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Errata and Update on Conjectures, Problems, and References
Latest update: December 10, 2005

The comments below apply to all printings of the book dated 2005 or ear-
lier. The table following contains more than just a list of typing errors. Some
statements and proofs have been corrected, simplified, or clarified. Moreover,
the current status has been given for all the unsolved problems or conjectures
that appear in Chapter 14. For those changes that simply involve the insertion
of extra words, the corrected text is given with the inserted words underlined.
It is planned to update this table at regular intervals and, eventually, these
changes should be incorporated into the next printing of the book. The reader
is encouraged to send the author <oxley@math.lsu.edu> corrections that do
not appear in the table below.

Page Line Change
6 2 “a union of disjoint trees is a forest.”
8 16 Insert “is a set and is” after “X”.
10 21 Here “E” should be “E”.
11 17 Replace “closed walk” with “connected subgraph”.
18 5 Remove the additional space at the end of the sentence.
27 5 Replace with “Then D is the set of circuits of a paving matroid

on E if and only if there is a positive integer k with k ≤ |E|
and a subset D′ of D such that”

27 10 Replace “D′′” by “D −D′”.
32 16 “X is a circuit if and only if X is a minimal non-empty set

with the property that, for all x in X, x ∈ cl(X − x).”
35 9 This should read: “Cj 6⊆ ∪i6=jCi.”
46 17 Add “and e1, e2, . . . , em are distinct” after “all j in J .”
66 1 The caption on Figure 1.33 should be “Worker yj can do job

xi if xiyj is an edge.”
66 7 Replace “{x1, x2, x4, x6}” by “{x1, x2, x3, x6}”.
77 -6 Replace Exercise 7 (which is probably correct but seems to

have no elementary proof) with the following: “For matroids
M1 and M2, their direct sum M1⊕M2 was defined in Exercise
1.1.7 (p.16). Show that (M1 ⊕ M2)

∗ = M∗
1 ⊕ M∗

2 .”
78 -4 “A matroid on a fixed set is uniquely determined by a list of

its cyclic flats and their ranks.”
79 12 Omit (b) and relabel (c) and (d) as (b) and (c). The original

(b) implies that D ⊆ b(A) but not that D = b(A).
79 17 Observe the change in labelling in the previous item. Replace

the hint by: “Show that (a) and (b) are equivalent, and then
use the symmetry of (b).”
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Page Line Change
80 -5 Replace 2.2.4 by “Adjoin or delete a zero row.”
80 -3 Omit “non-zero” before “column”.
85 -13 Replace the sentence beginning “Clearly” and the sentence

following that by: “Clearly (W⊥)⊥ ⊇ W . In fact, equality
holds here but the proof of this fact will use the next result,
which establishes the link between matroid duality and or-
thogonality in vector spaces. This link is stated in terms of
row spaces of matrices.”

86 15 With the given definition of dot product, the third sentence
of the corollary is wrong. For example, it fails when F = C.
Replace it by: “Moreover, (W⊥)⊥ = W .”

86 17 Replace the first two sentences of this paragraph by: “By
this corollary, if [Ir|D] is an r × n matrix over F where
1 ≤ r ≤ n − 1, then R[Ir|D] and R[−DT |In−r] have the
right dimensions to be complementary subspaces of V (n, F ).
Moreover, if F = R, then these subspaces are indeed com-
plementary. However, in general, these row spaces may have
non-trivial intersection.”

87 -2 “partition ({e}, X, Y ) of E where X and Y may be empty,
the element e is in exactly one”

90 5 “If v is a non-isolated vertex of G and X is the set of non-loop
edges meeting v, then X is an edge cut.”

91 5 Insert at the end of the sentence defining a plane graph: “and
no vertex is in the interior of an edge.”

93 6 Replace the first sentence of the proof by: “Let G′ be a con-
nected graph such that M(G′) ∼= M(G). Let G0 be a planar
embedding of G′, and G∗ be the geometric dual of G0.”

93 10 Replace “G0
∼= G” by “M(G0) ∼= M(G)”.

93 -1 Replace the sentence beginning “Let” and the next two sen-
tences by: “Since X is a cocircuit of M(G∗) and x ∈ X ∩Cx,
it follows, by Proposition 2.1.11, that |X ∩ Cx| ≥ 2.”

109 6 Replace this by “(M/T1)\T2 = (M\T2)/T1” since this is what
is proved.

