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Abstract. A partitoned matroid (M, {X1, X2, . . . , Xn}) consists of a
matroid M and a partition {X1, X2, . . . , Xn} of its ground set. As such
structures arise frequently in structural matroid theory, this paper in-
troduces a general technique for analyzing those special properties of
partitioned matroids that depend solely on the values of the connectiv-
ities λ(Xi), the local connectivities ⊓(∪j∈JXj ,∪k∈KXk, ), and the dual
local connectivities ⊓∗(∪h∈HXh,∪g∈GXg). In particular, we consider
those partitioned matroids in which each Xi is an independent, coin-
dependent set of clones of cardinality λ(Xi). Calling such partitioned
matroids clonal-core matroids, we show that special results of the above
type for partitioned matroids can be verified in general by proving them
just for clonal-core matroids. Aiming at the long-term goal of finding
the unavoidable minors of 4-connected matroids, we illustrate this tech-
nique by studying 4-paths. These are sequences (L,P1, P2, . . . , Pn, R) of
sets that partition the ground set of a matroid so that the union of any
proper initial segment of parts is 4-separating. Viewing the ends L and
R as fixed, we call such a partition a 4-flexipath if (L,Q1, Q2, . . . , Qn, R)
is a 4-path for all permutations (Q1, Q2, . . . , Qn) of (P1, P2, . . . , Pn). A
straightforward simplification enables us to focus on (4, c)-flexipaths for
some c in {1, 2, 3}, that is, those 4-flexipaths for which λ(Qi) = c and
λ(Qi ∪ Qj) > c for all distinct i and j. Our main result for 4-paths is
that the only non-trivial case that arises here is when c = 2. In that
case, there are essentially only two possible dual pairs of (4, c)-flexipaths
when n ≥ 5.

1. Introduction

We are currently involved in a project whose goal is to extend the results
of [7] to find the unavoidable minors of 4-connected matroids. While progress
on this project has been steady, it is definitely “work in progress” and it
would be unwise at this stage to make claims about its outcomes. Having
said that, work on the project has motivated us to solve problems that
we believe are of independent interest and this is the second paper that
has arisen in that way. The first paper was motivated by the problem of
deciding which version of 4-connectivity is the most appropriate for our
study of unavoidable minors. This is an issue as there are a number of
versions of 4-connectivity for matroids in the literature. In [3], we solve a
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problem on tangles in matroids. We argue that the results of [3] justify the
use of so-called weak 4-connectivity as the most natural notion to use in our
project.

In this paper, we describe a general technique for simplifying arguments
in structural matroid theory and use that technique to understand a specific
structural situation that arises in our search for unavoidable minors. We
begin by giving an overview of the technique for simplifying arguments.

Recall that if X and Y are disjoint subsets of a matroid M , then the lo-
cal connectivity ⊓(X,Y ) between X and Y in M is given by ⊓(X,Y ) =
r(X) + r(Y ) − r(X ∪ Y ). The connectivity λ(X) of X is defined by
λ(X) = ⊓(X,E(M) − X). Most researchers in structural matroid theory
will be aware of the following trick. If a theorem for matroids can be for-
mulated in terms of connectivity and local connectivity between members
of an associated partition of the matroid, then, to prove the theorem, it suf-
fices to prove it for the lowest rank examples satisfying the hypotheses. The
proof for such examples is often intuitively clear, and uses straightforward
rank arguments. That is not the proof that eventually appears in a research
paper. One has to convert the intuitively clear argument to one that applies
in full generality. The conversion process is routine, but clarity is lost and
the result is far from aesthetically pleasing.

In Section 3, we give conditions that guarantee that the technique of
proving the result in a restricted domain suffices to prove the result in full
generality. Specifically, we proceed as follows. In a matroidM , the elements
of a subset A of E(M) are clones if every permutation of E(M) that fixes
each element of E(M)−A is an automorphism ofM . Now letM be a matroid
and let {X1, X2, . . . , Xn} be a partition X of E(M). We call the pair (M,X )
a partitioned matroid. If a partitioned matroid has the additional property
that each member Xi of X is a clonal set of size λ(Xi), then we say that
(M,X ) is a clonal-core matroid. In essence, Corollary 3.20 says that, if a
conjecture can be stated in terms of connectivity, local connectivity and
duals of local connectivity of sets that respect the partition of a partitioned
matroid, then, to prove the conjecture in full generality, it suffices to prove
it for the restricted class of clonal-core matroids.

Application of this technique would enable one to make considerable sim-
plifications of arguments that appear in the literature. The analysis of
the different types of structures that arise when one considers crossing 3-
separations in 3-connected matroids given in [12] is a clear example. We
were motivated to make explicit the technique described above by a partic-
ular problem that arose in our work on unavoidable minors of 4-connected
matroids. For this problem, being able to reduce to clonal cores proved to
be genuinely helpful. We now turn to a discussion of this problem and its
resolution.

In essence, the strategy for finding unavoidable minors of 4-connected
matroids is to use extremal techniques to gradually refine the structure of
the matroid until we are finally left with the unavoidable minors themselves.
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At an intermediate stage, one arrives at a matroid with an ordered partition
(L,P1, P2, . . . , Pn, R) of its ground set into many parts where this parti-
tion induces a nested sequence of 4-separations. In general, permuting the
members of (P1, P2, . . . , Pn) destroys this property, but not always. Un-
derstanding the structures that arise when the property of being a nested
sequence of 4-separations is preserved under arbitrary such permutations
plays a role in our search for unavoidable minors. That is the analysis that
we undertake in the latter part of this paper. We note that the analysis
is not dissimilar to those given for flowers in matroids, see, for example,
[1, 2, 5, 6, 11, 12, 13, 14].

Before we can describe our results, we need some definitions. Our notation
and terminology will follow [10]. For a positive integer n, we write [n] for
{1, 2, . . . , n}. Let M be a matroid on a set E. Rewriting its connectivity
function, λM , introduced above, we see that λM (A) = r(A)+r(E−A)−r(M)
for all subsets A of E(M). If X and Y are disjoint subsets of E, then
κ(X,Y ) = min{λM (Z) : X ⊆ Z ⊆ E − Y }.

In the definitions that follow, we focus on the specific cases relevant
to this paper. A path of 4-separations in M is an ordered partition
(L,P1, P2, . . . , Pn, R) of E(M) such that

(i) κ(L,R) = 3, and
(ii) λM (L ∪ P1 ∪ P2 ∪ · · · ∪ Pi) = 3 for all i in {0, 1, . . . , n}.

For such a path P of 4-separations, the members of P are steps, and L and
R are end steps while P1, P2, . . . , Pn are internal steps.

The path P is a 4-flexipath if (L,Q1, Q2, . . . , Qn, R) is also a path of 4-
separations whenever (Q1, Q2, . . . , Qn) is a permutation of (P1, P2, . . . , Pn).
For a positive integer c, the 4-flexipath P is a (4, c)-flexipath if λM (Pi) = c
for all i in [n], and λM (Pi∪Pj) > c for all distinct i, j in [n]. Imposing these
two additional constraints on 4-flexipaths simplifies the analysis. Moreover,
descriptions of all 4-flexipaths follow straightfowardly from those for (4, c)-
flexipaths by noting that if (L,Q1, Q2, . . . , Qn, R) is a 4-flexipath Q, then so
is (L,Q1, Q2, . . . , Qi−1, Qi+1, Qi+2, . . . Qn, Qi ∪ R). In this transformation,
we say that Qi has been absorbed into the right end of Q.

We show in Lemma 4.5 that, when c ≥ 3, a (4, c)-flexipath has at most
two internal steps. The case when c = 1 is also straightforward. If we add
the additional constraint that M is 3-connected, then all internal steps are
singletons and these singletons are either in the closure or coclosure of both
L and R. The full description of (4, 1)-flexipaths follows routinely from these
observations and is given in Corollary 4.9.

This brings us to (4, 2)-flexipaths, the most interesting case. Recall that
the local connectivity between disjoint sets X and Y in a matroidM is given
by ⊓M (X,Y ) = ⊓(X,Y ) = r(X) + r(Y ) − r(X ∪ Y ). We write ⊓∗(X,Y )
for ⊓M∗(X,Y ) and call this the local coconnectivity between X and Y in M .
Let Q be the (4, 2)-flexipath (L,Q1, Q2, . . . , Qn, R).

The flexipath Q is spike-reminiscent if all of the following hold:
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Figure 1. (i) A rank-7 matroid with a spike-reminiscent
flexipath (L,Q1, Q2, Q3, Q4, R). (ii) A rank-7 matroid with
a paddle-reminiscent flexipath (L,Q1, Q2, Q3, Q4, R).

(i) ⊓(L,R) = 1 and ⊓∗(L,R) = 2;
(ii) ⊓(Qi, Qj) = 1 and ⊓∗(Qi, Qj) = 0 for all distinct i and j in [n]; and
(iii) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i in [n].

The flexipath Q is paddle-reminiscent if all of the following hold:

(i) ⊓(L,R) = 2 and ⊓∗(L,R) = 1;
(ii) ⊓(Qi, Qj) = 0 and ⊓∗(Qi, Qj) = 1 for all distinct i and j in [n]; and
(iii) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i in [n].

Illustrations of spike-reminiscent and paddle-reminiscent flexipaths are
shown in Figure 1(i) and (ii), respectively.

The flexipath Q is squashed if all of the following hold:

(i) ⊓(L,R) = 3 and ⊓∗(L,R) = 0;
(ii) ⊓(Qi, Qj) = 1 and ⊓∗(Qi, Qj) = 0 for all distinct i and j in [n]; and
(iii) ⊓(Qi, L) = ⊓(Qi, R) = 2, and ⊓∗(Qi, L) = ⊓∗(Qi, R) = 0 for all i

in [n].

The flexipath Q is stretched if all of the following hold:

(i) ⊓(L,R) = 0 and ⊓∗(L,R) = 3;
(ii) ⊓(Qi, Qj) = 0 and ⊓∗(Qi, Qj) = 1 for all distinct i and j in [n]; and
(iii) ⊓(Qi, L) = ⊓(Qi, R) = 0, and ⊓∗(Qi, L) = ⊓∗(Qi, R) = 2 for all i

in [n].

In Q, the step Qi is specially placed if either ⊓(L,R) = 2 and ⊓(L,Qi) =
2 = ⊓(R,Qi), or ⊓∗(L,R) = 2 and ⊓∗(L,Qi) = 2 = ⊓∗(R,Qi). Figure 2
illustrates a rank-7 matroid in which {a, b} is a specially placed step of the
first type. In Lemma 5.1, we show that any (4, 2)-flexipath has at most one
specially placed step.

The next theorem follows from Theorem 5.15, the main result of the
paper.
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Figure 2. A rank-7 matroid in which {a, b} is a specially
placed step in the flexipath (L,Q1, Q2, {a, b}, Q3, Q4, R).

Theorem 1.1. Let Q be a (4, 2)-flexipath with at least five internal steps.
When Q has no specially placed steps, let Q′ be Q; otherwise let Q′ be
obtained from Q by absorbing its specially placed step into its right end.
Then Q′ is spike-reminiscent, paddle-reminiscent, squashed or stretched.

In fact, Q is spike-reminiscent inM if and only if Q is paddle reminiscent
in M∗, and Q is stretched in M if and only if Q is squashed in M∗. It
follows that, after any specially placed step is absorbed, there are at least
four remaining internal steps and, up to duality, there are only two outcomes
for (4, 2)-flexipaths. A variety of other outcomes appear for (4, 2)-flexipaths
with two or three internal steps. While these outcomes are less interesting,
it turns out to be useful to understand them for our work on unavoidable
minors, so we give a full description of them in Theorem 5.15.

2. Preliminaries

For a matroid M , it is well known that λM (X) = r(X) + r∗(X)− |X| for
all subsets X of E(M). Hence λM∗ = λM . When the underlying matroid
is clear, we may abbreviate λM as λ. The following basic facts about the
connectivity and local connectivity functions of a matroid will be used fre-
quently throughout the paper. The first two appear as Lemmas 2.6 and 2.4
of [12] and are easily verified by rewriting everything in terms of ranks of
sets in M . The third follows straightforwardly from the first.

Lemma 2.1. For subsets X and Y of the ground set of a matroid M ,

λ(X ∪ Y ) = λ(X) + λ(Y )− ⊓(X,Y )− ⊓∗(X,Y ).

In the next lemma, (ii) follows from (i) by taking D to be empty.
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Lemma 2.2. In a matroid M , let A,B,C, and D be disjoint subsets of
E(M). Then

(i) ⊓(A∪B,C ∪D)+⊓(A,B)+⊓(C,D) = ⊓(A∪C,B∪D)+⊓(A,C)+
⊓(B,D).

(ii) ⊓(A ∪B,C) + ⊓(A,B) = ⊓(A ∪ C,B) + ⊓(A,C).

Lemma 2.3. Let (L,Q1, Q2, . . . , Qn, R) be a 4-flexipath. For distinct i and
j in [n],

λ(Qi ∪Qj) ≥ λ(Qi).

Proof. Since we have a 4-flexipath, λ(L∪Qi∪Qj) = 3 = λ(L∪Qi). Thus, by
Lemma 2.1, λ(L∪Qi∪Qj) = λ(L)+λ(Qi∪Qj)−⊓(L,Qi∪Qj)−⊓∗(L,Qi∪Qj),
and λ(L ∪ Qi) = λ(L) + λ(Qi) − ⊓(L,Qi) − ⊓∗(L,Qi). The lemma follows
because the functions ⊓ and ⊓∗ are monotonic. □

3. The Clonal Core of a Matroid

The purpose of this section is to develop a versatile tool for dealing
with connectivities and local connectivities of sets in a matroid. In par-
ticular, we shall define the clonal core of a matroid M whose ground set

has a partition (Z1, Z2, . . . , Zn). This clonal core (M̂, (Ẑ1, Ẑ2, . . . , Ẑn))

will replace each Zi by an independent, coindependent set Ẑi of clones

of size λ(Zi). We shall show that λ
M̂
(Ẑi) = λM (Zi) for all i in [n]

and that, more generally, for all disjoint subsets I and J of [n], we have

⊓
M̂
(∪i∈I Ẑi,∪j∈J Ẑj) = ⊓M (∪i∈IZi,∪j∈JZj).
We begin with a well-known concept. For a matroid M , let X and Y be

subsets of E(M). We call {X,Y } a modular pair if

rM (X) + rM (Y ) = rM (X ∩ Y ) + rM (X ∪ Y ).

A collection F of subsets of E(M) is a modular cut of M if it satisfies the
following conditions.

(i) If X ⊆ Y ⊆ E(M) and X ∈ F , then Y ∈ F .
(ii) If X,Y ∈ F and (X,Y ) is a modular pair, then X ∩ Y ∈ F .
(iii) If Y ∈ F and X ⊆ Y with r(X) = r(Y ), then X ∈ F .

In [10], a modular cut in a matroid M is defined to be a set F of flats of
M obeying (i) and (ii). The definition just given extends that definition to
arbitrary collections of subsets of E(M). The next result is [9, Lemma 6.3].

Lemma 3.1. Let M be a matroid and (R,S) be a partition of E(M). Let
F be the set of subsets X of E(M) for which λM/X(R−X) = 0. Then F is
a modular cut of M .

This lemma is the basis of the proof of the following result.

Theorem 3.2. Let M be a matroid and (Z,A) be a partition of E(M).
Suppose λM (Z) > 0. Let M ′ be the single-element extension of M by the
element e corresponding to the modular cut {F ⊆ E(M) : λM/F (Z−F ) = 0}.
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Then e is a non-loop element of clM ′(Z)∩clM ′(A) and rM ′(X∪{e}) = rM (X)
if and only if X is in the modular cut.

We say that the matroid M ′ constructed from M in the last theorem has
been obtained by freely adding e into the guts of (Z,A). We have symmetry
between Z and A in the definition, but for our purposes it helps to focus
on one side. Thus we will also say that M ′ has been obtained from M
by freely adding e into the guts of Z. We may repeat the operation. Let
{e1, e2, . . . , es} be a set disjoint from E(M). Let M0 = M . For i ≥ 1,
inductively defineMi to be the matroid that is obtained fromMi−1 by freely
adding ei into the guts of Z. Let Fi−1 be the modular cut that generates
Mi from Mi−1. It follows from Lemma 3.4 below that Ms is well defined in
that the matroid Ms does not depend on the order in which the elements of
{e1, e2, . . . , es} are added. We say that Ms is the matroid obtained by freely
adding {e1, e2, . . . , es} into the guts of Z.

