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Robertson and Seymour have shown that there is no infinite set of graphs in
which no member is a minor of another. By contrast, it is well known that the class
of all matroids does contains such infinite antichains. However, for many classes of
matroids, even the class of binary matroids, it is not known whether or not the
class contains an infinite antichain. In this paper, we examine a class of matroids
of relatively simple structure: .#, , . consists of those matroids for which the dele-
tion of some set of at most « elements and the contraction of some set of at most
b elements results in a matroid in which every component has at most ¢ elements.
We determine precisely when .4, , . contains an infinite antichain. We also show
that, among the matroids representable over a finite fixed field, there is no infinite
antichain in a fixed .#, , .; nor is there an infinite antichain when the circuit size
is bounded.  © 1995 Academic Press, Inc.

1. INTRODUCTION

As the culmination of a long sequence of papers, Robertson and
Seymour [8] proved that, in any infinite set of graphs, there is one that is
a minor of another. However, it is well known that no matroid in the set
{PG(2, p): p prime} is a minor of another matroid in this set. Thus the
analogue of Robertson and Seymour’s result fails for the class of all
matroids. But the answer to the following question, which has recently
become popular, is not known even for ¢ =2.

(1.1) Question. For a prime power g, is there an infinite set of GF(g)-
representable matroids none of which is isomorphic to a minor of another?

Brylawski [3] noted that the answer to this question is negative if one
replaces GF(q) by any fixed infinite field F: for n >3, let M, be the rank-3
matroid on 2n elements, e,, f|, €5, f3, . e,, f,, for which the only
non-spanning circuits are {e,, fi, e,}, {€s, f5, €3}, ., (€4, for €1}; EVETY
member of {M,:n=3} is representable over F, but none is a minor of
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another. Since M }* is transversal for all n, the analogue of Robertson and
Seymour’s result also fails for the class of transversal matroids.

Bixby [1] and Seymour [9] proved that the excluded minors for the
class of ternary matroids are the S-point line, U, s its dual, U,_s; the Fano
matroid, F,; and its dual, F¥ This motivated Brylawski [3] to ask
whether the class of matroids having no minor isomorphic to U, 5 or U s
contains an infinite antichain, an infinite set of matroids none of which is
a minor of another. Kahn (in [6, p.471]) answered this question
affirmatively.

Apart from the work noted above, little appears to have been done to
identify which classes of matroids contain infinite antichains. In this paper,
we shall consider matroids with a relatively simple structure; roughly
speaking, each is only a few elements away from being a direct sum of
small matroids. Our main result will determine precisely when a class of
such matroids contains an infinite antichain.

The terminology used here for graphs and matroids will follow [6]. A
binary relation < on a set Q is a quasi-order if it is reflexive and transitive.
A sequence ¢,, ¢, .. of members of Q is bad (with respect to <) if there
are no indices / and j such that i< j and ¢g,<q,. We call (Q, <) a well-
quasi-order (or a wqgo for brevity) if no infinite sequence of members of Q
is bad (with respect to <).

The proof that finite graphs are well-quasi-ordered by the minor relation
is extremely long and complicated, but the proof for a subclass of graphs
that exhibit a certain simple structure (see tree-width in [7]) is somewhat
easier. Thus it seems reasonable to seek classes of matroids that are
well-quasi-ordered among the matroids that also have relatively simple
structure. For non-negative integers a, b, and ¢, let .4, , . consist of
those matroids M for which there are disjoint subsets X and Y of E(M)
such that | X| <q, | Y] <b, and every connected component of M X/Y has
at most ¢ elements. The main result of the first part of the paper is the
following:

(1.2) THEOREM. The class #, , . is well-quasi-ordered with respect to the
minor relation if and only if at least one of the following holds:
(i) min{a, b} =0 and max{a, b} <1;
(ii) min{a, b} =0, max{a, b} =2, and c=2; and
(iit) max{a, b} <2 and ¢ < 1.
The proof of (1.2) is given in Section 2. In Section 3, we shall show that,
among the matroids representable over a fixed finite field, there is no

infinite antichain in a fixed .#, , .; nor is there an infinite antichain when
the circuit size is bounded. The remainder of this section will present some
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auxiliary notation and results about well-quasi-orders and matroids that
will be used in Sections 2 and 3.

Let @~ be the set of all finite sequences of members of @ and let < ="
be the binary relation on @ <“ defined as follows. For any two members
p={p., ps, . Pw)and g=1(q,, g, ... g,,) of 0=, write p<=® g if there are
indices iy, iy, .., i, with 1<i; <i,< --- <i, <n, such that p,<gq, for all
je {1,2,..,m}. The following fundamental result is due to Higman [5].

(1.3) THEOREM. If (O, <) is a wgo, then so is (0<%, <=“).

Let (Q;. <L (0, <3), o (@4, <) be quasi-orders and let @ =, x
0, x .- x Q.. Then a binary relation < can be defined naturally on Q as
follows: For any two members p=(p,, P2, ... Px) and g=1(q,. 44, ... i) of
Q. let p<q if p,<,q, for all je{l,2,..,k}. We shall refer to < as
<y x K, % - x €. The next result is a well-known and straightforward
consequence of (1.3).

(1.4) CoroLLARY. If (Q;, €,) is a wgo for all ie{l,2, ., k}, then
(O x0Q2% -+ xQp, ;X <,3%X -+ X K,) Is also a wgo.

The following is another useful fact about well-quasi-orders.

(1.5) LEMMA. Let (Q,w Q. --- U Qy, <) be a quasi-ordering and let
each (Q;, <) be a wgo. Then (Q, v Q,u - LUQ,, <) is a wqo.

In the proof of (1.2.), we will use the concepts of a labeled matroid and
of a labeled minor. Let M be a matroid and let Q be a non-empty set. A
Q-labeling of M is a mapping f from E(M) to Q. We call the pair (M, f)
a Q-labeled matroid. If < is a quasi-order on , then, for any two
Q-labeled matroids (M, f,) and (M,, [>), we define (M, f)) <, (M,, f3)
if there are disjoint subsets X and Y of E(M,) and an isomoprhism ¢ from
M, to M, X/Y such that f (e} < f5(a(e)) for all the elements ¢ of E(M,).
If .# is a class of matroids, we shall denote by .#, the class of connected
members of .#. We also denote by .#(Q) the class of all Q-labeled
matroids (M, /) such that A/ is in .#. Evidently if < is a quasi-order on
0, then <, is a quasi-order on .#(Q). The following is a straightforward
consequence of (1.3).