111 -11 Insert the following at the end of the paragraph: “Moreover,
G/T is well-defined since one can easily check that (G/e)/f =
(G/f)/e for all edges e and f .”

118 -9 “the following lemma where, in the lemma and its proof, the
blocks of a partition may be empty.”

125 14 Omit the extra space before the semicolon.
137 -3 This exercise can also be obtained from a result of Z. Tuza

[On two intersecting set systems and k-continuous Boolean
functions, Discrete Appl. Math 16 (1987), 183–185]. More-
over, Manoel Lemos and James Oxley [A sharp bound on the
size of a connected matroid, Trans. Amer. Math. Soc. 353
(2001), 4039–4056] have sharpened the bound here to the best-
possible bound |E(M)| ≤ 1

2mn.
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Page Line Change
139 -1 The caption on Fig. 5.2 should be “AD(G).”
140 13 Proposition 5.1.3 has a much shorter proof. It suffices to show

that if a matrix A has all its entries in {0, 1,−1} and each
column has at most one +1 and at most one −1, then A is to-
tally unimodular. This can be proved as follows (see p. 222 of
William J. Cook, William H. Cunningham, William R. Pulley-
blank, and Alexander Schrijver, Combinatorial Optimization,
Wiley, New York, 1998). Let A′ be a k × k submatrix of A.
We argue by induction on k that det A′ is in {0, 1,−1}. This
is clearly true if k = 1. Now suppose that k = n ≥ 2 and
that the assertion holds for k < n. If A′ has a column with at
most one non-zero entry, then, by expanding the determinant
along this column, we get, using the induction assumption,
that det A′ is in {0, 1,−1}. We may now assume that every
column of A′ contains exactly one +1 and exactly one −1.
Then the rows of A′ sum to zero. Hence det A′ = 0 and the
result follows.

148 2 “a graph can only be cleft at a cut-vertex or at a vertex
incident with a loop.”

152 17 Replace “θ(Hi)” and “θ(H−i)” by “Hi” and “H−i”, repec-
tively.

155 -1 Insert the following at the end of the paragraph: “Elements
e and f are in parallel in a matroid if {e, f} is a circuit, and
are in series if {e, f} is a cocircuit.”

157 12 Omit “without isolated vertices”.
159 5 Replace this sentence by: “The next proposition follows by a

straightforward induction argument.”
159 -15 Insert “and internally disjoint” after “edge-disjoint”.
161 -8 “the maximum number of chordal paths of length one that C

can have.”
165 16 Insert the following after “respectively.”: “A finite projective

space of dimension one consists of a single line containing k
points where k is an arbitrary integer exceeding two.”

165 22 “Every finite projective space of dimension greater than two is

isomorphic to PG(n, q) for some integer n exceeding two and

some prime power q.”
165 -3 Replace “geometries” by “geometry”.
165 -2 Replace “their” by “its”.
184 -6 Replace “there is” by “there are”.
185 -18 Omit “non-zero” before “column”.
186 -6 Strictly speaking what is being defined here is an non-singular

semilinear transformation.
186 -5 Replace “there is” by “there are”.
189 19 Replace “there is” by “there are”.
195 -10 Replace “1/t” by “t−1”.
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Page Line Change
204 -2 J. F. Geelen, A. M. H. Gerards, and A. Kapoor have proved

that the list becomes complete if one adds the matroid that
is obtained from P8 by relaxing its unique pair of disjoint
circuit-hyperplanes. For more details, see the comment below
for p.463 l.14.

208 17 After “1 ≤ i < j ≤ p + 1”, insert “and all the sets
{x1, x2, . . . , xk−1, yk, xk+1, . . . , xp+1} for 1 ≤ k ≤ p + 1.”

208 -3 Omit the first row of the matrix after the partition, leaving
intact the identity matrix Ip before the partition.

209 -2 Replace the statement of this lemma by: ”Let [dij ] be a ma-
trix D1 all of whose entries are in {0, 1,−1}. Suppose [Ir|D1]
is an F -representation of a binary matroid M where F has
characteristic different from two. Assume that [Ir|D2] is ob-
tained from [Ir |D1] by pivoting on a non-zero entry dst of D1.
Then every entry of D2 is in {0, 1,−1}. Moreover, [Ir|D2] is
also obtained if [Ir|D1] is viewed as a matrix over R and the
pivot is done over R.”