In the next sequence of lemmas, we shall develop some properties of the
matroids obtained by extending freely into the guts of a partition. Through-
out, we shall assume that λM (Z) = t.

Lemma 3.3. If F ∈ Fi, then F ∈ Fj for all j ≥ i ≥ 0.

Proof. We argue by induction on j − i noting that the result is immediate
if j − i = 0. Assume the result holds for j − i < n and let j − i = n. Then
F ∈ Fj−1. Thus λMj−1/F (Z−F ) = 0 and rMj (F ∪{ej}) = rMj−1(F ). Hence

ej is a loop of Mj/F . Thus λMj/F (Z −F ) = 0, so F ∈ Fj . We conclude, by
induction, that the lemma holds. □

Lemma 3.4. The elements e1, e2, . . . , es are clones in Ms.

Proof. We argue by induction on s showing first that e1 and e2 are clones
in M2. Assume that this fails. Then there is a subset S of E(M) such that

(i) e1 ∈ clM2(S) but e2 ̸∈ clM2(S); or
(ii) e2 ∈ clM2(S) but e1 ̸∈ clM2(S).

In the first case, as S ⊆ E(M0) and e1 ∈ clM2(S), we deduce that e1 ∈
clM1(S). Thus S ∈ F0. By Lemma 3.3, S ∈ F1. But this implies that
e2 ∈ clM2(S), a contradiction. In case (ii), S ∈ F1, so λM1/S(Z − S) = 0.
Thus Z−S is a union of components ofM1/S that avoids e1, so it is a union
of components of (M1/S)\e1, that is, of M0/S. Thus λM0/S(Z − S) = 0,
so e1 ∈ clM1(S). Hence e1 ∈ clM2(S), a contradiction. We conclude that e1
and e2 are clones in M2.

Now assume that e1, e2, . . . , es−1 are clones in Ms−1. By what we have
just shown, es and es−1 are clones in Ms. Say es and eu are not clones in
Ms for some u ≤ s− 2. Then there is a subset V of E(Ms)− {eu, es} such
that

(i) eu ∈ clMs(V ) but es ̸∈ clMs(V ); or
(ii) es ∈ clMs(V ) but eu ̸∈ clMs(V ).
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In the first case, eu ∈ clMs(V ) but es ̸∈ V , so eu ∈ clMs−1(V ). As eu and
es−1 are clones in Ms−1, we deduce that es−1 ∈ clMs−1(V ). Hence es−1 ∈
clMs(V ). As es−1 and es are clones in Ms, it follows that es ∈ clMs(V ), a
contradiction. In the second case, es−1 ∈ clMs(V ). As es ̸∈ V , it follows that
es−1 ∈ clMs−1(V ). Hence eu ∈ clMs−1(V ) and eu ∈ clMs(V ), a contradiction.
We conclude that e1, e2, . . . , es are clones in Ms and the lemma follows by
induction. □

Lemma 3.5. λMs(Z) = t.

Proof. Since A ∈ F0, we see that e1 ∈ clM1(A), so e1 ∈ clMs(A). As
e1, e2, . . . , es are clones in Ms, we see that {e1, e2, . . . , es} ∈ clMs(A). Thus
λMs(Z) = λM (Z) = t. □

Lemma 3.6. rMs({e1, e2, . . . , es}) ≤ t.

Proof. As Z ∈ F0, we see that e1 ∈ clM1(Z), so {e1, e2, . . . , es} ⊆ clMs(Z).
By submodularity,

rMs({e1, e2, . . . , es}) ≤ rMs(A ∪ {e1, e2, . . . , es})
+rMs(Z ∪ {e1, e2, . . . , es})− r(Ms)

= rM (A) + rM (Z)− r(M) = t.

□

Lemma 3.7. For all u ≤ t, the set {e1, e2, . . . , eu} is independent in Ms.

Proof. Let Xi = {e1, e2, . . . , ei}. It suffices to prove that ei+1 ̸∈ clMi+1(Xi)
when i+ 1 ≤ s ≤ t. Assume the contrary. Then Xi ∈ Fi. Thus

0 = rMi/Xi
(Z) + rMi/Xi

(A)− r(Mi/Xi)

= rMi(Z ∪Xi) + rMi(A ∪Xi)− r(Mi)− rMi(Xi)

= rM (Z) + rM (A)− r(M)− rMi(Xi)

= λM (Z)− rMi(Xi).

Hence t = λM (Z) = rMi(Xi) ≤ i < u ≤ t, a contradiction. □

Lemma 3.8. If X ⊆ A and clMs(X)∩{e1, e2, . . . , es} ≠ ∅, then ⊓(X,Z) = t.

Proof. Because e1, e2, . . . , es are clones in Ms, we may assume that e1 ∈
clMs(X). Hence e1 ∈ clM1(X). As F0 is the modular cut that generates M1

from M , it follows that X ∈ F0. Thus

0 = rM/X(A−X) + rM/X(Z)− r(M/X)

= rM (A) + rM (Z ∪X)− r(M)− rM (X)

= (rM (A) + rM (Z)− r(M))− (rM (Z) + rM (X)− rM (Z ∪X))

= λM (Z)− ⊓M (Z,X).

We deduce that t = λM (Z) = ⊓M (Z,X). □
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The case that is of most interest to us is the case when s = t. The next
result captures some key properties in this case. We state the full set of
hypotheses.

Theorem 3.9. Let M be a matroid and (Z,A) be a partition of its ground
set for which λM (Z) = t > 0. Let Mt denote the matroid obtained by freely
adding the set {e1, e2, . . . , et} into the guts of Z. Then {e1, e2, . . . , et} is an
independent set of clones in Mt. Moreover clMt(A) ∩ clMt(Z) contains and
is spanned by {e1, e2, . . . , et}.

Proof. By Lemmas 3.4, 3.6, and 3.7, {e1, e2, . . . , et} is a rank-t set of clones
in Mt. As ei ∈ clMi(Z) ∩ clMi(A ∪ {e1, e2, . . . , ei−1}) for all i, we see
that ei ∈ clMi(Z) ∩ clMi(A). Hence clMt(Z) = clM (Z) ∪ {e1, e2, . . . , et}
and clMt(A) = clM (A) ∪ {e1, e2, . . . , et}. Thus r(clMt(Z)) = rM (Z) and
r(clMt(A)) = rM (A). Since {e1, e2, . . . , et} ⊆ clMt(Z) ∩ clMt(A), we deduce
that

t ≤ rMt(clMt(A) ∩ clMt(Z))

= rM ((clM (A) ∩ clM (Z)) ∪ {e1, e2, . . . , et})
= rM ((clM (A) ∩ clM (Z))

≤ rM ((clM (A)) + rM (clM (Z))− r(M)

= rM (A) + rM (Z)− r(M)

= λM (Z) = t.

Hence {e1, e2, . . . , et} is, indeed, a basis for Mt|(clMt(A) ∩ clMt(Z)). □

For the next five results, we remain under the hypotheses of Theorem 3.9.
Let {e1, e2, . . . , et} = G. Then the ground set of the matroidMt constructed
in the last theorem is the disjoint union of Z, A, and G.

Lemma 3.10. Let X ⊆ A. Then rM/Z(X) = rM/G(X), that is,

rMt(X ∪ Z)− rMt(Z) = rMt(X ∪G)− rMt(G).

Proof. By Theorem 3.9, G spans clMt(Z) ∩ clMt(A). Since λM (Z) = t =
rMt(G), we deduce that λMt/G(Z) = 0. Thus

Mt/G\Z =Mt/G/Z = (Mt/Z)/G = (Mt/Z)\G

where the last step holds because G ⊆ clMt(Z). Hence rMt/G\Z(X) =
rMt/Z\G(X), that is, rM/Z(X) = rM/G(X). □

Lemma 3.11. Let X and Y be disjoint subsets of A. Then

(i) ⊓M (X,Y ) = ⊓Mt\Z(X,Y ); and
(ii) ⊓M (X ∪ Z, Y ) = ⊓Mt\Z(X ∪G, Y ).
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Proof. Part (i) is immediate sinceM is a restriction of Mt. For (ii), we have

⊓M (X ∪ Z, Y ) = rM (X ∪ Z) + rM (Y )− rM (X ∪ Z ∪ Y )

= (rM (X ∪ Z)− rM (Z)) + rM (Y )

−(rM (X ∪ Z ∪ Y )− rM (Z))

= (rMt(X ∪G)− rMt(G)) + rMt(Y )

−(rMt(X ∪G ∪ Y )− rMt(G))

= rMt(X ∪G) + rMt(Y )− rMt(X ∪G ∪ Y )

= ⊓Mt(X ∪G, Y )

= ⊓Mt\Z(X ∪G, Y )

where the third step follows from two applications of Lemma 3.10. □

Corollary 3.12. Suppose F ⊆ A. Then F ∪Z is a flat of M if and only if
F ∪G is a flat of Mt\Z.

Proof. Take e in A− F . By Lemma 3.11(ii), ⊓M (F ∪ Z, {e}) = ⊓Mt\Z(F ∪
G, {e}). Thus e ∈ clM (F ∪ Z) if and only if e ∈ clMt\Z(F ∪ G). The result
follows. □

Lemma 3.13. Let X and Y be disjoint subsets of A. Then

(i) ⊓∗
M (X,Y ) = ⊓∗

Mt\Z(X,Y ); and

(ii) ⊓∗
M (X ∪ Z, Y ) = ⊓∗

Mt\Z(X ∪G, Y ).

Proof. Suppose X ′ ∈ {X,X ∪G}. Then

⊓∗
Mt\Z(X

′, Y ) = ⊓(Mt\Z)∗(X
′, Y )

= ⊓M∗
t /Z

(X ′, Y )

= rM∗
t /Z

(X ′) + rM∗
t /Z

(Y )− rM∗
t /Z

(X ′ ∪ Y )

= rM∗
t
(X ′ ∪ Z) + rM∗

t
(Y ∪ Z)

−rM∗
t
(X ′ ∪ Y ∪ Z)− rM∗

t
(Z)

= r(Mt\(X ′ ∪ Z)) + r(Mt\(Y ∪ Z))
−r(Mt\(X ′ ∪ Y ∪ Z))− r(Mt\Z). (3.1)

Thus, recalling that E(Mt) is the disjoint union of Z,A, and G, we have

⊓∗
Mt\Z(X,Y ) = rMt((A−X) ∪G) + rMt((A− Y ) ∪G)

−rMt((A− (X ∪ Y )) ∪G)− rMt(A ∪G)
= rMt((A−X) ∪ Z) + rMt((A− Y ) ∪ Z)

−rMt((A− (X ∪ Y )) ∪ Z)− rMt(A ∪ Z) (3.2)

where the last step follows by four applications of Lemma 3.10.
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For X ′′ in {X,X ∪ Z}, we have

⊓∗
M (X ′′, Y ) = r∗M (X ′′) + r∗M (Y )− r∗M (X ′′ ∪ Y )

= |X ′′|+ r(E(M)−X ′′) + |Y |+ r(E(M)− Y )− |X ′′ ∪ Y |
−r(E(M)− (X ′′ ∪ Y ))− r(M). (3.3)

Thus

⊓∗
M (X,Y ) = r((A−X)∪Z)+r((A−Y )∪Z)−r((A− (X∪Y ))∪Z)−r(M).

Therefore, by (3.2),
⊓∗
M (X,Y ) = ⊓∗

Mt\Z(X,Y ),

that is, (i) holds.
Now, by (3.3),

⊓∗
M (X ∪ Z, Y ) = r(A−X) + r((A− Y ) ∪ Z)− r(A− (X ∪ Y ))− r(A ∪ Z).

Moreover, by (3.1),

⊓∗
Mt\Z(X ∪G, Y ) = rMt(A−X) + rMt((A− Y ) ∪G)

−rMt(A− (X ∪ Y ))− rMt(A ∪G)
= rM (A−X) + rM ((A− Y ) ∪ Z)

−rM (A− (X ∪ Y ))− rM (A ∪ Z)
by two applications of Lemma 3.10. We conclude that ⊓∗

M (X ∪ Z, Y ) =
⊓∗
Mt\Z(X ∪G, Y ), that is (ii) holds. □

Lemma 3.14. In Mt\Z, the set G is an independent, coindependent set of
clones of cardinality λM (Z), and λMt\Z(G) = λM (Z).

Proof. By Theorem 3.9, G is an independent set of clones inMt of cardinality
λM (Z). Now

r∗Mt\Z(G) = rM∗
t /Z

(G)

= rM∗
t
(G ∪ Z)− rM∗

t
(Z)

= |G ∪ Z|+ rMt(A)− r(Mt)

−(|Z|+ rMt(A ∪G)− r(Mt))

= |G|
where the last step holds because A spans G inMt. Thus G is coindependent
in Mt\Z. Finally,

λMt\Z(G) = rMt\Z(G) + r∗Mt\Z(G)− |G|
= |G|
= λM (Z)

where the second step follows because G is independent and coindependent
in Mt\Z. □

We now consider freely adding different elements into the guts of disjoint
sets in a matroid.
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Lemma 3.15. Let M be a matroid and suppose A ⊆ E(M). Let M⟨a⟩ be
the matroid that is obtained from M by freely adding a into the guts of A.
If Y ⊆ E(M), then M⟨a⟩/Y is obtained from M/Y by freely adding a into
the guts of A− Y .

Proof. Say X ⊆ E(M) − Y . Then a ∈ clM⟨a⟩/Y (X) if and only if a ∈
clM⟨a⟩(X ∪ Y ). From the definition of M⟨a⟩, Theorem 3.2 implies that the

latter holds if and only if λM/(X∪Y )(A− (X ∪Y )) = 0, that is, if and only if
λ(M/Y )/X((A− Y )−X) = 0. But λ(M/Y )/X((A− Y )−X) = 0 if and only
if X is in the modular cut that corresponds to freely adding a into the guts
of A− Y in M/Y . □

Lemma 3.16. Let M be a matroid, let A and B be disjoint subsets of
E(M) and let {a, b} be disjoint from E(M). Let M⟨a⟩ be the matroid that is
obtained from M by freely adding a into the guts of A; let M⟨b⟩ be obtained
from M by freely adding b into the guts of B; let M⟨a⟩⟨b⟩ be the matroid that
is obtained from M⟨a⟩ by freely adding b into the guts of B; and let M⟨b⟩⟨a⟩
be the matroid that is obtained from M⟨b⟩ by freely adding a into the guts of
A. Then M⟨a⟩⟨b⟩ =M⟨b⟩⟨a⟩.

Proof. Clearly M⟨a⟩⟨b⟩\b =M⟨a⟩ and M⟨b⟩⟨a⟩\a =M⟨b⟩. Next we show that

3.16.1. M⟨a⟩⟨b⟩\a =M⟨b⟩ and M⟨b⟩⟨a⟩\b =M⟨a⟩.

Suppose X ⊆ E(M). We prove that b ∈ clM⟨a⟩⟨b⟩\a(X) if and only if b ∈
clM⟨b⟩(X). SinceM⟨a⟩⟨b⟩\a, b =M⟨b⟩\b, this will prove thatM⟨a⟩⟨b⟩\a =M⟨b⟩.

Say b ∈ clM⟨a⟩⟨b⟩\a(X). Then b ∈ clM⟨a⟩⟨b⟩(X). Hence λM⟨a⟩/X(B −X) = 0.

But M/X =M⟨a⟩/X\a, so λM/X(B −X) = 0. Thus b ∈ clM⟨b⟩(X).

Assume that b ∈ clM⟨b⟩(X). Then λM/X(B−X) = 0. Since a ∈ clM⟨a⟩(A)

and A ⊆ E(M)−B, we have a ∈ clM⟨a⟩/X((E(M)−B)−X). It follows that

λM⟨a⟩/X(B −X) = 0. Hence b ∈ clM⟨a⟩⟨b⟩(X). Thus 3.16.1 holds.