(1.6) COROLLARY. Let (Q, <) be a wqo and let .« be a class of
matroids with the property that iff M is in #, then all the connected
components of M are also in .#. Then (#(Q), <,,) is a wqo if and only if
(AP <)

Let .#* be the class of duals of members of .#. Then the following is
clear.
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(1.7) Lemma.  Let (Q, <) be a wgo. Then (M(Q), <.,) is a wqo if and
only if (#*(Q), <m) is.

Let M denote the simple matroid associated with a matroid M; let .#
denote the class of simple matroids associated with members of .#; and let
. be the class of matroids M such that M is in .#.

(1 8) LEMMA. Let (Q <) be a qu and et < be <<(u. If
(A(Q =), <) is a wqo, then so is (A(Q), <p)

Proof. Let (M,, f,), (M5, f,), ... be an infinite sequence of members of
#(Q). We shall prove that there are indices i and j such that i< j and
(M, f)<u(M;, [;). For each M, if e, e,, .., e,, are the loops of M,, then
we define p, to be sequence f;(e,), f.:(es), ..., f:(e,.). Next we define a Q <-
labeling f; of M,, where we view M, here as a matroid on the set of parallel
classes of M,. If X is an element of M,, let x,, X,, .., X, be an arbitrary
ordering of the members of the parallel class X and def“nef(X) to be the
sequence Jilxy), filxz), . filx,). Clearly, p,1s in Q=" and }\71,,]",) 1 in

#(Q<"). Let ¢; denote (p,, (M,,f )). Then g, is in Q< x.#(Q<"). We
ﬁrst observe from (1.3) that (Q =“, <) is a wqo and then we conclude from
(1.4) that (Q<“x.#(Q =), < x <,,) is a wqo. Thus, there are indices i
and j with i < j such that p, < p, and (M,, f) =< (M, f,). From the defini-
tions of p,, p;, f;, and f;, it is easy to verify that (M, f)) <., (M, f)), as
required. |

Let £ be an integer exceeding one and let M,, M,, .., M, be connected
matroids such that each of them has at least two elements and
E(M,)nE(M,;)= {e} for all 1<i<j<k. Then we define the parallel sum
PSIM |, M,, ... M,)of M|, M,, .., M, with respect to the basepoint ¢ as
the matroid obtained from the parallel connection [2] of M|, M,, .., M,
by deleting e. Observe that if each of M, and M, has at least three
elements, then PS(M,, M,) is exactly the 2-sum of M, and M, [107. It is
not difficult to show [2, 3] that parallel sum has the following properties.

(1.9) LemMma. (i) If1<i<k, and X and Y are disjoint subsets of some
E(M)—{e} such that M)\X]Y is connected and has at least two elements,
then

PSIM My, M, |\ MA\X/Y  M,,,,...M)=PS(M,, M,, .., M, )\X/Y.
(1) Ifk=z3and 1 <i<k, then

PS(My, M, .o M, (M, ... M,)=PS(M,, M, .. M\\(E(M,)— {e}).
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If .# is a class of matroids, we shall denote by PS(.#) the class of
matroids M such that either M is in .#, or M equals PS(M,, M,, .., M,)
for some connected matroids M, M,, .., M, in 4.

(1.10) LemMma. If (H(Q), <) is a wqgo for every wqo (Q, <), then
(PS(.HNQ), <,,) is also a wqo for every wqo (Q, <).

Proof. Let A" =PS(M)— .# and let (Q, <) be a wqo. It follows from
(1.5) that we need only show that (A(Q), <.,) is a wqo.

Let S be the set that is obtained from Q by adjoining a new element ¢'.
Clearly, the relation < on Q can be extended to a relation on S by
insisting that ¢’ is incomparable with all the elements of Q. Evidently,
(S, <) 1s a wqo, where we have used the same symbol {or the extended
relation as for the original one. Thus we conclude from (1.3) and the
hypothesis of (1.10) that ({.#(S))<“, £<%) is a wqo. Now suppose that
(M, ) is a member of 4°(Q). It follows that M equals PS(M,, M,, .., M,)
for some matroids M, M,, .., M, in .#. Let ¢ be the basepoint of the
parallel sum. Then, for every ie {1, 2, .., k}, we define an S-labeling f; of
M, by letting f,(e)=¢  and letting f;(x)=f(x) for all elements x of
E(M;)— {e}. Let h(M, f) be the sequence of S-labeled matroids (M, f),
(M, £5), ... (M, f). Then A(M, f) belongs to (A(S))<“. Moreover, for
every member (N, g) of A7(Q), it is not difficult to verify by (1.9) that if
M, )<= h(N, g), then (M, )<, (N, g). Therefore the result follows
from the observation that ((.#(S))<“, < <?)is a wqo. |

2. MATROIDS THAT BREAK INTO SMALL PiECES

This section will be devoted to proving (1.2). We begin with the
following simple observations. Suppose that a’ <aq, that "< b, that ¢’ <c,
and that .#, , . is well-quasi-ordered by the minor relation. Then 4, , ..
is also well-quasi-ordered by the minor relation. Moreover, (1.7) implies
that .#,_ , . is well-quasi-ordered since .#, , .= (.#, , .}*. Hence, to verify
(1.2), it suffices to prove the following statements, and these proofs will

occupy the remainder of this section.

(2.1) #, 5 , is not well-quasi-ordered by the minor relation.

(2.2) ., | , is not well-quasi-ordered by the minor relation.

(2.3) #, 1 5 is not well-quasi-ordered by the minor relation.

(24) (M, Q) <n) is a wgo for every wgo (Q, <) and every
non-negative integer c.

(2.5). (Mao 2(0Q), <) is @ wgo for every wgo (Q, <).

