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Abstract. The cogirth, g∗(M), of a matroid M is the size of a small-
est cocircuit of M . Finding the cogirth of a graphic matroid can be
done in polynomial time, but Vardy showed in 1997 that it is NP-
hard to find the cogirth of a binary matroid. In this paper, we show
that g∗(M) ≤ 1

2
|E(M)| when M is binary, unless M simplifies to

a projective geometry. We also show that, when equality holds, M
simplifies to a Bose-Burton geometry, that is, a matroid of the form
PG(r − 1, 2) − PG(k − 1, 2). These results extend to matroids repre-
sentable over arbitrary finite fields.

1. Introduction

For an arbitrary graph G, the well-known fact that the degree sum of G
is twice the number of edges of G implies that

|E(G)|
δ(G)

≥ 1

2
|V (G)|,

where δ(G) is the minimum degree of G. In a matroid M of nonzero rank,
the cogirth, g∗(M), of M is the size of a smallest cocircuit of M . As Ur,n

shows, |E(M)|
g∗(M) can be arbitrarily close to 1 even for simple matroids, although

it is bounded below by 1
2(r(M) + 1) when M is graphic.

In this paper, we show that, when M is binary,

|E(M)|
g∗(M)

≥ 2

unless M simplifies to a projective geometry. We also characterize the ma-
troids that achieve equality in this bound. Both of these results are special
cases of results for matroids representable over arbitrary finite fields.

The terminology used here will follow Oxley [6] with the following addi-
tion. We will often use Pr and Ar to denote PG(r− 1, q) and AG(r− 1, q),
respectively, where q should be clear from the context. The next two results
are the main results of the paper.
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Theorem 1.1. For r ≥ 1, let M be a rank-r matroid representable over
GF (q) whose simplification is not Pr. Then

|E(M)|
g∗(M)

≥ q

q − 1
.

Moreover, equality holds if and only if M is loopless and, for a fixed embed-
ding of si(M) in Pr,

(i) the complement of si(M) in Pr is isomorphic to Pk for some k with
1 ≤ k < r; and

(ii) if P is a copy of Pk+1 in Pr containing the complement of si(M),
then the parallel classes of the elements in E(M)∩E(P ) all have the
same size; and

(iii) |E(N)| ≥ (q − 1)|E(M) − E(N)| for every restriction N of M that
simplifies to Ar.

This theorem excludes the matroids M for which si(M) ∼= PG(r − 1, q).
These excluded matroids are covered by the next result.

Proposition 1.2. For r ≥ 1, let M be a matroid that simplifies to PG(r−
1, q). Then

|E(M)|
g∗(M)

≥ qr − 1

qr−1(q − 1)
.

Moreover, equality holds if and only if M is loopless and all its parallel
classes have the same size.

Condition (i) in Theorem 1.1 says that M simplifies to a Bose-Burton ge-
ometry [3], that is, a matroid that is obtained from PG(r−1, q) by deleting
some PG(k − 1, q) where 1 ≤ k < r. In each of our results, the bound on
|E(M)|
g∗(M) is relatively easy to obtain. The core of each proof involves charac-

terizing when equality holds in the bound. The proofs appear in Section 3.
Our results have implications for linear codes. A linear code of length n

and rank k is a k-dimensional subspace of the n-dimensional vector space
over GF (q). Such a code C is also known as a q-ary code (see, for exam-
ple, [5]). The minimum distance d of C is the minimum number of coordi-
nates in which two vectors in C differ or, equivalently, the minimum number
of non-zero coordinates in a non-zero vector in C. The relative distance of
C is d/n. A generator matrix for C is a k × n matrix A over GF (q) such
that C equals the row space of A. Let M be M [A], the vector matroid of A.
Then the cocircuits of M coincide with the minimal non-empty supports of
the vectors in C. Thus the cogirth of M is the minimum distance of C, and
g∗(M)/|E(M)| is the relative distance, d/n, of C.