210 3 Replace the proof of this result by: “It is easy to check that all
the entries in row s or column t of D2 are in {0, 1,−1}. Now
suppose j 6= t and i 6= s. The pivot replaces dij by d−1

st (dstdij−
ditdsj). As all the entries of D1 are in {0, 1,−1} and dst is
non-zero, d−1

st (dstdij − ditdsj) is in {0, 1,−1} unless dstdij −
ditdsj = ±2. Hence assume that this equation holds. Then the

matrix
[

dst dsj

dit dij

]

, or an appropriate row or column permutation

thereof, is a submatrix D′
1 of D1 whose determinant is ±2.

But, since every non-zero entry of D1 is in {1,−1}, the matrix

[Ir |D
#
1 ] is a GF (2)-representation for M . Hence, when [Ir|D1]

is viewed over GF (2), it represents M . Thus, by Proposition
6.4.5, as det D′

1 is 0 over GF (2), it must also be 0 over F ; a
contradiction.
Finally, suppose that we view [Ir|D2] as a matrix over R

and perform the pivot over R. Then, arguing as in the
previous paragraph, we get the required result unless some
dstdij − ditdsj is ±2 when calculated over R. In the excep-
tional case, the form of D1 implies that dstdij − ditdsj is ±2
when calculated over F . But this possibility was eliminated
above.”

212 5 “induced by the vertices of C ′
d”
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Page Line Change
213 3 Replace this paragraph by: “Now suppose det D′ 6= 0 when

calculated over R. Then, over F , we can pivot in D on an entry
d′st of D′ to reduce column t of D′ to a standard basis vector.
By Lemma 6.6.2, this pivot gives a matrix with every entry
in {0, 1,−1}. Moreover, it is easy to check that if this pivot
is done over R instead of F , it produces the same matrix. By
repeated pivots, we eventually obtain a matrix representing M
over F in which every column of D′ is a standard basis vector.
Since exactly the same matrix is obtained when these pivots
are done over R and | det D′| is unchanged by these operations,
we conclude that, in the final matrix, det D′ is still non-zero.
But the form of this matrix implies that det D′ ∈ {1,−1}.”

214 -9 Replace “a matrix” by “an integer matrix”.
226 3 This should be: “0 ∈ T and P − T is finite”.
226 -2 Change the last entry in row 2 of this matrix from “0” to “1”.
230 -18 Replace the second and third sentences of this paragraph by:

“Every free matroid is easily seen to be modular, as is every
rank-2 matroid and every finite projective plane. Since, by
Theorem 6.6.1, a finite projective space of dimension greater
than two is isomorphic to some PG(n, q), we deduce that every
finite projective space is modular.”

236 9 Replace “both by a path in X and” by “by”.
243 -5 The proof given can be shortened by replacing from “We

show next” onwards by: “But, from above, r(S(M1, M2)) =
r(M1) + r(M2). Since |B| = r(M1) + r(M2), we deduce that
B is indeed a basis of S(M1, M2).”

246 2 This proof can be shortened by replacing all of the first para-
graph except the first two sentences by: “First, we observe
that, as |E(M)| ≥ 2 and M is connected, p is not a coloop of
M . Thus p is not a coloop of M/E(M1) or of M/E(M2).”

264 -15 This should be: “M1 is a lift of M2 if there is a matroid N and
a subset Y of E(N) such that N\Y = M1 and N/Y = M2.”

266 -9 “Evidently, if r(M) = 0, then T (M) = M , while if r(M) > 0,
then r(T (M)) = r(M) − 1.”

269 -17 Replace the first two lines of Exercise 7 by ”Suppose M1 is
a matroid and M2 is an elementary quotient (M1 +M e)/e of
M1. Prove that if M1 +M e is graphic, then there are”

276 -7 Replace “Lemos (1990)” by “Lemos (1994)”.
278 -17 “n-connectedness” should be “n-connectedness”.
282 16 “let Ei = E(G[V ′∪V (Hi)])−E(G[V ′]). Since G[Ei] is clearly”
283 11 The last sentence of this proof should be: “Hence u and v are

connected in G2; a contradiction.”
283 -14 “We remark that both Cunningham (1981) and Inukai and

Weinberg (1981)”
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Page Line Change
284 -12 Replace this definition by: “ Let G be a connected planar

graph. Two planar embeddings G1 and G2 of G are said to
be equivalent if the sets of walks obtained by traversing the
face boundaries of G1 and G2 coincide up to cyclic shifts.”