(2.6). (M, (Q), <) is a wgo for every wgo (Q, <).
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Observe that, to prove (1.2), we only need unlabeled versions of
(2.4)-(2.6). These clearly follows from the statements above. We remark
here that, as steps towards proving (2.5) and (2.6), we shall also show that
each of (. o (@), <) and (A, (@), <) is a wqo.

Proof of (2.1). As noted in the Introduction, it is well known that the
class of projective planes PG(2, p), where p is a prime, is not well-quasi-
ordered by the minor relation. Since every projective plane has rank 3 and
s0 1s in .#, ; |, statement (2.1) follows immediately. }

Proof of (2.2). We shall construct a bad infinite sequence of matroids
in .4, , , by modifying an example of Kahn (in [6, p.471]). Let n be a
positive integer and let e,, €5, ..., €,,,  be the unit vectors in F(2rn+ 1, 2),
the vector space over GF(2) of dimension 2n+ 1. Let f5,, , =>7""" ¢, and,
fori=1,2,.,2nletfi=f,,,1—e.Let E,={e,, [1,€a, foys s €2nits Sfons1)
and let M, be the vector matroid on E,. Let C; = {e|, €2, (s f25 f35 o0 fon}
and C,=1{f|,e,, €5, .., €5,,,,- Then it is clear that both C, and C, are
circuit-hyperplanes of M,. Let N, be the matroid obtained from M, by
relaxing these two circuit-hyperplanes. We shall prove that N, N,, .. is a
bad sequence (with respect to the minor relation). Note that all the
connected components of N, ‘¢, . /f2,+1 are of size two. Thus each of the
matroids N, is a member of .#, | ,.

Observe that if e is an element in E, — {e,,, ;} and if C is the element
of {C,, C,} that does not contain e, then N,\e is the matroid that is
obtained from AM,'e by relaxing C. It follows from [6, p. 344, Ex. 2] that
N, e is non-binary. However, since N, ie,,,, equals M ‘e, ., the
matroid N,\e,,, | is binary. Now suppose that, for some indices m and n
with O<m <n, there are disjoint subsets X and Y of E(N,) with
N, =N,)X/Y. It is clear that we may assume that X and Y are
independent in N ¥ and N, respectively. Thus

Y =r(N,)—r(N,)=2(n—m)=r(N¥)—rN7)=|X|

Since N,, is non-binary, X does not meet both C| and C,, for otherwise
NNX =M X, and the latter is certainly binary. Since |E(N,) — (C,u C,)| =1
but (X{=2(n—m)=2, X meets C,uC,. Thus X meets C,; for some
ie{1,2}. Let {j}={1,2} —{i}. Then XU {e} meets both C, and C, for
every ee C;— Y. Consequently, N,\e, which equals N,\(Xu {e})/Y, is
binary for every ee C,— Y. But |C, - Y| 2|C |- |Y|=2n+1-2(n—m) =
2m + 1> 1, contradicting the fact that there is only one element e in E(N,,)
for which N,,\e is binary. ||

"y

Proof of (2.3). We begin with a slightly informal description of a
sequence of matroids M, My, ... from which a bad sequence in .#, , 5 will
be derived. This will be followed by a precise definition of the matroids
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FIGURE 1

involved. Let r be an integer exceeding four and take r—2 five-element
rank-3 matroids each isomophic to the matroid that is represented
geometrically in Fig. 1. Now join these rank-3 matroids together along the
line L somewhat like the pages of a book being joined along its spine with
each new page adding one to the rank. Figure 2 indicates how these r — 2
five-element matroids are fitted together, with the solid dots indicating the
points of M,. The labeling on these points makes the definition of M,
precise; {e,, €5, .., ¢, | is the natural basis of the vector space V(r, Q) over
the rational numbers @Q; for all k in {3,4,..,r—1), let

Xe=1le +2" ey, 0,428 e, +27 Fep, e,

e +28 e, +2' e e +25 ey
and let
X, ={e +2 " es, e, +27 e, +2° e, e, e, +2e,+2 e, 0+ 2e, ).

Then M, is the vector matroid on the set Bu ({J} _; X,). Hence, we can
think of M, as a restriction of PG(r— 1, Q). Clearly, for all k in {3, 4, .., r},
the matroid M,|(X, v {e(, e,}) is isomorphic to the rank-3 matroid in
Fig. 1. Now let N, =M, (L — {e,, ¢,}), where L is the line spanned by e,
and e¢,. We shall show that Ng, N, ... is a bad sequence (with respect to
the minor relation) in .#%, , ;.

ey ot €5 £
X

e ey e+283 e1+8¢e2 e +16¢y T1+27 2y

e+ler+te, e +22ey42% %,

FIGURE 2
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For kin {3,4,..,r}, let Y, =X,— L. Then Y, is a three-element cocir-
cuit of N,. Moreover, in N,/{e, e,}, each of Y3, Y,, .., Y, is the ground
set of a component. Thus N, is certainly in .#4, , ; for each r.

To show that N, N, ... is a bad sequence, we shall look more closely at
the structure of N,. First we note that it is straightforward to prove that
N, /z is 3-connected unless z is in {e,, ¢,}. From this it follows immediately
that

(1) N,/{x, y} is disconnected if and only if {x, y}={e,, e,}.
Next we examine the circuits of N, and prove the following.
(2) If Cis a circuit of N,, then either

(i) C meets at most two of the sets Y5, Y4, .., Y, and |C| <5, or

(i) C has exactly two elements in common with three of
Y3, Y4, veey Y,., and ‘C‘ =6

Since each Y, is a cocircuit of NV,, if C meets Y,, it must contain at least
two clements of this set. Moreover, the union of m of the sets Y5, ¥,, ..., Y,
is easily seen to have rank equal to m+ 2. Thus if C meets m of the sets
Vi, Y4, ... Y,, then r(C)<m+2 But r(C)=|{C|—1=22m—1. Hence
m+222m—1, so m<3. Moreover, if equality holds in the last inequality,
it must hold in the last four inequalities and (ii) must hold. On the other
hand, if m < 3, then (i) must hold.

