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This paper proves that, for every integer n exceeding two, there is a number N(n)
such that every 3-connected matroid with at least N(n) elements has a minor that
is isomorphic to one of the following matroids: an (n+2)-point line or its dual,
the cycle or cocycle matroid of K3, n , the cycle matroid of a wheel with n spokes,
a whirl of rank n, or an n-spike. A matroid is of the last type if it has rank n and
consists of n three-point lines through a common point such that, for all k in
[1, 2, ..., n&1], the union of every set of k of these lines has rank k+1. � 1997
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1. INTRODUCTION

This paper is a continuation of [1]. In that paper, by building on
some new Ramsey-theoretic results for matrices, we distinguished the
unavoidable minors in large 3-connected binary matroids. The following is
the main result of that paper where Jn denotes the n_n matrix of all ones.

1.1. Theorem. For every integer n exceeding two, there is an integer
N(n) such that every 3-connected binary matroid with at least N(n) elements
has a minor isomorphic to the cycle matroid of K3, n , its dual, the cycle
matroid of the n-spoked wheel, or the vector matroid of the matrix
[In | Jn&In] over GF(2).

The purpose of this paper is to extend this theorem to the class of all
3-connected matroids. Precisely the same matrix results that were applied
in [1] to prove Theorem 1.1 will be used here. However, in order to be
able to apply these results to arbitrary 3-connected matroids instead of
3-connected binary matroids, we shall introduce the idea of a hamiltonian
partial representation. This object is a matrix that can be associated with
any matroid having a spanning circuit. We will show that this matrix
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captures enough information about the matroid to enable the main result
of [1] to be extended from the relatively well-behaved class of binary
matroids to the far-less-tractable class of arbitrary matroids.

This paper is already long, so we shall not repeat the interesting history
of results of this type. This history, featuring most notably [3] and [5],
may be found in [1]. The bulk of this paper will be concerned with
developing the theory of hamiltonian partial representations and
manipulating such representations to prove the main theorem. Next we
prepare to state this theorem. If the all-ones column p is adjoined to the
matrix [In | Jn&In] over GF(2), then the binary matroid of the resulting
matrix has the following properties:

(i) the ground set is the union of n lines, L1 , L2 , ..., Ln , all having
three points and passing through a common point p;

(ii) for all k in [1, 2, ..., n&1], the union of any k of L1 , L2 , ..., Ln

has rank k+1; and

(iii) r(L1 _ L2 _ } } } _ Ln)=n.

For all n�3, an arbitrary matroid satisfying these three conditions will
be called an n-spike with tip p. It is not difficult to show that the vector
matroid of the binary matrix [In | Jn&In | 1], where 1 denotes the all-ones
column, is the only n-spike that is binary. The main result of this paper is
the following:

1.2. Theorem. For every integer n exceeding two, there is an integer
N(n) such that every 3-connected matroid with at least N(n) elements has a
minor isomorphic to Un, n+2, U2, n+2 , M(K3, n), M*(K3, n) the cycle matroid
of a wheel with n spokes, the whirl of rank n, or an n-spike.

In fact, we shall also prove a refinement of this theorem that restricts
attention to certain special spikes, but the statement of this will require a
more detailed consideration of spikes. The next result, whose straight-
forward proof is omitted, lists some elementary properties of spikes.

1.3. Lemma. For n�3, let M be an n-spike with tip p. Let I=
[1, 2, ..., n] and, for all i in I, let Li=[ p, xi , yi]. Then

(i) Li is a circuit of M for all i in I;

(ii) (Li _ Lj)& p is a circuit of M for all distinct i and j in I;

(iii) every non-spanning circuit of M other than those listed in (i) and
(ii) avoids p, contains a unique element from each of [x1 , y1],
[x2 , y2], ..., [xn , yn], and is also a hyperplane of M;
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(iv) M�p can be obtained from an n-element circuit by replacing each
element by two elements in parallel; and

(v) for all i in I, each of M" p�xi and (M" p"xi)* is an (n&1)-spike
with tip yi , and each of M" yi�xi and M"xi�yi is an (n&1)-spike with tip p.

Part (iii) of this lemma is of most immediate interest here since it means
that, to uniquely specify the n-spike M, it suffices to describe every circuit
of M of the form listed there. For a subset J of I, let XJ and YJ be, respec-
tively, the sets [xj : j # J] and [ yj : j # J]. Then every circuit of M of the
type listed in (iii) has the form XJ _ YI&J for some subset J of I.

An n-spike M is uniform if, whenever XJ _ YI&J is a circuit of M for
some J�I, the set of circuits of M includes every set of the form
XJ$ _ YI&J$ with |J$|=|J |. We shall show in Section 10 that every
sufficiently large spike has a big uniform spike as a minor. Using this, we
shall extend Theorem 1.2 as follows.

1.4. Theorem. For every integer n exceeding two, there is an integer
N(n) such that every 3-connected matroid with at least N(n) elements has a
minor isomorphic to one of Un, n+2, U2, n+2 , M(K3, n), M*(K3, n), M(Wn),
Wn, or a uniform n-spike.

The matroid terminology used here will follow [4]. In particular, Wr

denotes the r-spoked wheel graph and Wr denotes the whirl of rank r.
Moreover, for a subset T of the ground set of a matroid M, we often
write M�(E(M)&T ) as M.T. A spanning circuit of a matroid will often be
called a hamiltonian circuit. A hamiltonian matroid is a matroid with a
hamiltonian circuit, and a hamiltonian minor of a matroid is a minor that
is also a hamiltonian matroid.

The proof of Theorem 1.2 follows the same general pattern as the proof
of Theorem 1.1. In particular, we shall use a result from [1] that, up to
duality, every sufficiently large 3-connected matroid has a big 3-connected
hamiltonian minor. This result enables us to concentrate on hamiltonian
matroids. In Section 2, we associate with such a matroid a hamiltonian
partial representation and we discuss some of the basic properties of these
matrices. Section 3 defines the crissing graph of such a representation, a
close relative of the crossing graph discussed in [1], and a tool that will
be used to extract crucial structural information about a matroid from a
hamiltonian partial representation. Section 4 relates crissings and crossings
with the aim of enabling the Ramsey results for matrices proved in [1] to
be applied to hamiltonian partial representations.

Section 5 gives an overview of the proof of Theorem 1.2 and outlines the
main steps in the proof. By exploiting a theorem from [1] that every
sufficiently large connected graph has a big clique, a big star, or a big
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path as an induced subgraph, this section divides the main part of the proof
into three cases. These cases are treated separately in the three subsequent
sections. The longest and the most difficult of these is Section 7, the path
case, since that case requires a very detailed analysis of hamiltonian partial
representations to extract the desired conclusion. Section 9 completes the
proof of Theorem 1.2 with quite a straightforward assembly of the pieces
from earlier sections. Finally, Section 10, in addition to proving the
existence of a big uniform spike as a minor of every sufficiently large spike,
shows that Theorem 1.4 is the best-possible result of this type in the sense
that the list of matroids given there contains no redundancy.

2. HAMILTONIAN PARTIAL REPRESENTATIONS

In this section, we introduce a new technique for dealing with arbitrary
matroids having spanning circuits.

Let M be a matroid and let C be a hamiltonian circuit of M. For all e
in E(M)&C, the matroid M | (C _ e) has corank 2 and has no coloops.
Thus [M | (C _ e)]* is a loopless rank-2 matroid. One parallel class of this
line is [e]. The remaining parallel classes form a partition ?(e) of C. The
next lemma summarizes some elementary properties of these partitions.

2.1. Lemma. Let C be a hamiltonian circuit of a matroid M and suppose
e is in E(M)&C.

(i) The set of circuits of M | (C _ e) is [(C _ e)&P : P is a block of
?(e) or P=[e]].

(ii) ?(e) has just one block if and only if e is a loop.

(iii) For f # E(M)&(C _ e), if e and f are parallel, then ?(e)=?( f ).

(iv) For f # E(M)&(C _ e), if ?(e)=?( f ) and each has exactly two
blocks, then e and f are parallel in M.

Proof. The cocircuits of [M | (C _ e)]* are all of the sets of the form
(C _ e)&P where P is a parallel class of [M | (C _ e)]*. Part (i) follows
immediately from this observation, and (ii) is a straightforward conse-
quence of (i). Moreover, part (iii) is elementary.

To prove (iv), suppose that ?(e) and ?( f ) are equal with each having P1

and P2 as their only blocks. Let N=[M | (C _ [e, f ])]*. Then N�e has
[ f ], P1 , and P2 as its only parallel classes, and N�f has [e], P1 , and P2

as its only parallel classes. Suppose x and y are parallel in N�e. Then [x, y]
or [x, y, e] is a circuit of N. Since the only circuit of N�f contained in
[x, y, e] is [x, y], we deduce that [x, y, e] is not a circuit of N. Thus P1
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and P2 are parallel classes of N. Hence [e, f ] is a cocircuit of N, that is,
e and f are parallel in M. K

While (iv) in the last lemma is a partial converse of (iii), the additional
hypothesis is needed to ensure the conclusion. For instance, suppose M1 is
a 5-point line with ground set [1, 2, 3, 4, 5], and M2 is obtained from a
4-point line with ground set [1, 2, 3, 4] by adding 5 in parallel with 4. If
C=[1, 2, 3], then ?(4)=?(5) in both M1 and M2 .

Let A be a matrix whose rows are indexed by the elements of the
hamiltonian circuit C, and whose columns are indexed by the elements of
E(M )&C. The entries of A are taken from some set X and are chosen so
that the entries in rows i and j of column e are equal if and only if i and
j lie in the same block of ?(e) or, equivalently, i and j are in the same series
class of M | (C _ e). Such a matrix A is called a hamiltonian partial
representation or HPR for M with respect to the hamiltonian circuit C.
Every other such representation for M can be obtained from A by
repeatedly applying the following operation: choose a particular column e
of A and consider the set X$ of distinct entries in e; let _ be a bijection from
X$ onto a set Y$ and replace each entry x from X$ by _(x) in column e,
leaving all other columns unchanged. Evidently, equality of entries in an
HPR is meaningful if and only if the entries lie in the same column.

From Lemma 2.1, when |C |�2, the loops of M correspond precisely to
the constant columns in an HPR. But parallel elements are harder to
detect. Two equal columns certainly correspond to parallel elements if each
column has exactly two distinct entries. But if the number of distinct entries
exceeds two, then, as noted above, equality of the columns does not
guarantee that the elements are parallel. On the other hand, while two
parallel elements e and f will induce equal partitions ?(e) and ?( f ) of C,
our method of assigning entries to the columns e and f of A will not
guarantee equality of these columns.

For readers familiar with partial representations of matroids or matroid
representations over a field, we now describe briefly how these are related
to hamiltonian partial representations. These remarks will not be needed in
any proofs. Given an HPR A for M with respect to the circuit C, let k # C.
One can obtain a partial representation for M with respect to the basis
C&k as follows: for each column of A that does not have 0 as an entry,
choose some symbol from that column and replace it by 0 throughout the
column; permute the symbols used in each column so that, in the resulting
matrix A$, row k consists entirely of zeros; replace all non-zero entries in
A$ by ones and delete row k to produce a matrix A". If r(M)=r, then
[Ir | A" | 1] is a partial representation for M with respect to C&k where
1 is a column of all ones, this column being labelled by the element k
of C. Conversely, if one has r+1 partial representations for M, one for
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each basis contained in C, then one may construct an HPR for M with
respect to C.

Now suppose [Ir | D | 1] is a representation for a matroid N over a field
where the first r columns and the last column correspond to the basis B
and the element e. Then an HPR for N with respect to the hamiltonian
circuit B _ e can be obtained from D by adjoining a row of zeros, labelled
by e.

We return now to our main discussion making some elementary obser-
vations about hamiltonian partial representations and the information that
can be deduced from them. The straightforward proof of the first of these
is omitted.

2.2. Lemma. Let A be an HPR for a matroid M with respect to the cir-
cuit C where |C |�2.

(i) If e # C, then C&e is a hamiltonian circuit of M�e, and an HPR
for M�e with respect to this circuit can be obtained from A by deleting
row e.

(ii) If s # E(M )&C, then C is a hamiltonian circuit of M"s, and an
HPR for M"s with respect to this circuit can be obtained from A by deleting
column s.

This tells us that each submatrix of A is an HPR of a certain minor of
M. The next lemma provides one of the main tools that we shall use for
extracting information from hamiltonian partial representations.

2.3. Lemma. Let A be an HPR for the matroid M with respect to the
circuit C. For distinct elements i and j of C and e # E(M )&C, the following
are equivalent:

(i) the entries in rows i and j of column e of A are equal;

(ii) e # cl(C&[i, j]); and

(iii) e is not in the cocircuit E(M )&cl(C&[i, j]).

Proof. The equivalence of (ii) and (iii) is immediate. Now assume that
(i) holds. Then [i, j] is contained in some block P of ?(e). As (C _ e)&P
is a circuit of M, it follows that e # cl(C&[i, j]), that is, (ii) holds; so (i)
implies (ii). Finally, suppose that (i) fails. Then (C _ e)&[i, j] contains no
circuits. Thus e � cl(C&[i, j]). We conclude that (ii) implies (i).

2.4. Corollary. Let A be an HPR for the matroid M with respect to
the circuit C, and let i and j be distinct elements of C. Then i and j are in
series in M if and only if rows i and j of A are equal.
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Proof. Assume rows i and j of A are equal. If e # E(M )&C, then, by the
last lemma, e is not in the cocircuit E(M)&cl(C&[i, j]). It follows that
this cocircuit equals [i, j], that is, i and j are in series in M. The proof of
the converse follows easily by reversing this argument. K

3. THE CRISSING GRAPH OF A FAMILY OF PARTITIONS

The crossing graph of a matrix was an important tool in the proof of the
main result of [1]. In this section, we describe a closely related, but slightly
different, object, the crissing graph of a family of partitions of a finite set.
The relationship between the two concepts will be discussed in Section 4.
The main result of this section, Theorem 3.10, establishes that a simple,
cosimple, hamiltonian matroid is 3-connected if and only if its crissing
graph is connected. This is an important step in the proof of Theorem 1.2.

Let 6(C ) be the lattice of partitions of a finite set C. Two members ?1

and ?2 of 6(C ) do not criss if ?1 and ?2 have blocks A1 and A2 , respec-
tively, such that A1 _ A2=C. When such blocks A1 and A2 are unique, we
denote the pair (A1 , A2) by +(?1 , ?2). Thus +(?1 , ?2) is well-defined unless
either ?1 and ?2 are equal and have precisely two blocks, or exactly one of
?1 and ?2 equals [C]. For two partitions ?1 and ?2 in 6(C), we write
?1 - ?2 if ?1 and ?2 criss, and ?1 -3 ?2 otherwise.

The following is an immediate consequence of the definition.

3.1. Lemma. For ?1 and ?2 in 6(C ), ?1 - ?2 if and only if the comple-
ment of every block of ?1 meets at least two blocks of ?2 . K

One natural way to derive a family of partitions of a finite set is from a
matrix. Let A be a matrix and suppose that C is the set of row labels for
A. If s labels a column of A, the natural partition ?(s) of C associated with
A has two elements i and j of C in the same block of ?(s) if and only if the
entries in rows i and j of column s are equal.