Assume that M⟨a⟩⟨b⟩ ̸=M⟨b⟩⟨a⟩, and that, amongst all counterexamples to
the lemma, |E(M)| is minimal. Then there is a set Z that is independent
in one of M⟨a⟩⟨b⟩ and M⟨b⟩⟨a⟩, say the second, and is a circuit in the other,
M⟨a⟩⟨b⟩. By (3.16.1), {a, b} ⊆ Z. This implies that neither a nor b is a loop
of M⟨a⟩⟨b⟩ or of M⟨b⟩⟨a⟩. Hence λM (A), λM (B) > 0.

Let Z ′ = Z − {a, b} and suppose Z ′ ̸= ∅. In this case, it follows from
Lemma 3.15 that the triple (M/Z ′,M⟨a⟩⟨b⟩/Z

′,M⟨b⟩⟨a⟩/Z
′) also gives a coun-

terexample to the theorem contradicting the minimality of |E(M)|. Hence
Z = {a, b}.

Let C = E(M) − (A ∪ B). Since {a, b} is a circuit in M⟨a⟩⟨b⟩, we have
b ∈ clM⟨a⟩⟨b⟩({a}). This means that {a} is in the modular cut that generates
M⟨a⟩⟨b⟩ fromM⟨a⟩. SinceM⟨a⟩⟨b⟩ is obtained fromM⟨a⟩ by freely adding b into
the guts of B, we have λM⟨a⟩/a(B) = 0. We have observed that λM (B) > 0.

We deduce that (A ∪ C,B) is a 2-separation in M , so M⟨a⟩ is a parallel
connection with basepoint a of matroids with ground sets A ∪ C ∪ a and
B ∪ a. Hence a ∈ clM⟨a⟩(A ∪ C) and a ∈ clM⟨a⟩(B).
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Since M⟨b⟩⟨a⟩\b = M⟨a⟩, we have that a ∈ clM⟨b⟩⟨a⟩(A ∪ C) and that a ∈
clM⟨b⟩⟨a⟩(B). As M⟨b⟩ is obtained from M by freely adding b into the guts of

B, and A∪C = E(M)−B, we have that b ∈ clM⟨b⟩(B) and b ∈ clM⟨b⟩(A∪C).
But M⟨b⟩⟨a⟩ is an extension of M⟨b⟩. It follows that b ∈ clM⟨b⟩⟨a⟩(B) and

b ∈ clM⟨b⟩⟨a⟩(A ∪ C).
Now ⊓M⟨b⟩⟨a⟩(A ∪ C,B) = 1 and {a, b} ⊆ clM⟨b⟩⟨a⟩(A ∪ C) ∩ clM⟨b⟩⟨a⟩(B).

Hence {a, b} is dependent in M⟨b⟩⟨a⟩, contradicting the assumption that this
set is independent in M⟨b⟩⟨a⟩. □

Lemma 3.17. Let {X1, X2, . . . , Xn} be a collection of disjoint sets in a
matroid M and let {Y1, Y2, . . . , Yn} be a collection of disjoint sets each of
which is disjoint from E(M). Let ϕ be a permutation of [n]. Let Mϕ(0) =M ,
and, for each i in [n], let Mϕ(i) be the matroid that is obtained from Mϕ(i−1)

by freely adding the elements of Yi into the guts of Xi. Let Mϕ = Mϕ(n).
Then the following hold.

(i) If ψ is also a permutation of [n], then Mψ =Mϕ.
(ii) If i ∈ [n], then Mϕ is obtained from Mϕ\Yi by freely adding the

elements of Yi into the guts of Xi.

Proof. Part (i) follows from Lemma 3.16 and a routine induction. We omit
the details. For (ii), choose a permutation ψ such that ψ(i) = n. □

The clonal core of a partitioned matroid. When M is a matroid on a
set E, and X is a partition {X1, X2, . . . , Xn} of E, recall that the pair (M,X )
is a partitioned matroid. The partitioned matroid (N, {Y1, Y2, . . . , Yn}) is
isomorphic to the partitioned matroid (M, {X1, X2, . . . , Xn}) if there is a
bijection φ : E(M) → E(N) such that rM (X) = rN (φ(X)) for all subsets
X of E(M), and φ(Xi) = Yi for all i in [n].

We now describe a construction that builds an associated partitioned

matroid (M̂,Y) from the partitioned matroid (M,X ).

(i) Let Y be a collection {Y1, Y2, . . . , Yn} of disjoint sets each disjoint
from E such that |Yi| = λM (Xi) for each i in [n].

(ii) Let M0 = M and, for each i in [n], let Mi be the matroid obtained
from Mi−1 by freely adding the elements of Yi into the guts of Xi in
Mi−1.

(iii) Let M̂ =Mn\E.

It follows from Lemma 3.17 that the partitioned matroid (M̂,Y) does

not depend on the ordering of the members of X . We say that (M̂,Y)
is the clonal core of (M,X ). Note that there is no assumption here that
λ(Xi) > 0. When λ(Xi) = 0, we have that Yi = ∅. In particular, if some Xi

is a separator of M , then the clonal core of M is obtained from the clonal
core of M\Xi by adding an empty set Yi to Y.

A major reason for the introduction of the clonal core is to enable us to
infer certain connectivity properties of M from the corresponding connec-

tivity properties of M̂ . The proof of the next result, though not deep, is
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long and technical. When {W1,W2, . . . ,Wn} is a family of subsets of a set
S, and J is a non-empty subset of [n], we write WJ for ∪j∈JWj ; when J is
empty, WJ = ∅.

Theorem 3.18. Let (M,X ) be a partitioned matroid, where X =

{X1, X2, . . . , Xn}, and let (M̂,Y) be the clonal core of (M,X ), where

Y = {Y1, Y2, . . . , Yn}. Then |E(M̂)| = λM (X1) + λM (X2) + · · · + λM (Xn).

Moreover, in (M̂,Y),

(i) each Yi consists of an independent, coindependent set of clones of
cardinality λM (Xi); and

(ii) for all non-empty disjoint subsets J and K of [n],
(a) λM (XJ) = λ

M̂
(YJ);

(b) ⊓M (XJ , XK) = ⊓
M̂
(YJ , YK); and

(c) ⊓∗
M (XJ , XK) = ⊓∗

M̂
(YJ , YK).

Proof. Let λM (Xi) = ti. Construct the matroid Mt1 from M by freely
adding a t1-element independent set G1 of clones to the guts of (X1, X2 ∪
X3 ∪ · · · ∪Xn) as in Theorem 3.9. Let N1 =Mt1\X1. By Lemma 3.14, the
set G1 is an independent, coindependent set of clones in N1 and λN1(G1) =
λM (X1). Then the ground set of N1 has a partition into non-empty sets
G1, X2, X3, . . . , Xn. Moreover, by Lemma 3.11, for all disjoint subsets J
and K of {2, 3, . . . , n}, we have ⊓M (XJ , XK) = ⊓N1(XJ , XK) and ⊓M (X1∪
XJ , XK) = ⊓N1(G1 ∪ XJ , XK). Also, by Lemma 3.13, ⊓∗

M (XJ , XK) =
⊓∗
N1

(XJ , XK) and ⊓∗
M (X1 ∪XJ , XK) = ⊓∗

N1
(G1 ∪XJ , XK).

Assume thatN1, N2, . . . , Ni have been defined so that E(Ni) is the disjoint
union of G1, G2, . . . , Gi, Xi+1, Xi+2, . . . , Xn where

(1) for j ≤ i, each Gj is an independent, coindependent set of clones of
Ni of cardinality λM (Xj); and

(2) for all disjoint subsets I1 and I2 of {1, 2, . . . , i} and all disjoint subsets
J1 and J2 of {i+ 1, i+ 2, . . . , n},

⊓M (XI1 ∪XJ1 , XI2 ∪XJ2) = ⊓Ni(GI1 ∪XJ1 , GI2 ∪XJ2) (3.4)

and

⊓∗
M (XI1 ∪XJ1 , XI2 ∪XJ2) = ⊓∗

Ni
(GI1 ∪XJ1 , GI2 ∪XJ2). (3.5)

To define Ni+1 from Ni, first extend the latter by an independent, coin-
dependent set Gi+1 of clones added into the guts of (Xi+1, E(Ni) − Xi+1)
where |Gi+1| = λM (Xi+1). Let N ′

i be the resulting extension and let
Ni+1 = N ′

i\Xi+1. Thus

E(Ni+1) = G1 ∪G2 ∪ · · · ∪Gi+1 ∪Xi+2 ∪ · · · ∪Xn.

By Lemma 3.14, in Ni+1, the set Gi+1 is independent and coindependent.
Moreover, Gi+1 is a set of clones of cardinality λNi(Xi+1). By (3.4), this
cardinality is λM (Xi+1).
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3.18.1. For each t in {1, 2, . . . , i}, the set Gt is an independent, coindepen-
dent set of clones of cardinality λM (Xt) in Ni+1.

To see this, first note that |Gt| = λM (Xt). Moreover, Gt is an inde-
pendent, coindependent set of clones in Nt. Thus Gt is an independent
set in Ni+1. Suppose that Ni+1 has a cyclic flat F for which there are
elements x and y of Gt such that x ∈ F and y ̸∈ F . Because x and
y are clones in Ni+1\Gi+1, which equals Ni\Xi+1, the cyclic flat F con-
tains an element of Gi+1. Thus F contains Gi+1. By Corollary 3.12,
(F − Gi+1) ∪ Xi+1 is a flat of Ni that contains x but not y. Thus x
must be a coloop of Ni|((F − Gi+1) ∪ Xi+1). But x is not a coloop of
Ni+1|F , so F contains a circuit C containing x. Then C meets Gi+1. Let
C ∩ Gi+1 = {x1, x2, . . . , xs}. Then x1 ∈ clN ′

i
(Xi+1), so there is a circuit

C1 such that x1 ∈ C1 ⊆ Xi+1 ∪ {x1}. Thus there is a circuit C ′ such that
x ∈ C ′ ⊆ (C∪C1)−{x1}. Hence C ′∩Gi+1 ⊆ {x2, x3, . . . , xs}. By repeatedly
eliminating the elements of C ′ ∩Gi+1, we obtain the contradiction that x is
in a circuit that is contained in (F −Gi+1) ∪Xi+1. We conclude that Gt is
a set of clones in Ni+1.

Finally, from Lemma 3.11(ii), λNi+1(Gt) = λNi(Gt) = |Gt|, so Gt is coin-
dependent in Ni+1. Thus 3.18.1 holds.

Now let I1 and I2 be disjoint subsets of {1, 2, . . . , i} and let J1 and J2 be
disjoint subsets of {i+ 2, i+ 3, . . . , n}. Then, by (3.4) and Lemma 3.11, we
have

⊓M (XI1∪J1 , XI2∪J2) = ⊓Ni(GI1 ∪XJ1 , GI2 ∪XJ2)

= ⊓Ni+1(GI1 ∪XJ1 , GI2 ∪XJ2),

and

⊓M (XI1∪J1∪{i+1}, XI2∪J2) = ⊓Ni(GI1 ∪XJ1∪{i+1}, GI2 ∪XJ2)

= ⊓Ni+1(GI1∪{i+1} ∪XJ1 , GI2 ∪XJ2).

Likewise, by (3.5) and Lemma 3.13,

⊓∗
M (XI1∪J1 , XI2∪J2) = ⊓∗

Ni+1
(GI1 ∪XJ1 , GI2 ∪XJ2)

and

⊓∗
M (XI1∪J1∪{i+1}, XI2∪J2) = ⊓∗

Ni+1
(GI1∪{i+1} ∪XJ1 , GI2 ∪XJ2).

The theorem follows by taking Yi = Gi for all i in [n], noting that we get

from Lemma 3.17 that M̂ is the matroid Nn constructed above. □

We recall that a partitioned matroid (N, {Z1, Z2, . . . , Zn}) is a clonal-
core matroid if, for each i in [n], the set Zi is a set of clones of cardinality
λN (Zi). Observe that, because Zi has cardinality λN (Zi), it follows that Zi
is independent. Moreover, Zi is coindependent since λN (Zi) = λN∗(Zi).

Lemma 3.19. A partitioned matroid (N,Z) is a clonal-core matroid if and
only if there is a partitioned matroid (M,X ) whose clonal core is isomorphic
to (N,Z).
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Proof. If the clonal core of (M,X ) is isomorphic to (N,Z), then, by The-
orem 3.18, (N,Z) is a clonal-core matroid. Conversely, suppose (N,Z) is
a clonal-core matroid. We shall show that the clonal core of (N,Z) is iso-
morphic to (N,Z). Since (N,Z) is a clonal-core matroid, if Z ∈ Z, then Z
is a set of clones in N of cardinality λN (Z). Let λN (Z) = t. We assume
that t > 0 otherwise Z is empty. Let Z = {f1, f2, . . . , ft} and let Nt be
the matroid that is obtained from N by freely adding the set {e1, e2, . . . , et}
into the guts of Z. By Theorem 3.9, {e1, e2, . . . , et} is an independent set
of clones of Nt and clNt(E(N) − Z) ∩ clNt(Z) contains and is spanned by
{e1, e2, . . . , et}.

We show next that

3.19.1. {e1, e2, . . . , et, f1, f2, . . . , ft} is a set of clones of Nt.

To see this, it suffices to show that each fi is a clone of e1. Assume that
this fails. Then Nt has a cyclic flat F that contains exactly one of e1 and
fi. Suppose that fi ∈ F but e1 ̸∈ F . As e1, e2, . . . , et are clones in Nt, we
deduce that F ∩ {e1, e2, . . . , et} = ∅. Since f1, f2, . . . , ft are clones in N , it
follows that {f1, f2, . . . , ft} ⊆ F . As e1, e2, . . . , et were added to the guts of
{f1, f2, . . . , ft}, it follows that {e1, e2, . . . , et} ⊆ clNt({f1, f2, . . . , ft}) ⊆ F , a
contradiction.

Now suppose that e1 ∈ F but fi ̸∈ F . Then {e1, e2, . . . , et} ⊆ F as
e1, e2, . . . , et are clones in Nt. Since {e1, e2, . . . , et} spans {f1, f2, . . . , ft}, we
obtain a contradiction. Hence 3.19.1 holds.

By 3.19.1, Nt\{f1, f2, . . . , ft} ∼= N . By repeating this argument for each
set Z in Z, we deduce that the clonal core of (N,Z) is isomorphic to (N,Z).
Thus the lemma holds. □

Theorem 3.18 provides conditions that enable us to say that, if a theorem
on partitioned matroids holds for all clonal-core matroids, then it holds for
all partitioned matroids. The next, somewhat informal, corollary follows
immediately from Theorem 3.18. Note that a precise formulation would
require an exercise in logic that we would prefer to avoid.

Corollary 3.20. If a statement for partitioned matroids involves only

(i) connectivities of unions of members of the partition,
(ii) local connectivities between disjoint pairs of unions of members of

the partition, and
(iii) local coconnectivites between disjoint pairs of unions of members of

the partition,

then the statement is true for all partitioned matroids if and only if it is true
for all clonal-core matroids.
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4. The Behaviour of (4, c)-Flexipaths

When we have a matroid M having a path (L,Q1, Q2, . . . , Qn, R) of 4-
separations and t ≤ n, we can consider

(L∪Q1∪Q2∪· · ·∪Qj , Qj+1, Qj+2, . . . , Qj+t, Qj+t+1∪Qj+t+2∪· · ·∪Qn∪R),

which is also a path 4-separations, this one having exactly t internal steps.
Moreover, if the original path is a 4-flexipath, so too is the second path.

Now let (L,Q1, Q2, . . . , Qn, R) be a 4-flexipath in a matroid M . Because
we are dealing with a flexipath, we may use the idea from the previous
paragraph of absorbing internal steps into the end steps to assume that
λ(Qi) = λ(Qj) for all i and j. By Lemma 2.3, for distinct i and j, we
have λ(Qi ∪ Qj) ≥ λ(Qi). If equality holds here, we may replace Qi and
Qj by a new step, Qi ∪Qj . By repeating this process, we eventually obtain
a (4, c)-flexipath for some c in {1, 2, 3}, that is, λ(Qi) = c for all i, and
λ(Qi ∪Qj) > c for all distinct i and j.