(3) Suppose that i and j are distinct members of {3,4, ., r} and i <.
Ifj=i+1lor (i, j)=(3,r), then N,[({e,, e,} v Y, 0 Y,) is isomorphic to the
matroid that is represented geometrically in Fig. 3(a), otherwise
N, ({e, e} u Y, uY)) is isomorphic to the matroid in Fig. 3(b).

L L
-~ "
/elh \\\ // o ° \\\
7 - R
82" eZ"
L4 [ ]

[
J Y s
\\ ,,// "~ T
T ~_] - - —
(a) (b

FIGURE 3
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To show this, we first note that, in PG(r— 1, @), the line through the
two points e; +2* e, +2 %, and e, +2* e, +2' ke, of Y, — {e;}
meets the line L in the point e, + 3 -2*~2¢,. Similarly, the line through the
points e, + 2" "%e,+ 2% e, and e, +2e,+2 " 'e, of Y, — {e,} meets L in the
point e, +2(2"~* 4+ 1) e,. Since the points

e, e, e,+2e,,e,+de,,...e +2 " 2e,,
er+3-2er,e,+3-4ey, ., 0, +3 "2’7262, e, +2(27 4 e,

are distinct, N,|({e;,e,} U Y, U Y,) has no 3- or 4-circuits other than the
4-circuits implied by the appropriate part of Fig. 3.
The next observation is a straightforward consequence of (2) and (3).

(4y N,\{e,,e,} has exactly r—2 four-element circuits. Moreover,
these circuits may be labeled C,, C,, .., C,_, so that if i and j are distinct
elements of {1,2,..,r—2}, then |C,nC,| is 1 when j=it1 and is 0
otherwise, where all subscripts are read modulo r — 2.

Now suppose that, for some 7<r, the matroid N, is isomorphic to a
minor of N,. Then E(N,) has disjoint subsets X and Y such that
N. 2N X/Y, where |Y|=r—1tand | X|=2(r—1).

(5) Y does not meet {e,,e,} and contains at most one element of
each Y,.

i

To see this, we note that, on contracting one of e, and ¢,, or two
elements from some Y,, we obtain a matroid N having an element e such
that no component of N/e has more than three elements. The 3-connected
matroid N, cannot be isomophic to a minor of such a matroid N.

By (5), Y contains exactly one element from each of r—¢ of the sets
Y5, Y4, Y. In N, /Y, the line L spanned by {e,, e,} contains at least
21Y| +2 elements. Since N, has no circuits of size less than 4 and
N,/Y' X=N,, the line L contains at most two elements in N, X/Y. But
|X|=21Y], so L contains exactly two elements, say x and y, in N\ X/Y.
Moreover, the contraction of {x, y} from N,\X/Y produces a disconnected
matroid. Thus, by (1), in the isomorphism between N, X/Y and N,, the
elements x and p of N, X/Y must correspond to the elements ¢, and e, of
N,. Therefore, by (4), N,\X/Y\{x, y} has exactly /-2 four-element
circuits, which can be labeled D,, D,, .., D, , so that [D,nD,,,|=1 for
all iin {1,2, .., t—2}, where subscripts are read modulo ¢ — 2. But the only
4-circuits of N, avoiding L are C,, C,, .., C, ,. If Cis a 4-circuit of N, /Y
that is not a 4-circuit of N, then it follows by (2) that, for some subset Y’
of Ywith 1 €]Y’| <2, the set Cu Y'is a circuit of N,. But, by (2) and (3),
the 4-circuit C of N, /Y must meet L so C is not a circuit of
NAX/Y'{x, y}. We conclude that N\X/Y"{x, y} does not have the

S82b 63 1-2
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required collection of 4-circuits to be isomorphic to N,, and this
contradiction completes the proof of (2.3). |

Proof of (2.4). It is clear from (1.6) that we only need to consider the
class .# of connected matroids in .4, ; .. The case when ¢ =0 is trivial and
thus we assume that ¢>1. Let 4" be the class of connected matroids
having at most ¢ + 1 elements. Then, for each M in .# — .4", we conclude
from the definition of .4, , . that there is an element ¢ of M such that each
of the connected components M, M,, ..., M, of M/e has at most ¢ elements.
Let N,=M|(E(M;)u {e}) for all iin {1,2,.., k} and let Ny= U, , such
that E(Ny) N E(M)={e}. It is clear that each N, belongs to 4" and that
M= PS(Ny, N\, .., N;). Since .# is closed under isomorphism, it follows
that .# = PS(.A4"). Observe that .4 is the union of finitely many classes of
matroids each of which consists of pairwise isomorphic matroids. Thus we
conclude by (1.5) and (1.4) that (A47(Q), <.} is a wqo for every wqo
(Q, <). Therefore the result follows from (1.10). J

Remark. 1t is not difficult to see from the above proof that, actually,
My, (Q) is well-quasi-ordered by the deletion-minor relation and
M o Q) is well-quasi-ordered by the contraction-minor relation.

Proof of (2.5). Let (Q, <) be a wqo. It follows from (1.6) and (1.8) that
we need only consider the class .# of simple connected members of .4, ,, ,.
Observe that there is no simple connected matroid with exactly two
elements. Thus .# < .#, , ;. Hence, from (1.7), it suffices to show that
(.#, 5 1(Q), <) 1s a wqo. Let .47 be the class of simple connected members
of .#, , ,. By (1.6) and (1.8) again, we need only show that (A7(Q), <,,)
is a wqo. But this is clear because it is not difficult to see that
A ={U, ,:n=3} |

The next two results will be used in proving (2.6).

(2.7) LeMMA. I (Q, <) is a wqo, then so is (M, | (@), <n)

Proof. From (1.6) and (1.8), we need only consider the class .# of
simple connected matroids in .#, , . We shall prove that .# < .#, , , for
the result will then follow from (2.5). Let M be a member of .#. Then there
are disjoint subsets X and Y of E(M ) such that all the connected components
of M\X/Y have just one element, |X| <2, and |Y|<1. If | Y| =0, then M
is in .#, o, as we wanted. If Y= {y}, let N be the connected component
of M\X that contains y. Since all the connected components of N/y have
a single element, we must have r(N)< 1. Therefore, since M is simple, we
conclude that E(N)= { y}. It follows that all the connected components of
M\ X have a single element and so M is in .#, o ,. Hence . # < .4, , ,, as
required. |i
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(2.8) LEMMA. Let # be the class of connected matroids that have a
cobasis of rank two. Then (#(Q), <.} is a wqo for every wgo (Q, <).