289 -9 Replace “it” by ”itself”.
290 9 Replace “ek by “ek−1”.
302 -9 “then M/f is minimally 3-connected.”
309 -13 “there is a hyperplane containing [E−(H1∪H2)]∪ [H1∩H2].”
314 13 Replace “A4” by “I4”.
314 -5 Insert “of N” before “form”.
325 -15 Replace “{1, 2, . . . , m + k}” by “{1, 2, . . . , m + k + 1}”.
339 17 “If r ≥ 3, then M is not graphic.”
339 -13 Replace “five” by “six”.
346 7 “Seymour (1995)”
363 -12 “Seymour 1995”
369 -15 “Seymour 1995”
375 6 “Seymour (1978, 1995)”
376 -11 Omit “and suppose that e ∈ E(M).”
380 6 Replace “Cf” by “C(f)”.
382 8 The summation here should be over “v ∈ V (C)”.
388 -19 “Let A be a family (Aj : j ∈ J) of nonempty subsets”
389 -6 It should be “f(X) = r(X) + d”.
394 4 This lemma holds for all functions σ : J → S. When σ is not

a surjection, all the elements of S − σ(J) are loops of σ(M).
406 10 Replace with “an intricate algebraic argument. R. Rado [Ab-

stract linear dependence, Colloq. Math. 14(1966), 257–264]
has pointed out that this argument generalizes to matroids
in the natural way. In particular, a vector that is a linear
combination of some set of vectors corresponds to a matroid
element that is in the closure of some set.”

424 -4 Insert “and Xi = cli(X ∩ Ei) ∪ X” after “X ⊆ E(M)”.
424 -3 Replace with “clM (X) = cl1(X2 ∩ E1) ∪ cl2(X1 ∩ E2).”
424 -2 Replace with “r(X) = r(X2 ∩E1) + r(X1 ∩E2)− r(T ∩ [X1 ∪

X2]).”
432 3 In Lemma 13.1.7(ii): “its determinant is α det(Z−α−1yxT ).”
433 5 Omit “Y ”.
435 11 Replace “

[

−1 d
1 1

]

” with “
[

−1 1
d 1

]

”.
435 -16 Replace the first line of Exercise 1 with “Prove that a real

matrix [Ir |D] is totally unimodular if and”

6



Page Line Change
439 -10 Replace this paragraph by: “The matroid intersection algo-

rithm (see, for example, p. 291 of William J. Cook, William H.
Cunningham, William R. Pulleyblank, and Alexander Schri-
jver, Combinatorial Optimization, Wiley, New York, 1998)
will find, in polynomial time, not only a maximum-sized com-
mon independent set I of two matroids M1 and M2 on a com-
mon ground set E but also a subset X of E that minimizes
r1(X) + r2(E − X). By Corollary 12.3.16, each of I and X
verifies that the other has the specified property. For fixed k,
by applying this algorithm to all pairs of matroids M/X1\X2

and M/X2\X1 for which X1 and X2 are disjoint k-element
subsets of E(M), we obtain a polynomial algorithm for find-
ing k-separations. On combining this algorithm with those
discussed earlier, we get the desired polynomial algorithm for
testing whether a real matrix is totally unimodular.”

463 -20 The conjecture has been proved when q = 4 by J. F. Geelen,
A. M. H. Gerards, and A. Kapoor [The excluded minors for
GF (4)-representable matroids, J. Combin. Theory Ser. B 79
(2000), 247–299]. The complete set of excluded minors for
GF (4)-representability is {U2,6, U4,6, F

−
7 , (F−

7 )∗, P6, P8, P
′′
8 }.

The last matroid is obtained from P8 by relaxing the unique
pair of disjoint circuit-hyperplanes of P8. For q ≥ 5, the con-
jecture remains open. James Oxley, Charles Semple, and
Dirk Vertigan [Generalized ∆ − Y exchange and k-regular
matroids, J. Combin. Theory Ser. B 79 (2000), 1–65] have
proved that there are at least 2q−4 excluded minors for GF (q)-
representability.

463 -12 This conjecture has been settled by James Oxley, Dirk Ver-
tigan, and Geoff Whittle [On inequivalent representations of
matroids over finite fields, J. Combin. Theory Ser. B 67
(1996), 325–343]. The conjecture holds for q = 5. A GF (5)-
representable matroid has at most six inequivalent GF (5)-
representations with equality being attained, for example, by
U3,5. However, the conjecture fails for all larger values of q.
It is still open whether Kahn’s conjecture would be true if
“3-connected” were replaced by “4-connected”.