When d
n > 1 − 1

q , the Plotkin bound [7] for q-ary codes [1, 2, 4] asserts

that |C| ≤ qd
qd−(q−1)n . Moreover, when q = 2 and d

n = 1
2 , Plotkin showed

that |C| ≤ 4d. Theorem 1.1 describes the matroids that do not simplify to
PG(r−1, q) for which the relative distance of the corresponding linear code
equals 1− 1

q .
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2. Preliminaries

In a matroid M of rank at least one, a loop contributes to |E(M)| but
not to g∗(M). Since our concern here is on bounding |E(M)|

g∗(M) below, we shall

focus on matroids without loops. It will be convenient here to deal with
the parallel classes in such a matroid M by assigning, to each element of
si(M), a weight w(e) that is equal to the cardinality of the parallel class
of M that contains e. Thus we deal with simple matroids with associated
weight functions that take a positive-integer value on each element. For a
set X in such a matroid N , we write w(X) for

∑
x∈X w(x) and write w(N)

for w(E(N)). The weight function of N\Y is the restriction of the weight
function of N to E(N)−Y . When Y is contracted from N , we replace each
parallel class P by a single element eP whose weight in the contraction is
wN (P ). We will call this weighted simple matroid the weighted contraction
of Y and denote it by N/Y , even though the underlying matroid is actually
si(N/Y ). The cogirth of a weighted matroid is the minimum weight of a
cocircuit.

3. The Proofs

We begin with a lemma that serves as the base case for both of the
inductive arguments that prove the inequalities in the main results.

Lemma 3.1. Let M be a simple, rank-2 matroid, and let w be a weight
function on M . Then

w(M)

g∗(M)
≥ |E(M)|

|E(M)| − 1
,

with equality if and only if w is constant.

Proof. Let w1 ≤ w2 ≤ · · · ≤ wn be the weights of the elements of M .
Because the cocircuits of M coincide with the complements of the parallel
classes in the rank-2 matroid M , we deduce that g∗(M) = w1 + w2 + · · ·+
wn−1. Thus, the desired inequality is equivalent to

(n− 1)(w1 + w2 + · · ·+ wn) ≥ n(w1 + w2 + · · ·+ wn−1).

Subtracting (n− 1)(w1 + w2 + · · ·+ wn−1) from each side, we obtain

(3.1) (n− 1)wn ≥ w1 + w2 + · · ·+ wn−1,

which is true since wn ≥ wi for all i. Note that equality holds in (3.1) if and
only if wi = wn for all i. □

The following is the main result of the paper. It is equivalent to Theo-
rem 1.1 and is stated here in terms of weights.

Theorem 3.2. Let M be a simple, rank-r matroid representable over GF (q),
and let w be a weight function on M . Suppose M ̸∼= Pr. Then

w(M)

g∗(M)
≥ q

q − 1
.
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Moreover, equality holds if and only if, for a fixed embedding of M in Pr,

(i) the complement of M is isomorphic to Pk, with 1 ≤ k < r; and
(ii) if P is a copy of Pk+1 containing the complement of M in Pr, then

w is constant on P ; and
(iii) w(N) ≥ (q − 1)w(E(M)− E(N)) for every Ar-restriction N of M .

Proof. We begin by proving the displayed inequality by induction on r.
Lemma 3.1 gives the result when r = 2 since |E(M)| < |E(P2)| = q + 1.
Suppose r ≥ 3. If there is an e in E(M) with M/e ̸∼= Pr−1, then, by
induction,

(q − 1)w(M) > (q − 1)w(M/e) ≥ qg∗(M/e) ≥ qg∗(M).

Thus we may assume that M/e ∼= Pr−1 for all e in E(M). Take a line of Pr

that meets both E(M) and E(Pr)−E(M). Let X be the set of elements of
M on this line and e be a maximum-weight element of X. Let Y = X − e.
Note that |Y | ≤ q − 1, so

(3.2) w(Y ) ≤ w(e)(q − 1).

Observe that M\Y/e has rank r − 1 but is not isomorphic to Pr−1 so, by
the induction assumption,

(q − 1)w(M\Y/e) ≥ qg∗(M\Y/e).

Now

w(M\Y/e) = w(M)− w(e)− w(Y ),

and

g∗(M\Y/e) ≥ g∗(M)− w(Y ).

Thus

(q − 1)w(M) ≥ qg∗(M) + w(e)(q − 1)− w(Y ),

so, by (3.2),

(q − 1)w(M) ≥ qg∗(M)

as desired.
Next we characterize when equality is achieved in the last bound. Let M c

be the complement of the fixed embedding of M in Pr. When M c ∼= Pk for
1 ≤ k < r, a hyperplane of Pr either contains this Pk or meets it in a Pk−1.
Thus a cocircuit of M is isomorphic to either Ar or Ar −Ak. We call these
type-I and type-II cocircuits, respectively, noting that there are no type-I
cocircuits when k = r − 1.