Proof. This proof is the core of the proof of (2.6). Since it is long,
certain significant steps have been identified as statements (1)-(10).

For every member M of .#, we call a partition (4, B) of E(M) good if
A is a cobasis of M with r(A4)=2. Since, in such a good partition, B is a
basis of M and r*(B)=|B| —r(M)+r(4)=r(4) =2, it follows that

(1)} if (A, B) is a good partition of a member M of .#, then #* is a
member of .# with a good partition (B, A).

We also have the following observation.

(2) Let M be a member of M —.# 5, and let (A, B) be a good
partition of M. If x and y are parallel in M, then both elements are in A.

Suppose that (2) does not hold. Then B meets {x, y}. But B is inde-
pendent, so it must contain exactly one of x and y, say x. It follows, since
r*(B)=2=r(A), that the sets B— {x} and 4 — {y} contain elements x’
and ), respectively, such that {x, x'} and {y, y'} are independent in M *
and M, respectively. Thus {x, x'} spans Bin M*, and {y, y'} spans 4 in
M. Therefore, every connected component of M {x, x'}/{y, v'} is cither
a loop or a coloop. Since x is a loop of M/y and hence is a loop
of M'x'/{y, '}, we conclude that every connected component of
M x'/{y, '} is either a loop or a coloop. Thus M belongs to .#, , ,. This
contradiction implies that (2) must hold.

Let .+] be the class of members of .# that are both simple and cosimple.
For a matroid M, let M denote the simple matroid that is associated with
the dual of M. We show next that

(3) if Misin . —. M 5, then either M or M“ is in A, .My, .

Let M be a member of .# —.#, , , and let (4,, B,) be a good partition
of M. We shall view A as a deletion minor of M rather than as a matroid
on the set of parallel classes of M. Then E(M) is a subset of E(M). It
follows from (2) that B, is a subset of E(M). Let 4, = E(M)— B,. It is easy
to verify that (4,, B,) is a good partition of A and thus that A7 is a
member of ./#. If Me.+;, then (3) holds. If A7 ¢.4,, then it is clear that
(M)* is not simple.

Let N denote (M)*. Then N =M< Moreover, by (1), N is a member of
.4 with a good partition (B,, 4,). If Ne.#, , ,, then Me.#, , , and thus
(3) holds. Hence we may assume that N¢ .#, , ,. Then, from (2), we
conclude that every non-trivial parallel class of N is a subset of B,. Let
B,=E(N)— A,. It is clear that N is a member of .# with a good partition
(B,, A,). If N is cosimple, then N, which is M¢, is in .4; and (3) holds.
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We may now suppose that N is not cosimple. Then, since N¢.#, , ,, the
rank of N exceeds one. Thus, as N is connected, N has no coloops. Hence
there must be two elements x and y that are in series in N. Since x and y
are not in series in N, we conclude that at least one of x and y, say x, is
contained in a non-trivial parallel class of N. It follows, by (2), that x is in
B,. Hence x is in B,. However, by (1), (¥N)* is a member of .# with a good
partition (4, B,). Therefore, we conclude, by (2), that (N)*e.#, , , and
so Ne.#, , ,. Thus the proof of (3) is completed.

Let .4" be the class of members of .4, whose rank and corank both
exceed two. Clearly 44— A = . #, o , v .# 5 ,. Thus (3) can be restated as
follows.

(4) For every M in M, either M or M“ is in N O M, O My, .

Let =N U, , w.H . From (4), it follows that .# is contained
in the union of .2 and (#)*. Thus, by (1.5), (1.7), (1.8), and (2.7), we need
only show that (A7(Q), <,,) is a wqo.

Next we describe the set of circuits of a member M of .4". Let (A4, B) be
a good partition of M. Since B is a basis of M, the rank of M is |B|, and
so M is uniquely determined by its set of non-spanning circuits. As B is
independent in M, it follows that

(5) for each a in A, there is at most one b in B such that
(B—{b})u{a} is a circuit of M.

Let by, b,, ..., by be the elements of B such that (B— {b,}}uU {a} is a circuit
of M for some « in A. It follows from (5) that we may choose «,, a5, ..., a;
from A in such a way that, for every i in {1,2,.., 4k}, the set
(B—1{b;})w {a,} is a circuit of M. We shall show next that
(6) the non-spanning circuits of M are
(i) {(B={b}huia}:i=1,2,.,k} and
(i) {C:C<=4and |C|=3}.

To prove this, we first observe that, from the choice of
a., by, as, by, .., a,, b, all the sets of type (i) are circuits of M. Moreover,
since M is simple and r(A4)=2, all the sets of type (ii) are also circuits of
M; and

(7Y if Cis a circuit of M with C < A, then C is of type (ii).
To complete the proof of (6), it remains to show that
(8) if C is a non-spanning circuit of M and Cn B# &, then C is of
type (1).

To prove this, we shall first prove that
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(9) i C is a non-spanning circuit of M and Cn B# 5, then
|CnB|=|B|—1.

Since B is a basis of M, it is clear that |{C ~ B| < |B| — 1. On the other
hand, since Cn B# ¢, it follows that C ~ B contains a circuit of M/A.
Since M * is simple and r*(B) =2, it is clear that M/A is a uniform matroid
of rank |B| — 2. Hence all the circuits of M/A4 have |B| — 1 elements. There-
fore |Cn B| = |[B|— 1 and thus (9} is proved.