3.2. Lemma. Let C be a hamiltonian circuit of a matroid M and e1 and
e2 be distinct non-parallel elements of E(M )&C. Then ?(e1) and ?(e2) do
not criss if and only if C _ [e1 , e2] contains two disjoint circuits of M.

Proof. Suppose first that ?(e1) and ?(e2) do not criss. If ?(e1)=?(e2),
then ?(e1) has either one or two blocks. In the first case, C and [e1] are
disjoint circuits of M. In the second case, (C&A1) _ e1 and (C&A2) _ e2

are disjoint circuits of M where A1 and A2 are the blocks of ?(e1). We may
now assume that ?(e1){?(e2). Then (C&A1) _ e1 and (C&A2) _ e2 are
disjoint circuits of M where +(?(e1), ?(e2))=(A1 , A2).
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Conversely, assume that C _ [e1 , e2] contains two disjoint circuits C1

and C2 of M. If one of these circuits is C, then, since e1 and e2 are not
parallel, we may assume the other is [e1]. In that case, ?(e1)=[C], so
?(e1) and ?(e2) do not criss. If neither C1 nor C2 is C, then we may assume
that e1 # C1 and e2 # C2 . Then C&C1 and C&C2 are blocks of ?(e1) and
?(e2), respectively, and (C&C1) _ (C&C2)=C, so ?(e1) and ?(e2) do not
criss. K

It follows from Lemma 3.2 that, for any two distinct elements e1 and e2

of E(M)&C, if M | (C _ [e1 , e2])=M(G) for some graph G, then ?(e1)
and ?(e2) criss if and only if e1 and e2 are crossing chords of the cycle C
of G, or, equivalently, G is a subdivision of K4 .

Next we shall derive some elementary properties of the relationship of
crissing defined above. Recall that ?1�?2 in the partition lattice 6(C ) if
every block of ?1 is contained in a block of ?2 . Moreover, ? 7 ?$ has as its
blocks all non-empty sets of the form B & B$ where B is a block of ? and
B$ is a block of ?$.

3.3. Lemma. Let ?1 , ?2 , and ?3 be members of 6(C). If ?1�?2 and
?2 - ?3 , then ?1 - ?3 .

Proof. Suppose ?1 -3 ?3 . Then ?1 and ?3 have blocks A1 and A3 , respec-
tively, such that A1 _ A3=C. But ?2 has a block A2 that contains A1 . Thus
A2 _ A3=C and ?2 -3 ?3 ; a contradiction. K

3.4. Lemma. Let ?1 , ?2 , and ?3 be members of 6(C ) other than [C]
such that ?2 � [?1 , ?3]. Suppose that ?2 crisses neither ?1 nor ?3 . Also
assume that A2 and A$2 are distinct where +(?1 , ?2)=(A1 , A2) and
+(?2 , ?3)=(A$2 , A3). Then ?1 and ?3 are distinct and non-crissing, and
+(?1 , ?3)=(A1 , A3).

Proof. Clearly A1 _ A2=C and A$2 _ A3=C. Thus A1 _ A3 $

(C&A2) _ (C&A$2)=C&(A2 & A$2). As A2 and A$2 are distinct blocks of
?2 , it follows that A1 _ A3=C, so ?1 -3 ?3 . Moreover, provided ?1 and ?3

are distinct, +(?1 , ?3)=(A1 , A3). It remains to consider what happens
when ?1=?3 . In that case, A1 {A3 as ?1 {[C]. Thus ?1=[A1 , A3].
Therefore A2 $A3 and A$2 $A1 , so A2 _ A$2 $C. Hence A2=A3 and
A$2=A1 , so ?1=?2 ; a contradiction. K

The following is an extension of the last lemma.

3.5. Lemma. Let ?1 , ?2 , and ?3 be members of 6(C ) other than [C]
such that ?2 crisses neither ?1 nor ?3 , but ?1 crisses ?3 . Let +(?1 , ?2)=
(A1 , A2) and +(?2 , ?3)=(A$2 , A3). Then
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(i) A2=A$2 ;

(ii) A1 _ A3 {C;

(iii) A2 _ (A1 & A3)=C; and
(iv) (?1 7 ?3) -3 ?2 and +(?1 7 ?3 , ?2)=(A1 & A3 , A2).

Proof. The assumptions on crissing imply that ?2 � [?1 , ?3]. Thus
either ?1=?3 , in which case (i) certainly holds; or ?1 {?3 and (i) follows
from Lemma 3.4. Part (ii) follows immediately from the fact that ?1 - ?3 .
To see (iii), note that A2 _ (A1 & A3)=(A2 _ A1) & (A2 _ A3)=C & C
=C. Thus, as A2 {C, it follows that A1 & A3 is a non-empty block of
?1 7 ?3 . Hence (?1 7 ?3)-3 ?2 . Moreover, ?1 7 ?3 {?2 otherwise ?1�?2

and Lemma 3.3 implies the contradiction that ?2 - ?3 . Hence +(?1 7 ?3 ,
?2) is well-defined and equals (A1 & A3 , A2). K

For a family (?v : v # V ) of partitions in 6(C), the crissing graph
1(?v : v # V ) has vertex set V; an edge joins u and v in this graph if and only
if u and v are distinct members of V for which ?u - ?v .

3.6. Lemma. Suppose the graph 1(?v : v # V ) is connected and ? # 6(C).
Then ? - (�v # V ?v) if and only if ? - ?u for some u in V.

Proof. Suppose ? - ?u for some u in V. As �v # V ?v�?u , it follows by
Lemma 3.3 that �v # V ?v - ?.

Now suppose that, for all v in V, the partition ?v does not criss ? but
that ? - (�v # V ?v). Choose V so that |V| is minimal subject to these condi-
tions. Clearly |V|�2. As 1(?v : v # V ) is connected, none of the partitions
?v equals [C]. Let 1(?v : v # V)=1. Choose a vertex u of 1 such that 1&u
is connected and let x be a neighbor of u in 1. Let ?$=�v # V&u ?v . By
the minimality of |V|, it follows that ? -3 ?$. But ?u - ?x and ?x�?$.
Thus ?u - ?$ by Lemma 3.3. Hence ? crisses neither ?u nor ?$, but ?$
crisses ?u . Thus, by Lemma 3.5, ? -3 (?u 7 ?$). But ?u 7 ?$=�v # V ?v and
? - �v # V ?v . This contradiction completes the proof of the lemma. K

For a matroid M having a hamiltonian circuit C, let 6(M, C) be the
family of partitions (?(e) : e # E(M )&C) considered in the last section. As
in [1], we shall use connectivity properties of the matroid M to deduce
properties of the crissing graph 1(6(M, C)).

3.7. Lemma. Let M be a loopless matroid with a hamiltonian circuit C.
Then, for every 2-separation [X, Y] of M, either

(i) X or Y contains a 2-circuit of M, or
(ii) both X & C and Y & C have at least two elements and these sets

span X and Y, respectively.
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Proof. Since M is loopless having a spanning circuit, M is certainly
connected. Let [X, Y] be a 2-separation of M and suppose that neither X
nor Y contains a 2-circuit. Then, as r(X )+r(Y )&r(M )=1 and min[ |X |,
|Y |]�2, it follows that min[r(X ), r(Y )]�2 and so max[r(X), r(Y)]�
r(M )&1. Now r(C&e)=r(M ) for all e in C. Hence |X & C |�2 and
|Y & C |�2. Moreover,

r(M )+1=|X & C |+|Y & C |

=r(X & C)+r(Y & C)

�r(X )+r(Y )

=r(M )+1.

Thus equality holds throughout the above and therefore (ii) holds. K

3.8. Lemma. Let C be a hamiltonian circuit of a matroid M and let e be
an element of E(M )&C. The following statements are equivalent for a subset
X of C:

(i) e # cl(X); and
(ii) X _ A=C for some block A of ?(e).

Proof. Observe that (i) holds if and only if M has a circuit in X _ e
containing e. By Lemma 2.1(i), this is equivalent to (ii). K

We shall require just one more lemma to prepare for the main result of
this section.

3.9. Lemma. Let C be a hamiltonian circuit of a matroid M and let V$
be the vertex set of some component of 1(6(M, C)). If D is a block of
�v # V$ ?(v) such that each of |D| and |C&D| is at least two, then
[cl(D), E(M)&cl(D)] is a 2-separation of M.

Proof. For all v in V$, the partition ?(v) has a block Dv containing D.
Thus, by Lemma 3.8, v # cl(C&Dv) and so v # cl(C&D). Hence

(1) V$�cl(C&D).
We show next that

(2) (E(M )&C)&V$�cl(D) _ cl(C&D).

Assume that this fails, letting s be an element of (E(M )&C)&V$ that is
in neither cl(D) nor cl(C&D). Then, by Lemma 3.8, neither C&D nor D
is contained in a block of ?(s). Thus ?(s) crisses the partition [D, C&D].
But [D, C&D]��v # V$ ?(v). Hence, by Lemma 3.3, ?(s) - (�v # V$ ?(v)).
Thus, by Lemma 3.6, ?(s) - ?(t) for some t # V$. Therefore s is in the same
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component as t in 1(6(M, C)). This contradiction to the choice of s
completes the proof of (2).

On combining (1) and (2), we deduce that cl(D) _ cl(C&D)=E(M ).
As r(M )+1=|D|+|C&D|=r(cl(D))+r(cl(C&D)) and cl(C&D)$

E(M )&cl(D)$C&D, we deduce that [cl(D), E(M )&cl(D)] is a 2-sepa-
ration of M. K

The next result, the main result of this section, identifies from the crissing
graph when a hamiltonian matroid is 3-connected.

3.10. Theorem. Let M be a matroid with a hamiltonian circuit C and
suppose that |E(M)|�4. Then the following two statements are equivalent.

(i) M is 3-connected.

(ii) (a) 1(6(M, C)) is connected;

(b) no two elements of C are in series; and

(c) no two elements of E(M)&C are in parallel.

Proof. We show first that if (i) fails, then so does (ii). Suppose that M
is not 3-connected but that all of (a), (b), and (c) hold. First we show that

(1) |E(M )&C |�2.

Assume the contrary. If E(M )&C is empty, then C is a series class of M
so (b) fails. Hence we may suppose that E(M )&C=[x]. Then M* is a
line containing at least four elements. As M* is not 3-connected, it has a
2-circuit, which is contained in C. Thus (b) fails and (1) holds.

We show next that no element of E(M )&C is a loop. If such a loop x
exists, then ?(x)=[C] so ?(x) does not criss any other partition and
therefore 1(6(M, C)) has just one vertex; a contradiction to (1). Thus no
element of E(M )&C is a loop and therefore, as C is hamiltonian and
|E(M )|�4, M is loopless.

Next we show that M has no 2-circuits. Assume the contrary, letting
[x, y] be a circuit. By (c), [x, y] meets C. If [x, y]�C, then [x, y]=C
so r(M)=1 and, by (c) again, |E(M )|�3; a contradiction. Thus we may
assume that x # E(M )&C and y # C. Then ?(x) has two blocks, [ y] and
C&[ y]. Thus ?(x) crisses no ?(t) for t # (E(M )&C)&x. Again, since
1(6(M, C)) is connected, it follows that x is the unique vertex of this
graph. This contradiction to (1) completes the proof that no two elements
of M are in parallel.

Since M has a hamiltonian circuit but no loops, it is certainly connected.
As it is not 3-connected but is simple, Lemma 3.7 implies that M has a
2-separation [X, Y] such that both X & C and Y & C have at least two
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elements and these sets span X and Y, respectively. Now 1=r(X)+r(Y )&
r(M )=r(X )+r*(X )&|X |. Thus if C$X, then, as C & Y{<, it follows
that r*(X )=1 so the elements of X form a series class of M, violating (b).
Therefore, C does not contain X. Similarly, it does not contain Y. Hence
neither X&C nor Y&C is empty and so, as 1(6(M, C)) is connected,
there are elements x and y in X&C and Y&C, respectively, such that
?(x) - ?( y). Thus, by Lemma 3.8, since X & C spans X, there is a block Ax

of ?(x) such that (X & C) _ Ax=C. Similarly, (Y & C) _ Ay=C for some
block Ay of ?( y). Thus Ax _ Ay=C so ?(x) -3 ?( y). This contradiction
completes the proof that (ii) implies (i).

Now suppose that (i) holds. Then, as |E(M )|�4, M is loopless and has
no non-trivial series or parallel classes. Thus (b) and (c) hold and it only
remains to show that (a) holds. Suppose that it does not. Then, for some
k�2, the graph 1(6(M, C)) has k components, the vertex sets of which
are V1 , V2 , ..., Vk , say. Since M is 3-connected, it follows by Lemma 3.9
that if i # [1, 2, ..., k] and D is a block of �s # Vi

?(s), then |D| or |C&D|
is less than two. But if |C&D| is 0 or 1, then M has a loop or a 2-circuit;
a contradiction. Thus, for all i, every block of �s # Vi

?(s) is a singleton.
Now take t # V1 . Then, for all s in V2 , the vertices t and s are in different
components so ?(t) -3 ?(s). Thus, by Lemma 3.6, ?(t) -3 (�s # V2

?(s)). There-
fore ?(t) and �s # V2

?(s) have blocks At and As , respectively, such that
At _ As=C. But, from above, As is a singleton. Thus |At |�|C |&1. Hence
?(t) has a block with at least |C |&1 elements. Therefore M has a 1- or
2-circuit; a contradiction. K

The next lemma will enable us to move from a 3-connected hamiltonian
matroid whose crissing graph has a certain induced subgraph to a
3-connected hamiltonian minor of the matroid whose crissing graph is the
special subgraph.

3.11. Lemma. Suppose that, for a 3-connected matroid M with a hamil-
tonian circuit C, the crissing graph 1(6(M, C)) has a connected induced
subgraph 11 with vertex set V1 of size at least two. Let N=M | (V1 _ C).
Then the cosimplification N

�
of N has a hamiltonian circuit C� , the crissing

graph 1(6(N
�

, C� )) equals 11 , and N
�

is 3-connected.

Proof. Clearly, C is a hamiltonian circuit of N and N is simple. Let A
be an HPR for N with respect to C. Suppose i and j are elements of C that
are in series in N. Then, by Lemma 2.3, rows i and j of the matrix A are
equal. Consider N�j. It has C& j as a hamiltonian circuit. We show next
that

(1) 1(6(N, C))=1(6(N�j, C& j)).
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Evidently, both these crissing graphs have vertex set V1 . Moreover, if
x # V1 , then ?N�j (x) is obtained from ?N(x) by removing j from the unique
block of the latter that contains it. Suppose ?N(s) -3 ?N(t) for some s and
t in V1 . Then ?N(s) and ?N(t) have blocks As and At whose union is C.
The union of the corresponding blocks of ?N�j (s) and ?N�j (t) is C& j. We
conclude that if ?N(s) -3 ?N(t), then ?N�j (s) -3 ?N�j (t). Now suppose that
?N(s) - ?N(t) but ?N�j (s) -3 ?N�j (t). Then ?N�j (s) and ?N�j (t) have blocks As

and At , respectively, such that As _ At=C& j. Without loss of generality,
we may assume that i # As . Then, since rows i and j of the matrix A are
equal, As _ j is a block of ?N(s). Hence ?N(s) -3 ?N(t). This contradiction
completes the proof of (1).