3.2.1. Suppose M satisfies (i) and (ii). If C∗ is a type-II cocircuit of M ,
then

w(C∗) =
q − 1

q
w(M).
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As M satisfies (i), M c ∼= Pk. Since C∗ is a type-II cocircuit, there is
a restriction A of Pr isomorphic to Ar such that A meets M c and C∗ =
E(M)∩E(A). Let H be the hyperplane of Pr that is the complement of A.

Now, Pr consists of
qr−k−1
q−1 copies of Pk+1 containing M c, and the pairwise

intersection of these copies is M c. Thus M is the disjoint union of qr−k−1
q−1

copies of Ak+1. By (ii), the elements in each Ak+1 have the same weight.

To complete the proof of 3.2.1, we show that C∗ contains exactly q−1
q of the

elements of each Ak+1.
Consider the complementary Ak+1 to M c in a fixed Pk+1. Note that Pk+1

consists of q+1 copies of Pk, including M c, that contain H ∩E(M c), which
is isomorphic to Pk−1. Therefore, this Ak+1 is the disjoint union of q copies
of Ak. Now H meets Pk+1 at a Pk distinct from M c. Thus A meets Pk+1 in
a set that is the union of q disjoint copies of Ak, one of which is in M c. This
implies that C∗ ∩Ak+1 is the disjoint union of q − 1 copies of Ak, and 3.2.1
follows.

Now assume that w(M)
g∗(M) =

q
q−1 . Then equality holds in (3.2) so |Y | = q−1

and w(y) = w(e) for all y ∈ Y . The former implies that every line of Pr

that meets both M and M c contains exactly q points of M . This means
that every line that contains two points of M c lies entirely in M c. Thus M c

is a flat of Pr, proving (i).
As w(y) = w(e) for all y ∈ Y , it follows that w is constant on each line of

Pr that meets both M and M c. Since a Pk contained in a Pk+1 meets every

line of the Pk+1, (ii) is satisfied. It now follows from 3.2.1 that w(M)
g∗(M) =

q
q−1

if and only if M satisfies (i) and (ii), and the type-I cocircuits of M have

weight at least q−1
q w(M). It is straightforward to check that this third

condition is equivalent to (iii), so the theorem holds. □

The reader may find condition (iii) of Theorem 3.2 unsatisfying, and the
next proposition offers a potential replacement, (iii)′. The example that
follows Proposition 3.3 shows that conditions (i), (ii), and (iii)′ do not guar-

antee w(M)
g∗(M) =

q
q−1 for a matroid M meeting the hypotheses of Theorem 3.2.

In addition, the example illustrates the potential difficulty of finding a sat-
isfactory replacement for (iii).

Proposition 3.3. Let M be a simple, rank-r matroid representable over
GF (q), and let w be a weight function on M . Suppose that M ̸∼= Pr and

that w(M)
g∗(M) =

q
q−1 . Then

(iii)′ qr−1w(e) ≤ w(M) for all e in E(M).

Proof. By Theorem 3.2, M c = Pk. If k = r−1, then Theorem 3.2(ii) implies
that (iii)′ holds with equality. Thus we may assume that k < r− 1. Extend
the weight function of M to Pr by assigning each element of M c a weight
of one. Then contract M c from Pr to form a weighted matroid M ′ ∼= Pr−k.
Fix an element e in E(M), and let e′ be the image of e in M ′. Note that
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w(M ′) = w(M) and w(e′) = qkw(e) under this transformation. Moreover,
the type-I cocircuits ofM correspond to the cocircuits ofM ′, so the weight of
each cocircuit of M ′ equals the weight of the corresponding type-I cocircuit
of M .

Let C∗ be a cocircuit ofM ′ that avoids e′ and letH be the complementary

hyperplane to C∗ in M ′. Since w(M)
g∗(M) =

q
q−1 , it follows that

q

q − 1
w(C∗) ≥ w(M ′),

and subtracting w(C∗) from each side produces

(3.3)
1

q − 1
w(C∗) ≥ w(H).

Note that (3.3) holds for an arbitrary cocircuit of M ′ avoiding e′, so
we have such an inequality for every such cocircuit. Moreover, C∗ and
H partition E(M ′) so, for a fixed f ∈ E(M ′\e′), its weight contributes to

exactly one side of each inequality. Now, there are qr−k−1−1
q−1 total inequalities

as this is the number t of hyperplanes of M ′ containing e′. Similarly, w(f)

contributes to the right-hand side of exactly qr−k−2−1
q−1 of these inequalities as

this is the number s of hyperplanes of M ′ containing both e′ and f . Hence
w(f) contributes to the left-hand side of t−s of these inequalities. Summing
these inequalities gives

t− s

q − 1
w(M ′\e′) ≥ sw(M ′\e′) + tw(e′),

and this simplifies to
w(M ′) ≥ qr−k−1w(e′).