In this section, we shall derive some general properties of a (4, c)-flexipath
(L,Q1, Q2, . . . , Qn, R). We show in Lemma 4.6 that we may assume that

c ≤ 3 otherwise n ≤ 1. By Theorem 3.18, there is a matroid M̂ hav-
ing cn + 6 elements whose ground set is the disjoint union of the sets

L̂, Q̂1, Q̂2, . . . , Q̂n, R̂ where, for each i in [n], the set Q̂i is a c-element in-

dependent, coindependent set of clones, and each of L̂ and R̂ consists of a
3-element independent, coindependent set of clones. Moreover, for all sub-

sets I of {1, 2, . . . , n}, we have λ
M̂
(L̂ ∪ Q̂I) = 3 and, for all disjoint subsets

I1 and I2 of [n],

⊓M (QI1 , QI2) = ⊓
M̂
(Q̂I1 , Q̂I2)

and

⊓M (L ∪R ∪QI1 , QI2) = ⊓
M̂
(L̂ ∪ R̂ ∪ Q̂I1 , Q̂I2).

In view of this, as noted in the previous section, we can infer much about

the matroid M by focusing on its clonal core M̂ . This means that, in many
arguments, we will assume that M is a clonal-core matroid corresponding
to the partition {L,Q1, Q2, . . . , Qn, R} of E(M).

In the next section, we will focus on (4, 2)-flexipaths. Before doing that,
we develop some general results for (4, c)-flexipaths. In all of the results in
this section, (L,Q1, Q2, . . . , Qn, R) is a (4, c)-flexipath in a matroid M . The
main results of this section, Corollary 4.9 and Theorem 4.13, determine all
possible (4, 1)-flexipaths and all possible (4, 3)-flexipaths, respectively. Each
of the latter has at most two internal steps.

Lemma 4.1. For all i in [n],

⊓(L,Qi) + ⊓∗(L,Qi) = c = ⊓(R,Qi) + ⊓∗(R,Qi).
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Proof. By symmetry, it suffices to prove the first equality. Using Lemma 2.1,
we have

3 = λ(L ∪Qi) = λ(L) + λ(Qi)− ⊓(L,Qi)− ⊓∗(L,Qi)

= 3 + c− ⊓(L,Qi)− ⊓∗(L,Qi).

□

Lemma 4.2. For all distinct i and j in [n],

⊓(Qi, Qj) + ⊓∗(Qi, Qj) ≤ c− 1.

Proof. Using Lemma 2.1, we have

c+ 1 ≤ λ(Qi ∪Qj) = λ(Qi) + λ(Qj)− ⊓(Qi, Qj)− ⊓∗(Qi, Qj)

= c+ c− ⊓(Qi, Qj)− ⊓∗(Qi, Qj).

The result follows immediately. □

In each of the remaining proofs in this section, by relying on Theorem 3.18,
we may assume that (M, {L,Q1, Q2, . . . , Qn, R}) is a clonal-core matroid.

Lemma 4.3. For all i in [n],

⊓(L,Qi) = ⊓(R,Qi).

Proof. Let (L,Q,R) be a path of 4-separations. Then, by Lemma 2.2(ii),

⊓(L,Q) = ⊓(R,Q) + ⊓(R ∪Q,L)− ⊓(L ∪Q,R)
= ⊓(R,Q) + λ(L)− λ(R)

= ⊓(R,Q).

In particular, the lemma holds when n = 1.
Assume n ≥ 2. Because we are dealing with a flexipath, we may assume

that i = 1. Then (L,Q1, Q2 ∪ · · · ∪Qn ∪R) is a path of 4-separations, so

⊓(L,Q1) = ⊓(Q1, Q2 ∪Q3 ∪ · · · ∪Qn ∪R) ≥ ⊓(Q1, R),

where the inequality follows by the monotonicity of ⊓ in each argument. By
symmetry, ⊓(R,Q1) ≥ ⊓(Q1, L) so ⊓(L,Q1) = ⊓(R,Q1). □

Lemma 4.4. If n ≥ 2, then ⊓(L,R) + ⊓∗(L,R) ≤ 5− c.

Proof. We have, by Lemma 2.1, that

⊓(L,R) + ⊓∗(L,R) = λ(L) + λ(R)− λ(L ∪R) = 3 + 3− λ(L ∪R).
As λ(L ∪R) = λ(Q1 ∪Q2 ∪ · · · ∪Qn) ≥ c+ 1, the lemma follows. □

Lemma 4.5. If n ≥ 3, then c ≤ 2.

Proof. Because (L,Q1, Q2, . . . , Qn, R) is a (4, c)-flexipath, so is (L ∪
Q1, Q2, . . . , Qn, R). Thus, by Lemma 4.4, ⊓(L ∪ Q1, R) + ⊓∗(L ∪ Q1, R) ≤
5− c. Therefore, by Lemma 4.1 and monotonicity,

c = ⊓(Q1, R) + ⊓∗(Q1, R) ≤ 5− c,

and the lemma follows. □
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Lemma 4.6. If c ≥ 4, then n ≤ 1.

Proof. Assume n ≥ 2. By Lemma 4.5, n = 2. By Lemma 4.4,

0 ≤ ⊓(L,R) + ⊓∗(L,R) ≤ 5− c ≤ 1.

Thus c ∈ {4, 5}.
Suppose ⊓(L,Qi) = 3. Since we are operating in the clonal core, this

means that L ⊆ cl(Qi). By Lemma 4.3, R ⊆ cl(Qi), so L ∪ R ⊆ cl(Qi) and
r(L ∪R) ≤ r(Qi) = c. Thus

6− ⊓(L,R) ≤ c.

This contradicts Lemma 4.4. Thus

⊓(L,Qi) ≤ 2.

By duality, ⊓∗(L,Qi) ≤ 2. By Lemma 4.1,

c = ⊓(L,Qi) + ⊓∗(L,Qi) ≤ 4,

so

c = 4,

and, for each i in {1, 2}.

⊓(L,Qi) = 2 = ⊓∗(L,Qi).

We deduce that, for each N in {M,M∗} and each i in {1, 2},

rN (L ∪Qi) = 5 = rN (R ∪Qi).

Thus, by the submodularity of rN ,

rN (L ∪R ∪Qi) + rN (Qi) ≤ rN (L ∪Qi) + rN (R ∪Qi) = 10.

Hence rN (L ∪R ∪Qi) ≤ 6. Therefore, by submodularity again,

12 ≥ rN (L ∪R ∪Q1) + rN (L ∪R ∪Q2) ≥ rN (L ∪R) + r(N).

Taking each N in {M,M∗}, we have

24 ≥ rM (L ∪R) + r(M) + rM∗(L ∪R) + r(M∗).

But r(M) + r(M∗) = |E(M)| = 14. Thus 10 ≥ rM (L∪R) + rM∗(L∪R), so

10 ≥ r(L) + r(R) + r∗(L) + r∗(R)− ⊓(L,R)− ⊓∗(L,R).

Hence ⊓(L,R) + ⊓∗(L,R) ≥ 2, which contradicts Lemma 4.4. □

The rest of this section is concerned with determining all possible (4, 1)-
and (4, 3)-flexipaths beginning with the former. For such a flexipath,
λ(Qi) = 1 for each i, so, since M is a clonal-core matroid, we may take
Qi = {ei}.

Lemma 4.7. Let (L, e1, e2, . . . , en, R) be a (4, 1)-flexipath with ⊓(L,R) = 2
and n ≥ 1. Suppose ⊓(L, ei) = 1 for each i in {1, 2, . . . , t} and ⊓(L, ej) = 0
for each j in {t+ 1, t+ 2, . . . , n}. Then min{t, n− t} = 1.
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Proof. By Lemma 4.1, ⊓∗(L, ei) = 0 for each i in {1, 2, . . . , t} and ⊓(L, ej) =
1 for each j in {t+ 1, t+ 2, . . . , n}. Suppose n− t = 0. Then

3 = λ(L ∪ e1 ∪ · · · ∪ en) = r(L ∪ e1 ∪ · · · ∪ en) + r(R)− r(M) ≤ 3 + 3− 4,

a contradiction. Thus n− t > 0. By duality, t > 0.
Assume t, n − t ≥ 2. By moving to the clonal core of the (4, 1)-flexipath

(L ∪ e1 ∪ · · · ∪ et−2, et−1, et, et+1, et+2, et+3 ∪ · · · ∪ en ∪ R), we may assume
that t = n − t = 2. Since λ({ei, ej}) = 2 for i ̸= j, we deduce that
r({ei, ej}) = 2 = r∗({ei, ej}). As ⊓∗(L, e3) = 1 = ⊓∗(L, e4), we see that
r∗(L ∪ {e3, e4}) = r∗(L) = 3. It follows by symmetry that

2 + r∗(L ∪R) = r∗({e3, e4}) + r∗(L ∪R ∪ {e3, e4})
≤ r∗(L ∪ {e3, e4}) + r∗(R ∪ {e3, e4})
= 3 + 3.

Thus r∗(L ∪R) ≤ 4, so ⊓∗(L,R) ≥ 2. But ⊓(L,R) = 2 and, by Lemma 4.4,
⊓(L,R) + ⊓∗(L,R) ≤ 4, so ⊓∗(L,R) = 2. This means that we can make
inferences about M∗ from what we determine about M .

Since ⊓∗(L,R) = 2, we see that r∗(L ∪R) = 4. Thus

4 = r∗(L ∪R ∪ {e3, e4}) = |L ∪R ∪ {e3, e4}|+ r({e1, e2})− r(M),

so r(M) = 6. Dually, r∗(M) = 6, so |E(M)| = 12, a contradiction. □

We remind the reader that each of the matroids M that arises in
our lemmas is the clonal-core matroid associated with the (4, c)-flexipath
(L,Q1, Q2, . . . , Qn, R).

Lemma 4.8. Let (L, e1, e2, . . . , en, R) be a (4, 1)-flexipath in a matroid M
with ⊓(L,R) = 3. Then r(M) = 3 and M |{e1, e2, . . . , en} can be any n-
element simple matroid of rank at most three.

Proof. First we show that

4.8.1. ei ∈ cl(L) for all i in [n].

We observe that it suffices to show that ⊓(L, e1) = 1. Assume
that ⊓(L, e1) = 0. Then e1 /∈ cl(L). Consider the (4, 1)-flexipath
(L, e1, {e2, e3, . . . , en} ∪ R) rewriting this as (L, e1, R

′). As r(L) = 3, we
have 3 ≥ ⊓(L,R′) ≥ ⊓(L,R) = 3 so ⊓(L,R′) = 3. Recalling that M is
a clonal-core matroid, we now consider the clonal core of (M, {L, e1, R′})
denoting this clonal core by (M̂, {L, e1, R̂′}) rather than by (M̂, {L̂, ê1, R̂′})
because L is already an independent, coindependent set of clones and e1
is a singleton. Then (L, e1, R̂′) is a (4, 1)-flexipath and e1 /∈ cl

M̂
(L). But

cl
M̂
(L) = cl

M̂
(L ∪ R̂′), so e1 /∈ cl

M̂
(L ∪ R̂′). This is a contradiction as it

means e1 is a coloop of M̂ , so λ
M̂
({e1}) = 0. Thus 4.8.1 holds.

By 4.8.1, it follows that r(M) = 3. Clearly r(M |{e1, e2, . . . , en}) ≤ 3.
Now, let N be any simple matroid of rank at most three with ground
set {e1, e2, . . . , en} and take M0 to be a copy of U3,6 with ground set
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{f1, f2, . . . , f6} where {e1, e2, . . . , en} ∩ {f1, f2, . . . , f6} = ∅. Then, in the
truncation to rank three of the direct sum of M0 and N , we see that
({f1, f2, f3}, e1, e2, . . . , en, {f4, f5, f6}) is a (4, 1)-flexipath. □

Extending the last two lemmas, we get the following characterization, up
to duality, of the clonal cores of all (4, 1)-flexipaths.

Corollary 4.9. Let (L, e1, e2, . . . , en, R) be a (4, 1)-flexipath in a matroid
M with ⊓(L,R) ≥ ⊓∗(L,R). Then one of the following holds.

(i) ⊓(L,R) = 3 and r(M) = 3, while M |{e1, e2, . . . , en} is any n-
element simple matroid of rank at most three, and {e1, e2, . . . , en} ⊆
cl(L) ∩ cl(R).

(ii) ⊓(L,R) = 2 and r(M) = 4, where n ≥ 2 and, for some relabelling
of {e1, e2, . . . , en}, the matroid M |{e1, e2, . . . , en−1} is simple and
uniform of rank at most two where {e1, e2, . . . , en−1} = cl(L)∩ cl(R)
and {en} = cl∗(L) ∩ cl∗(R).

Proof. By Lemma 4.4, ⊓(L,R) + ⊓∗(L,R) ≤ 4 provided n ≥ 2. In Lem-
mas 4.7 and 4.8, we treated the cases where ⊓(L,R) ∈ {2, 3}. By Lemmas 4.1
and 4.3, each ei is in exactly one of cl(L) ∩ cl(R) and cl∗(L) ∩ cl∗(R). Since
⊓(L,R) ≥ ⊓∗(L,R), we see that |cl∗(L)∩cl∗(R)| ≤ 1. If ⊓(L,R) = 3, then (i)
holds. If ⊓(L,R) = 2, then r(M) ≥ 4. By Lemma 4.7, |cl∗(L) ∩ cl∗(R)| = 1
and (ii) holds. □

Lemma 4.10. In a (4, 3)-flexipath with n = 2,

(⊓(L,R),⊓∗(L,R)) = (⊓∗(Q1, Q2) + 6− r(M),⊓(Q1, Q2) + 6− r∗(M)).

Proof. By duality, it suffices to prove that the first coordinates are equal.
We have

⊓∗(Q1, Q2) = r∗(Q1) + r∗(Q2)− r∗(Q1 ∪Q2)

= 3 + 3− r∗(Q1 ∪Q2)

= r(L) + r(R)− (|Q1 ∪Q2|+ r(L ∪R)− r(M))

= ⊓(L,R) + r(M)− 6.

□

Lemma 4.11. In a (4, 3)-flexipath with n = 2, if ⊓(L,Q1) = 2, then r(M) ≤
5.

Proof. By Lemma 4.3, ⊓(R,Q1) = 2, so

4 + 4 = r(L ∪Q1) + r(R ∪Q1)

≥ r(Q1) + r(L ∪R ∪Q1))

= 3 + r(M)

as Q1 is independent and Q2 is coindependent. Thus r(M) ≤ 5. □

Lemma 4.12. In a (4, 3)-flexipath with n = 2, for some N in {M,M∗} and
each i in {1, 2},

(⊓N (L,Qi),⊓∗
N (L,Qi)) = (2, 1).
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Proof. By Lemma 4.1, for each N in {M,M∗}, we have
⊓N (L,Qi) + ⊓∗

N (L,Qi) = 3. If (⊓N (L,Q1),⊓∗
N (L,Q1)) = (2, 1) and

(⊓N (L,Q2),⊓∗
N (L,Q2)) = (1, 2), then, by Lemma 4.3, we see that

(⊓N (R,Q2),⊓∗
N (R,Q2)) = (1, 2). Thus

3 = λN (L ∪Q1) = rN (L ∪Q1) + rN (R ∪Q2)− r(N) = 4 + 5− r(N),

so r(N) = 6. As |E(M)| = 12, it follows that r(M) = r∗(M) = 6. But,
by Lemma 4.11 and its dual, r(M) ≤ 5 and r∗(M) ≤ 5, a contradiction.
We deduce that (⊓N (L,Q1),⊓∗

N (L,Q1)) = (⊓N (L,Q2),⊓∗
N (L,Q2)) and the

lemma follows. □

The next theorem determines, up to duality, the possible clonal cores of
all (4, 3)-flexipaths with at least two internal steps.