If two elements, v and w, of N�j are parallel, then, as v and w are not
parallel in N, it follows that [v, w, j] is a circuit of N. Also i � [v, w] since
if, say, i=v, then ?N�j (w)=[[i], C&[i, j]], which does not criss any par-
tition, contradicting the fact that 11 is connected. Thus the circuit [v, w, j]
meets the cocircuit [i, j] in a single element. This contradiction establishes
that no two elements of V1 are parallel in N�j.

We may now repeat the above process of contracting, one at a time, the
series elements of N until we obtain the cosimplification N

�
. It has a

hamiltonian circuit C� , the crissing graph 1(6(N
�
, C� )) is 11 , no two

elements of V1 are parallel in N
�

, and no two elements of C� are in series
in N

�
. Thus, by Theorem 3.10, N

�
is 3-connected. K

As in [1], we shall be interested here in reducing to the case when the
crissing graph is a clique, a star, or a path. The next lemma identifies an
important case that gives rise to the second of these possibilities.

3.12. Proposition. Let M be a 3-connected matroid having an element
e such that, for some k�3, the matroid M"e is a k-spoked fan (see Fig. 5).
Let C be the unique hamiltonian circuit of M"e. Then the crissing graph
1(6(M, C)) is isomorphic to K1, k&2 .

Proof. If s and t are distinct internal spokes of the fan, then, by
Lemma 3.2, ?(s) and ?(t) do not criss. But, since M is 3-connected,
1(6(M, C)) is connected and hence this graph is isomorphic to K1, k&2

with the vertex e being adjacent to all other vertices. K

4. CRISSINGS AND CROSSINGS

In this paper, we have introduced hamiltonian partial representations of
matroids and defined when two columns in such a matrix criss. In our
earlier paper [1], matroids were treated using their more familiar matrix
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representations, and a related definition of crossing columns was used. To
prove the main result of this paper, we shall use theorems from [1], so we
now discuss the link between the old and new ideas.

Following [1], we call a matrix an F-matrix if all of its entries are in
some set F where F contains 0 and exactly q&1 other elements for some
q�2. Let A be an F-matrix (ai, j). Column s of A dominates column t if the
columns are equal or if, for some non-zero :, the entry ai, s equals : when-
ever ai, t is non-zero. Columns s and t cross if neither dominates the other,
and A has a row in which both ai, s and ai, t are non-zero. Thus identical
columns do not cross. Moreover, non-identical columns s and t do not
cross if either

(1) 0 # [ai, s , ai, t] for all i; or

(2) |[ai, s : ai, t {0]|�1; or

(3) |[ai, t : ai, s {0]�1.

4.1. Lemma. Suppose that columns s and t of an F-matrix A do not
cross. Adjoin a zero row to A, let C be the set of row labels of the new matrix
A+, and let ?(s) and ?(t) be the partitions of C associated with columns s
and t of A+. Then either

(i) ?(s) and ?(t) do not criss; or

(ii) ?(s)=?(t) and each has at least three blocks.

Proof. Suppose s and t are non-identical. Then, since s and t do not
cross, it follows from (1)�(3) that the union of the block of ?(s) or ?(t)
corresponding to the entry 0 with a block of ?(t) or ?(s) associated with
some : is C. Thus ?(s) -3 ?(t).

Now suppose that s and t are identical. Then ?(s)=?(t) and so ?(s) and
?(t) do not criss unless each has at least three blocks. K

We now know that adjoining a zero row to two non-crossing columns
induces two non-crissing partitions provided these partitions are distinct.
The next lemma, whose statement is somewhat technical, implies that if we
have two non-crissing partitions associated with columns of a matrix and
both columns are zero in some row, then, in the matrix obtained by
deleting that row, the associated columns are non-crossing.

4.2. Lemma. Let A be an F-matrix (ai, j) whose rows are indexed by the
set C. Let s and t be columns of A, and let ?(s) and ?(t) be the associated
partitions of C. Suppose that ?(s) does not criss ?(t), let k be an element
of C, and let _s and _t be permutations of F mapping ak, s and ak, t , respec-
tively, to 0. Let A$ be obtained from A by applying _s and _t to the entries
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of columns s and t, respectively, and then deleting row k. Then columns s and
t of A$ do not cross.

Proof. Let A$=(a$i, j). Since ?(s) does not criss ?(t), these partitions
have blocks Xs and Yt , say, whose union is C. Without loss of generality,
we may assume that k # Xs & Yt or Xs&Yt . In the first case, it is clear that,
for all i in C&k, at least one of a$i, s and a$i, t is zero. Hence columns s and
t of A$ do not cross. We may now assume that k # Xs&Yt . In that case, if
a$i, s is non-zero, then i � Xs , so i # Yt . Indeed, |[a$i, t : a$i, s {0]|=1. Hence
columns s and t of A$ do not cross. K

A hamiltonian partial representation A of a matroid M with respect to
the circuit C will be said to be in reducible form if the last row of A is zero.
It is clear that if A is an F-matrix that is an HPR for M, then, by applying
a permutation of F to each individual column of A, we can obtain an HPR
of M in reducible form. A reduced hamiltonian partial representation D for
a matroid M is a matrix that can be obtained from an HPR for M that is
in reducible form by deleting the last row. The next result follows
immediately on combining Lemmas 4.2 and 4.1.

4.3. Proposition. Let M be a 3-connected matroid having a hamiltonian
circuit C and suppose |E(M)|�4. Let A be an F-matrix that is an HPR for
M with respect to C. Suppose that A is in reducible form, and let A$ be the
corresponding reduced HPR for M. Let s and t be elements of E(M)&C
such that ?(s){?(t). Then ?(s) - ?(t) if and only if s crosses t.

There are two matrix theorems from [1] that will be needed in the proof
of our main theorem. For completeness, we state both of these below.
Before giving these statements, we shall also need to recall some further
definitions from [1]. The matrix B is a row-permuted submatrix of the
matrix A if B can be obtained from some submatrix of A by permuting its
rows. Now suppose :, ;, and # are elements of F that are not all equal.
A square F-matrix A=(ai, j) is (:, ;, #)-diagonal if

:, if i< j ;

ai, j={;, if i= j ;

#, if i> j.

Now let : and ; be arbitrary non-zero elements of F. An F-matrix is
(:, ;)-complete if the rows of A consist of all of the ( n

2) distinct vectors of
length n that have exactly two non-zero entries, the first being : and the
second ;.

The next two results are slight restatements of Theorems 2.8 and 2.7,
respectively, of [1].
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4.4. Theorem. There is a function g6 with the following property:
Suppose h is an integer greater than two, |F |=q, and A is an F-matrix with
at least g6(h, q) columns such that no two columns of A are identical, and two
distinct columns j $ and j" cross if and only if 1 # [ j $, j"]. Then A contains
a row-permuted submatrix B that satisfies one of the following conditions:

(i) B is obtained from an (:, :, 0)-diagonal matrix with h rows by
replacing its first column by a column of the form (;, $, $, ..., $)T for some
;{$, and then adjoining, to the bottom of the matrix, a new row of the form
(#, 0, 0, ..., 0) for some #{0.

(ii) B is obtained from a (0, :, :)-diagonal matrix with h rows by
deleting its last column, adjoining to the beginning of the matrix a new
column of the form ($, $, ..., $, ;)T for some ;{$, and then adjoining, to the
bottom of the matrix a new row of the form (#, 0, 0, ..., 0) for some #{0.

(iii) B is obtained by putting a (0, :, 0)-diagonal matrix with h rows
above a (0, ;, 0)-diagonal matrix with h rows and then adjoining, to the
beginning of the matrix, a new column in which the first h entries all equal
some non-zero $ and the last h entries all equal some #{$. K

4.5. Theorem. There is a function g5 with the following property: If h is
an integer exceeding one, |F |=q, and A is an F-matrix with at least g5(h, q)
columns such that every two columns of A cross, then A contains a row-
permuted submatrix B that has h columns and satisfies one of the following
conditions:

(i) B is obtained from a (0, :, 0)-diagonal matrix by adjoining a new
row every entry of which is equal to some non-zero ;.

(ii) B is obtained from an (:, :, 0)-diagonal matrix or a (0, :, :)-
diagonal matrix by adjoining a new row all of whose entries are equal to
some ; from F&[0, :].

(iii) B is (:, ;, #)-diagonal where : and # are both non-zero and :{;.

(iv) B is obtained by putting a (0, :, :)-diagonal matrix above an
(:, :, 0)-diagonal matrix.

(v) B is (:, ;)-complete where : and ; are both non-zero. K

5. AN OVERVIEW OF THE PROOF

In earlier sections, we have introduced the new tools that we shall use to
prove our main theorem. This proof is long and has many technical details.
In view of this, it seems useful to outline in this section how the proof will
proceed. Some parts of this outline will be relatively complete; others will
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be sketchy with the full details to follow. It may be helpful for the reader
to recognize that, in spite of significantly more technical details here, to a
large extent the proof of our main theorem follows the same lines as the
proof of the main result of [1].

The first important step in proving the main theorem is to show that
every 3-connected matroid with a huge number of elements has either a big
circuit or a big cocircuit. This follows from the following result of Lova� sz,
Schrijver, and Seymour (see [4]), which was strengthened by Reid [5].

5.1. Theorem. Let n be an integer greater than one. Every connected
matroid with more than 4n elements has a circuit or cocircuit with more than
n elements.

By passing to the dual if necessary, we may now assume that our huge
3-connected matroid M has a big circuit. The next important step is to
establish that M has a big 3-connected hamiltonian minor. This is accom-
plished using the following immediate consequence of Theorem 3.1 of [1].

5.2. Theorem. Let C be a maximum-sized circuit of a 3-connected
matroid M. Then M has a 3-connected minor M$ in which C is a hamiltonian
circuit. K

We are now able to focus attention on a 3-connected matroid with a
hamiltonian cycle C where |C | is big. Not surprisingly, we now consider
an HPR for such a matroid. The next result shows that either we obtain
a minor of one of the desired types, or every column in an HPR has a
bounded number of distinct entries.

5.3. Lemma. Let A be an HPR of a matroid M with respect to a cir-
cuit C. If A has a column with more that q distinct entries, then M has a
Uq, q+2 -minor.

Proof. Let e be a column of A that has at least q+1 distinct entries and
consider M1=M | (C _ e). Now we choose elements i1 , i2 , ..., iq+1 of C
such that the entries in the corresponding rows of column e are all distinct.
Let M2=M1 �(C&[i1 , i2 , ..., iq+1). Then M2 has [i1 , i2 , ..., iq+1] as a
hamiltonian circuit and has an HPR with respect to this circuit that
consists of a single column with q+1 distinct entries. Evidently r(M2)=q
and r*(M2)=2. Moreover, by Corollary 2.4, M2 has no 2-cocircuits. Thus
M2 $Uq, q+2. K

In view of this lemma, when we consider hamiltonian partial represen-
tations in what follows, we shall generally assume that all the entries of
such a matrix are taken from a q-element set F that contains 0.
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Next we transfer attention to the crissing graph of an HPR of a 3-con-
nected matroid. The vertices of such a graph are the elements of the
matroid that are not in the hamiltonian circuit. We shall want the number
of these vertices to be large. The next lemma enables us to get a bound on
this number.

5.4. Lemma. Let |F |=q and let A be an F-matrix that is an HPR for a
3-connected matroid M with respect to the circuit C. Then A has a set X of
at least logq |C | columns such that every two columns in X induce different
partitions of C, and M | (X _ C ) is 3-connected.

Proof. Consider the crissing graph 1=1(6(M, C)). As M is 3-connected,
Theorem 3.10 implies that this graph is connected. Suppose e and f are
columns of A such that ?(e)=?( f ). Then e and f, as vertices of 1, have
precisely the same neighbors in V(1 )&[e, f ]. Hence 1&[ f ] is certainly
connected. Moreover, this graph equals 1(6(M" f, C )). We should like
to assert that M" f is 3-connected. By Theorem 3.10, this is so unless, in
M" f, two elements of C are in series. But in the exceptional case, the
corresponding rows of the matrix obtained from A by deleting column f are
equal. Hence the corresponding rows of A are equal and so two elements
of C are in series in M; a contradiction. We conclude that M" f is
3-connected. By repeating this procedure of deleting columns from A one
at a time while A retains another column that yields the same partition
of C, we eventually obtain a 3-connected restriction M1 of M containing C
such that, in the corresponding HPR A1 , say, every two columns induce
distinct partitions of C. In particular, every two columns of A1 are distinct.
Since no two elements of C are in series, Corollary 2.4 implies that the
rows of A1 are distinct. Thus, if A1 has k distinct columns, then |C |�
|F |k=qk. The lemma follows immediately. K

By Theorem 3.10, a 3-connected hamiltonian matroid has a connected
crissing graph. Next we recall Theorem 5.3 from [1] which guarantees, in
every sufficiently large simple connected graph, a large induced subgraph
that is a star, a path, or a clique. We shall also need to recall some notation:
Pm will denote a path with m vertices; R(x, y) will denote the least positive
integer k such that, in every edge-coloring of a k-clique with y colors, there
is a monochromatic x-clique.

5.5. Theorem. Let m be a positive integer and let G be a simple connected
graph on (R(m, 2))m vertices. Then G has an induced subgraph isomorphic to
Pm , K1, m , or Km .

By applying this theorem to the crissing graph and using Lemma 3.11
and Lemma 5.4, we are able to reduce to the case of a large 3-connected
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hamiltonian matroid whose crissing graph is a star, a path, or a clique.
These three cases will be treated separately in the next three sections. The
first and third of these sections will rely heavily on significant theorems
from [1] and so will be relatively short. The second section is long and
involves making very detailed use of hamiltonian partial representations.
After these three sections are complete, we shall be able to finish the proof
of the main theorem and this will be done in Section 9.

6. THE STAR CASE

In this section, we consider the case when the crissing graph of a 3-con-
nected hamiltonian matroid is a star. The main result of this section is the
following:

6.1. Theorem. Let m be an integer exceeding two and M be a 3-con-
nected matroid with a hamiltonian circuit C such that M has an F-matrix A
as an HPR with respect to C. If d�g6((m+2)8, q) and 1(6(M, C )) is
isomorphic to K1, d , then M has a minor isomorphic to one of M(Wm), Wm,
Um, m+2 , or M*(K3, m).

The proof of this theorem relies heavily on Theorem 4.4. With the help
of a straightforward preliminary result, Lemma 6.9, we shall show that
cases (i) and (ii) of that theorem yield a wheel or whirl minor of M. First,
however, we consider the case when (iii) of Theorem 4.4 arises. In that
case, it is more difficult to produce a minor of one of the desired types.
The next theorem will be used to accomplish this goal. First, however, we
introduce another class of matroids. Let h be an integer exceeding one. An
h-raft is a matroid of rank 2h&2 whose ground set is the union of h
disjoint triangles such that, for all k<h, the union of every set of k of these
triangles has rank 2k.

