2M , and δ3M are U2,3, U1,1, and U0,0, so, for all i ≥ 1, no δiM is
isomorphic to M . If n ≥ 5, then r∗(δM) ≥ 3 > r∗(M), so k ≥ 2. Then

r∗(δkM) ≥ 2k−1(r∗(δM)− 3) + 3 ≥ 3 > r∗(M),
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a contradiction. We conclude that n = 4, that is, δM ∼= U2,4. By Lemma 2.4, δkM ∼= U2,4 for
all k ≥ 1, so r(δkM) = r∗(δk−1M) = 2. Hence r(M) = 2, so M is a simple 4-element matroid
of rank two, that is, M ∼= U2,4.

Theorem 4.5. Let M be a connected represented matroid that is not isomorphic to U0,0,
U1,1, a circuit, the cycle matroid of a theta graph, or a matroid whose cosimplification is U2,4.
Then, for all k ≥ 1,

r∗(δk+1M) > r∗(δkM).

Moreover, r∗(δkM) ≥ 2k−1+3 unless M ∼= U1,4. In the exceptional case, r∗(M) = 3 = r∗(δM)
and r∗(δ2M) = 4, so r∗(δkM) ≥ 2k−2 + 3 for all k ≥ 2.

Proof. We may assume that r∗(M) ≥ 2 otherwise M is U0,0, U1,1, or a circuit. By Corol-
lary 3.7,

r∗(δk+1M) ≥ 2r∗(δkM)− 3. (1)

Then, for k ≥ 1,

r∗(δkM) ≥ 2k−1(r∗(δM)− 3) + 3 ≥ 2k−1(2r∗(M)− 6) + 3.

Thus r∗(δkM) ≥ 2k−1 + 3 ≥ 4 provided r∗(δM) ≥ 4 or r∗(M) ≥ 4. In each of these cases, the
lemma holds since, by (1), r∗(δk+1M) > r∗(δkM) + r∗(δkM)− 4 ≥ r∗(δkM).

We may now assume that r∗(δM) < 4 and r∗(M) < 4. Suppose r∗(M) = 3. Then
r(δM) = 3. As r∗(δM) ≤ 3, we see that |E(δM)| ≤ 6, that is, |C (M)| ≤ 6. Hence,
by Lemma 4.3, |E(M)| ≤ 5. Suppose |E(M)| = 4. Then M ∼= U1,4 and, by Lemma 2.5,
δM ∼= M(K4). Thus r∗(δM) = 3 and r∗(δ2M) = 4. Therefore the first inequality in the
lemma holds when k = 1. For k ≥ 2, we have r∗(δkM) ≥ 2k−2(r∗(δ2M) − 3) + 3 and, using
(1), we see that the lemma follows when M ∼= U1,4 since r∗(δ2M) = 4.

Now suppose that r∗(M) = 3 and |E(M)| = 5. Then M is isomorphic to U2,5 or the
matroid that is obtained from U2,4 by adding an element in parallel to an existing element.
In each of these cases, |C (M)| ≥ 8, so r∗(δM) ≥ 5, a contradiction.

We may now assume that r∗(M) = 2 and r∗(δM) ≤ 3. Then r(δM) = 2 and, by
Corollary 2.10, δM ∼= U2,4. Since M∗ is a rank-2 connected matroid with exactly four rank-
one flats, we deduce that co(M) ∼= U2,4, a contradiction.

We now answer Longyear’s Question 4 for arbitrary represented matroids and thereby
prove Theorem 1.2.

Theorem 4.6. Let M be a represented matroid such that δkM ∼= U0,0 for some k ≥ 0. Then
δ3M ∼= U0,0 and each component of M is isomorphic to U1,1, a circuit, or the cycle matroid
of a theta graph.

Proof. By Lemma 4.1, if each component of M is isomorphic to U1,1, a circuit, or the cycle
matroid of a theta graph, then δ3M ∼= U0,0. Now let N be a component of M . By Lemma 2.4,
if co(N) ∼= U2,4, then δkM has U2,4 as a component for all k ≥ 1, so δkM 6∼= U0,0. We may
now assume that N is not isomorphic to U1,1, a circuit, the cycle matroid of a theta graph, or
a matroid whose cosimplification is U2,4 Then, for all k ≥ 1, by Theorem 4.5, r∗(δkM) ≥ 3,
so δkM 6∼= U0,0.
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