Theorem 4.13. Consider a (4, 3)-flexipath with n ≥ 2 and ⊓(L,R) ≥
⊓∗(L,R). Then n = 2 and one of the following three possibilities arises:

(i) (⊓(L,R),⊓∗(L,R)) = (2, 0) and (⊓(Q1, Q2),⊓∗(Q1, Q2)) = (1, 1);
(ii) (⊓(L,R),⊓∗(L,R)) = (1, 0) = (⊓(Q1, Q2),⊓∗(Q1, Q2)); or
(iii) (⊓(L,R),⊓∗(L,R)) = (1, 1) and (⊓(Q1, Q2),⊓∗(Q1, Q2)) = (2, 0).

Proof. By Lemma 4.5, since we are dealing with a (4, 3)-flexipath, n ≤ 2, so
n = 2. By Lemma 4.12, for some N in {M,M∗}, we have ⊓N (L,Q1) = 2
and ⊓N (R,Q2) = 2. Thus rN (L ∪Q1) = 4 = rN (R ∪Q2). Hence

3 = λN (L ∪Q1) = rN (L ∪Q1) + rN (R ∪Q2)− r(N) = 4 + 4− r(N),

so r(N) = 5. As |E(N)| = 12, we see that r∗(N) = 7. It follows by
Lemma 4.10 that

(⊓N (L,R),⊓∗
N (L,R)) = (⊓∗

N (Q1, Q2) + 1,⊓N (Q1, Q2)− 1), (4.1)

so

⊓N (L,R) + ⊓∗
N (L,R) = ⊓N (Q1, Q2) + ⊓∗

N (Q1, Q2).

By Lemma 4.4, ⊓N (L,R) + ⊓∗
N (L,R) ≤ 2. It follows by (4.1) that 1 ≤

⊓N (L,R) ≤ 2 and 1 ≥ ⊓∗
N (L,R) ≥ 0. As ⊓M (L,R) ≥ ⊓∗

M (L,R), we deduce
that

(⊓M (L,R),⊓∗
M (L,R)) ∈ {(2, 0), (1, 0), (1, 1)}.

Moreover, by (4.1) again, we get (⊓M (Q1, Q2),⊓∗
M (Q1, Q2)) for each of the

three cases. □

To provide an example of a matroid satisfying Theorem 4.13(ii), take a
basis {b1, b2, b3, b4, p} of V (5,R). For each i in {1, 2, 3, 4}, freely add points
xi,i+1, yi,i+1, and zi,i+1 to the plane spanned by {bi, bi+1, p} where i + 1 is
calculated modulo 4. Delete {b1, b2, b3, b4, p}; let

(L,R) = ({x1,2, y1,2, z1,2}, {x3,4, y3,4, z3,4})

and

(Q1, Q2) = ({x2,3, y2,3, z2,3}, {x4,1, y4,1, z4,1}).
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Next we construct an example of a matroid satisfying Theorem 4.13(i).
Observe that we can determine the ranks of all subsets of {L,R,Q1, Q2}.
Thus we can routinely check that if X and Y are such subsets, then r(X)+
r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ). It follows that we have a rank-5 polymatroid
P on the set of subsets of {L,R,Q1, Q2}. The operation of freely adding
an element to a flat of a matroid extends straightforwardly to polymatroids
(see, for example, [10, p.409]). Using this idea, we freely add three elements
to each of L, R, Q1, and Q2. Then restricting the resulting polymatroid
to the set of these twelve newly added points, we get a matroid satisfying
Theorem 4.13(i). Finally, to get a matroid corresponding to (iii) of the
theorem, we can modify the example just given by interchanging L with Q1

and interchanging R with Q2. This switch does indeed produce an example
because, in (i), we had (⊓(Q1, Q2),⊓∗(Q1, Q2)) = (1, 1) and ⊓(L,Q1) =
⊓(R,Q1) = 2 = ⊓(L,Q2) = ⊓(R,Q2).

5. Types of (4, 2)-Flexipaths

The purpose of this section is to prove the main result of the paper, The-
orem 5.15, which describes all possible (4, 2)-flexipaths. Let Q be a (4, 2)-
flexipath (L,Q1, Q2, . . . , Qn, R) in a matroid M . In the introduction, we
identified four special types of (4, 2)-flexipaths, namely, spike-reminiscent,
paddle-reminiscent, squashed, and stretched. Moreover, we noted that Q is
spike-reminiscent in M if and only if it is paddle-reminiscent in M∗; and Q
is squashed in M if and only if Q is stretched in M∗. Each of the remaining
seven types of (4, 2)-flexipaths has exactly three internal steps.

The flexipath Q is relaxed-spike-reminiscent if all of the following hold:

(i) n = 3;
(ii) ⊓(L,R) = 0 and ⊓∗(L,R) = 2;
(iii) ⊓(Qi, Qj) = 1 and ⊓∗(Qi, Qj) = 0 for all distinct i and j in [n]; and
(iv) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i in [n].

The flexipath Q is relaxed-paddle-reminiscent if all of the following hold:

(i) n = 3;
(ii) ⊓(L,R) = 2 and ⊓∗(L,R) = 0;
(iii) ⊓(Qi, Qj) = 0 and ⊓∗(Qi, Qj) = 1 for all distinct i and j in [n]; and
(iv) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i in [n].

Note that Q is relaxed-spike-reminiscent in M if and only if it is relaxed-
paddle-reminiscent in M∗.

The flexipath Q is prism-like if all of the following hold:

(i) n = 3;
(ii) ⊓(Qi, Qj) = ⊓∗(Qi, Qj) = 0 for all distinct i and j in [n];
(iii) ⊓(L,R) = ⊓∗(L,R) = 0; and
(iv) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i in [n].
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Q1

Q2

Q3

L R

Figure 3. A prism-like flexipath (L,Q1, Q2, Q3, R).

Observe that Q is prism-like in M if and only if Q is prism-like in M∗. A
diagram representing a rank-6 matroid with a prism-like flexipath is shown
in Figure 3.

The flexipath Q is tightened-prism-like if all of the following hold.

(i) n = 3;
(ii) ⊓(Qi, Qj) = ⊓∗(Qi, Qj) = 0 for all distinct i and j in {1, 2, 3};
(iii) ⊓(L,R) = 0 and ⊓∗(L,R) = 1; and
(iv) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i

in {1, 2, 3}.
Note that we have not formally named whatQ is inM∗ whenQ is tightened-
prism-like in M .

The flexipath Q is doubly-tightened-prism-like if all of the following hold.

(i) n = 3;
(ii) ⊓(Qi, Qj) = ⊓∗(Qi, Qj) = 0 for all distinct i and j in {1, 2, 3};
(iii) ⊓(L,R) = 1 = ⊓∗(L,R); and
(iv) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i

in {1, 2, 3}.
We see thatQ is doubly-tightened-prism-like inM if and only ifQ is doubly-
tightened-prism-like in M∗.

The flexipath Q is Vámos-inspired if, in either M or M∗, all of the fol-
lowing hold.

(i) n = 3;
(ii) ⊓(L,R) = 0 and ⊓∗(L,R) = 1;
(iii) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i in

{1, 2, 3};
(iv) ⊓∗(Qi, Qj) = 0 for all distinct i and j; and
(iv) after a possible permutation of {1, 2, 3},

⊓(Q1, Q2) = 0 = ⊓(Q1, Q3) and ⊓ (Q2, Q3) = 1.

Note that, by definition, Q is Vámos-inspired in M if and only if Q is
Vámos-inspired in M∗.

The flexipath Q is nasty if all of the following hold.

(i) n = 3;
(ii) ⊓(L,R) = 1 = ⊓∗(L,R);
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(iii) ⊓(Qi, L) = ⊓(Qi, R) = 1 = ⊓∗(Qi, L) = ⊓∗(Qi, R) for all i in
{1, 2, 3}; and

(iv) after a possible permutation of {1, 2, 3},⊓(Q1, Q2) ⊓∗(Q1, Q2)
⊓(Q1, Q3) ⊓∗(Q1, Q3)
⊓(Q2, Q3) ⊓∗(Q2, Q3)

 ∈


0 0
0 1
1 0

 ,
0 0
0 0
1 0

 ,
0 0
0 0
0 1

 .

These three types are called, respectively, mixed nasty, plane nasty, and
dual-plane nasty. Clearly, Q is plane-nasty in M if and only if Q is dual-
plane nasty in M∗; and Q is mixed nasty in M if and only if Q is mixed
nasty in M∗.

We say that Qi is a specially placed step in a (4, 2)-flexipath
(L,Q1, Q2, . . . , Qn, R) in M if either

(S1) ⊓(L,R) = 2 and ⊓(L,Qi) = 2 = ⊓(R,Qi); or
(S2) ⊓∗(L,R) = 2 and ⊓∗(L,Qi) = 2 = ⊓∗(R,Qi).

Evidently, Qi is a specially placed step of type (S2) inM if and only if Qi
is a specially placed step of type (S1) in M∗. Specially placed steps are not
particularly problematic for, as we now show, there is at most one of them.
In this and the remaining results in this section, (L,Q1, Q2, . . . , Qn, R) is a
(4, 2)-flexipath Q.

Lemma 5.1. Q has at most one specially placed step.

Proof. Assume that Q1 and Q2 are both specially placed elements of type
(S1). For the rest of the argument, we will again be operating in the clonal
core. There, since ⊓(L,Qi) = 2 for each i in {1, 2}, we deduce that Q1∪Q2 ⊆
cl(L). By symmetry, Q1∪Q2 ⊆ cl(R). Hence Q1∪Q2 ⊆ cl(L)∩ cl(R). Thus

λ(Q1 ∪Q2) ≤ r(Q1 ∪Q2) ≤ r(cl(L) ∩ cl(R)) ≤ ⊓(L,R) = 2,

a contradiction.
By duality, Q has at most one specially placed step of type (S2). Now

suppose that Q1 is specially placed of type (S1), and Q2 is specially placed
of type (S2). Then ⊓(L,R) = 2 = ⊓∗(L,R), so ⊓(L,R) + ⊓∗(L,R) = 4, a
contradiction to Lemma 4.4. □

Lemma 5.2. If ⊓(L,R) = 3, then ⊓(L,Qi) = 2 for all i.

Proof. We may assume that M is a clonal-core matroid. Then r(L) =
r(R) = 3 and, since ⊓(L,R) = 3, this implies that r(L ∪ R) = 3. If n = 1,
then r(M) = 3 and ⊓(L,Q1) = r(Q1) = 2. Next assume that n = 2. We
have

3 ≤ λ(Q1 ∪Q2) = r(Q1 ∪Q2) + r(L ∪R)− r(M).

But r(L ∪R) = 3 since ⊓(L,R) = 3. Thus

3 ≤ r(M) ≤ r(Q1 ∪Q2) ≤ 4.
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Suppose r(M) = 3. Then ⊓(L,Qi) = 2 for all i. Thus we may assume that
r(M) = 4. Then

3 = λ(L ∪Q1) = r(L ∪Q1) + r(R ∪Q2)− r(M).

Thus r(L∪Q1)+ r(R∪Q2) = 7. Hence we may assume that r(L∪Q1) = 3.
Then r(L ∪Q1 ∪ R) = 3, so λ(Q2) = 1, a contradiction. We conclude that
the result holds for n = 2.

Assume the result holds for n < k and let n = k ≥ 3. Consider the path
(L,Q1, Q2, Q3 ∪Q4 ∪ · · · ∪Qk ∪R) of 4-separations. By applying the result
for n = 2 to the clonal core of (M, {L,Q1, Q2, Q3 ∪Q4 ∪ · · · ∪Qk ∪R}), we
deduce that ⊓(L,Q1) = 2 and the lemma follows by induction. □

Lemma 5.3. Let n ≥ 2. Assume that Q has no specially placed steps
of type (S1). If ⊓(L,Qi) = 2 for some i in [n], then ⊓(L,R) = 3 and
⊓(L,Qj) = 2 = ⊓(R,Qj) for all j in [n].

Proof. Again we may assume that M is a clonal-core matroid. We may also
assume that i = 1. Suppose first that n = 2. Then r(L ∪ Q1) = 3 and, by
Lemma 4.3, ⊓(R,Q1) = 2. Thus ⊓(L,R) ≥ 2. If ⊓(L,R) = 2, then Q1 is a
specially placed step of type (S1), a contradiction. Thus ⊓(L,R) = 3. Hence
r(L ∪R) = 3 = r(L ∪R ∪Q1), so r(M) = 3 and ⊓(L,Q2) = ⊓(R,Q2) = 2.

We now know the result holds for n = 2. Assume it holds for n < k and let
n = k ≥ 3. Then, by considering the path (L,Q1, Q2, Q3∪Q4∪· · ·∪Qk∪R)
of 4-separations and applying the induction assumption to the clonal core
of (M, {L,Q1, Q2, Q3 ∪ Q4 ∪ · · · ∪ Qk ∪ R}), we deduce that ⊓(L,Q2) = 2.
Because we are dealing with a (4, 2)-flexipath, we get that ⊓(L,Qj) = 2 for
all j in {1, 2, . . . , k}. Then r(L ∪Q1 ∪Q2 ∪ · · · ∪Qk) = 3. Thus r(M) = 3
and ⊓(L,R) = 3. We conclude, by induction, that the lemma holds. □

Lemma 5.4. Assume that the (4, 2)-flexipath Q has at least two internal
steps and has no specially placed steps of type (S1). If ⊓(L,Qi) = 2 for some
i in [n], then Q is a squashed (4, 2)-flexipath.

Proof. By Lemma 5.3, ⊓(L,R) = 3 and ⊓(L,Qj) = 2 = ⊓(R,Qj) for all j in
[n]. By Lemmas 4.4 and 4.1, ⊓∗(L,R) = 0, and ⊓∗(L,Qj) = 0 = ⊓∗(R,Qj)
for all j in [n]. Finally, working in the clonal core, we have r(L) = 3 =
r(L∪Qj) and r(Qj) = 2 for all j. Thus ⊓(Qg, Qh) ≥ 1 for all distinct g and
h. Thus, by Lemma 4.2, ⊓(Qg, Qh) = 1 and ⊓∗(Qg, Qh) = 0 for all distinct
g and h. Hence Q is a squashed (4, 2)-flexipath. □

The dual of the last lemma is the following.

Lemma 5.5. Assume that the (4, 2)-flexipath Q has at least two internal
steps and has no specially placed steps of type (S2). If ⊓(L,Qi) = 0 for some
i in [n], then Q is a stretched (4, 2)-flexipath.

Lemma 5.6. Assume that the (4, 2)-flexipath Q has at least two internal
steps and has no specially placed steps. If Q is neither a squashed nor a



CLONAL CORES AND FLEXIPATHS IN MATROIDS 27

stretched (4, 2)-flexipath, then, for all i in [n],

⊓(L,Qi) = ⊓∗(L,Qi) = 1 = ⊓(R,Qi) = ⊓∗(R,Qi).

Proof. By Lemmas 5.4 and 5.5, ⊓(L,Qi) = 1, for all i in [n]. Thus, by
Lemma 4.1, ⊓∗(L,Qi) = 1 for all i. Moreover, by Lemma 4.3, ⊓(R,Qi) =
1 = ⊓∗(R,Qi) for all i. □

Recall that, for a non-empty subset J of [n], we are abbreviating ∪j∈JQj
as QJ . When J is empty, so is QJ .

Lemma 5.7. Let Q be a (4, 2)-flexipath (L,Q1, Q2, . . . , Qn, R) in a matroid
M where n ≥ 2. Assume that Q is neither squashed nor stretched and has
no specially placed steps. Then

(i) for all J ⊆ [n]− {i},
⊓(L ∪QJ , Qi) = ⊓(Qi, QJ ∪R) = 1 = ⊓∗(L ∪QJ , Qi) = ⊓∗(Qi, QJ ∪R);
(ii) r(L ∪QJ) = r(L) +

∑
j∈J r(Qj)− |J | for all J ⊆ [n];

(iii) r(M) = r(L) + r(Q1) + r(Q2) + · · ·+ r(Qn) + r(R)− n− 3.

Proof. By Lemma 5.6, for all i in [n], we have

⊓(L,Qi) = ⊓(Qi, R) = 1 = ⊓∗(L,Qi) = ⊓∗(Qi, R).

To prove (i), we may assume that i = 1 and J = {2, 3, . . . , j}. Then (L ∪
QJ , Q1, Qj+1, . . . , Qn, R) is a path of 4-separations and ⊓(R,Q1) = 1, so, by
Lemma 4.3, ⊓(L ∪QJ , Q1) = 1. Thus (i) holds.