6.2. Theorem. Suppose that m is an integer exceeding two and h is an
integer such that h�(m+2)8. If M is an h-raft, then M has either Um, m+2

or M*(K3, m) as a minor.

In order to prove this theorem, we now develop some structure theory
for rafts. Hence suppose M is an h-raft and let the h distinguished triangles
of M be L1 , L2 , ..., Lh where Li=[xi , yi , zi]. Let H=[1, 2, ..., h] and, for
all subsets I of H, let X(I )=[xi : i # I]. Define Y(I ) and Z(I ) similarly, and
abbreviate X(H), Y(H), and Z(H) to simply X, Y, and Z. Finally, let
L(I )=X(I ) _ Y(I ) _ Z(I ).

The following is a straightforward consequence of the definition of a raft.
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6.3. Lemma. For all subsets I of H with |I |�2, the matroid M .L(I ) is
an |I |-raft. K

For all distinct i and j in [1, 2, ..., h], let

Ni, j=M . (Li _ Lj).

Then Ni, j is a 2-raft. In particular, it is a loopless rank-2 matroid having
both [xi , yi , zi] and [xj , yj , zj] as circuits.

These 2-rafts are interrelated as follows:

6.4. Lemma. If ai is parallel to bj in Ni, j , and bj is parallel to ck in Nj, k ,
then ai is parallel to ck in Ni, k .

Proof. Consider the matroid Ni, j, k=M . (Li _ Lj _ Lk). This matroid
has rank 4 and has Li , Lj , and Lk as 3-circuits. Moreover, since, for example,
Ni, j=Ni, j, k�[xk , yk]"zk , it follows that Ni, j, k has circuits contained in
[ai , bj , xk , yk] and [bj , ck , xi , yi] that contain [ai , bj] and [bj , ck],
respectively. Thus, taking ranks in Ni, j, k , we have

r([ai , bj , xk , yk , zk])=3=r([bj , ck , xi , yi , zi]).

By submodularity, since [ai , bj , xk , yk , zk] _ [bj , ck , xi , yi , zi] has rank
four, the rank of [ai , bj , xk , yk , zk] & [bj , ck , xi , yi , zi] is at most two.
Thus [ai , bj , ck] has rank equal to two and this set is a circuit of Ni, j, k .
The lemma follows now without difficulty. K

Now associate an auxiliary graph G(M) with the h-raft M. The vertex set
of G(M) is E(M), and G(M) has an edge joining elements ai of Li and bj

of Lj if and only if [ai , bj] is a circuit of Ni, j .

6.5. Lemma. The graph G(M) uniquely determines the h-raft M.

Proof. M has rank 2h&2 and it is not difficult to see that its set of
bases is composed of:

(i) for all i in H, every set that consists of exactly two elements from
each of the h&1 distinguished triangles Lk such that k # H&i; and

(ii) for all distinct i and j in H, every set B that consists of exactly
two elements from each of the h&2 distinguished triangles Lk with
k # H&[i, j] along with exactly one element from each of Li and Lj such
that B & (Li _ Lj) is independent in Ni, j .

Evidently the bases of type (ii) correspond to pairs of non-adjacent
vertices ai and bj in G(M), and the lemma follows easily. K
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By Lemma 6.4, the graph G(M) is a vertex-disjoint union of cliques.
Moreover, we may permute the labels in each Li so that each of these
cliques has its vertex set contained in one of X, Y, or Z. From now on, we
shall assume that this permutation has been done. For all subsets I of H,
let GX(I ) , GY(I ) , and GZ(I ) be the subgraphs of G(M) induced by X(I ), Y(I ),
and Z(I ), respectively.

Next we prove the following:

6.6. Lemma. Let h1=w- hx, h2=w- h1 x, and h3=w- h2 x&2. Then
either

(i) GX or GY or GZ has a stable set with h3+2 vertices; or

(ii) for some h3 -element subset I� of H, the graphs GX(I� ) , GY(I� ) , and
GZ(I� ) are all cliques.

Proof. Assume that (i) fails. The graph GX has either

(X)(i) a stable set with h1 vertices; or

(X)(ii) a clique with h1 vertices.

Since (i) fails, (X)(i) also fails. Thus (X)(ii) holds. Let X(I$) be the vertex
set of such a clique. Clearly GY(I$) is, like GY , a disjoint union of cliques.
Therefore GY(I$) has either

(Y)(i) a stable set with h2 vertices; or

(Y)(ii) a clique with h2 vertices.

Since (Y)(ii) must hold, we let Y(I") be the vertex set of such a clique.
Evidently GZ(I") has either

(Z)(i) a stable set with h3+2 vertices; or

(Z)(ii) a clique with h3 vertices.

Since (Z)(ii) must hold, if we let Z(I� ) be the vertex set of such a clique,
then we deduce that (ii) of the lemma must hold. K

6.7. Lemma. Let Z(I ) be a stable set in GZ of size p+2 where p�2.
Then M . (X(I ) _ Y(I )) | X(I )$Up, p+2.

Proof. By Lemma 6.3, M .L(I ) is a ( p+2)-raft. Because Z(I ) is a stable
set of GZ , this set is independent in M .L(I ). Moreover, from the descrip-
tion of the bases of a raft in the proof of Lemma 6.5, we have that, for all
p-element subsets I$ of I, the set Z(I ) _ X(I$) is a basis of M .L(I ). Hence
X(I$) is a basis of M .L(I )�Z(I ). But the last matroid is M . (X(I ) _ Y(I ))
and so, on restricting this matroid to X(I ), we have a ( p+2)-element
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matroid of rank p in which every p-element subset is a basis. This matroid
is isomorphic to Up, p+2. K

6.8. Lemma. Let I� be a p-element subset of H such that p�3 and all of
the graphs GX(I� ) , GY(I� ) , and GZ(I� ) are cliques. Then M .L(I� )$M*(K3, p).

Proof. Label the graph K3, p so that the three vertices of degree p are
incident with the sets [x1 , x2 , ..., xp], [ y1 , y2 , ..., yp], and [z1 , z2 , ..., zp],
and the p vertices of degree three are incident with the sets [x1 , y1 , z1],
[x2 , y2 , z2], ..., [xp , yp , zp]. It is easy to see that M*(K3, p) is a p-raft with
distinguished triangles [x1 , y1 , z1], [x2 , y2 , z2], ..., [xp , yp , zp]. Also,
[x1 , x2 , y1 , y2 , z3 , z4 , ..., zp] is a not a spanning tree of K3, p , so its com-
plement, [x3 , x4 , ..., xp , y3 , y4 , ..., yp , z1 , z2], is not a basis of M*(K3, p).
Thus, by the proof of Lemma 6.5, z1 and z2 are adjacent in G(M*(K3, p)).
By symmetry, each of [x1 , x2 , ..., xp], [ y1 , y2 , ..., yp], and [z1 , z2 , ..., zp]
induces a clique in G(M*(K3, p)). The lemma now follows by Lemma 6.5. K

To prove Theorem 6.2, we only need to combine some of the preceding
lemmas.

Proof of Theorem 6.2. As h�(m+2)8, in Lemma 6.6, h1�(m+2)4, so
h2�(m+2)2, and h3�m. If (i) of Lemma 6.6 occurs, then Lemma 6.7
implies that M has a Um, m+2 -minor; if (ii) of Lemma 6.6 occurs, then
Lemma 6.8 implies that M has an M*(K3, m)-minor. K

The next lemma, which is relatively straightforward, will also be used in
the proof of Theorem 6.1.

6.9. Lemma. Let k be an integer exceeding one, and let N be a matroid
whose ground set is [x1 , x2 , ..., xk , y1 , y2 , ..., yk] such that [x1 , x2 , ..., xk]
is a basis and, for all i in [1, 2, ..., k], the set [xi , yi , xi+1] is a circuit where
xk+1=x1 . Then N is a wheel or whirl of rank k.

Proof. Let X=[x1 , x2 , ..., xk] and let Y=[ y1 , y2 , ..., yk]. For all yi

in Y, the matroid N" yi is isomorphic to the cycle matroid of a fan for
which X is the set of spokes. Hence every circuit of N" yi contains exactly
two elements of X. Moreover, we know all the circuits of N except for those
that contain Y. Moreover, Y& yi is independent in N for all i. Now either
Y is dependent, or Y is independent. In the former case, Y is a circuit of
N and it follows that N is a k-spoked wheel. Thus we may assume that Y
is independent, so Y is a basis of N. Take xi in X and consider the
fundamental circuit C(xi , Y ). If this circuit avoids some yj , then C(xi , Y )
is a circuit of the k-spoked fan N" yj that contains just one element of X;
a contradiction. Thus C(xi , Y)=Y _ xi for all i and it follows that N is a
whirl of rank k. K
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Proof of Theorem 6.1. We may assume that A is in reducible form and
let A$ be the associated reduced HPR for M. Because 1(6(M, C)) is a star,
no two columns of A are identical. Thus, by Proposition 4.3, no two
columns of A$ are identical and we may assume that two distinct columns
j $ and j" of A$ cross if and only if 1 # [ j $, j"]. Let h=(m+2)8. Since A$
has at least g6(h, q) columns, Theorem 4.4 implies that A$ has a row-
permuted submatrix B$ satisfying (i), (ii), or (iii) of that theorem. But every
matrix satisfying (ii) can be transformed into one satisfying (i) by a
sequence of row and column permutations. We conclude that we may
assume that M has a minor having a reduced HPR that satisfies (i) or (iii)
of Theorem 4.4.

In the first case, we may assume M has a hamiltonian minor N for which
the HPR with respect to the circuit CN=[0, 1, 2, ..., h+1] is the matrix
shown in Fig. 1 where :{0; ;{$; and #{0. We now distinguish two sub-
cases: (a) ${0 and (b) $=0.

Assume that (a) holds and consider N1=N�h"eh . An HPR for this
matroid with respect to the circuit CN&[h] is obtained by deleting the
second last row and the last column of the matrix in Fig. 1. By applying
Lemma 2.3, we deduce that the cocircuits of N1 include [0, 1, e1],
[1, 2, e2], ..., [h&2, h&1, eh&1], [h&1, h+1, e1]. Moreover, N1 has
rank h. Consider [e1 , 1, 2, ..., h&1]. This is a basis for N*1 if and only if
[0, e2 , e3 , ..., eh&1, h+1] is a basis for N1 . But the last set has a unique
element in each of the triads of N1 noted above. Thus [0, e2 , e3 , ..., eh&1 ,
h+1] is, indeed, a basis for N1 and so [e1 , 1, 2, ..., h&1] is a basis for N*1 .
We may now apply Lemma 6.9 to N*1 using the triads noted for N1 , which
are triangles for N*1 . From this lemma, it follows that N*1 , and hence N1 ,
is a wheel or a whirl of rank h.

Now assume that (b) holds, that is, $=0 in Fig. 1. In that case, we know
that none of :, ;, or # is zero. Let N1=N�(h+1)"eh . Then, as in (a), all
of [0, 1, e1], [1, 2, e2], ..., [h&2, h&1, eh&1], [h&1, h, e1] are triads

Figure 1
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of N1 . Moreover, if Y=[0, e2 , e3 , ..., eh&1 , h], then Y contains exactly one
element of each of these cocircuits and, as |Y |=r(N1), it follows that Y
is a basis of N1 . Hence E(N1)&Y is a basis of N*1 and, by applying
Lemma 6.9 to the last matroid, we deduce that N*1 , and hence N1 , is a
wheel or whirl of rank h.

It remains to consider the case when M has a minor having a reduced
HPR satisfying (iii) of Theorem 4.4. Thus we may assume that M has a
hamiltonian minor N for which the HPR with respect to the circuit
CN=[1, 2, ..., 2h, 2h+1] is the matrix shown in Fig. 2 where 0 � [:, ;, #]
and ${#.

Consider N�(2h+1). It has an HPR that is obtained by deleting the last
row of the matrix in Fig. 2. This HPR has no two identical rows and its
associated crissing graph is a star. Thus, by Theorem 3.10, N�(2h+1) is
3-connected. By Lemma 2.1(i), for all i in [1, 2, ..., h], since ?N�(2h+1)(ei)
has (CN&[2h+1])&[i, h+i] as a block, it follows that [i, h+i, ei] is a
circuit of N�(2h+1). Let N1=N�(2h+1)�e0 . To complete the proof of
Theorem 6.1, we shall use Theorem 6.2 to prove the next result.

6.10. Lemma. N1 has a minor isomorphic to Um, m+2 or M*(K3, m).

Proof. We show first that

(1) [i, h+i, ei] is a triangle of N1 for all i in [1, 2, ..., h].
Suppose that, for some i, this set is not a triangle of N1 . Then, since

N�(2h+1) is 3-connected, it follows that every 3-element subset of
[i, h+i, ei , e0] and, in particular, [i, e0 , ei] is a triangle of N�(2h+1).
Now take j in [1, 2, ..., h]&[i]. The cocircuit of N�(2h+1) that is the
complement of the closure of (CN&[2h+1])&[ j, j+h] contains e0 , but

Figure 2
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neither ei nor i. Thus N�(2h+1) has a cocircuit and a circuit with exactly
one common element. This contradiction completes the proof of (1).

Evidently, N1 has rank 2h&2. Therefore, by Theorem 6.2, the lemma
will follow if we can show that

(2) [1, 2, ..., 2h]&[i, h+i] is independent in N1 for all i in [1, 2, ..., h].
The last assertion holds if, for all such i, the set [e0 , 1, 2, ..., 2h,

2h+1]&[i, h+i] is independent in N. But, since the partition of CN

induced by e0 in N has exactly three blocks, [2h+1], [1, 2, ..., h], and
[h+1, h+2, ..., 2h], it follows, by Lemma 2.1, that N | (CN _ e0) contains
exactly four circuits: CN , [e0] _ [1, 2, ..., h, 2h+1], [e0] _ [h+1, h+2, ...,
2h, 2h+1], and [e0] _ [1, 2, ..., 2h]. As [i, h+i] meets each of these
circuits, [e0 , 1, 2, ..., 2h]&[i, h+i] is independent in N�(2h+1), so (2)
holds. This completes the proof of Lemma 6.10 and thereby finishes the
proof of Theorem 6.1. K

7. THE PATH CASE

In this section, we analyze the structure of a 3-connected matroid for
which the crissing graph with respect to some hamiltonian circuit is a path.

The main result of this section is the following:

7.1. Theorem. Let m be an integer exceeding two, and let M be a 3-con-
nected matroid with a hamiltonian circuit C such that the crissing graph
1(6(M, C)) is isomorphic to a path of length r for some r�m2+1. Then
either

(i) M has a U2, m-minor; or

(ii) M has a 3-connected minor that is a single-element extension of an
(m+1)-spoked fan.