We now complete the proof of (8). Since C & 4, it follows, by (9), that
there is an element b in B such that C~ B=B— {b}. But B— {h} is inde-
pendent in M and C is a circuit of M of cardinality at most |B|. Therefore
there is an element a of A4 such that C=(B— {bh})u {a}. Thus b=, for
some i To finish proving (8), we must show that a=a,. If a#aq,, let
C,=(B—1{b;})u{a,;} and let d be an element of C,n C. Then there is a
circuit ¢’ of M such that C'< (C,u C)— {d}. Clearly C'c (B—{b,,d})u
{a, a,} so C’is non-spanning. Moreover, since C,n C= B — {b,}, it follows
that |{C'n B| < |B| —2. By applying (9) to C’, we conclude that C'< 4.
Then, since [(C,w C)n A| =2, we have |C’'| <2, contradicting (7). Thus
(8) and hence (6) is proved.

Now we finish the proof of (2.8) by showing that (47(Q), <,,) is a wqo.
Let M be a member of 4", and let A4, B, a,, b,, a;, b,, .., a,, b, be as in (6).
Let A, be the set of elements a, ., ax 2, a,, Of A—{a,, a;,..,a.},
and let B, be the set of elements by, |, by 2, .., by Of B—1{by, b;, ..., b}
We encode M as ([(a,, b;), (a3, b3), .., (ay, b;)]), 4;, B,). Then it is not
difficult to verify the following:

(10) (i) Ifk=1and min{|A|, |B|} =4, then, for all i in {1,2, ...k},

(ay, by), (a3, by), s (ay, B1) ], Ay, BiNa, /b,
([(alvb ) (aZ’ -)s (e ] (ai\lsbi—])’
(a|'+l9bl+l)5 ey (ak’bk)]xAl!Bl)-

(it} If |A| >4 then, for all i in {k+1,k+2, .. ,mj},
([(ay, b (av,bz) o, b)) Ay, Boa;=([(a,, b)),
(as, b ), > bi) s Al_{ai}sBl)-

(iii) If |B| =4, then, for all iin{k+1,k+2, ..,n},
([(ay, bi) (@, by), oy (ak, b)), Ay, Bi)bi = ([H{ay, b)),
(@, b5), s (ar. b)), Ay, By — {bi})-

Let f be a Q-labeling of M. We define p(M, f) to be

([(f(al )s f(bl ))a (f(az), f(bZ))9 evs (f(ak)a f(bk))]s
[f(@x 1)y o flan)]s Lf(B 1 1)s s f(B,) D)
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Clearly, if we denote (OxQ)“"xQ~"xQ<” by 2, then p(M) is a
member of 2. Let < be the binary relation (< x <) x <““x <°“. It
follows from (1.3) and (1.4) that (2, <) is a wqo. Moreover, by (10), it
15 straightforward to check that, for any two members (M, f) and (N, g)
of A7(Q), if p(N, g)< p(M, f), then (N, g)<,, (M, ). Thus (2.8) follows.

Proof of (2.6). Let .4 be as in (2.8) and let .4" be the class of matroids
whose rank or corank is 2. Since .4 < . #, o ;U ., 5 4, it follows from (2.5)
and (1.5) that (.47(Q), <.) is a wqo for every wgo (Q, <). Thus, to prove
(2.6), 1t follows, by (2.7), (2.8), (1.5), (1.6), (1.7), and (1.10), that we need
only show that every connected matroid in .4, , , isin . #, 5, > 1, H,
or PS(.47).

Let M be a connected matroid in #, , , —(.#, v .# ;) and let X
and Y be disjoint subsets of E(M) with |X|=]Y|=2 such that every
connected component of M\ X/Y is either a loop or a coloop. Since
Mé¢. 4, v .4, , it follows that X and Y are independent in M* and
M, respectively. Let 4 be the set of elements ¢ of M such that either a is
in X, or ais a coloop of M X/Y. Let B=E(M)— A. Then B is the set of
elements  of M such that either 4 is in Y, or b is a loop of M X/Y. It
follows that every element of B is spanned by Y and thus »(B)=2.
Similarly, r*(4)=2. Thus r(M)=14|+r(B)—r*(A)=1]A4|. If A is inde-
pendent in M, then it is a basis of M and so B is a cobasis of M. In that
case, it follows that M is in .#. Therefore we may assume that r(A4) <|A|.
Since M is connected, we must have r(4)+ r(B)>r(M). Then, from the
last two inequalities and the fact that r(B)=2, we conclude that
r(A)+¢¥(By=r(M)+ 1. Hence M is a 2-sum of a rank-2 and a corank-2
matroid. Thus M is in PS(.4") and the proof of (2.6} is complete. ||

3. MATROIDS REPRESENTABLE OVER A FINITE FIELD

For a field F and a class of matroids .#, let .#" denote the class of
matroids in .# that are representable over F. We know from (1.2) that not
every class ./#, , . is well-quasi-ordered by the minor relation. However,
from the main result of this section, it follows that, for every finite field F
and all non-negative integers a, b, and ¢, the class .#”,  is well-quasi-
ordered.

The next theorem is the main result of this section. It uses a new concept,
that of the zype «(M) of a matroid M, which is defined inductively as
follows. If E(M )=, then t{M)=0. If E(M)+# & and M is connected,
then #(M)=1+min{t(M\e), t(M/e).ec E(M)}. If M is disconnected,
then #«(M)=max{¢(M,)}, where the maximum is taken over all the
connected components M, of M. It is clear from the definition that
H{M*)=t(M) for all matroids M.
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(3.1) THEOREM. Let F be a finite field, k be a non-negative integer, and
A be the class of F-representable matroids of tvpe at most k. Then
(AH(Q), €4) is a wgo for every wqo (Q, <).

Before proving this theorem, we make the following remarks.

Remark 1. Let a, b, and ¢ be non-negative integers and let M be a
matroid in .#, , .. It is clear that H{M)<a+ b+ ¢ and hence that the class
of matroids of type at most ¢ contains all classes .4, , . for which
a+ b+ ¢ < 1. However, there are matroids of small type that are not mem-
bers of any .#, , . for which max{a, b, ¢} is small. In particular, if D,, is the
disjoint union of 2n + 1 cycles each with »n + 1 edges, then it is easy to verify
that M(D,) has type two, but is not a member of .%, ,, ,.

On combining Theorem 3.1 with the first part of the last remark, we
immediately obtain the following.