By (i), we have r(L ∪Q1) = r(L) + r(Q1)− 1 and

r(L ∪Q1 ∪Q2 ∪ · · · ∪Qj) = r(L ∪Q1 ∪Q2 ∪ · · · ∪Qj−1) + r(Qj)− 1,

so r(L ∪ QJ) = r(L) + r(Q1) + r(Q2) + · · · + r(Qj) − j, so (ii) holds. In
particular,

r(L ∪Q1 ∪Q2 ∪ · · · ∪Qn) = r(L) + r(Q1) + r(Q2) + · · ·+ r(Qn)− n.

As ⊓(L ∪Q1 ∪Q2 ∪ · · · ∪Qn, R) = 3, we deduce that

r(M) = r(L) + r(Q1) + r(Q2) + · · ·+ r(Qn) + r(R)− n− 3,

so (iii) holds. □

Lemma 5.8. In the clonal core of M , for distinct i and j,

(i) ⊓(Qi, Qj) = 1 if and only if Qi ∪Qj is a circuit;
(ii) ⊓(Qi, Qj) = 0 if and only if Qi ∪Qj is independent;
(iii) ⊓∗(Qi, Qj) = 1 if and only if Qi ∪Qj is a cocircuit; and
(iv) ⊓∗(Qi, Qj) = 0 if and only if Qi ∪Qj is coindependent.

Proof. By duality, it suffices to prove (i) and (ii). We have

⊓(Qi, Qj) = r(Qi) + r(Qj)− r(Qi ∪Qj)
= 4− r(Qi ∪Qj).

Thus r(Qi ∪ Qj) = 4 − ⊓(Qi, Qj). Because the elements of Qj are clones,
parts (i) and (ii) follow immediately. □
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Lemma 5.9. Let Q be a (4, 2)-flexipath (L,Q1, Q2, . . . , Qn, R) in a matroid.
Assume that Q is neither squashed nor stretched and has no specially placed
steps. If ⊓(L,R) = 0, then, in the clonal core M of the matroid,

(i) ⊓(L,Qi) = ⊓∗(L,Qi) = 1 = ⊓(R,Qi) = ⊓∗(R,Qi) for all i;
(ii) n = 3;
(iii) r(M) = 6 = r∗(M);
(iv) ⊓∗(Qi, Qj) = 0 for all distinct i and j;
(v) ⊓∗(L,R) = 6− r(Q1 ∪Q2 ∪Q3);
(vi) r(Q1 ∪Q2 ∪Q3) ∈ {4, 5, 6};
(vii) if r(Q1 ∪Q2 ∪Q3) = 6, then Q is prism-like;
(viii) if r(Q1 ∪Q2 ∪Q3) = 4, then ⊓(Qi, Qj) = 1 for all distinct i and j,

and Q is relaxed-spike-reminiscent; and
(ix) if r(Q1 ∪Q2 ∪Q3) = 5, then either

(a) ⊓(Qi, Qj) = 0 for all distinct i and j in {1, 2, 3}, and Q is
tightened-prism-like; or

(b) after a possible permutation of {1, 2, 3},
⊓(Q1, Q2) = 0 = ⊓(Q1, Q3) and ⊓ (Q2, Q3) = 1,

and Q is Vámos-inspired.

Proof. Suppose n = 1. Then, since we may assume that M is a clonal-core
matroid, 3 = λ(L ∪ Q1) = r(L ∪ Q1) + r(R) − r(M). Since r(R) = 3, we
have r(L ∪ Q1) = r(M). But ⊓(L,R) = 0, we see that r(M) ≥ 6, while
r(L ∪ Q1) ≤ 5, a contradiction. Hence n ≥ 2. Part (i) is immediate from
Lemma 5.6. Then, as ⊓(L,Qi) = 1 = ⊓(R,Qi), Lemma 2.2 gives that

2 ≥ ⊓(Qi, L ∪R) + ⊓(L,R) = ⊓(Qi ∪ L,R) + ⊓(Qi, L)
≥ ⊓(Qi, R) + ⊓(Qi, L) = 2.

Thus ⊓(Qi, L ∪ R) = 2. Hence L ∪ R spans M so r(M) = r(L ∪ R) = 6.
By Lemma 5.7(iii), 6 = r(L) + 2n − n, so n = 3 and (ii) holds. Moreover,
for each distinct i and j, we see that Qi ∪ Qj is coindependent. Thus, by
Lemma 5.8(iv), ⊓∗(Qi, Qj) = 0, that is, (iv) holds.

Since r(M) = 6 and

|E(M)| = 3 + 2 + 2 + 2 + 3 = 12,

we see that r∗(M) = 6, that is, (iii) holds. Now, by Lemma 2.1,

⊓∗(L,R) = λ(L) + λ(R)− ⊓(L,R)− λ(L ∪R)
= 3 + 3− 0− (r(L ∪R) + r(Q1 ∪Q2 ∪Q3)− r(M))

= r(M)− r(Q1 ∪Q2 ∪Q3)

= 6− r(Q1 ∪Q2 ∪Q3). (5.1)

Thus (v) holds.
As λ(Q1∪Q2) ≥ 3, we see that r(Q1∪Q2) ≥ 3. Suppose r(Q1∪Q2∪Q3) =

3. Then

3 = λ(R) = r(R) + r(L ∪Q1 ∪Q2 ∪Q3)− r(M).
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Thus r(L ∪ Q1 ∪ Q2 ∪ Q3) = r(M) = 6. As r(L) = 3 = r(Q1 ∪ Q2 ∪ Q3),
it follows that ⊓(L,Q1 ∪ Q2 ∪ Q3) = 0, so ⊓(L,Q1) = 0, a contradiction.
Hence r(Q1 ∪Q2 ∪Q3) ≥ 4, so (vi) holds.

Now suppose that r(Q1 ∪ Q2 ∪ Q3) = 6. Then ⊓(Qi, Qj) = 0 for all
distinct i and j, and ⊓∗(L,R) = 0 by (v). It follows that Q is prism-like, so
(vii) holds.

Next suppose that r(Q1∪Q2∪Q3) = 4. Then ⊓∗(L,R) = 2, so r∗(L∪R) =
4. We now show that

5.9.1. ⊓(Qi, Qj) = 1 for all distinct i and j.

We have that

r(Q1 ∪Q2) = |Q1 ∪Q2|+ r∗(L ∪Q3 ∪R)− r∗(M)

= r∗(L ∪Q3 ∪R)− 2.

Now

2 = r∗(Q3) ≥ ⊓∗(Q3, L ∪R) ≥ ⊓∗(Q3, L) = 1

where the last inequality follows by monotonicity. If ⊓∗(Q3, L∪R) = 2, then
r∗(L ∪Q3 ∪R) = r∗(L ∪R) = 4, so

λ(Q1 ∪Q2) = r∗(Q1 ∪Q2) + r∗(L ∪R ∪Q3)− r∗(M)

≤ 4 + 4− 6 = 2,

a contradiction. Thus ⊓∗(Q3, L ∪ R) = 1, so r∗(L ∪ Q3 ∪ R) = 5 and
⊓(Q1, Q2) = 1. We conclude, by symmetry, that 5.9.1 holds, so (viii) holds.

Finally suppose that r(Q1 ∪Q2 ∪Q3) = 5. Then, by (5.1), ⊓∗(L,R) = 1,
so r∗(L ∪ R) = 5. If r∗(L ∪ R ∪ Q1) = 5 and r∗(L ∪ R ∪ Q2) = 5, then
r∗(L ∪ R ∪Q1 ∪Q2) = 5. But this gives a contradiction as r∗(Q3) = 2 and
λ(Q3) = 2. Thus, by potentially taking a permutation of {1, 2, 3}, we may
assume that

(a) r∗(L ∪R ∪Qi) = 6 for all i; or
(b) r∗(L ∪R ∪Q1) = 5 and r∗(L ∪R ∪Q2) = 6 = r∗(L ∪R ∪Q3).

In case (a), we have, using the formula for the rank function in the dual
of a matroid,

6 = r∗(L ∪R ∪Q3)

= |L ∪R ∪Q3|+ r(Q1 ∪Q2)− r(M)

= 8 + r(Q1 ∪Q2)− 6.

Hence r(Q1 ∪ Q2) = 4. Similarly, ⊓(Qi, Qj) = 0 for all distinct i and j.
Thus Q is tightened-prism-like.

In case (b), ⊓(Q1, Q2) = 0 = ⊓(Q1, Q3) and ⊓(Q2, Q3) = 1. Thus Q is
Vámos-inspired. □

Following Lemma 5.12, we provide specific examples of matroids that
satisfy (viii), (ix)(a), and (ix)(b) of the last lemma.
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Lemma 5.10. Let (L,Q1, Q2, . . . , Qn, R) be a (4, 2)-flexipath Q with no
specially placed steps. Assume that Q is neither squashed nor stretched.
Suppose n ≥ 2 and n ̸= 3. If ⊓(L,R) = 2, then

(i) ⊓∗(L,R) = 1;
(ii) for all i in [n] and all J ⊆ [n]− {i},

⊓(L,Qi) = ⊓(L ∪QJ , Qi) = 1 = ⊓∗(L,Qi) = ⊓∗(L ∪QJ , Qi);

(iii) r(L ∪QJ) = r(L) +
∑

j∈J r(Qj)− |J | for all J ⊆ [n];

(iv) r(M) = r(L) +
∑n

i=1 r(Qi) + r(R)− n− 3;
(v) r(Qi ∪Qj) = r(Qi) + r(Qj), for all distinct i and j in [n];
(vi) r(QJ) =

∑
j∈J r(Qj)− |J |+ 2 for all J ⊆ [n] such that |J | ≥ 2; and

(vii) r(L ∪R ∪QJ) = r(L) + r(R) +
∑

j∈J r(Qj)− |J | − 2 for all J ⊆ [n]

such that 2 ≤ |J | ≤ n− 1.

Proof. By Lemma 4.4, ⊓(L,R) + ⊓∗(L,R) ≤ 3. As ⊓(L,R) = 2, we deduce
that ⊓∗(L,R) ≤ 1. If ⊓∗(L,R) = 0, then, by Lemma 5.9, and duality, n = 3,
a contradiction. Thus ⊓∗(L,R) = 1, so (i) holds. Parts (ii), (iii), and (iv)
repeat parts (i), (ii), and (iii) of Lemma 5.7.

For (v) and (vi), since ⊓(L,R) = 2, we have r(L ∪R) = r(L) + r(R)− 2.
As r(L∪Q3 ∪Q4 ∪ · · · ∪Qn) = r(L)+ r(Q3)+ r(Q4)+ · · ·+ r(Qn)− (n− 2),
we see that

r(L ∪R ∪Q3 ∪Q4 ∪ · · · ∪Qn) = r(L) + r(R) +

n∑
i=3

r(Qi)− (n− 2)

− ⊓ (R,L ∪Q3 ∪Q4 ∪ · · · ∪Qn)

≤ r(L) + r(R) +
n∑
i=3

r(Qi)− n,

where the last step follows because

⊓(R,L ∪Q3 ∪Q4 ∪ · · · ∪Qn) ≥ ⊓(R,L) = 2.

Thus

3 ≤ λ(Q1 ∪Q2) = r(Q1 ∪Q2) + r(L ∪R ∪Q3 ∪Q4 ∪ · · · ∪Qn)− r(M)

≤ r(Q1 ∪Q2) +
n∑
i=3

r(Qi)− n+ r(L) + r(R)

−
n∑
i=1

r(Qi) + n+ 3− r(L)− r(R).

Hence r(Q1) + r(Q2) ≤ r(Q1 ∪ Q2) so ⊓(Q1, Q2) = 0. Thus (v) holds, so
(vi) holds for |J | = 2.
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Now

⊓(L,Q1 ∪Q2) = r(L) + r(Q1 ∪Q2)− r(L ∪Q1 ∪Q2)

= r(L) + r(Q1) + r(Q2)− r(L)− r(Q1)− r(Q2) + 2

= 2.

Thus, for all subsets J of [n] with |J | ≥ 2.

2 ≤ ⊓(L,QJ). (5.2)

Since ⊓ is monotonic, for a proper subset J of [n],

3 = ⊓(L ∪Q[n]−J , QJ ∪R) ≥ ⊓(L,QJ ∪R) ≥ ⊓(L,R) = 2.

If ⊓(L,QJ ∪ R) = 3, then, by Lemma 5.2, ⊓(L,Qi) = 2 for all i in [n]− J .
But ⊓(L,Qj) = 1 for all j in [n], a contradiction. Hence ⊓(L,QJ ∪ R) = 2
for all proper subsets J of [n]. Combining this with (5.2), we get that

2 ≤ ⊓(L,QJ) ≤ ⊓(L,QJ ∪R) = 2 (5.3)

provided 2 ≤ |J | ≤ n− 1. Thus, for such J ,

r(QJ) = r(L ∪QJ)− r(L) + ⊓(L,QJ)
= r(L) +

∑
j∈J

r(Qj)− |J | − r(L) + 2.

We have

r(Q[n]−{1}) + r(Q[n]−{n}) ≥ r(Q[n]) + r(Q[n]−{1,n}),

so
n∑
i=2

r(Qi)− n+ 3 +
n−1∑
i=1

r(Qi)− n+ 3 ≥ r(Q[n]) +
n−1∑
i=2

r(Qi)

−(n− 2) + 2.

Hence

r(Q[n]) ≤
n∑
i=1

r(Qi)− n+ 2. (5.4)

Also, as ⊓(L,R) + ⊓∗(L,R) ≤ 3, it follows by Lemma 2.1 that

3 ≤ λ(L ∪R)
= r(Q[n]) + r(L) + r(R)− 2− r(M)

= r(Q[n]) + r(L) + r(R)− 2− r(L)

−
n∑
i=1

r(Qi)− r(R) + n+ 3.

Thus
n∑
i=1

r(Qi)− n+ 2 ≤ r(Q[n]). (5.5)
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Combining (5.4) and (5.5), we get

r(Q[n]) =

n∑
i=1

r(Qi)− n+ 2.

Hence, for all J ⊆ [n] such that |J | ≥ 2, we have

r(QJ) =
∑
j∈J

r(Qj)− |J |+ 2,

that is, (vi) holds.
By (5.3), ⊓(L,QJ ∪R) = 2 for all J with 2 ≤ |J | ≤ n− 1, we have

r(L ∪QJ ∪R) = r(L) + r(QJ ∪R)− 2

= r(L) + r(R) +
∑
j∈J

r(Qj)− |J | − 2.

We conclude that (vii) holds. □

Next, having dealt with the case when ⊓(L,R) = 0 in Lemma 5.9, we
consider the case when ⊓(L,R) = 1.

Lemma 5.11. Let Q be a (4, 2)-flexipath (L,Q1, Q2, Q3, R) for which
⊓(L,R) = 1. Then, in the clonal core of M ,

r(M) = 6 = r∗(M),

and the following hold.

(i) If ⊓∗(L,R) = 1, then r(Q1 ∪ Q2 ∪ Q3) = 5 and, after a possible
permutation of {1, 2, 3},r(Q1 ∪Q2) r∗(Q1 ∪Q2)

r(Q1 ∪Q3) r∗(Q1 ∪Q3)
r(Q2 ∪Q3) r∗(Q2 ∪Q3)

 ∈


4 4
4 3
3 4

 ,
4 4
4 4
3 4

 ,
4 4
4 4
4 3

 ,
4 4
4 4
4 4

 .

(ii) If ⊓∗(L,R) = 2, then r(Q1∪Q2∪Q3) = 4. Moreover, for all distinct
i and j,

⊓(Qi, Qj) = 1 and ⊓∗ (Qi, Qj) = 0,

so r(Qi ∪ Qj) = 3 and r∗(Qi ∪ Qj) = 4. In particular, Q is spike-
reminiscent.

Proof. We may assume that M is a clonal-core matroid. Thus r(L) = 3 =
r(R) and r(Qi) = 2 for all i. By Lemma 5.7(ii), r(L ∪ Q1 ∪ Q2) = 5 and
r(R ∪Q3) = 4. Thus

3 = λ(L ∪Q1 ∪Q2) = r(L ∪Q1 ∪Q2) + r(R ∪Q3)− r(M).