The proof of this theorem is long. The first main step is to prove the next
theorem, which describes the structure of an HPR of a 3-connected
matroid for which the crissing graph with respect to some circuit is a path.
The proof of Theorem 7.2 is broken into a sequence of lemmas and
concludes with the proof of Lemma 7.12. The specific form of the HPR
of M, which is shown in Fig. 3 below, will then be analyzed. Another
auxiliary graph will be associated with this HPR and the cases when this
auxiliary graph has a big stable set and a big clique will then be treated.
From the first of these, (i) of Theorem 7.1 will follow fairly easily, the proof
of this being completed in Lemma 7.17. The other case, which will require
much more effort to produce a minor of one of the desired types, concludes
with the proof of Lemma 7.29.
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Theorem 7.1 will rely heavily on the next result.

7.2. Theorem. For some fixed integer n exceeding three, let 1, 2, ..., n be
an n-vertex path P. Let M be a 3-connected matroid that is minor-minimal
with the property that the crissing graph with respect to some hamiltonian
circuit C is P. Then, for all i in [1, 2, ..., n&2], the partitions ?(1) 7 ?(2) 7
} } } 7?(i) and ?(i+2) 7 ?(i+3) 7 } } } 7 ?(n) have blocks Ai and Bi+2 ,
respectively, such that

(i) A1 � A2 � } } } � An&2 ;

(ii) B3 / B4 / } } } / Bn ;

(iii) Ai _ Bi+2=C;

(iv) Ai & Bi+2=<;

(v) |C&A1 |=2=|C&Bn |; and
(vi) |Aj&Aj+1 |=|Bj+3&Bj+2 | for all j in [1, 2, ..., n&3].

Proof. For all i and j in [1, 2, ..., n], let Si=[1, 2, ..., i] and Tj=
[ j, j+1, ..., n]. For all such i and j, define ?(Si)=�s # Si

?(s) and ?(Tj)=
�t # Tj

?(t). If t�i+2�3, then ?(t) crisses none of ?(1), ?(2), ..., ?(i).
Hence, by Lemma 3.6, ?(t) -3 ?(Si). Similarly, if s� j&2�n&2, then ?(s)
crisses none of ?( j), ?( j+1), ..., ?(n), so ?(s) -3 ?(Tj).

Now suppose that n� j�i+2�3. Then none of ?( j), ?( j+1), ..., ?(n)
crisses ?(Si). Hence, by Lemma 3.6 again, ?(Tj) -3 ?(Si). We show next that,
for all such i and j,

(1) +(?(Si), ?(Tj)) is well-defined.

First, we note that, since M is loopless, none of ?(1), ?(2), ..., ?(n) has a
unique block. Thus +(?(Si), ?(Tj)) is well-defined unless ?(Si) and ?(Tj)
are equal and have exactly two parts. In the exceptional case, ?(1)=
?(2)= } } } =?(i)=?( j)=?( j+1)= } } } =?(n) and this common partition
has exactly two blocks; so ?(1)=?(n) and, by Lemma 2.1, 1 and n are
parallel; a contradiction. We conclude that (1) holds.

For all i and j with n� j�i+2�3, define +(?(Si), ?(Tj))=(Ai, j , Bi, j).
Next we prove the following:

7.3. Lemma. For all i and j such that 3�i+2� j�n&1,

(i) Ai, j=Ai, j+1; and
(ii) Bi, j �Bi, j+1.

Proof. For all such i and j, we know that ?( j) - ?( j+1). Thus, by
Lemma 3.6, ?( j) - ?(Tj+1). Moreover, ?(Tj)�?( j) so, by Lemma 3.3,
?(Tj) - ?(Tj+1). But ?(Si) crosses neither ?(Tj) nor ?(Tj+1), and none of
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these partitions equals [C]. Thus, by Lemma 3.5, since +(?(Si), ?(Tj))=
(Ai, j , Bi, j) and +(?(Si), ?(Tj+1))=(Ai, j+1 , Bi, j+1), we have Ai, j=Ai, j+1.
Moreover, +(?(Tj) 7 ?(Tj+1), ?(Si))=(Bi, j & Bi, j+1, Ai, j). But ?(Tj) 7
?(Tj+1)=?(Tj) and, as +(?(Tj), ?(Si))=(Bi, j , Ai, j), we deduce that Bi, j &
Bi, j+1=Bi, j , and (ii) follows immediately. K

The next lemma follows by the same argument that was used to prove
the last result.

7.4. Lemma. For all i and j such that 4�i+2� j�n,

(i) Bi&1, j=Bi, j ; and
(ii) Ai&1, j $Ai, j .

Now, for all i in [1, 2, ..., n&2], we define Ai to be the set that equals
all of Ai, i+2, Ai, i+3 , ..., Ai, n . Likewise, for all j in [3, 4, ..., n], let Bj be the
set that equals all of Bj&2, j , Bj&3, j , ..., B1, j .

On combining the last two lemmas, we deduce that

(2) A1 $A2 $ } } } $An&2; and

(3) B3 �B4 � } } } �Bn .

By definition, for all i and j with n� j�i+2�3, we have Ai, j _ Bi, j=C.
Thus Ai _ Bj=C for all such i and j, that is, (iii) of Theorem 7.2 holds. To
complete the proofs of (i) and (ii) of the theorem, it remains to show that
all the inclusions in (2) and (3) are proper.

Suppose that, for some i, we have Bi+1=Bi+2 . Then Ai _ Bi+1=C so
?(Si) -3 ?(Ti+1). But ?(i) - ?(i+1) and ?(Si)�?(i) so, by Lemma 3.3,
?(Si) - ?(i+1). Thus, as ?(i+1)�?(Ti+1), Lemma 3.3 implies that
?(Si) - ?(Ti+1). This contradiction implies that strict inequality holds
throughout (2) and (3). Hence (i) and (ii) hold.

By definition, A1 is a block of ?(1) and Bn is a block of ?(n). Moreover,
the following lemma is straightforward and its proof is omitted.

7.5. Lemma. For all i in [2, 3, ..., n&2] and all j in [3, 4, ..., n&1], the
partitions ?(i) and ?( j) have unique blocks A$i and B$j such that Ai=A$i &
Ai&1 and Bj=B$j & Bj+1.

The proofs of (iv)�(vi) of the theorem will be contained in the following
sequence of seven lemmas.

7.6. Lemma. |C&A1 |�2 and |C&Bn |�2.

Proof. ?(1) crisses ?(2), so |C&A1 |{1. Similarly, ?(n&1) crisses ?(n),
so |C&Bn |{1. K
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Next we consider the effect on non-crissing elements of contracting an
element of C.

7.7. Lemma. If e # C, then C&e is a hamiltonian circuit of M�e.
Moreover, for all positive integers i and all k in [2, 3, ..., n&i], the partitions
?M�e(i) and ?M�e(i+k) do not criss.

Proof. It is clear that C&e is a hamiltonian circuit of M�e. Moreover,
for all i and k satisfying the specified conditions, Ai _ Bi+k=C. As ?M�e(i)
and ?M�e(i+k) have blocks containing Ai&e and Bi+k&e, we deduce that
?M�e(i) -3 ?M�e(i+k). K

We know, then, that in an HPR of M, non-crissing columns remain non-
crissing on deleting some row. Next, we consider what happens to crissing
columns upon deleting a row. First, observe that if e # C and i # E(M)&C,
then the blocks of ?M�e(i) consist of the blocks of ?M(i) that avoid e along
with B(e)&e, provided it is non-empty, where B(e) is the block of ?M(i)
containing e.

7.8. Lemma. Suppose e # C and k # [1, 2, ..., n&1]. If none of (i)�(v)
below holds, then the partitions ?M�e(k) and ?M�e(k+1) criss.

(i) Bk+1&Bk=[e] and k�3.

(ii) Ak&Ak+1=[e] and k�n&3.

(iii) e # C&(Ak _ Bk+1) and 2�k�n&2.

(iv) e # C&A1 and k # [1, 2].

(v) e # C&Bn and k # [n&2, n&1].

Proof. Suppose ?M�e(k) -3 ?M�e(k+1). Then ?M�e(k) and ?M�e(k+1)
have blocks Xk and Yk+1 , respectively, such that Xk _ Yk+1=C&e. These
blocks are also blocks of ?M(k) and ?M(k+1), respectively. We shall show
that one of (i)�(v) must hold.

First suppose that k�3 and e # Bk+1. Then, as Bk+1 $B3 $C&A1 ,
Lemma 7.6 implies that |Bk+1 |�2. Clearly, either (a) Yk+1 $Bk+1&e,
or (b) Yk+1 $3 Bk+1&e. In the first case, since the block of ?M(k+1)
containing Bk+1&e must also contain e, it follows that Yk+1 _ e is a block
of ?M(k+1), so ?M(k) -3 ?M(k+1); a contradiction. Thus (b) holds.
Hence, as ?M�e(k+1) has a block containing all of Bk+1&e, it follows that
Yk+1 must avoid Bk+1&e, and so Xk $Bk+1&e. Therefore Xk $Bk&e.
Hence e � Bk , otherwise Xk _ e is a block of ?M(k) and so ?M(k) -3
?M(k+1); a contradiction. It follows that Bk+1&e=Bk since all of
Bk+1&e is in the same block Xk of ?M(k) and this block contains Bk , and
so equals B$k . Thus (i) holds.
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Next suppose that k�n&3 and e # Ak . Then, by mimicking the above
argument, we deduce that Ak&Ak+1=[e], that is, (ii) holds.

If k=1, then (ii) or (iv) holds; and if k=n&1, then (i) or (v) holds. Thus
we may assume that 2�k�n&2. Then we may suppose that e # Ak _ Bk+1 ,
otherwise (iii) holds. We shall suppose that e # Ak , for a similar argument
treats the case when e # Bk+1. We may also assume that k=n&2, otherwise
(ii) holds. Moreover, e � Bn&1 , otherwise (i) holds. Now An&2&e�3 Xn&2 ,
otherwise ?M(n&2) - ?M(n&1). Thus Xn&2 avoids An&2&e and so
An&2&e�Yn&1 . As An&2 _ Bn=C, it follows that e # C&Bn , otherwise
?M(n&1) -3 ?M(n). Hence (v) holds and the lemma is proved. K

7.9. Lemma. Suppose e # Ai & Bi+2 for some i in [1, 2, ..., n&2]. Then
1(6(M�e, C&e))=P and M�e is 3-connected.

Proof. Clearly 1(6(M�e, C&e)) has the same vertex set as 1(6
(M, C)), namely P. Moreover, by Lemma 7.7, two members of P that are
non-adjacent in 1(6(M, C )) are still non-adjacent in 1(6(M�e, C&e)).

Now suppose that ?M�e(k) -3 ?M�e(k+1) for some k in [1, 2, ..., n&1].
Then one of (i)�(v) in Lemma 7.8 must hold. But e # Ai , so e is in all of
A1 , A2 , ..., Ai . Likewise, the fact that e # Bi+2 implies that e is in all of
Bi+2 , Bi+3 , ..., Bn . In particular, neither (iv) nor (v) of Lemma 7.8 holds.
Moreover, if (iii) holds, then e is in both C&Ak and C&Bk+1 , so k�i+1
and k+1�i+1. This contradiction eliminates the possibility of (iii)
occurring.

Suppose (i) occurs. As Bk+1&Bk=[e] and e # Bi+2 , we have
k<i+2�k+1, that is, k=i+1. Hence Bi+2=Bi+1 _ e. But e # Ai and
Ai _ Bi+2=C, so Ai _ Bi+1=C, that is, ?M(i) -3 ?M(i+1); a contradic-
tion. Hence (i) fails and a similar argument establishes that (ii) fails. We
conclude that 1(6(M�e, C&e))=P.

Certainly, 1(6(M�e, C&e)) is connected and has no two elements of
C&e in series. Moreover, by Lemma 2.1, no two elements of P are parallel.
Theorem 3.10 now implies immediately that M�e is 3-connected. K

Part (iv) of Theorem 7.2 follows easily by combining Lemma 7.9 with
the fact that M is minor-minimal with the specified properties.

The following lemma is a straightforward combination of (iii) and (iv) of
the theorem.

7.10. Lemma. (i) Bi+2=C&Ai for all i in [1, 2, ..., n&2]; and
(ii) Aj&Aj+1=Bj+3&Bj+2 for all j in [1, 2, ..., n&3].

Next we prove (vi) of the theorem. It will suffice to establish the first
equality in that assertion since the second can be obtained by combining
the first with (ii) of Lemma 7.10.
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7.11. Lemma. If |Ai&Ai+1 |�2 for some i in [1, 2, ..., n&3], then, for
some e in Ai&Ai+1 , the crissing graph 1(6(M�e, C&e)) is P and M�e is
3-connected.

Proof. Suppose e # Ai&Ai+1. Then 1(6(M�e, C&e)) has vertex set P.
Moreover, by Lemma 7.7, two members of P that are non-adjacent in
1(6(M, C )) remain non-adjacent in 1(6(M�e, C&e)).

Suppose that ?M�e(k) -3 ?M�e(k+1) for some k in [1, 2, ..., n&1]. Then
one of (i)�(v) of Lemma 7.8 must hold. As e # Ai&Ai+1, we deduce that
e is in all of A1 , A2 , ..., Ai , Bi+3 , Bi+4 , ..., Bn . Thus neither (iv) nor (v) of
Lemma 7.8 holds. Moreover, since e is in none of Ai+1, Ai+2 , ..., An&2 ,
and |Ai&Ai+1 |�2, part (ii) of Lemma 7.8 cannot hold. By Lemma 7.10(ii),
Ai&Ai+1=Bi+3&Bi+2 . Therefore, as (ii) of Lemma 7.8 cannot hold,
neither can (i).

Finally, if (iii) of Lemma 7.8 holds, then e is in both C&Ak and
C&Bk+1. The first assertion implies that k�i+1, and the second that
k+1�i+2. Hence k=i+1. Thus ?M�e(i+1) -3 ?M�e(i+2). Therefore ?M�e

(i+1) and ?M�e(i+2) have blocks Xi+1 and Yi+2 , respectively, such that
Xi+1 _ Yi+2=C&e. Moreover, since ?M(i+1) crisses ?M(i+2), the sets
Xi+1 and Yi+2 are also blocks of ?M(i+1) and ?M(i+2). If Xi+1 $3 Ai+1 ,
then Xi+1 avoids Ai+1 and so Yi+2 $Ai+1. But Ai+1 _ Bi+3=C, so
Yi+2 _ Bi+3=C and, therefore, ?M(i+2) -3 ?M(i+3). This contradiction
implies that Xi+1 $Ai+1. But, by Lemma 7.5, the block A$i+1 of ?M(i+1)
that contains Ai+1 avoids Ai&Ai+1. Hence Yi+2 $(Ai&Ai+1)&e.
Moreover, Xi+1 $3 Bi+2 , otherwise ?M(i) -3 ?M(i+1). Thus Yi+2 meets
Bi+2 and so Yi+2 $Bi+2. We conclude that ?M(i+2) has a block that
contains [(Ai&Ai+1)&e] _ Bi+2.