464 7 This problem has been answered affirmatively by Geoff Whit-
tle in the same paper in which he settled Conjecture 14.1.11
(see the comment below for p.464 l.-2).
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Page Line Change
464 15 Let M be the class of matroids that is the union of the classes

of binary and ternary matroids. Bogdan Oporowski, James
Oxley, and Geoff Whittle [On the excluded minors for the
matroids that are either binary or ternary, Preprint 1997-7,
http://www.math.lsu.edu/˜preprint/] have conjectured that
the set of excluded minors for M consists of U2,4 ⊕ F7,
U2,4 ⊕ F ∗

7 , U2,4 ⊕2 F7, U2,4 ⊕2 F ∗
7 , U2,5, U3,5, and the unique

matroids that are obtained by relaxing a circuit-hyperplane
in each of AG(3, 2) and T12. The matroid T12 is a 12-element
rank-6 self-dual binary matroid that is represented over GF (2)
by the 15× 12 matrix whose rows are indexed by the edges of
the Petersen graph P10 and whose columns are the incidence
vectors of the 5-cycles of P10 (see S. R. Kingan [A general-
ization of a graph result of D. W. Hall, Discrete Math. 173
(1997), 129–135]). Oporowski, Oxley, and Whittle showed
that the conjectured list contains all excluded minors for M
with at most 23 elements and that, corresponding to every
remaining excluded minor, there is a binary matroid whose
ground set is the disjoint union of two circuit-hyperplanes such
that relaxing both circuit-hyperplanes produces a ternary ma-
troid. The excluded minor is obtained by relaxing exactly one
of the distinguished pair of circuit-hyperplanes.

464 -2 This conjecture has been settled by Geoff Whittle [On ma-
troids representable over GF (3) and other fields, Trans.

Amer. Math. Soc. 349 (1997), 579–603]. He proved that
the following are equivalent for a matroid M .

(i) M is representable over GF (p) for all odd primes p.

(ii) M is representable over GF (3) and Q.

(iii) M is representable over GF (3) and R.

(iv) M is representable over GF (3) and GF (5).

(v) M is representable over GF (3) and GF (q) where q is an
arbitrary but fixed odd prime power that is congruent
to 2 mod 3.

(vi) M can be represented over Q by a matrix all of whose
non-zero subdeterminants are in {±2i : i ∈ Z}.

469 19 Joseph P. S. Kung [Critical exponents, colines, and projective
geometries, Combin. Probab. Comput. 9 (2000), 355–362]
has proved that this conjecture fails spectacularly: for a given
prime power q, it holds for only finitely many ranks r.
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Page Line Change
469 -6 This conjecture fails trivially for U1,1 but otherwise has been

proved by Winfried Hochstättler and Bill Jackson [Large cir-
cuits in binary matroids of large cogirth: I, II, J. Combin.

Theory Ser. B 74 (1998), 35–52, 53–63]. The conjecture fol-
lows from their result that if M is a simple binary matroid that
is not isomorphic to F ∗

7 and has no F7-minor, then M has a
circuit of size r(M)+1 provided every cocircuit of M has size
at least max{3, 1

2 (r(M) + 1)}. Observe that this result does
not require M to be connected. Examples of Hochstättler and
Jackson show that, contrary to the speculation on p.470, l.3,
the conjecture does not hold for all binary matroids with no
F ∗

7 -minor. Indeed, it fails for the matroid that is the parallel
connection of three copies of F7 across a common basepoint.

471 -9 This problem has been solved by Dirk Vertigan [On the inter-
twining conjecture for matroids, in preparation]. He showed
that, provided M1 and M2 satisfy some relatively weak con-
ditions, the set of minor-minimal matroids having both M1-
and M2-minors is infinite. A positive result has been proved
by J. F. Geelen [On matroids without a non-Fano minor, Dis-

crete Math. 203 (1999), 279–285]. He considered the class N
of matroids that contain neither the non-Fano matroid nor its
dual as a minor and showed that, for every connected matroid
M , there are only finitely many minor-minimal members of N
that have both M - and U2,4-minors.