Thus r(M) = 6, so r∗(M) = 6.
Next observe that, from the formula for the rank in the dual, we have
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r(Q1 ∪Q2 ∪Q3) = |Q1 ∪Q2 ∪Q3|+ r∗(L ∪R)− r∗(M)

= 6 + (r∗(L) + r∗(R)− ⊓∗(L,R))− r∗(M)

= 6− ⊓∗(L,R). (5.6)

When ⊓∗(L,R) = 0, by duality, we can deduce the structure of M from
Lemma 5.9. Thus, we may assume that ⊓∗(L,R) ≥ 1. By Lemma 4.4,
⊓∗(L,R) ≤ 2. Hence r(Q1 ∪Q2 ∪Q3) ≥ 4.

Next we show that

5.11.1. r(Qi ∪Qj) + r∗(Qi ∪Qj) ≥ 7 for all distinct i and j.

This follows immediately since

3 ≤ λ(Qi ∪Qj) = r(Qi ∪Qj) + r∗(Qi ∪Qj)− |Qi ∪Qj |.

5.11.2. If ⊓∗(L,R) = 1, then at most one of r(Q1 ∪ Q2), r(Q1 ∪ Q3), and
r(Q2 ∪Q3) is 3.

To see this, let {i, j, k} = {1, 2, 3}. Then, by 5.6, r(Q1 ∪Q2 ∪Q3) = 5, so

r(Qi ∪Qj) + (Qi ∪Qk) ≥ r(Q1 ∪Q2 ∪Q3) + r(Qi) = 5 + 2 = 7.

Thus (5.11.2) holds.
By symmetry,r(Q1 ∪Q2) r∗(Q1 ∪Q2)
r(Q1 ∪Q3) r∗(Q1 ∪Q3)
r(Q2 ∪Q3) r∗(Q2 ∪Q3)

 ∈


4 4
4 3
3 4

 ,
4 4
4 4
3 4

 ,
4 4
4 4
4 3

 ,
4 4
4 4
4 4

 .

Thus (i) holds.

5.11.3. If ⊓∗(L,R) = 2, then r(Qi ∪ Qj) = 3 and r∗(Qi ∪ Qj) = 4 for all
distinct i and j.

To see this, observe that r∗(L ∪ R) = 4 as ⊓∗(L,R) = 2. Now, using the
formula for the rank function of the dual, we have

r(Q1 ∪Q2) = |Q1 ∪Q2|+ r∗(L ∪R ∪Q3)− r∗(M)

= r∗(L ∪R ∪Q3)− 2.

Since r(Q1 ∪ Q2) ≥ 3, we deduce that r∗(L ∪ R ∪ Q3) ≥ 5. But, by
Lemma 5.7(i),

⊓∗(Q3, L ∪R) ≥ ⊓∗(Q3, L) = 1.

Thus r∗(L ∪ R ∪ Q3) ≤ 5 so r∗(L ∪ R ∪ Q3) = 5 and r(Q1 ∪ Q2) = 3.
It follows by symmetry that r(Qi ∪ Qj) = 3 for all distinct i and j. By
5.11.1, we deduce that r∗(Qi ∪ Qj) = 4 for all distinct i and j. Thus, by
Lemma 5.7(i), Q is spike-reminiscent, so (ii) holds. □

Combining Theorem 3.18 with Lemmas 5.7(i) and 5.11 gives the following.

Lemma 5.12. Let Q be a (4, 2)-flexipath (L,Q1, Q2, Q3, R) in a matroid
M .



34 N. BRETTELL, J. OXLEY, C. SEMPLE, AND G. WHITTLE

(i) If ⊓(L,R) = 1 = ⊓∗(L,R), then, after a possible permutation of
{1, 2, 3},⊓(Q1, Q2) ⊓∗(Q1, Q2)

⊓(Q1, Q3) ⊓∗(Q1, Q3)
⊓(Q2, Q3) ⊓∗(Q2, Q3)

 ∈


0 0
0 1
1 0

 ,
0 0
0 0
1 0

 ,
0 0
0 0
0 1

 ,
0 0
0 0
0 0

 .

In particular, in M or M∗, the flexipath Q is nasty or is doubly-
tightened-prism-like.

(ii) If ⊓(L,R) = 1 and ⊓∗(L,R) = 2, then Q is spike-reminiscent.
(iii) If ⊓(L,R) = 2 and ⊓∗(L,R) = 1, then Q is paddle-reminiscent.

Next we provide examples of matroids satisfying (viii), (ix)(a) and (ix)(b)
of Lemma 5.9. We also provide examples of a doubly-tightened-prism-like
(4, 2)-flexipath and of one of the types of nasty (4, 2)-flexipaths. To explain
this, we consider the operation of tightening a basis. Following Ferroni and
Vecchi [8], we call a basisB in a matroidM a free basis if 0 < r(M) < |E(M)|
and B∪{e} is a circuit for all e in E(M)−B. Equivalently, B is a free basis
of M if it is not the unique basis of M and every fundamental circuit with
respect to B is spanning. As is well known (see, for example, [10, Exercise
1.5.14]), a matroid M is a relaxation of another matroid N if and only if M
has a free basis B, in which case, B is a circuit-hyperplane of N . We call N
a tightening of M . Formally, E(N) = E(M) and B(N) = B(M)− {B}.

For a matroid satisfying Lemma 5.9(viii), begin with a rank-7 free spike
whose legs are {xi, yi} for all i in {1, 2, . . . , 7}. Add elements α1, α2, and α3

freely to the plane spanned by {x1, y1, x2, y2}. Then add elements β1, β2,
and β3 freely to the plane spanned by {x6, y6, x7, y7}. Let Qi = {xi+2, yi+2}
for each i in {1, 2, 3}. Now truncate this matroid to rank 6, and delete
{x1, y1, x2, y2, x6, y6, x7, y7}. Let L = {α1, α2, α3} and R = {β1, β2, β3}. In
the matroid M that we now have, L ∪ R is a circuit-hyperplane. More-
over, (L,Q1, Q2, Q3, R) is spike-reminiscent in M . In M , relax the circuit-
hyperplane L ∪ R to get a rank-6 matroid M8 with a (4, 2)-flexipath
(L,Q1, Q2, Q3, R) in which ⊓(L,R) = 0 and r(Q1∪Q2∪Q3) = 4. It is not dif-
ficult to check that M8 satisfies Lemma 5.9(viii). Indeed, (L,Q1, Q2, Q3, R)
is relaxed-spike-reminiscent in M8.

To give examples of a tightened-prism-like and doubly-tightened-prism-
like flexipaths, we begin by giving an example of a prism-like matroid.
Begin with a 6-element independent set {b1, b2, . . . , b6}. Now, for each
i in {1, 2, 3}, freely add two points, xi and yi, on the line spanned by
{bi, bi+3}, and let Qi = {xi, yi}. Now freely add points α1, α2, and α3

to the plane spanned by {b1, b2, b3}. Similarly, freely add points β1, β2, and
β3 to the plane spanned by {b4, b5, b6}. Now delete {b1, b2, . . . , b6}, and let
L = {α1, α2, α3} and R = {β1, β2, β3}. In this rank-6 matroid M , we have
a (4, 2)-flexipath (L,Q1, Q2, Q3, R) that is prism-like. Moreover, in M , the
set {x1, y1, x2, y2, x3, y3} is a free basis B. Let N be the matroid that is ob-
tained by tightening B. In N , one can easily check that (L,Q1, Q2, Q3, R)
is a tightened-prism-like flexipath, that is, Lemma 5.9(ix)(a) holds. In N ,
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we see that {α1, α2, α3, β1, β2, β3} is a free basis BN . Let P be the matroid
obtained from N by tightening BN . In that case, (L,Q1, Q2, Q3, R) is a
doubly-tightened-prism-like flexipath in P .

To describe a matroid satisfying Lemma 5.9(ix)(b), begin with a
Vámos matroid V with ground set {a1, a2, b1, b2, c1, c2, d1, d2} where
{a1, a2, d1, d2} is a basis and the only non-spanning circuits are the circuit-
hyperplanes {a1, a2, b1, b2}, {a1, a2, c1, c2}, {b1, b2, c1, c2}, {b1, b2, d1, d2}, and
{c1, c2, d1, d2}. Let A = {a1, a2} and D = {d1, d2}. Take the direct sum of
V and U2,2 where the latter has ground set {a, d}. Now freely add points
α1, α2, α3 and α4 to the plane spanned by A ∪ {a}. Similarly, freely add
points δ1, δ2, δ3 and δ4 to the plane spanned by D ∪ {d}. On the line
spanned by α4 and δ4, freely add points β1 and γ1. Let Q1 = {β1, γ1}.
Delete {a1, a2, d1, d2, a, d, α4, δ4} to give a matroid M9. Let Q2 = {b1, b2}
and Q3 = {c1, c2}. Then ⊓(Q1, Q2) = 0 = ⊓(Q1, Q3) and ⊓(Q2, Q3) = 1,
while ⊓∗(Qi, Qj) = 0 for all distinct i and j. Let L = {α1, α2, α3}
and R = {δ1, δ2, δ3}. In M9, we now have that (L,Q1, Q2, Q3, R) is a
(4, 2)-flexipath that satisfies Lemma 5.9(ix)(b), that is, (L,Q1, Q2, Q3, R)
is Vámos-inspired.

We can modify the last example to get an example of one of the types of
nasty (4, 2)-flexipaths. In the matroid M9, we have that ⊓(L,R) = 0 and
⊓∗(L,R) = 1. In this matroid, we see that L∪R is a free basis. Tightening
this basis gives a matroid N9 in which ⊓(L,R) = 1 and ⊓∗(L,R) = 1. More-
over, in N9, we have that ⊓(Q1, Q2) = 0 = ⊓(Q1, Q3) and ⊓(Q2, Q3) = 1,
while ⊓∗(Qi, Qj) = 0 for all distinct i and j, and r(Q1∪Q2∪Q3) = 5. Thus,
inN9, we see that (L,Q1, Q2, Q3, R) is an example of the second type of nasty
(4, 2)-flexipath. By dualizing, we get an example of the third type of nasty
(4, 2)-flexipath. To give an example of the first type of nasty (4, 2)-flexipath,
we again use the technique described at the end of Section 4. Because we
can determine the ranks of all subsets of {L,R,Q1, Q2, Q3}, we can check
that if X and Y are such subsets, then r(X)+ r(Y ) ≥ r(X ∪Y )+ r(X ∩Y ).
Thus we have a polymatroid on the set of subsets of {L,Q1, Q2, Q3, R}. By
freely adding three elements to each of L and R and freely adding two points
to each of Q1, Q2, and Q3, we get a new polymatroid. Restricting this poly-
matroid to the the set of twelve newly added elements, we get a matroid
that exemplifies the first type of nasty (4, 2)-flexipath.

Lemma 5.13. Let Q be a (4, 2)-flexipath (L,Q1, Q2, . . . , Qn, R) where
⊓(L,R) = 1 = ⊓∗(L,R), and ⊓(L,Qi) = 1 for all i in [n]. Then Q has
at most three internal steps.

Proof. We assume that n ≥ 4. We may assume that M is a clonal-core
matroid. Then r(L) = 3 and r(L ∪ Qi) = 4 for all i. Moreover, by
Lemma 5.7(i), for all distinct i, j, and k, we have r(L ∪ Qi ∪ Qj) = 5 and
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r(L ∪Qi ∪Qj ∪Qk) = 6. Also

⊓(L,R ∪Qi) = r(L) + r(R ∪Qi)− r(L ∪R ∪Qi)
≤ r(L) + r(R ∪Qi)− r(L ∪R)
= 3 + 4− 5 = 2.

Next we show the following.

5.13.1. For distinct i and j in [n], if ⊓(L,R∪Qi) = 2 = ⊓(L,R∪Qj), then
r(L ∪R ∪Qi ∪Qj) ≤ 5.

We have

r(L ∪R ∪Qi ∪Qj) ≤ r(L ∪R ∪Qi) + r(L ∪R ∪Qj)− r(L ∪R)
= 5 + 5− 5 = 5.

Thus 5.13.1 holds.
First suppose that n = 4. Then, by Lemma 5.7,

r(L ∪Q1 ∪Q2 ∪Q3 ∪Q4) = r(M) = 7.

Next we show the following.

5.13.2. For {g, h, i, j} = {1, 2, 3, 4}, if ⊓(Qg, Qh) = 0, then ⊓∗(Qi, Qj) = 1.

To see this, observe that r(Qg ∪ Qh) = 4 as ⊓(Qg, Qh) = 0. Now r(L ∪
Qg ∪Qh) = 5 = r(R ∪Qg ∪Qh). Thus
r(L ∪R ∪Qg ∪Qh) ≤ r(L ∪Qg ∪Qh) + r(R ∪Qg ∪Qh)− r(Qg ∪Qh)

= 5 + 5− 4

= r(M)− 1.

Hence Qi∪Qj contains a cocircuit ofM . Because each of Qi and Qj consists
of a clonal pair of elements, if cl(L∪R∪Qg ∪Qh) meets Qi, then it contains
Qi. In that case, λ(Qj) ≤ 1, a contradiction. We conclude that Qi ∪ Qj is
a cocircuit of M . Thus, by Lemma 5.8(iii), ⊓∗(Qi, Qj) = 1. Hence 5.13.2
holds.

5.13.3. If ⊓(L,R ∪Qh) = 2, then ⊓∗(Qi, Qj) = 1 for all distinct i and j in
{1, 2, 3, 4} − {h}.

By Lemma 5.8(iii) again, ⊓∗(Qi, Qj) = 1 if and only ifQi∪Qj is a cocircuit
of M . Since ⊓(L,R ∪Qh) = 2, we have

r(L ∪R ∪Qh) = r(L) + r(R ∪Qh)− 2

= 3 + 4− 2 = 5.

Then, for i in {1, 2, 3, 4} − {h}, as ⊓(Qi, L ∪ R ∪ Qh) ≥ ⊓(Qi, L) = 1, it
follows that r(L ∪ R ∪ Qh ∪ Qi) ≤ 6. Thus Qj ∪ Qk contains a cocircuit
where {h, i, j, k} = {1, 2, 3, 4}.

Continuing with the proof of 5.13.3, we now show that

5.13.4. r(L ∪R ∪Qh ∪Qi) = 6 for all i in {1, 2, 3, 4} − {h}.
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Assume that r(L∪R∪Qh ∪Qi) = 5 for some i in {1, 2, 3, 4}−{h}. Then
r(L ∪ R ∪Qh ∪Qi ∪Qj) ≤ 6 for {j, k} = {1, 2, 3, 4} − {h, i}, so λ(Qk) ≤ 1,
a contradiction. Thus 5.13.4 holds.

It follows as above that, for {j, k} = {1, 2, 3, 4} − {h, i}, since each of Qj
and Qk consists of a clonal pair of elements, L∪R∪Qh∪Qi is a hyperplane,
so Qj ∪Qk is a cocircuit. Hence ⊓∗(Qj , Qk) = 1. Thus 5.13.3 holds.

Next we show the following.

5.13.5. If ⊓(L,R ∪ Qh) = 2, then ⊓(L,R ∪ Qi) = 1 for all distinct i in
{1, 2, 3, 4} − {h}.

Assume ⊓(L,R ∪Qi) = 2. Then, by 5.13.1, r(L ∪R ∪Qh ∪Qi) ≤ 5. But
this contradicts 5.13.4. Thus 5.13.5 holds.

Now ⊓(L,R ∪Qi) ≥ ⊓(L,R) = 1. Moreover,

⊓(L,R ∪Qi) + ⊓∗(L,R ∪Qi) ≤ 3 (5.7)

since

⊓(L,R ∪Qi) + ⊓∗(L,R ∪Qi) = λ(L) + λ(R ∪Qi)− λ(L ∪R ∪Qi)
≤ 3 + 3− 3 = 3.

By 5.13.5, duality, and (5.7), we may assume the following without loss
of generality.

5.13.6. If ⊓∗(L,R∪Qi) ̸= 1, then i = 1 and ⊓∗(L,R∪Qi) = 2. If ⊓(L,R∪
Qj) ̸= 1, then j = 2 and ⊓(L,R ∪Qj) = 2.

Next we show the following.