Finally, we substitute w(M) for w(M ′) and qkw(e) for w(e′) to obtain

w(M) ≥ qr−1w(e)

as desired. □

Example 3.4. Let q = 2 and let M = P4 − p for some p ∈ E(P4). Then
M ∼= P4 − P1. Take a hyperplane H of P4 containing p, and note that H
has |P3| elements. Then H − p is a hyperplane of M and the corresponding
cocircuit C∗ is type-I and has |A4| elements.

Assign the weight 2 to each element of H − p and the weight 1 to each
element of C∗. Then

w(M) = 2(|P3| − 1) + 1 · |A4| = 2(6) + 8 = 20.

Observe that conditions (i) and (ii) of Theorem 3.2 hold and, since, for all
e in E(M),

qr−1w(e) ≤ 23(2) < 20 = w(M),

so does (iii)′. However, w(C∗) = 8, so the equation

(3.4)
w(M)

g∗(M)
=

q

q − 1
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fails.
Now, in P4, take a line in C∗∪ p and another in H that each meet in {p}.

Swap the weights 1 and 2 on the elements of M on these lines. Note that
(i), (ii), and (iii)′ continue to hold, and w(M) is unchanged. However, it is
straightforward to check that the weights of the type-I cocircuits of M are at
least 10, so (3.4) holds by Theorem 3.2. Thus, characterizing the matroids
for which equality holds in Theorem 3.2 requires not only restricting the
weights themselves, but also controlling their distribution.

Finally, we prove a proposition equivalent to Proposition 1.2 stated here
in terms of weights.

Proposition 3.5. Let M be a matroid isomorphic to PG(r − 1, q) and w
be a weight function on E(M). Then

w(M)

g∗(M)
≥ qr − 1

qr−1(q − 1)
.

Moreover, equality holds if and only if w is constant.

Proof. We prove the inequality by induction on r. It is trivial when r = 1
and is true for r = 2 by Lemma 3.1, so suppose r ≥ 3. Let C∗ be a cocircuit
of M of weight g∗(M) and let H be the complementary hyperplane to C∗

in M . Choose Z as a maximum-weight hyperplane of H. Then, letting Y
be the complement of Z in H, we have

(3.5)
w(M)

g∗(M)
=

w(C∗) + w(Y ) + w(Z)

w(C∗)
= 1 +

w(Y ) + w(Z)

w(C∗)
.

Observe that the weighted contraction of Z from M is isomorphic to P2 so,
by the inequality for r = 2, we get that

w(M/Z)

g∗(M/Z)
≥ q + 1

q
.

Now, since C∗ is also a minimum-weight cocircuit of M/Z, we rewrite this
inequality as

(3.6)
w(Y ) + w(C∗)

w(C∗)
≥ q + 1

q
.

It follows that qw(Y ) ≥ w(C∗). Substituting into (3.5), we obtain

(3.7)
w(M)

g∗(M)
≥ 1 +

1

q
· w(Y ) + w(Z)

w(Y )
.

Finally, the hyperplane H is isomorphic to Pr−1, and our choice of Z
makes Y a minimum-weight cocircuit of H. Thus, by induction,

(3.8)
w(Y ) + w(Z)

w(Y )
≥ qr−1 − 1

qr−2(q − 1)
.

Substituting (3.8) into (3.7) gives the desired inequality.
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One easily checks that, when w is constant,

(3.9)
w(M)

g∗(M)
=

qr − 1

qr−1(q − 1)
.

We now use induction on r to prove that the elements of M have the same
weight when (3.9) holds. When r = 1, this is trivial, and Lemma 3.1 handles
the rank-2 case.

Suppose r ≥ 3. Since (3.9) holds, equality holds in (3.6) and (3.8). It
follows from the latter using the induction assumption that the weight func-
tion w on E(M) is constant on the hyperplane H of M . From the former,
we deduce that, in M/Z, every point has equal weight. It follows that every
hyperplane H ′ of M containing Z has the same weight. Hence the cocircuit
E(M) − H ′ has the same weight as C∗. Replacing H by H ′, we deduce
that w is constant on the elements of H ′. Letting H ′ range over all of the
hyperplanes of M containing Z, we deduce that w is constant on E(M). □
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