472 10 The result here that is credited to B. Jackson was first proved
by W. Mader [ Kreuzungfreie a, b-Wege in endlichen Graphen,
Abh. Math. Sem. Univ. Hamburg 42 (1974), 187–204].
Mader showed that every k-connected simple graph G with
minimum degree at least k +2 has a cycle C such that G\C is
k-connected. In the special case k = 2, Jackson independently
strengthened Mader’s result by proving that if e is an edge of
a simple 2-connected graph G with minimum degree k and
k ≥ 4, then G has a cycle C of length at least k − 1 such that
e 6∈ C and G\C is 2-connected.
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Page Line Change
472 14 A negative answer to this problem is given in Manoel Lemos

and James Oxley [On removable circuits in graphs and ma-
troids, J. Graph Theory 30 (1999), 51–66]. An example of
Lemos is given there of a simple connected cographic ma-
troid M in which every cocircuit has at least four elements
but there is no circuit C such that M\C is connected. Some
positive results have been obtained in the absence of the re-
quirement that the matroid be simple. L. A. Goddyn, J. van
den Heuvel, and S. McGuinness [Removable circuits in multi-
graphs, J. Combin. Theory Ser. B 71 (1997), 130–143] veri-
fied a conjecture of Jackson (1980) by proving that if G is a
2-connected graph with minimum degree at least four and no
minor isomorphic to the Petersen graph, then G has a cycle
C for which G\C is 2-connected. Moreover, Luis A. God-
dyn and Bill Jackson [Removable circuits in binary matroids,
Combin. Probab. Comput. 8 (1999), 539–545] proved that if
M is a connected binary matroid that does not have both F7

and F ∗
7 as minors, and every cocircuit of M has at least five

elements, then M has a circuit C such that M\C is connected
and r(M\C) = r(M).

472 -13 Haidong Wu [Contractible elements in graphs and matroids,
Combin. Probab. Comput., to appear] has answered this ques-
tion affirmatively under the extra assumption that M is reg-
ular.

473 15 Conjecture 14.5.1 was proved independently by M. Lemos [On
the number of non-isomorphic matroids, Adv. in Appl. Math.

33 (2004), 733–746] and H. Crapo and W. Schmitt [The free
product of matroids, European J. Combin. 26 (2005), 1060–
1065]. Crapo and Schmitt’s proof of this result is based on a
new matroid operation that they introduce. For matroids M
and N on disjoint sets, the free product M�N of M and N
is the matroid on E(M) ∪ E(N) whose bases consist of those
subsets of E(M) ∪ E(N) of size r(M) + r(N) that consist of
the union of an independent set in M and a spanning set in
N . The theorem follows by showing that if M�N ∼= P�Q,
then M and N are isomorphic to P and Q, respectively.
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Page Line Change
474 6 For a(n), the number of non-isomorphic binary matroids on

an n-element set, Marcel Wild [The asymptotic number of
binary codes and binary matroids, SIAM J. Discrete Math.,
to appear, 2005] proved that, for all sufficiently large positive
integers n,

(1 + 2−
n
2 +2 log

2
n+0.2499)

1

n!

n
∑

k=0

[

n
k

]

2

≤ a(n) ≤ (1 + 2−
n
2 +2 log

2
n+0.2501)

1

n!

n
∑

k=0

[

n
k

]

2
.

Hence a(n) ∼ 1
n!

∑n

k=0

[

n

k

]

2
, where we observe that

∑n

k=0

[

n

k

]

2
is the total number of subspaces of V (n, 2). Another proof of
the asymptotic behaviour of a(n) was given by Xiang-Dong
Hou [On the asymptotic number of non-equivalent binary lin-
ear codes, submitted, 2005]. In a separate paper, Hou [On the
asymptotic number of non-equivalent q-ary linear codes, sub-
mitted, 2005] verified a conjecture of R. F. Lax [On the char-
acter of Sn acting on subspaces of Fn

q , Finite Fields Appl. 10
(2004), 315–322] proving a result that implies that the num-
ber of non-isomorphic ternary matroids on an n-element set
is asymptotic to 1

n!2n−1

∑n

k=0 [ n
k ]3 . Wild published an earlier

paper [The asymptotic number of inequivalent binary codes
and nonisomorphic binary matroids, Finite Fields Appl. 6
(2000), 192–202] about the asymptotic behaviour of a(n) but
Lax’s paper pointed out an error in it.