5.13.7. If ⊓∗(L,R ∪ Q1) = 2, then ⊓(Qi, Qj) = 1 and ⊓∗(Qi, Qj) = 0 for
all distinct i and j in {2, 3, 4}.

We have ⊓(L,R ∪ Q1) ≥ ⊓(L,R) = 1. By (5.7), ⊓(L,R ∪ Q1) ≤ 3 −
⊓∗(L,R ∪ Q1) = 1. Thus ⊓(L,R ∪ Q1) = 1. Hence, for the (4, 2)-flexipath
(L,Q2, Q3, Q4, R ∪ Q1), we have ⊓∗(L,R ∪ Q1) = 2 and ⊓(L,R ∪ Q1) = 1.
Thus, it follows by Lemma 5.11(ii) that ⊓(Qi, Qj) = 1 and ⊓∗(Qi, Qj) = 0
for all distinct i and j in {2, 3, 4}, that is, 5.13.7 holds.

By 5.13.7 and duality, we immediately obtain the following.

5.13.8. If ⊓(L,R ∪Q2) = 2, then ⊓∗(Qi, Qj) = 1 and ⊓(Qi, Qj) = 0 for all
distinct i and j in {1, 3, 4}.

By 5.13.8 and 5.13.7 and considering ⊓(Q3, Q4), we deduce that ⊓(L,R∪
Q2) = 1 or ⊓∗(L,R ∪Q1) = 1. Thus, by 5.13.6 and duality, we may assume
that

5.13.9. ⊓(L,R ∪Qi) = 1 for all i in {1, 2, 3, 4}, and ⊓∗(L,R ∪Qj) = 1 for
all j in {2, 3, 4}. Moreover, ⊓∗(L,R ∪Q1) ∈ {1, 2}.

For each j in {2, 3, 4}, consider the path (L,Qg, Qh, Qi, Qj ∪ R), which
we relabel as (L,Qg, Qh, Qi, R

′). Then ⊓(L,R′) = 1 = ⊓∗(L,R′). We take



38 N. BRETTELL, J. OXLEY, C. SEMPLE, AND G. WHITTLE

the clonal core of (M, (L,Qg, Qh, Qi, R
′)). It is a rank-6 matroid M ′. By

Lemma 5.11, for each j in {2, 3, 4}, there are distinct elements s and t in
{1, 2, 3, 4} − {j} such that ⊓(Qs, Qt) = 0 = ⊓∗(Qs, Qt). Then, by 5.13.2,
⊓(Qp, Qq) = 1 = ⊓∗(Qp, Qq) where {p, q} = {1, 2, 3, 4}−{s, t}. This contra-
dicts Lemma 4.2. We conclude that Q does not have exactly four internal
steps.

We now consider (L,Q1, Q2, . . . , Qn, R) where n ≥ 4 and ⊓(L,R) = 1 =
⊓∗(L,R). We prove by induction on n that such a path of 4-separations
does not exist. We proved this above for n = 4. Assume it is true when
the path has fewer than n internal steps and suppose that it has exactly n
internal steps where n ≥ 5. We continue to operate in the clonal core and
to label this clonal core as M . As ⊓(L,Qi) = 1 for all i, it follows that

r(M) = n+ 3. (5.8)

5.13.10. If ⊓(L,R∪Q1) = 2, then ⊓(L,R∪Qi) = 1 for all i in {2, 3, . . . , n}.

Assume that ⊓(L,R ∪Q2) = 2. Then, by 5.13.1,

r(L ∪R ∪Q1 ∪Q2) ≤ 5. (5.9)

As ⊓(L,R∪Q1) = 2, by considering the path (L,Q2, Q3, . . . , Qn, R∪Q1) of 4-
separations, which has at least four internal steps, we deduce by Lemma 5.10
that

r(Q3 ∪Q4 ∪ · · · ∪Qn) = n. (5.10)

Then, by (5.9), (5.10), and (5.8),

3 ≤ λ(Q3 ∪Q4 ∪ · · · ∪Qn)
≤ n+ 5− (n+ 3) = 2,

a contradiction. Thus 5.13.10 holds.
By 5.13.10, duality, and symmetry, we may assume that ⊓(L,R ∪Qn) =

1 = ⊓∗(L,R ∪ Qn). Then the path (L,Q1, Q2, . . . , Qn−1, R ∪ Qn) is a path
of 4-separations that violates the induction assumption. The lemma now
follows by induction. □

Lemma 5.14. Let Q be a (4, 2)-flexipath (L,Q1, Q2, . . . , Qn, R) in a matroid
M , where n ≥ 2 but n ̸= 3. Assume that Q is neither squashed nor stretched
and has no specially placed steps. Then exactly one of the following holds
for all distinct i and j in [n].

(i) ⊓(Qi, Qj) = 0 and ⊓∗(Qi, Qj) = 1.
(ii) ⊓(Qi, Qj) = 1 and ⊓∗(Qi, Qj) = 0.
(iii) n = 2 and ⊓(Qi, Qj) = 0 = ⊓∗(Qi, Qj), while ⊓(L,R) = 1 =

⊓∗(L,R).

Proof. By Lemma 4.2, for a given pair i, j, we must either have one of the
outcomes described in the lemma, or

⊓(Qi, Qj) = 0 = ⊓∗(Qi, Qj). (5.11)



CLONAL CORES AND FLEXIPATHS IN MATROIDS 39

It remains to prove that we have the same outcome for all such pairs and
that, when (5.11) arises, n = 2. By Lemmas 5.9 and 5.10, since n ̸= 3,

(a) ⊓(L,R) = 2 and ⊓∗(L,R) = 1; or
(b) ⊓∗(L,R) = 2 and ⊓(L,R) = 1; or
(c) n = 2 and ⊓(L,R) = 1 = ⊓∗(L,R).

Suppose that (c) holds. Then, since we may view M as a clonal-core
matroid, we have r(L ∪ R) = 5, so r(M) ≥ 5. Now, by Lemma 5.7, r(L ∪
Q1 ∪Q2) = 5 and

3 = λ(R) = r(L ∪Q1 ∪Q2) + r(R)− r(M).

Thus r(M) = r(L ∪ Q1 ∪ Q2) = 5 = r(L ∪ R). Hence Q1 ∪ Q2 is coinde-
pendent in M . By Lemma 5.8, we deduce that ⊓∗(Q1, Q2) = 0. By duality,
⊓(Q1, Q2) = 0.

By duality, we may now assume that (a) holds. We may also assume that
M is a clonal-core matroid. Then, by Lemma 5.10(v), ⊓(Qi, Qj) = 0 for all
distinct i and j in [n]. Now, fix i and j, and let J = [n] − {i, j}. Then, by
Lemma 5.10(vi) and (iv),

r(M)− r(L ∪R ∪QJ) = r(L) +

n∑
h=1

r(Qh) + r(R)− n− 3

−(r(L) +
∑
h∈J

r(Qh) + r(R)− (n− 2)− 2)

= r(Qi) + r(Qj)− 3

= 2 + 2− 3 = 1.

We deduce that Qi ∪ Qj contains a cocircuit of M . As each of Qi and
Qj consists of a pair of clones, Qi ∪ Qj is a cocircuit of M . Then, by
Lemma 5.8(iii), ⊓∗(Qi, Qj) = 1. We conclude that, when (a) holds, so does
(i). By duality, when (b) holds, so does (ii). Thus, (5.11) never arises. □

Theorem 5.15. Let Q be a (4, 2)-flexipath (L,Q1, Q2, . . . , Qn, R) in a ma-
troid M , where n ≥ 2. Then the following hold.

(i) If Q has no specially placed steps, then either
(a) Q is squashed, stretched, paddle-reminiscent, or spike-

reminiscent; or
(b) n = 3 and, in either M or M∗, the (4, 2)-flexipath Q is prism-

like, tightened-prism-like, doubly-tightened-prism-like, relaxed-
spike-reminiscent, Vámos-inspired, or nasty; or

(c) n = 2 and ⊓(Qi, Qj) = 0 = ⊓∗(Qi, Qj) = 0, while ⊓(L,R) =
1 = ⊓∗(L,R).

(ii) If Qn is a specially placed step of type (S1), and n ≥ 3, then
(L,Q1, . . . , Qn−1, Qn ∪ R) is paddle-reminiscent or relaxed-paddle-
reminiscent.
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(iii) If Qn is a specially placed step of type (S2), and n ≥ 3, then
(L,Q1, . . . , Qn−1, Qn ∪ R) is spike-reminiscent or relaxed-spike-
reminiscent.

Proof. Suppose that Q has no specially placed steps and that Q is not
squashed or stretched. Then, by Lemma 5.6, for all i in [n],

⊓(L,Qi) = ⊓∗(L,Qi) = 1 = ⊓(R,Qi) = ⊓∗(R,Qi). (5.12)

Suppose that n ̸= 3. Then, by Lemma 5.9 and its dual, ⊓(L,R) ̸= 0 and
⊓∗(L,R) ̸= 0. Thus ⊓(L,R) ≥ 1 and ⊓∗(L,R) ≥ 1. By Lemma 4.4,

⊓(L,R) + ⊓∗(L,R) ≤ 3.

If ⊓(L,R) = 1 = ⊓∗(L,R), then, as n ̸= 3, by Lemma 5.13, we get that
n = 2. We deduce that either

(a) ⊓(L,R) = 2 and ⊓∗(L,R) = 1; or
(b) ⊓∗(L,R) = 2 and ⊓(L,R) = 1; or
(c) n = 2 and ⊓(L,R) = 1 = ⊓∗(L,R).

Suppose that (c) holds. Then, by Lemma 5.14, ⊓(Q1, Q2) = 0 =
⊓∗(Q1, Q2). If (a) holds, then, by Lemma 5.10(v), ⊓(Qi, Qj) = 0 for all
distinct i and j. Thus, by Lemma 5.14, ⊓∗(Qi, Qj) = 1 for all distinct i and
j. We deduce that Q is paddle-reminiscent. By duality, if (b) holds, then
Q is spike-reminiscent.

Now let n = 3 and assume that Q is neither paddle-reminiscent nor
spike-reminiscent. By Lemma 4.4, ⊓(L,R) + ⊓∗(L,R) ≤ 3. By duality, we
may assume that ⊓(L,R) ≤ ⊓∗(L,R). If ⊓(L,R) = 0, then the possibil-
ities for Q are identified in Lemma 5.9, namely, Q is prism-like, relaxed-
spike-reminiscent, tightened-prism-like, or Vámos-inspired. We may now
assume that ⊓(L,R) = 1. Then, by Lemma 5.12, ⊓∗(L,R) = 1 and the
possibilities for Q are identified in (i) of that lemma. In particular, Q is
doubly-tightened-prism-like or is nasty.

By duality, it only remains to prove (ii). Assume Qn is a specially placed
step of type (S1) and that n ≥ 3. Then (L,Q1, Q2, . . . , Qn−1, Qn ∪ R} is a
(4, 2)-flexipath Q′. Suppose Q′ has a specially placed element Qi. Assume
first that Qi is of type (S1). Then ⊓(L,Qi) = 2, so, by Lemma 4.3, Qi is
specially placed in Q. Thus Q has two specially placed elements, a con-
tradiction to Lemma 5.1. Thus Qi is specially placed of type (S2). Then
⊓∗(L,Qi) = 2, so, again, Qi is specially placed in Q, a contradiction. We
conclude that Q′ has no specially placed steps.

We now argue in the clonal core. Because Qn is a specially placed step of
type (S1), ⊓(L,R) = 2, so r(L∪R) = 4. Also ⊓(R,Qn) = 2, so r(Qn∪R) = 3
and r(L ∪Qn ∪R) = 4. Thus

⊓(L,Qn ∪R) = r(L) + r(Qn ∪R)− r(L ∪Qn ∪R) = 3 + 3− 4 = 2.

Hence Q′ is neither squashed nor stretched. By Lemmas 4.3 and 5.6,
⊓(L,Qi) = ⊓(R,Qi) = 1 = ⊓∗(L,Qi) = ⊓∗(R,Qi) for all i in [n − 1]. If
⊓∗(L,Qn ∪R) = 0, then, by the dual of Lemma 5.9(ii), n− 1 = 3, so n = 4.
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Moreover, as ⊓(L,Qn ∪R) = 2, it follows by the dual of Lemma 5.9(v) and
(viii), that Q′ is relaxed-paddle-reminiscent. If ⊓∗(L,Qn ∪R) = 1, then, by
the dual of Lemma 5.11(ii), Q′ is paddle-reminiscent. Thus (ii) holds. □

The complexity of the last result can be simplified by classifying the
numerous outcomes by a more succinct list of defining characteristics.

Corollary 5.16. Let Q be a (4, 2)-flexipath (L,Q1, Q2, . . . , Qn, R) in a ma-
troid, where n ≥ 2 and Q has no specially placed steps. For ⊓(L,R) ≤
⊓∗(L,R), the following outcomes are possible.

(i) If (⊓(L,R),⊓∗(L,R)) = (0, 0), then Q is prism-like.
(ii) If (⊓(L,R),⊓∗(L,R)) = (0, 1), then n = 3 and

(a) ⊓(Qi, Qj) = 0 for all distinct i and j, and Q is tightened-prism-
like; or

(b) ⊓(Qi, Qj) = 1 for exactly one distinct pair {i, j}, and Q is
Vámos-inspired.

(iii) If (⊓(L,R),⊓∗(L,R)) = (0, 2), then Q is relaxed-spike-reminiscent.
(iv) If (⊓(L,R),⊓∗(L,R)) = (0, 3), then Q is stretched.
(v) If (⊓(L,R),⊓∗(L,R)) = (1, 1), then n ∈ {2, 3}.
(vi) If (⊓(L,R),⊓∗(L,R)) = (1, 1) and n = 2, then ⊓(Q1, Q2) = 0 =

⊓∗(Q1, Q2).
(vii) If (⊓(L,R),⊓∗(L,R)) = (1, 1) and n = 3, then

(a) ⊓(Qi, Qj) = 0 = ⊓∗(Qi, Qj) for all distinct i and j, and Q is
doubly-tightened-prism-like; or

(b) the multiset of pairs {(⊓(Qi, Qj),⊓∗(Qi, Qj)); i ̸= j} contains
(1) both (0, 1) and (1, 0) and Q is mixed nasty; or
(2) (1, 0) but not (0, 1) and Q is plane nasty; or
(3) (0, 1) but not (1, 0) and Q is dual-plane nasty.

(viii) If (⊓(L,R),⊓∗(L,R)) = (1, 2), then Q is spike-reminiscent.

To see an example satisfying (vi), we can modify a prism-like matroid
as follows. Take a 6-element independent set {b1, b2, . . . , b6}. Add b′1, b

′
2,

and b′3 freely on the flat spanned by {b1, b2, b3} and add b′4, b
′
5, and b′6

freely on the flat spanned by {b4, b5, b6}. Add a point c freely on the
line spanned by {b3, b6}. Add points c1 and c4 freely on the line spanned
by {b1, b4}. Add points c2 and c5 freely on the line spanned by {b2, b5}.
Contract c and delete {b1, b2, . . . , b6} to get a rank-5 matroid M . Let
(L,R) = ({b′1, b′2, b′3}, {b′4, b′5, b′6}) and (Q1, Q2) = {c1, c4}, {c2, c5}). Then
⊓(L,R) = 1 so r(L ∪ R) = 5 = r(M). Also Q1 ∪ Q2 is neither a cir-
cuit nor a cocircuit so ⊓(Q1, Q2) = 0 = ⊓∗(Q1, Q2). Finally, r∗(L ∪ R) =
|L ∪R|+ r(Q1 ∪Q2)− r(M) = 6 + 4− 5 = 5. It follows that ⊓∗(L,R) = 1.

We conclude by noting that Theorem 1.1 follows from Theorem 5.15.

Proof of Theorem 1.1. By Lemma 5.1, when we absorb any specially placed
steps of Q into its right end, we get a (4, 2)-flexipath Q′ with at least four
internal steps none of which is specially placed. The theorem now follows
immediately from Theorem 5.15(i). □
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