(3.2) CorOLLARY. Let a, b, and ¢ be non-negative integers. Then
(A, (0). <) is a wqo for every finite field F and every wqo (Q. <).

We note here that, although the matroids used to prove (2.1)-(2.3) are
all representable over some finite field, there is no common finite field over
which all those matroids can be represented. Moreover, there is no integer
m such that all those matroids can be represented over some field with at
most m elements. Indeed, the following is an immediate consequence of
(3.2) and (1.5).

{3.3) CorROLLARY. Let a, b, and ¢ be non-negative integers, let m be an
integer exceeding one, and let A” be the class of matroids in #, , . that are
representable over some field with at most m elements. Then (A(Q), <) Is
a wqo for every wgo (Q, <).

Seymour [11] has proved the following result.

(3.4) THEOREM. [If C is a largest circuit of a connected matroid M, then
all the circuits of M/C have at most |C| — | elements.

It follows from this theorem that if M has no circuit of cardinality
exceeding a positive integer k, then (M) < k(k +1)/2. Thus (3.1) and (3.4)
imply the following.

(3.5) CoroOLLARY. Let F be a finite field and let k be a positive integer.
The class of matroids that are representable over F and have no circuit of
cardinality exceeding k is well-quasi-ordered by the minor relation.
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Remark 2. Statement (2.1) implies that the representability condition
in (3.5) cannot be dropped.

Proof of (3.4). Suppose that M/C has a circuit D such that |D|=|C]|.
Since M is connected, it has a circuit J meeting both C and D. Choose this
circuit so that |J— (Cu D)| is as small as possible. Clearly M|(Ju Cu D)
is connected. If /— (Cuw D) is empty, then in (M| (C v D))/C, the set J—C
is a proper subset of D, so D is not a circuit of M/C; a contradiction.

We may therefore assume that J— (Cu D) is non-empty. Choose ¢ in
CnJ and d in D~ J. Then, by the strong elimination axiom, M has a
circuit J, such that deJ, = (Ju C)— {c¢}. Clearly J, meets both C and D.
Thus, by the choice of J, it follows that J, —(Cu D)y=J—(Cu D).

Now choose x in (JnJ,)—(Cu D). Suppose that J,nD#J~ D and
choose e in (J—J,)n D. By elimination, M has a circuit J, that contains
e and is contained in (JuJ;)— {x}. This circuit must meet C since
otherwise it would be contained in J. But now J, contradicts the choice of
J. We conclude that J nD=JnD.

Recall that x is in (JnJ,)—(Cu D) and that ¢ is in (CnJ)—J,. By
elimination, M has a circuit J,; containing ¢ and contained in
(JuJ,)— {x}. By the choice of J, it follows that J, avoids D. Suppose that
J; # C. Then there is an element y in (JynJ)— (Cu D). Since dis in J—J,4
and y is in J; N J, there is a circuit of M that contains d and is contained
in (Jw J3)— {y}. This circuit must meet C since otherwise it would be con-
tained in J. Therefore this circuit contradicts the choice of J. We conclude
that J;= C and hence that JuJ,=2C.

By interchanging the roles of C and D in the above argument, we deduce
that M has a circuit J, such that J,—(CuD)=J—(CuD)
JynC=JnC; and J,uJ=2D. Since C<JuJ, and DcJuJ,, we
conclude that

[JynCl+[InCl=|C], [Jan Dl +|JnD|=|D|.
Adding the above inequalities and using the fact that |C| =|Dj, we get
nCl+ S nCl+{JnDl+|J,nD|=22]|Cl|
ButJAnD=J,nDand JnC=J,nC. Thus
(N Cl+ Iy Cl+|JynD|+ ], "D 22|C|.
Clearly |J|=|J,nCl+|J,nD|+|J—(Cu D) for i=1,4. Thus

/i =T =(CuD) + /s = /- (CuD)|Z22|C],
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and so
S+ 1L 22(1Cl+ |- (CuD})y>2 1.

Hence either |J,| or |J4| exceeds |C|, contradicting the choice of C. |}

In our proof of (3.1) we shall, informally speaking, establish the well-
quasi-ordering of matrix representations of matroids, rather than of the
matroids themselves. However, we shall not consider all matrix representa-
tions of a matroid, but only those corresponding to type-compatible bases,
which are defined inductively below. Let M be a matroid of type k. If k=0,
then the empty set is the unique basis of M; it is type-compatible. Suppose
now that k is positive and that the type-compatible bases have been defined
for all matroids of type at most k — 1. If the type-k matroid M is connected,
then a basis B of M is type-compatible if there is an element ¢ of M such
that one of the following holds:

(i) The element e is in B, the type of M/eis k—1, and B— {e} is a
type-compatible basis of M/e.

{11) The element e is not in B, the type of M'eis k—1, and B is a
type-compatible basis of M‘e.

A basis of a disconnected matroid is fype-compatible if it is the union of
type-compatible bases of the connected components of the matroid. From
the definition of type, it follows that every connected matroid M of positive
type has an element e such that min{:(M\e), (M/e)} =t(M)—1. Using
this fact, it is easy to verify that every matroid has a type-compatible basis,
and if B is such a basis of M, then E(M)— B is a type-compatible basis of
M*,

Let M be an F-representable matroid of positive type and let B be a
type-compatible basis of M. It is well known that if both r(M) and r*(M)
are positive, then M can be represented by a matrix [/5| 4] over F, where
the columns of Iz and A4 correspond to the elements of B and E(M)— B,
respectively, and 7, is the r(M)x r(M) identity matrix. Let us index the
rows of [75|A4] by the elements of B such that, for every e in B, the entry
in row e and column e is 1. We call A a type-compatible F-representation
of the pair (M, B). Note that, in general, (M, B) may have more than one
type-compatible F-representation. For convenience, if r(M})=0 or
r¥*(M)=0, we define the 0x |E(M)| matrix and the |E(M})| x0 matrix,
respectively, to be the only type-compatible representations of (M, B).