Now choose e$ in (Ai&Ai+1)&e. Then, arguing as above, either
1(6(M�e$, C&e$))=P, or ?M(i+2) has a block containing [(Ai&
Ai+1)&e$] _ Bi+2. In the latter case, the relevant block of ?M(i+2)
must also contain [(Ai&Ai+1)&e] _ Bi+2 and so contains all of
(Ai&Ai+1) _ Bi+2. Since Ai+1 _ [(Ai&Ai+1) _ Bi+2]=C, it follows that
?M(i+1) -3 ?M(i+2); a contradiction. We conclude that Ai&Ai+1 does
indeed have an element e for which 1(6(M�e, C&e))=P and thus, by
Lemma 2.1 and Theorem 3.10, M�e is 3-connected. K

On combining the last lemma with the fact that M is minor-minimal
with the specified properties, we deduce immediately that (vi) of Theorem 7.2
holds.

Finally, (v) of the theorem will follow from the minimality of M, the next
lemma, and the symmetric argument that must hold for C&Bn .

7.12. Lemma. If |C&A1 |�3, then for some e in C&A1 , the crissing
graph 1(6(M�e, C&e))=P and M�e is 3-connected.
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Proof. Choose e in C&A1 . Then, by arguing as in previous lemmas, we
deduce that this lemma holds unless ?M�e(k) -3 ?M�e(k+1) for some k in
[1, 2, ..., n&1]. Thus one of (i)�(v) of Lemma 7.8 must hold. Clearly (ii)
cannot hold; nor, by Lemma 7.10, can (i). Evidently A1 _ Bn=C, so (v)
cannot hold. Moreover, since A1 _ B3=C, it follows that e is in all of
B3 , B4 , ..., Bn and therefore (iii) cannot hold. We conclude that (iv) holds,
so k # [1, 2].

Now ?M�e(k) and ?M�e(k+1) have blocks Xk and Yk+1 such that
Xk _ Yk+1=C&e. These blocks are also blocks of ?M(k) and ?M(k+1),
respectively. We show next that we may assume that k=1. Thus suppose
k=2. Then X2 _ Y3=C&e. As e # B3&Y3 , it follows that B3 avoids Y3 ,
so B3&e�X2 . Since A1 _ B3=C, it follows that A1 _ X2=C&e. Thus
?M�e(1) -3 ?M�e(2), so we may, indeed, assume that k=1.

By Lemma 7.5, no block of ?M(2) contains A1 . Hence X1 meets A1 , so
X1 $A1 . But A1 is a block of ?M(1) so X1=A1 . Thus Y2 $(C&A1)&e.

Now choose e$ # (C&A1)&e. Then we may assume that ?M(2)
has a block containing (C&A1)&e$, otherwise the lemma holds with e$
replacing e. Thus ?M(2) has blocks containing each of (C&A1)&e and
(C&A1)&e$. Since |C&A1 |�3, these blocks are equal, so ?M(2) has a
block containing C&A1 . Therefore ?M(2) -3 ?M(1); a contradiction. This
completes the proof of Lemma 7.12 and thereby finishes the proof of
Theorem 7.2. K

Theorem 7.2 enables us to give precise information about the structure of
an HPR of a minor-minimal 3-connected matroid whose crissing graph is
a fixed path. Recall that, in an HPR, equality of entries is only meaningful
if they occur in the same column. An (r+1)_r matrix will be called good
if it has the form shown in Fig. 3 where, for all i, the elements :i and ;i are
distinct; #i and $i are distinct; ;1 {$1 {#1 ; and #r {:r {;r .

Figure 3
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The next result, a straightforward consequence of Theorem 7.2, will
enable us to focus on good matrices for the rest of this section.

7.13. Corollary. Let M be a 3-connected matroid that is minor-
minimal with the property that its crissing graph with respect to some
hamiltonian circuit is a path of length r for some fixed r�4. Then M has an
HPR that is good. K

Frequent use will be made throughout the rest of this section of
Lemma 2.3. We begin by applying that lemma to an arbitrary hamiltonian
matroid having a good HPR.

7.14. Corollary. Let M0 be a hamiltonian matroid for which the HPR
with respect to the hamiltonian circuit C0 is the good matrix labelled as in
Fig. 3. Then, for all i and j in [0, 1, ..., r] with i< j, the set E(M0)&
cl(C0&[i, j]) is a cocircuit C*i, j of M0 meeting C0 in [i, j]. Moreover:

(i) C*i, j avoids both [s1 , s2 ..., si&1] and [sj+2, sj+3..., sr].

(ii) If i�1, then C*i, j contains si .

(iii) If j�r&1, then C*i, j contains sj+1 .

(iv) If j�2, then C*0, j contains s1 .

(v) If i�r&2, then C*i, r contains sr .

(vi) If 1�i�r&2, then C*i, i+1 & [s1 , s2 , ..., sr] is [si , si+2] or
[si , si+1 , si+2].

(vii) C*0, 1 & [s1 , s2 , ..., sr] is [s2] or [s1 , s2].

(viii) C*r&1, r & [s1 , s2 , ..., sr] is [sr&1] or [sr&1 , sr].

7.15. Lemma. Let M0 be a hamiltonian matroid for which an HPR is the
good matrix labelled as in Fig. 3. For all i and j such that 1�i< j�r&1,
let Yi, j=[i, j] _ [s2 , s3 , ..., sr&1] and Xi, j=[i, si+1 , si+2 , ..., sj , j]. Then
every circuit of M0 contained in Yi, j contains [i, j], and Yi, j contains at
most one circuit of M0 . Moreover, such a circuit that is contained in Xi, j

contains [i, j, si+1, sj] and is denoted by Ci, j .

Proof. Suppose that Yi, j& j contains a circuit D. Then certainly
D{[i]. Let k=max[t : st # D]. Then 1�k�r&1. By Corollary 7.14,
C*k, k+1 contains sk but avoids s1 , s2 , ..., sk&1. Hence C*k, k+1 meets the
circuit D in a single element. This contradiction implies that Yi, j& j is
independent. A symmetric argument establishes that Yi, j&i is independent.
Thus if Yi, j contains a circuit, then such a circuit contains [i, j] and so,
by circuit elimination, is unique.
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By Corollary 7.14, C*i&1, i meets Xi, j in [i, si+1]. Thus if Ci, j exists, then,
since it contains i, it must also contain si+1. Again a symmetric argument
establishes that sj # Ci, j . K

On combining the last lemma with the circuit elimination axiom, one
obtains the following:

7.16. Corollary. If 1�i< j<k�r&1 and two of Xi, j , Xj, k , and Xi, k

are dependent, then all three are.

We now begin the proof of the main result of this section.

Proof of Theorem 7.1. We may assume that M is a minor-minimal
matroid satisfying the hypotheses of the theorem. Then, by Corollary 7.13, we
may also assume that the HPR of M with respect to C is as shown in Fig. 3.

Now form an auxiliary graph G by taking [1, 2, ..., r&1] as its vertex set
and joining distinct vertices i and j by an edge if and only if Xi, j is dependent.
An immediate consequence of Corollary 7.16 is that each component of G
is a clique. Then clearly either

(1) G has an m-vertex stable set; or

(2) G has a Km-subgraph.

Assume first that (1) holds letting [i1 , i2 , ..., im] be a stable set Z of
vertices of G where 1�i1<i2<...<im�r&1. The next lemma establishes
that, in this case, (i) of Theorem 7.1 must hold.

7.17. Lemma. Let Y=[si1+1 , si1+2 , ..., sim
] and Z=[i1 , i2 , ..., im]. Then

[M | (Z _ Y )]�Y$U2, m .

Proof. First we show that, for all j and k with 1� j<k�m,

(1) [ij , ik] _ Y is independent.

Since Y�Xi1, im
&[i1 , im], Lemma 7.15 implies that Y is independent.

Moreover, since ij and ik are non-adjacent in G, the set Xij , ik
is independent.

Assume that [ij , ik] _ Y contains a circuit D. Then D must contain sp for
some p satisfying ik<p�r&1 or some p satisfying 2�p<ij+1. In these
two cases, take such an sp with the highest or lowest index, respectively.
Then D meets C*p, p+1 or C*p&2, p&1, respectively, in [sp]. This contradiction
establishes (1).

To complete the proof of the lemma, we shall now show that

(2) r(Y _ [i1 , i2 , ..., im])=|Y |+2.

To see this, we first let Z$=[i1 , i1+1, i1+2, ..., im]. Note that |Z$|=
|Y |+1. Now Z$ is a proper subset of C and so is an independent set in M.
Consider M�Z$. This matroid has an HPR with the following submatrix:
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si1+1 si1+2 } } } sim

0 :i1+1 :i1+2 } } } :im

1 :i1+1 :i1+2 } } } :im

2 :i1+1 :i1+2 } } } :im

b b b } } } b

ii&1 :i1+1 :i1+2 } } } :im
.

im+1 $i1+1 $i1+2 } } } $im

im+2 $i1+1 $i1+2 } } } $im

b b b } } } b

r $i1+1 $i1+2 } } } $im

By Lemma 2.1, an element sk of Y is a loop in M�Z$ if and only if
:k=$k . Moreover, all non-loops are parallel to each other. Hence
r(Y _ Z)�r(Y _ Z$)�|Y |+2. But, by (1), equality holds here. Hence (2)
holds. On combining (1) and (2), we deduce immediately that
[M | (Z _ Y )]�Y$U2, m . K

This completes the proof that if (1) occurs, then M has a U2, m -minor.
We now assume that (2) occurs, this time letting [i1 , i2 , ..., im] be the
vertex set of a clique in G where 1�i1<i2<...<im�r&1.

7.18. Proposition. M has a hamiltonian minor M$ that, after possibly
some relabelling involving the first and last rows and columns, has a good
HPR of the following form:

s1 si1+1 si1+2 si1+3 si1+4 } } } sim
sr

0 ;1 :i1+1 :i1+2 :i1+3 :i1+4 } } } :im
:r

i1 #1 ;i1+1 :i1+2 :i1+3 :i1+4 } } } :im
:r

ii+1 $1 #i1+1 ;i1+2 :i1+3 :i1+4 } } } :im
:r

ii+2 $1 $i1+1 #i1+2 ;i1+3 :i1+4 } } } :im
:r

ii+3 $1 $i1+1 $i1+2 #i1+3 ;i1+4 } } } :im
:r

b b b b b b . . . b b

im&1 $1 $i1+1 $i1+2 $i1+3 $i1+4 } } } ;im
:r

im $1 $i1+1 $i1+2 $i1+3 $i1+4 } } } #im
;r

r $1 $i1+1 $i1+2 $i1+3 $i1+4 } } } $im
#r
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where :t {;t and #t {$t for all t; and ;1 {$1 {#1 and #r {:r {#r .
Moreover, for all k in [1, 2, ..., m&1], the circuit Cik, ik+1

of M is also a
circuit of M$.

Proof. Let T1=[1, 2, ..., i1&2] _ [im+1, im+2, ..., r&2] and let S1=
[si1

, si1+1 , si1+2 , ..., sim
, sim+1]. If M1=(M�T1) | [(C&T1) _ S1], then M1

is certainly hamiltonian, having C&T1 as a hamiltonian circuit. Moreover,
this matroid has the following HPR:

si1
si1+1 si1+2 si1+3 } } } sim

sim+1

0 :i1
:i1+1 :i1+2 :i1+3 } } } :im

:im+1

i1&1 ;i1
:i1+1 :i1+2 :i1+3 } } } :im

:im+1

i1 #i1
;i1+1 :i1+2 :i1+3 } } } :im

:im+1

ii+1 $i1
#i1+1 ;i1+2 :i1+3 } } } :im

:im+1

i1+2 $i1
$i1+1 #i1+2 ;i1+3 } } } :im

:im+1

b b b b b . . . b b

im&1 $i1
$i1+1 $i1+2 $i1+3 } } } ;im

:im+1

im $i1
$i1+1 $i1+2 $i1+3 } } } #im

;im+1

im+1 $i1
$i1+1 $i1+2 $i1+3 } } } $im

#im+1

r $i1
$i1+1 $i1+2 $i1+3 } } } $im

$im+1

where, if i1&1=0, the first row is omitted; and if im+1=r, the last row
is omitted. In particular, if i1=1 and im=r&1, then the first part of the
proposition holds. Now suppose that i1>1. Then either (a) :i1

{$i1
, or

(b) :i1
=$i1

. In case (b), since :i1
{;i1

, it follows that $i1
{;i1

. In this case,
letting M2=M1 �0 and relabelling i1&1 as 0 and si1

as s1 , we obtain a
hamiltonian minor of M in which the first column of the HPR has the
desired form. In case (a), we let M2=M1 �[i1&1]. After relabelling si1

as
s1 and :i1

, #i1
, and $i1

as ;1 , #1 , and $1 , respectively, we again obtain a
hamiltonian minor of M in which the first column of the HPR has the
desired form.

If im<r&1, then a similar argument ensures that by contracting r or
im+1 and relabelling, we obtain a hamiltonian minor in which the last
column of the HPR has the desired form. The fact that M has a
hamiltonian minor M$ with a good HPR labelled as specified now follows
without difficulty.

Now, for all k in [1, 2, ..., m&1], the circuit Cik , ik+1
of M is a subset of

[ik , sik+1 , sik+2 , ..., sik+1
, ik+1] that contains [ik , ik+1]. Moreover, none of
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the elements of Cik , ik+1
is relabelled in forming M$. Thus Cik , ik+1

�E(M$),
so Cik , ik+1

is a union of circuits of M$. But Lemma 7.15 implies that every
circuit of M$ contained in Cik , ik+1

must contain [ik , ik+1]. From circuit
elimination, it now follows that Cik , ik+1

is a circuit of M$. K

Since M$ has a good HPR, we may apply Corollary 7.14 to this matroid
to deduce that M$ has a collection of cocircuits C*i, j (M$) with the various
properties described there. We shall now concentrate primarily on the
matroid M$ whose existence was proved in Proposition 7.18. Let C$=[0,
i1 , i1+1, ..., im , r]. Then C$ is the distinguished hamiltonian circuit of M$.
Clearly r(M$)=im&i1+2. Throughout the discussion to follow, we shall
abbreviate C*i, j (M$) to C*i, j .

Let Z=[s1 , si1+1 , si2+1 , ..., sim&1+1 , sr] and let W=[0, i1 , i2 , ..., im , r].
Let the matroid N=M$"[C$&W]�[E(M$)&(C$ _ Z)]. Evidently
E(N )=Z _ W. The remainder of this section will be devoted to proving the
following result, which will complete the proof of Theorem 7.1.

7.19. Proposition. The matroid N has a 3-connected single-element
deletion that is a single-element extension of an (m+1)-spoked fan.

The proof of this proposition is broken into steps, which are contained
in the next ten lemmas. The length of the argument here arises from the
fact that, in forming N, we deleted elements from the hamiltonian circuit
and contracted elements from outside this circuit. For such a minor, we can
no longer find an HPR simply by looking at an appropriate submatrix of
the original HPR.

7.20. Lemma. (i) [0, s1 , si1+1 , si1+2 , ..., sim
] and [si1+1 , si1+2 , ..., sim

,
sr , r] are both bases of M$.

(ii) r(N )=m+1.