477 5 J. Geelen, B. Gerards, and G. Whittle announced in 2005 that
they had settled Problem 14.8.5 for representable matroids
[Triples in matroid circuits, in preparation].

477 -9 S. Kingan and M. Lemos [Almost-graphic matroids, Adv. in

Appl. Math. 28 (2002), 438–477] have settled Problem 14.8.7
for matroids in general. In addition, they have proved a partial
result towards Problem 14.8.8.

479 -20 The final reference for Akkari, S. (1991) is: “Akkari, S.
(1992), A minimal 3-connectedness result for matroids, Dis-

crete Math. 103, 221–232. [10.2]”
483 5 The final reference for Coullard, C. R. and Oxley, J. G. (1992)

is: “Coullard, C. R. and Oxley, J. G. (1992), Extensions of
Tutte’s wheels-and-whirls theorem, J. Combin. Theory Ser.

B 56, 130–140. [11.3]”
489 9 The final reference for Kung, J. P. S. (1991) is: “Kung, J. P. S.

(1993), Extremal matroid theory. In Graph structure theory

(eds. N. Robertson and P. Seymour), Contemp. Math. 147,
pp. 21–61, Amer. Math. Soc., Providence. [14.8]”
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Page Line Change
489 -12 The final reference for Lemos, M. (1990) is: “Lemos, M.

(1994), Matroids having the same connectivity function, Dis-

crete Math. 131, 153–161. [8.1]”
495 3 Change to: “Robertson, N. and Seymour, P. D. (2004), Graph

minors XX. Wagner’s conjecture, J. Combin. Theory Ser. B

92, 325–357.”
495 -21 Add “2.1” before “9.1”.
496 21 Change to: “Seymour, P. D. (1995), Matroid minors. In

Handbook of combinatorics (eds. R. Graham, M. Grötschel,
L. Lovász), pp. 527–550, Elsevier, Amsterdam; M.I.T. Press,
Cambridge. [11.1, 11.2, 11.3]”

496 -6 The page numbers for Truemper, K. (1982a) are “112–139.”
497 16 The final reference for Truemper, K. (1992a) is: “Truemper,

K. (1992a), A decomposition theory for matroids. VI. Almost
regular matroids, J. Combin. Theory Ser. B 55, 253–301.
[13.2]”

497 18 The final reference for Truemper, K. (1992b) is: “Truemper,
K. (1992b), A decomposition theory for matroids. VII. Anal-
ysis of minimal violation matrices, J. Combin. Theory Ser. B

55, 302–335. [13.2]”
504 -3 The correct statement here is: “A connected GF (4)-

representable matroid is uniquely GF (4)-representable if and
only if it has no 2-separation {X, Y } such that X ⊇ X ′ and
Y ⊇ Y ′ where {X ′, Y ′} is the unique 2-separation of R6

(10.1.11).”
512 10 “The matroid J is self-dual but is not identically self-dual.”
512 -6 The entry in the bottom right-hand corner of the matrix rep-

resenting P8 over GF (3) should be “0” instead of “1”.
514 -9 Replace “13.1.1” by “13.3.1”.
514 -1 Add to the list of properties:

• M∗(K3,3) is the complement of U2,3 ⊕ U2,3 in PG(3, 2).
515 4 Add “Equivalently, GF (q)-representable if and only if q 6≡ 2

(mod 3).”
516 -5 “The Pappus matroid is F -representable if and only if |F | = 4

or |F | ≥ 7.”
517 -11 “M(K5) is an excluded minor for the class of cographic ma-

troids (6.6.5, 13.3.1) and M∗(K5) is an excluded minor for the
class of graphic matroids (6.6.5).”

517 -11 Add to the list of properties:
• M(K5) is the complement in PG(3, 2) of U4,5, a 5-element
circuit.

519 -1 Add the following to the list of properties of S(5, 6, 12):
• Connectivity is 5.
• Has no spanning circuits.
• Every minor that is obtained by contracting two elements
and deleting two elements is isomorphic to P8.
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Page Line Change
524 10 In column 1, the entry should be “R(A)”.
526 18 In column 2, the entry should be “cosimple matroid, 347”.
528 18 In column 1, the entry should be “Higgs lift, 28”.
528 22 In column 2, the entry should be “modular sort-circuit axiom,

234”.
530 -12 In column 2, add “83” under “regular matroid”.
532 20 In column 2, the entry should be “vertex-edge incidence ma-

trix, 4”.
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