Let (Q, <) be a quasi-ordering and let f/ be a Q-labeling of M. Let
L(A, /) denote the matrix obtained from A4 by adding a new last row and
a new last column as follows. In the new row, the entry in column e is f(e)
for every e in E(M)— B. In the new column, the entry in row e is f{e) for
every e in B. The common entry of the new column and the new row is
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arbitrarily chosen subject to the condition that it not lie in Q. Clearly M, B,
and f are uniquely determined by the matrix L(A4, f).

Suppose that A4, and A, are type-compatibie F-representations of
(M,, B)) and (M,, B,). We write L(A4,, f,) < L{A4,, 5y if L(A,, f}) can
be obtained from L(A4,, f5) by a sequence of the following operations:

(i) deleting a row other than the last row;
(ii) deleting a column other than the last column; and

(iii) replacing an element ¢, of Q that is in the last row or column
by some ¢, In Q with g, <g,. It is not difficult to verify that if
L(Ay, 1)< L(4;y, f2). then (M, f)<n (M, f3). Let #(F, k, Q) be the
set of matrices L(A4, /) that are obtained from type-compatible F-represen-
tations of pairs (M, B), where B is a type-compatible basis of a matroid M
of type at most & and f'is a Q-labeling of M. Then, to prove (3.1), it suffices
to prove the following.

(3.6) LEmMMa. Let F be a finite field and let k be a non-negative integer.
Then (L (F, k, Q), <) is a wqo for every wqo (Q, <).

Proof. We proceed by induction on 4. The result holds trivially if £ =0,
so we assume that k>0 and that (3.6) holds for all smaller values of k. It
follows from (1.3) that we need only consider the subset %, of L(F, k, Q)
that corresponds to connected matroids. Let %, be the set of matrices in
%, that are of the form L(A, /), where A4 is a type-compatible F-represen-
tation of (M, B) and B contains an element ¢ for which t(M/e)=k— 1.
Observe that if a matrix A4 is a type-compatible F-representation of (M, B),
then the transpose A' of A is a type-compatible F-representation of
(M*, E(M)— B). Hence, for every matrix L(4, f) in %, — %., the matrix
L(A', ) belongs to %.. Thus, by (1.5), it suffices to show that (&, <) is
a wqo.

Let L(A, f) be a matrix in &, such that 4 is a type-compatible
F-representation of (M, B). Then there is an element x in B such that
t{Mix)=k—1. Let A’ be the matrix obtained from A by deleting row x.
Then it is clear that A’ is a type-compatible F-representation of
(M/x, B—{x}). Let 0, =Q U F and let <, be the binary relation on Q,
such that p <, ¢ if and only if ecither both p and ¢ are in Q with p<gq, or
both p and ¢ are in F with p=gq. Since F is finite, it follows that (Q,, <,)
is a wqo and thus it follows from (1.4) that (@ x Q,, < x <,) is also wqo.
Let us denote Q@ x @, by Q'. Then we define a Q'-labeling /" of M/x as
follows: For every element ¢ in B— {x}, let f'(e)=(f(e), f(x)); for every
element ¢ in E(M)— B, let f'(e}=(f(¢), a,.), where a, is the entry of 4 in
row x and column e. Clearly 4’ is a type-compatible F-repesentation of
(M/x, B—{x}) and, by the choice of x, the type of M/e is k—1. Thus
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L(A4', /") 1s a member of Z(F, k—1,Q’"), which is well-quasi-ordered by
the relation <, according to the induction hypothesis. It is easy to verify
that if L(A}, 1)<, L{A5, /), then L(A,, /1)<, L(A4,, ;). Hence the
result follows. |}

An alternative proofl of (3.1) can be obtained by first translating the
matrix problem into one for bipartite graphs, and then using an edge-
labeled version of Theorem 2.1 of [4].

4. CONCLUDING REMARKS

Let .# be a class of matroids and let SS(.#)= (PS(.#*))*. From (1.7)
and (1.10), we immediately obtain the following.

(4.1) CorOLLARY. If (.#((Q), <,,) is a wqo for every wqo (Q, <), then
(SS(.HNQ), <) is also a wqo for every wgo (Q, < ).
The next result is an easy consequence of (1.7) and (1.8).

(4.2) CorROLLARY. [f (.#(Q), <,,) is a wqo for every wqgo (Q, <), then
((-#*)* (Q), <.,) is also a wqo for every wgo (Q, <).

Let .# be a class of matroids and let & be a non-negative integer. The
class of matroids .#*, is defined inductively as follows: let #°°, = .#; for
k>0, let 4 =%, " andlet #*, be the union of PS(.4"), SS(.A4"), .+, and
(-%)*. From (1.5), (1.8), (1.10), (4.1), and (4.2), we deduce the following.

(4.3) THEOREM. Suppose that # is a class of matroids such that
(H1Q), <) is a wqo for every wgo (Q, <). Then (#*,(Q), <) is a wgo
for every wqgo (Q, <) and every non-negative integer k.

Let m and £ be non-negative integers and suppose that 1 > 2. We denote
by .#(m, k) the class of matroids of type at most & that are representable
over some field with at most m elements. On combining (4.3) with (3.1)
and (1.5), we obtain the following generalization of (3.1).

(4.4) THEOREM. Let m and k be non-negative integers and suppose that
mz2. Then (#*,,, Q) <n) is a wqo for every wqo (Q, < ).

Let # be a positive integer and let &, be the graph illustrated in Fig. 4.
It is clear that, for every integer m exceeding 1 and every non-negative
integer k, there is a positive integer n depending only on m and & such that
M(G,) does not belong to #%,,, ,,. We do not know the answer to the
following question: if a minor-closed class .# of matroids does not contain
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Fic. 4. G,.

some fixed M(G,), is .# a subset of some #*, 7 One way to answer
this question affirmatively would be to give an affirmative answer to the

fo

if
is
10

llowing.

(4.5) Question. Is there a function f(F, n) with the following property:
M is a 3-connected matroid representable over the finite field F and if »
the largest integer such that M has an M(G, )-minor, then there are dis-
int subsets X and Y of E(M) such that |(X|+|Y|<f(F,n) and M " X/Y

has no M(G,)-minor?

3.

4.
5.

6.
7.
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