Proof. Consider the set [0, s1 , si1+1 , si2+1 , ..., sim
]. If it is dependent in

M$, then take a circuit contained in this set and let sk be the member
of this circuit with largest index. Then, by Corollary 7.14, C*k, r meets this
circuit in a single element; a contradiction. We conclude that [0, s1 , si1+1 ,
si1+2 , ..., sim

] is independent in M$, and a symmetric argument establishes
that [si1+1 , si1+2 , ..., sim

, sr , r] is independent in M$. Since r(M$)=
im&i1+2, it follows that each of the independent sets just considered is a
basis of M$. Moreover, both of these bases contain E(M$)&(C$ _ Z). Thus

r(M$�[E(M$)&(C$ _ Z)])=r(M$)&|E(M$)&C$|+|Z|

=(im&i1+2)&(im&i1+2)+m+1

=m+1.
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But, since C$&W avoids the spanning set [0, s1 , si1+1 , si1+2 , ..., sim
] of M$,

it is coindependent in M$. Hence

r(N )=r(M$�[E(M$)&(C$ _ Z)]"[C&W])

=r(M$�[E(M$)&(C$ _ Z)])

=m+1. K

7.21. Lemma. For all k in [1, 2, ..., m&1], the set [ik , ik+1] is inde-
pendent in N. Moreover, [ik , sik+1 , ik+1] is a triangle of N.

Proof. By Lemma 7.15, the circuit Cik , ik+1
of M$ contains [ik , ik+1 ,

sik+1 , sik+1
] and is contained in [ik , sik+1 , sik+2, ..., sik+1

, ik+1]. Thus
Cik , ik+1

& E(N )=[ik , ik+1 , sik+1] and no element of Cik , ik+1
is deleted in

forming N. Therefore [ik , ik+1 , sik+1] is a union of circuits of N. Hence
both assertions of the lemma will follow if we can establish the first.

To show that [ik , ik+1] is independent in N, we shall establish that
[ik , ik+1] _ [[si1+1 , si1+2 , ..., sim

]&[sik+1]] is independent in M$. But, in
the notation of Lemma 7.15, this set is Yik , ik+1

&sik+1 and that lemma
showed that Yik , ik+1

contains a unique circuit of M$. Since we know then
that Xik , ik+1

is dependent, the unique circuit contained in Yik , ik+1
is Cik , ik+1

.
As this set contains sik+1 , we deduce that Yik , ik+1

&sik+1 is, indeed,
independent in M$. K

7.22. Lemma. Both [0, s1 , i1] and [im , sr , r] are triangles of N.

Proof. By symmetry, it suffices to establish the first of these assertions.
In M$, the partition of C$ associated with s1 has C$&[0, i1] as a single
block. Thus [0, s1 , i1] is a triangle of M$. Since this set is contained
in E(N), it is a union of circuits of N. To complete the proof, we shall
establish that

(1) [0, i1] _ [si1+1 , si1+2 , ..., sim
] is independent in M$.

By Lemma 7.15, [i1 , si1+1 , si1+2 , ..., sim
] is certainly independent in M$.

Thus (1) holds unless [0, i1 , si1+1 , si1+2 , ..., sim
] contains a unique circuit of

M$ and this circuit D contains 0. By Lemma 7.20, i1 # D. Assume that D
contains sj for some j�i1+1. Take the largest such j. Then C*j, r & D=
[sj]; a contradiction. Thus D=[0, i1]. But this set is a proper subset of the
circuit C$, so we have a contradiction. Hence (1) holds and the lemma is
proved. K

7.23. Lemma. Both [0, i1 , i2 , ..., im] and [i1 , i2 , ..., im , r] are bases of N.
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Proof. By symmetry and the fact that r(N )=m+1, it suffices to show
that the first set, I1 , spans N. Lemmas 7.21 and 7.22 certainly imply that
the set I1 spans [s1 , si1+1 , si2+1 , ..., sim&1+1], which is Z&sr . Thus, in M$,
the set I1 _ [E(M$)&(C$ _ Z)], the union of I1 with the elements that are
contracted in forming N from M$, spans [0, s1 , si1+1 , si1+2 , ..., sim

]. By
Lemma 7.20, the last set is a basis for M$. Thus I1 _ [E(M$)&(C$ _ Z)]
spans M$ and so I1 spans N. K

7.24. Lemma. The restriction of the matroid N to each of
[0, i1 , i2 , ..., im] _ [s1 , si1+1 , si2+1 , ..., sim&1+1] and [i1 , i2 , ..., im , r] _
[si1+1 , si2+1 , ..., sim&1+1 , sr] is isomorphic to the cycle matroid of an
(m+1)-spoked fan.

Proof. The restriction to the first of these sets has [0, i1 , i2 , ..., im] as
a basis. The presence of the triangles, whose existence was shown in Lem-
mas 7.21 and 7.22, completes the proof that the first restriction is indeed
isomorphic to the cycle matroid of an (m+1)-spoked wheel. The fact that
the same conclusion holds for the second restriction follows by a symmetric
argument. K

The two restrictions of N considered in the last lemma coincide with
N"[r, sr] and N"[0, s1]. The fans whose cycle matroids they equal are
labelled as in Fig. 4.

7.25. Lemma. [0, s1 , sr , r] is a cocircuit of N.

Proof. Clearly, [0, s1] is a cocircuit of N"[r, sr]. Thus [0, s1 , sr , r]
contains a cocircuit C* of N containing [0, s1]. The circuit [im , sr , r]

Figure 4
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implies that C* is [0, s1] or [0, s1 , sr , r]. But [i1 , i2 , ..., im , r] is a basis of
N avoiding [0, s1]. Hence C*=[0, s1 , sr , r, ]. K

7.26. Lemma. If N is non-simple, then N has a 3-connected single-
element deletion N1 such that N1 "x is an (m+1)-spoked fan for some x in
E(N1).

Proof. Both N"[r, sr] and N"[0, s1] are (m+1)-spoked fans. Hence
both of these matroids are simple. Suppose N itself is non-simple. Then 0
or s1 is parallel to r or sr . Since the proof of this lemma will use only these
facts, we may view 0 and s1 as interchangeable, and r and sr as inter-
changeable within this proof. By this symmetry, we may assume that [0, r]
is a 2-circuit of N.

Let N1=N"0. Then [i1 , i2 , ..., im , r] is certainly a basis for N1 .
Moreover, as [0, i1 , s1] and [0, r] are circuits of N, it follows that
[r, i1 , s1] is a triangle of N1 . This triangle, along with the m other triangles
shown in Fig. 4(b), implies, by Lemma 6.9, that N1 is a wheel or whirl of
rank m+1, and the lemma follows. K

By this lemma, we may now assume that N is simple.

7.27. Lemma. Let [J, K] be a 2-separation of M(Gk) where Gk is
labelled as in Fig. 5. Then, for some j�k&2 and up to a reversal of the
subscript labels, J or K is [x1 , y1 , x2 , y2 , ..., xj , yj , xj+1].

Proof. It is well known that the 2-separations of a graphic matroid are
associated in a natural way with 2-vertex cuts of the graph. The lemma
follows easily from this observation. K

7.28. Lemma. The matroid N is 3-connected.

Proof. As N"[r, sr] and N"[0, s1] are both connected, N is certainly
connected. Assume that N has an exact 2-separation [X, Y]. Then
r(X )+r(Y )=r(N )+1=m+2 and min[ |X |, |Y |]�2. Since N is simple,

Fig. 5. A k-spoked fan.
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min[r(X ), r(Y )]�2 so max[r(X ), r(Y )]<r(N). Now, as N"[r, sr] is con-
nected having the same rank as N, neither X nor Y is [r, sr]. Moreover,

r(N )+1�r(X&[r, sr])+r(Y&[r, sr])

�r(X )+r(Y )

�r(N )+1. (1)

Hence equality holds throughout (1), so r(X&[r, sr])=r(X ). Without loss
of generality, we may assume that X & [r, sr]{<. Then, as [0, s1 , r, sr]
is a cocircuit of N, the fact that r(X&[r, sr])=r(X ) implies that
X & [0, s1]{<. As max[r(X&[r, sr]), r(Y&[r, sr])]�r(N)&1, (1)
implies that min[r(X&[r, sr]), r(Y&[r, sr])]�2. Thus [X&[r, sr],
Y&[r, sr]] is a 2-separation of the fan N"[r, sr]. Therefore, by
Lemma 7.27, since X meets [0, s1], it contains this set. Thus X contains the
cocircuit [0, s1 , r, sr] and so r(Y&[r, sr])<r(Y ) contradicting (1). K

7.29. Lemma. N"r or N"sr is a 3-connected matroid for which some
single-element deletion is an (m+1)-spoked fan.

Proof. It suffices to show that N"r or N"sr is 3-connected. Suppose
that neither is. Since [im , r, sr] is a triangle of N, Tutte's Triangle
Lemma [6] (or see [4, Lemma 8.4.9]) implies that N has a triad T* con-
taining r and exactly one of sr and im . Since N"[r, sr] has no coloops, T*
does not contain sr and so must contain im . Moreover, T*&r is a union
of cocircuits of N"[r, sr]. The only cocircuit of this matroid of size at most
two containing im is [im , sim&1+1]. Thus T*=[r, im , sim&1+1]. Similarly,
N has a triad containing sr and exactly one of r and im , and it follows as
above that this triad is [sr , im , sim&1+1]. Hence, using these two triads
and elimination, we deduce that [r, sr , im] is a triad of N. But this set
is also a triangle of N. This is a contradiction (see [14, Proposition 8.1.7])
and so Lemma 7.29 holds. Hence so too do Proposition 7.19 and
Theorem 7.1. K

8. THE CLIQUE CASE

This section deals with the case when the crissing graph of a 3-connected
hamiltonian matroid is a clique. The argument here is much shorter than
in the star and path cases and follows without too much difficulty from
Theorem 4.5. The main result of this section is the following:

8.1. Theorem. Suppose that m is an integer exceeding two and M is a
3-connected matroid with a hamiltonian circuit C such that M has an
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F-matrix A as an HPR with respect to C. Assume that if x and y are distinct
elements of E(M)&C, then ?(x) and ?( y) are different partitions of C. If
a�g5(2m+2, q) and 1(6(M, C)) is isomorphic to Ka , then either

(i) M has as a minor a wheel or a whirl of rank m or an m-spike; or
(ii) M or M* has a 3-connected minor that is a single-element exten-

sion of an m$-spoked fan for some m$�m.

Proof. We may assume that A is in reducible form with A$ being the
associated reduced HPR for M. Then, by Proposition 4.3, every two
columns of A$ cross. Let h=2m+2. Then, by Theorem 4.5, as A$ has at
least g5(h, q) columns, A$ has a row-permuted submatrix B$ of one of the
five types specified there. These five cases will be treated, in order, below.

Corresponding to (i) of Theorem 4.5, we assume first that M has a
hamiltonian minor N for which the HPR with respect to the circuit
CN=[0, 1, ..., h+1] is as shown in Fig. 6 where : and ; are both non-
zero. Let N1=N�(h+1). Then ?N1

(ei) has (CN&[h+1])&[i&1, h] as a
block for all i in [1, 2, ..., h]. Thus, for all such i, Lemma 2.1(i) implies that
N1 has [h, i&1, ei] as a circuit. Also [0, 1, 2, ..., h]&[i&1] is a basis
of N1 . Hence N1 is an h-spike with tip h. Thus M certainly has an m-spike
as a minor.

The two subtypes of (ii) of Theorem 4.5 are the same to within row and
column permutations. Thus we shall assume next that some minor N of M
has the HPR shown in Fig. 7 where : and ; are distinct and non-zero.
Then, by Theorem 3.10, N is 3-connected.

Let N1=N�h. Then, by Lemma 2.3, the following sets are triads of
N1 : [0, 1, e1], [1, 2, e2], ..., [h&2, h&1, eh&1], [h&1, h+1, eh]. More-
over, since the set [e1 , e2 , ..., eh] contains exactly one element of each of
these triads, it is independent and hence is a basis of N1 . Thus
[0, 1, 2, ..., h&1, h+1] is a basis for N*1 . It follows easily that N*1 is an
h-spoked fan. Thus N* is a single-element extension of an h-spoked fan.
Moreover, since N* is 3-connected, the theorem holds in this case.

Figure 6
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Figure 7

The third possibility to be considered in this proof corresponds to (iii)
of Theorem 4.5. Thus we assume that some minor N of M has the HPR
shown in Fig. 8 where neither : nor # is zero, and :{;. We now
distinguish two subcases: (a) :{#; and (b) :=#. In case (a), the matroid
N1=N�[1, 3, ..., h&1]"[e1 , e3 , ..., eh&1] has an HPR that is obtained from
the matrix in Fig. 8 by deleting the rows labelled by 1, 3, ..., h&1, and the
columns labelled by e1 , e3 , ..., eh&1. Thus N1 has the following HPR:

e2 e4 e6 } } } eh&2 eh

0 : : : } } } : :

2 # : : } } } : :

4 # # : } } } : :

b b b b . . . b b
.

h&4 # # # } } } : :

h&2 # # # } } } # :

h 0 0 0 } } } 0 0

Figure 8
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Since :, #, and 0 are distinct, we may interchange # and 0 in this matrix
to obtain another HPR for N1 . Then, deleting the last column, we deduce
that N1 "eh has as an HPR the following matrix where :, #, and 0 are
distinct:

e2 e4 e6 } } } eh&4 eh&2

0 : : : } } } : :

2 0 : : } } } : :

4 0 0 : } } } : :

b b b b . . . b b

h&4 0 0 0 } } } 0 :

h&2 0 0 0 } } } 0 0

h # # # } } } # #

On interchanging the last two rows here, we obtain a matrix of the form
in Fig. 7. From the argument given there, we deduce that N*1 has a 3-con-
nected minor that is a single-element extension of a fan with (h&2)�2
spokes. Since (h&2)�2=m, the theorem holds in this case.

In case (b) associated with Fig. 8, we have :=#{0. Applying the per-
mutation (;, :, 0) to the labels produces a matrix of the form shown in
Fig. 6 with the last row deleted. Thus M has an h-spike as a minor, and so
M certainly has an m-spike as a minor.

Figure 9
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Figure 10

Next, corresponding to (iv) of Theorem 4.5, we may assume that some
minor N of M has the HPR shown in Fig. 9 where :{0. Let
N1=N�[h+1, h+2, ..., 2h&1]. Then N1 has the following among
its cocircuits: [1, 2, e2], [2, 3, e3], ..., [h&2, h&1, eh&1], [h&1, eh , h],
[eh , 2h+1, 2h], [2h+1, 1, e1]. Moreover, since [e1 , e2 , ..., eh&1 , h, 2h]
contains exactly one element of each of these cocircuits, it is independent
and so, as r(N1)=h+1, it is a basis of N1 . Thus N*1 has [1, 2, ...,
h&1, eh , 2h+1] as a basis. Therefore, by Lemma 6.9, N*1 , and hence N1 ,
is a wheel or a whirl of rank h+1. Thus M certainly has, as a minor, a
wheel or a whirl of rank m.

The final case that needs to be considered here is associated with (v) of
Theorem 4.5, that is, when the reduced HPR is (:, ;)-complete. In this
case, M has a minor N having an HPR that equals the matrix in Fig. 10
where : and ; are both non-zero.

By Lemma 2.1(i), the following sets are triangles of N : [1, 2, e2],
[2, 3, e3], ..., [h&2, h&1, eh&1]. Moreover, [1, 2, ..., h&1] is a basis of N.
Thus N"h is an (h&1)-spoked fan. Moreover, since it follows easily by
Theorem 3.10 that N is 3-connected, the theorem also holds in this case
and so its proof is complete. K

9. PROOF OF THE MAIN THEOREM

Having assembled the tools we need in the preceding sections, we are
now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. In addition to the functions g5 , g6 , and R from
Theorems 4.5, 4.4, and 5.5, the proof will use the following numbers:

d=g6((n+2)8, n),

c=max[(d+1)2+2, g5(2d+6, n)],

b=(R(c, 2))c,
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and

a=nb.

Let M be a 3-connected matroid with more than 4a elements. Then, by
Theorem 5.1, we may choose some M0 in [M, M*] such that M0 has a cir-
cuit with more than a elements. By Theorem 5.2, if C is a maximum-sized
circuit of M0 , then M0 has a 3-connected minor M$ in which C is a
hamiltonian circuit. Let A be an HPR of M$ with respect to C. Then A has
more than a rows. Now either A has a column with more than n distinct
entries, or every column of A has at most n distinct entries. In the first case,
by Lemma 5.3, M0 has a Un, n+2 -minor and the theorem holds. Thus we
may assume that the second case holds and hence that A is an F-matrix
where |F |=n. Then, as a=nb, Lemma 5.4 implies that A has a set X of
at least b columns such that M$ | (X _ C ) is 3-connected and every two
members of X induce distinct partitions of C.

Next let M$X=M$ | (X _ C), let AX be the submatrix of A consisting of
those columns in X, and consider the crissing graph 1(6(M$C , C )). Since
M$X is 3-connected, this graph is certainly connected. As it has at least
(R(c, 2))c vertices, Theorem 5.5 implies that it has an induced subgraph
isomorphic to K1, c , Pc , or Kc . This subgraph has some subset Y of X
as its vertex set. Consider M$ | (Y _ C ) and let AY be the corresponding
submatrix of AX . By Lemma 3.11, the cosimplification of M$ | (Y _ C) is a
3-connected matroid M1 having a hamiltonian circuit C1 such that the
associated crissing graph is isomorphic to K1, c , Pc , or Kc . Moreover, an
HPR A1 for M1 can be obtained from AY by deleting repeated rows. Since
every two columns of AY induce distinct partitions of C, it follows that
every two columns of A1 induce distinct partitions of C1 .

The three possibilities for the crissing graph of M1 will essentially be
reduced to one using the following result.

9.1. Lemma. Either M0 has as a minor a matroid isomorphic to M(Wn),
Wn, U2, n+2, or (n+2)-spike, or M1 or M*1 has a 3-connected minor having
a hamiltonian circuit such that the associated crissing graph is isomorphic
to K1, d .

Proof. Since c = max[(d + 1)2 + 2, g5(2d + 6, n)], by applying
Lemma 3.11 again, we deduce that the lemma holds if 1(6(M1 , C1))$
K1, c . Now suppose that 1(6(M1 , C1))$Pc . Then, by Theorem 7.1, M1

has either a U2, d+1-minor, or a 3-connected minor that is a single-element
extension of a (d+2)-spoked fan. In the first case, as d�n+1, it follows
that M1 and hence M0 has a U2, n+2-minor. In the second case, by
Proposition 3.12, M0 has a 3-connected minor with a hamiltonian circuit
such that the associated crissing graph is K1, d .
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Finally, suppose that 1(6(M1 , C1))$Kc . Then, by Theorem 8.1, either
(a) M1 has as a minor a wheel or whirl of rank d+2 or a (d+2)-spike,
or (b) M1 or its dual has a 3-connected minor that is a single-element
extension of a (d $+2)-spoked fan for some d $�d. In case (a), since d�n,
it follows that M1 has a minor isomorphic to one of M(Wn), Wn, or an
(n+2)-spike. In case (b), by Proposition 3.12 and Lemma 3.11, it follows
that the lemma holds. K

If the first possibility of Lemma 9.1 holds, then, as M0 is M or M*, we
deduce that M or M* has a minor isomorphic to one of M(Wn),
Wn, U2, n+2 , or an (n+2)-spike. Since the dual of an (n+2)-spike has an
n-spike as a minor, it follows that M has a minor isomorphic to one of
M(Wn), Wn, U2, n+2, Un, n+2 , or an n-spike.

We may now assume that the second possibility in Lemma 9.1 holds. Let
N be a 3-connected minor of M or M* having a hamiltonian circuit CN

such that the associated crissing graph is isomorphic to K1, d . Let A be an
HPR of N with respect to CN . Then we may assume that A is an F-matrix
with |F |=n otherwise, by Lemma 5.3, N has a Un, n+2-minor. As
d= g6((n+2)8, n), it follows immediately from Theorem 6.1 that N has a
minor isomorphic to one of M(Wn), W n, Un, n+2 , or M*(K3, n). The
theorem now follows easily. K

10. UNIFORM SPIKES AND UNAVOIDABILITY

The purpose of this section is to complete the proof of Theorem 1.4 by
showing that every sufficiently large spike contains a big uniform spike as
a minor. In addition, the notion of unavoidability will be precisely defined
and used to show that the list of matroids in Theorem 1.4 has no
redundancy.

The desired result on spikes will be obtained as a consequence of a result
for hypergraphs. For an n-element set I, a 2-colored complete hypergraph H
on I is a hypergraph with vertex set I and edge set 2I with every edge
colored red or blue. For I$�I, every member of 2I$ is also a member of 2I.
We let H | I$, the restriction of H to I$, be the 2-colored complete hyper-
graph with vertex set I$ and edge set 2I$ in which every edge has the color
it was given in H.

For precision in what follows, we extend the definition of an n-spike as
follows: for an n-element set I with n�3, an I-spike is a matroid M with
ground set [ p] _ [xi : i # I] _ [ yi : i # I] such that

(i) if i # I and Li=[ p, xi , yi], then Li is a circuit of M;

(ii) if J is a proper subset of I, then r(�j # J Lj)= j+1; and

(iii) r(M)=n.
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In particular, a [1, 2, ..., n]-spike is an n-spike as previously defined.
Indeed, every I-spike is isomorphic to an n-spike, and we shall often refer
to an arbitrary I-spike with |I |=n as just an n-spike.

Now let M be an I-spike with tip p. We associate with M the 2-colored
complete hypergraph H(M) with vertex set I in which a subset J of I is
colored red if and only if XJ _ YI&J is a circuit of M.

10.1. Lemma. Let M be an I-spike. If I$�I and |I$|�3, then
H(M) | I$=H(M"XI&I $ �YI&I $).

Proof. It suffices to prove this when |I&I$|=1. Let I&I$=[k]. Then
M"xk�yk is an I$-spike by Lemma 1.3(v). Moreover, XJ _ YI$&J is a circuit
of M"xk�yk if and only if XJ _ YI&J is a circuit of M. The lemma follows
without difficulty. K

For an I-spike M and a subset A of [0, 1, ..., n], the hypergraph H(M)
is A-coherently colored and M is A-uniform if, for all m in A, all edges of
H(M) of size m have the same color. In particular, if A=[0, 1, ..., n], an
A-coherently colored hypergraph is called simply coherently colored, and
an A-uniform I-spike is called a uniform I-spike. This usage is clearly con-
sistent with that introduced in Section 1.

The next result is a special case of a celebrated theorem of Ramsey (see,
for example, [2]).

10.2. Theorem. For all non-negative integers k and l, there is a least
integer Rk(l ) such that, for every 2-colored complete hypergraph H on I
with |I |�Rk(l ), there is an l-element subset J of I for which H | J is
[k]-coherently colored.

The next result is obtained by repeatedly applying the last theorem.

10.3. Theorem. Let n be a non-negative integer. Then there is a number
R$(n) such that, for every 2-colored complete hypergraph H on I with
|I |�R$(n), there is an n-element subset J of I for which H | J is coherently
colored.

Proof. Define m0 , m1 , ..., mn inductively as follows: let mn=n; for all k
in [0, 1, ..., n&1], let mk=Rk+1(mk+1), and let R$(n)=m0 . We prove, by
induction on k, that every 2-colored complete hypergraph on a set of m0

vertices has a [0, 1, ..., k]-coherently colored restriction on mk vertices.
This is certainly true for k=0. Assume it true for k=k$. Then H has a
[0, 1, ..., k$]-coherently colored restriction H$ on mk$ vertices. But mk$=
Rk$+1(mk$+1), so, by Theorem 10.2, H$ has a restriction on mk$+1 vertices
that is [k$+1]-coherently colored. But this restriction, as a restriction of H$,
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is also [0, 1, ..., k$]-coherently colored, and hence it is [0, 1, ..., k$+1]-
coherently colored. The assertion now follows by induction and, taking
k=n, we get the theorem. K

On combining the last theorem with Lemma 10.1, we immediately
deduce the desired result for uniform spikes.

10.4. Corollary. For every integer n exceeding two, every R$(n)-spike
has a uniform n-spike as a minor.

Theorem 1.4 is now an immediate consequence of this corollary and
Theorem 1.2.

In Theorem 1.4, we refined Theorem 1.2 by trimming down the list of
unavoidable matroids. To conclude the paper, we shall show that no
further trimming of this list can be done. Thus Theorem 1.4 is the best-
possible result of this type. To achieve this end, we shall formally define
unavoidable matroids and show that Theorem 1.4 essentially identifies all
such matroids.

A 3-connected matroid M0 will be called unavoidable if there is a minor-
closed class M of matroids such that M contains infinitely many 3-connected
members but only finitely many of these have no minor isomorphic to M0 .
For example, let M consist of all matroids that are minors of members of
[M(K3, k) : k�3]. Then M certainly contains infinitely many 3-connected
members. But, for a fixed n�3, the matroid M(K3, n) is unavoidable since
the only 3-connected members of M with no M(K3, n)-minor have at most
eight elements or have the form M(K3, k), M(K$3, k), M(K$3, k), M(K$$$3, k) for
some k in [3, 4, ..., n&1]. Here, if K3, k has vertex classes X and Y with
|X|=3, then K$3, k , K"3, k , and K$$$3, k are simple graphs obtained from K3, k by
adding one, two, or three edges, respectively, joining distinct pairs of
vertices in X.

It is not difficult to check that every 3-connected minor of an
unavoidable matroid is unavoidable. Thus, for instance, each of M(K$3, n),
M(K"3, n), and M(K$$$3, n) is unavoidable for all n�3.

The substance of Theorem 1.4 is that if a matroid is unavoidable, then
it is isomorphic to a 3-connected minor of one of the matroids listed in that
theorem. The next result asserts that the converse of this is also true.

10.5. Theorem. A 3-connected matroid is unavoidable if and only if, for
some n�3, it is isomorphic to a 3-connected minor of one of Un, n+2 ,
U2, n+2 , M(K3, n), M*(K3, n), M(Wn), Wn, or a uniform n-spike.

Before proving this theorem, we make some further observations concer-
ning uniform spikes. Let M be a uniform n-spike with tip p. Then n�3,
E(M)=[ p] _ XI _ YI , and M is uniquely determined by the (n+1)-tuple
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(t0 , t1 , ..., tn) of zeros and ones where t |J |=1 if and only if XJ _ YI&J is a
circuit of M. If t=(t0 , t1 , ..., tn), we shall write Sn(t) for the uniform n-spike
associated with this (n+1)-tuple. It follows easily that ti ti&1=0 for all i in
[1, 2, ..., n]. Moreover, it is not difficult to check that, for all n�3 and
every (n+1)-tuple t subject to the last restriction, the matroid Sn(t) does
indeed exist.

This new notation for uniform spikes makes it particularly easy to
describe the 3-connected minors of Sn(t). First consider contractions. By
Lemma 1.3, Sn(t)�p is the cycle matroid of the graph obtained from an
n-cycle by doubling every edge. Thus Sn(t)�p has no 3-connected minors
except for trivial ones with fewer than four elements. Next, when n�4,
look at Sn(t)�xi and Sn(t)�yi for some i in I. These matroids have the
elements yi and xi , respectively, in parallel with p. To produce 3-connected
minors with at least four elements, we may assume that these elements yi

and xi are deleted. Moreover, Sn(t0 , t1 , ..., tn)�xi " yi $Sn&1(t1 , t2 , ..., tn)
and Sn(t0 , t1 , ..., tn)�yi "xi $Sn&1(t0 , t1 , ..., tn&1). This establishes that a
3-connected minor of Sn(t) with more than four elements is isomorphic to
a deletion of Sm(u) for some m�n and some subsequence u of t of the form
(ti , ti+1 , ..., ti+m) where 0�i�n&m. Because [xi , xj , yi , yj] is a cocircuit
of Sn(t) for all 2-element subsets [i, j] of I, if Sn(t)"Z is 3-connected
having at least four elements, then |Z & (XI _ YI)|�1. Thus the potential
3-connected restrictions of Sn(t) are Sn(t), Sn(t)" p, Sn(t)"xi , Sn(t)" yi ,
Sn(t)"[ p, xi], and Sn(t)"[ p, yi]. When n�4, it is not difficult to check
that each of these is 3-connected. Moreover, when n=3, the first four but
not the last two are 3-connected. We also note here that, when n�5, each
of the 3-connected restrictions of Sn(t) noted has a minor of the form
Sn&2(u) where u is a consecutive subsequence of t.

Proof of Theorem 10.5. Let K be the class of all 3-connected matroids
that are minors of one of the matroids listed in the theorem. Assume that
M0 is an unavoidable 3-connected matroid and let M be an arbitrary
minor-closed class of matroids that contains infinitely many 3-connected
members. Then M contains arbitrarily large 3-connected matroids and
therefore, by Theorem 1.4, contains infinitely many members of K. Since
the only 3-connected minors of members of K are also in K and M0 is
unavoidable, it follows that M0 is in K.

It remains to show that every member of K is unavoidable. We showed
above that M(K3, n) is unavoidable; duality implies that M*(K3, n) is too;
and it is straightforward to check that each of Un, n+2 , U2, n+2 , M(Wn),
and Wn is unavoidable. Now consider Sn(t). As this is a minor of
Sn+1(t, 0), it will suffice to show that Sn(t) is unavoidable when tn=0. Let
M be the class of minors of matroids of the form Sk(n+1)&1(t, t, ..., t) where
n+1 copies of t are repeated in (t, t, ..., t) and k ranges over all positive
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integers. Evidently M has infinitely many 3-connected members. But the
longest subsequence of consecutive terms in (t, t, ..., t) that does not have
t as a subsequence has length at most 2n. It follows from the discussion of
3-connected minors of matroids of the form Sm(u) that only finitely many
3-connected members of M fail to have Sn(t) as a minor. Hence Sn(t) is
unavoidable. K
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